

Investigating Informative Performance Metrics for a

Multicore Game World Server

James Munro, Kofi Appiah, Patrick Dickinson

School of Computer Science, University of Lincoln, Lincoln, UK
Corresponding author:pdickinson@lincoln.ac.uk

Abstract

Many real-time game world servers run on stand-alone PCs, such that user

performance is bound to fairly modest hardware configurations. Studies of

multicore architectures to optimize such servers are sparse, and evaluations

typically involve the use of one or two arbitrary performance metrics.

However, the behavior of game servers is complex and the interpretation of

metrics, particularly in the case of parallel implementations, is not

straightforward.

Our initial interest is in efficient load-balancing of multicore game

engines. However, the focus of this paper is on performance metrics: starting

with proposed metrics from other works, we investigate their effectiveness

and inter-relationships, propose new variants, and discuss how they can be

used in combination to gain a better understanding of actual performance.

The use of metrics to inform the design and optimization of game

software has gained recent interest from academics and practitioners alike:

we conclude to show, by example, how server metrics can be directly

connected with game semantics, and used to predict the impact of game

design changes on server performance.

Keywords:

Multi-core games server; performance evaluation; game server metrics

1. Introduction

Multiplayer games range from the technologically simple, to sophisticated

endeavors such as Massively Multiplayer Online Role-playing Games

(MMORPGs). The concept of a client-server architecture is ubiquitous: in

2

Preprint submitted to Entertainment Computing August 14, 2013

the case of MMORPGs, expansive environments are hosted on bespoke server

configurations which facilitate huge numbers of users. For example, by 2007

the game EVE Online had recorded over one million unique players since its

launch in 2003 [1]. Whilst a significant amount of research has investigated

the use of distributed architectures to support large-scale game servers (e.g.

[2, 3, 4, 5, 6, 7, 8]), this type of server setup is exceptional.

Many games allow players to create their own stand-alone ad-hoc servers

which service smaller game worlds with tens rather than thousands of

players. These servers run on standard consumer equipment, and

performance is (unsurprisingly) closely bound to processing power [9].

Single machine servers represent a major part of the currently available

multiplayer online gaming service, and are common for first person shooters

games which involve fastpaced interactive gameplay and real-time

simulation. Player experience for this game type is particularly sensitive to

degradation in performance, in the order of milliseconds [10, 11], and so

server optimization represents an ongoing challenge for developers. It is

therefore surprising that relatively little work has been directed at

optimizing stand-alone servers to utilize the parallel processing architecture

of multicore CPUs. Game metrics have attracted recent academic interest

(e.g. [12, 13]), and also interest from industry where they are perceived as a

valuable tool for design, balancing, and optimization. As Abdelkhalek et al.

note [9], benchmarking methods for interactive game servers are driven by

somewhat different considerations from scientific processing: useful

performance evaluation should reflect user experience in some way. Again,

little work has yet considered suitable server-side metrics for the analysis of

real-time multicore game engines.

1.1. Motivation

The starting point for our work is an existing server design proposed by

Cordeiro et al. [14], implemented using id software’s QuakeWorld game

server. Cordeiro’s work uses spatial partitioning to divide entity processing
into discrete non-intersecting work packages which can executed in parallel

(details of the architecture are given in section 2.3). Our initial interest is in

load balancing, and optimizing the distribution of work packages across

hardware threads; however, a survey of current work in this area reveals that

the use of performance metrics is not standardized, making it difficult to

compare algorithms. Moreover, a single metric is not in itself entirely

3

informative, and often leaves questions remaining about the the underlying

processes. The measurement of performance of a multicore server thus

becomes our primary interest, such that the motivations for our study are:

1. To investigate the relationship (if any) between currently used

serverside performance metrics.

2. To determine which metric, or set of metrics, provide the most

informative analysis of performance.

3. As a secondary motivation, we are interested in the impact that

thechoice of load balancing algorithm has on performance in Cordeiro

et al.’s architecture: this provides a context for points 1 and 2.
As mentioned, useful performance evaluation should reflect player

experience in some way. In terms of perceived responsiveness, experience is

a function of several factors of which server performance is just one. Others

include data transmission latency, client-side performance, and also game

play context: for example, the affects of latency on player experience have

been well-studied (e.g. [11, 15, 16]). A proper analysis of perceived

responsiveness encompasses all these factors, is context dependent, and lies

outside the scope of the work presented here. Our focus is specifically on

identifying meaningful comparators for multicore server architectures,

which may be used to quantify performance and independently optimize

design. Nevertheless, our metrics do relate directly to player experience. For

example, we will use server throughput, which is a direct measure of the

number of connected clients that can be processed concurrently, and so has

a direct effect on experience.

1.2. Contributions

Our study takes the form of a set of empirical investigations into the

performance of different simple load balancing strategies used in

conjunction with Cordeiro et al.’s QuakeWorld server [14]. These

experiments are primarily constructed to investigate the response of

different metrics. Building on our preliminary results, presented in [xx], the

contributions of this paper are:

1. We evaluate the effectiveness of a range of server-side metrics

including frames per second, server throughput, thread wait time, and

accumulated thread work load. We present conclusions concerning

their inter-relationships and effectiveness, and which are most useful

4

in analyzing performance. A study of performance metrics in the

context of multicore game servers has not previously been conducted,

and is

of immediate use to developers working on stand-alone game server

applications.

2. In relationship to Cordeiro et al.’s architecture [14], we show by
example how metrics can be used to estimate the effect of game design

changes on server performance.

3. We investigate the effects of different load balancing algorithms

onserver performance. We use only simple balancing techniques, but

these are still able to characterize the importance of effective thread

balancing in Cordeiro et al.’s system. We further investigate how these
results scale across varying numbers of CPU cores, ranging from one

(serial) to six concurrent hardware threads, using our metrics.

Whilst we use a specific architecture and game engine to conduct our

experiments, our results are easily generalized. The proposed metrics are

low-level statistics which describe the performance of workgroups

processed on hardware threads: these are thus independent of the

workgroup allocation strategy, and equally applicable to any multicore game

server design. Furthermore, the lockless server design which we employ [14]

is based on the semantic constraints of objects moving in a physical

simulation. This design may therefore be transposed to any functionally

comparable game engine (e.g. first person shooter, or game which simulates

a physical world).

1.3. The Structure of this Paper

The rest of this paper is presented as follows. Section 2 reviews the

current literature regarding parallel and concurrent processing

architectures and metrics in game engines, specifically server-side, and

concludes with a description of the QuakeWorld server, and a detailed

description of the parallel implementation presented by Cordeiro et al.

Section 3 proceeds to describe our experimental setup, and is followed by

sections 4 to 7 which present our experimental work and discussions of

performance metrics. We conclude with a discussion of our results, and

motivate some conclusions regarding the use of server-side metrics, and

load-balancing strategies for stand-alone multicore game servers.

5

2. Background and Related Work

Whilst relatively little work has addressed the evaluation of multicore

game servers, there has been considerable wider interest in the use of

concurrent architectures to optimize game software. Aspects of client-side

processing have been addressed by Gildea [17], who attempted to adapt the

Quake 3 client to support parallel execution (with limited success). He

identified the difficulty in reconstructing concurrent processing threads

which access shared memory. The use of GPUs to implement concurrent

graphics processing is well established. Their potential for use in non-

graphical processing in game engines has also been investigated: [18, 19, 20,

21, 22].

Our interest lies specifically in the optimization of game servers. A

number of studies have considered distributed architectures: Bharambe et

al. [23] succeeded in scaling the Quake II engine over many server nodes,

supporting hundreds of players. A study by Ploss et al. [24] parallelized the

Quake III server using a purpose-built scalable grid framework. A number of

other studies ([3, 4, 6, 7, 8]) have dealt with distributing game state across

multiple nodes.

2.1. Optimizing a Stand Alone Server

Practical considerations dictate that ad hoc servers are implemented on

stand-alone machines; however, relatively little work has investigated the

implementation, optimization, and benchmarking of appropriate parallel

architectures. As mentioned, Abdelkhalek et al. [9] analyzed the performance

of the standard sequential QuakeWorld server, empirically determining an

approximately linear relationship between processing overhead and the

number of players. They discussed the difficulty of meaningful

benchmarking: noting the functional similarity with online transaction

processing, they propose the use of server throughput and CPU idle time, as

performance metrics.

In further work, Abdelkhalek and Bilas [25] implemented a parallel

version of the QuakeWorld server. The response processing and reply phases

were processed by concurrent threads running on separate cores of a

quadcore CPU. Parallel execution was achieved by assigning each player

permanently to a specific thread; however, memory synchronization was a

limiting factor, and the resolution of lock contentions represents up to 35%

of total execution time. An analysis showed that peak response occurs with

around 25% more players attached than the serial version, which is a

6

significant improvement. In this work, Abdelkhalek and Bilas use only

response rate and aggregated thread workload to analyze performance: we

will show in our experiments that these alone are not sufficient to fully

understand the behavior of a parallel server. Very recent and interesting

work by Raaen et al. [26] proposes a complementary lockless processing

architecture, implemented using a simple bespoke game. In this case, each

entity is considered an atomic process and restrictions are placed on

interactions. Server response time and CPU load are used to compare single

and multi-threaded implementations, but as with Abdelkhalek and Bilas,

these are insufficent to fully understand behaviour, or to compare with other

architectures.

A number of studies have explored the use of software transactional

memory (STM), as an alternative to lock-based shared memory. Results are

thus far inconclusive. Zyulkyarov et al. [27] built Atomic Quake upon the

parallel QuakeWorld server developed by Abdelkhalek et al. However, their

system was not as effective as the original lock-based system. Gajinov et al.

[28] developed another STM-based modification of the QuakeWorld server.

They were able to achieve better performance; however, the the overheads

incurred by STM were again high. A subsequent study by Lupei et al. [29, 30]

introduced SynQuake, an STM-based server derived from Quake III. These

results were more promising, reporting better performance and scalability

than lockbased strategies. However, their experimental work does not use

real clients connected on a network, which are essential to accurate

evaluation of game servers [31].

In most cases, one quantifiable metric such as server throughput ([27]),

or frame execution time ([28] [29, 30]) is used in an ad hoc fashion, without

thorough consideration of how that metric relates to the underlying

performance.

2.2. The QuakeWorld Server

Several existing studies have made use of id software’s Quake series of

game engine servers (e.g. [9, 23, 10, 24]). QuakeWorld is particularly suitable

for academic study: the full client/server source code was released under the

GNU General Public License in 1999, and is therefore fully accessible. Whilst

the QuakeWorld engine is relatively old, it is directly related to more modern

game engines. For example, it uses local prediction to compensate for

highlatency networks, and was the first Quake engine designed for internet-

7

based play. Quakeworld was used as the basis for later game engines such as

Valve

Software’s GoldSrc engine.

The standard serial QuakeWorld server frame update comprises the

following processes:

1. Processing the world state.

2. Receiving client input.

3. Entity/client processing.

4. Outputting responses to clients.

World state processing involves entities not associated with a player, and

consumes a small portion (5%) of the overall processing time [9]. Step 2

collates inbound network packets: only clients which have sent input to the

server will be processed in the current frame, and inputs are validated

against game world semantics. Analysis by Abdelkhaleh et al. [9] shows that

steps 3 and 4 (Entity/client processing and Outputting responses) together

account for typically 90% of the frame processing time in the serial version.

Moreover, execution time (in serial) scales approximately linearly with the

number of clients. Client processing involves applying player inputs, and

then executing the game world simulation associated with that player, such

as movement, creation of new objects, and so on. Once all of the requests have

been processed, the results of the frame are transmitted via the network

connection to all clients.

2.3. A Lockless Server Architecture

Subsequent work by Cordeiro et al. [14] leverages game semantics to

avoid the critical problem of synchronizing shared memory. Like

Abdelkhalek and Bilas, concurrent processing is implemented using multiple

hardware threads running in parallel on a multicore CPU: this is applied to

the response processing and reply phases, which account for the majority of

the frame processing in QuakeWorld. However, they have designed a strategy

which predivides response and reply processing into workgroups which are

guaranteed not to access the same memory resources.

Each object in the game world has its own distinct memory resources, and

response processing in QuakeWorld potentially involves processing each of

these objects, every frame. Two objects which do not interact with each other

may be processed concurrently without synchronization problems.

8

However, interacting objects can result in lock contentions: this is the source

of the wait time reported by Abdelkhalek and Bilas.

Cordeiro et al. introduce a pre-processing step which groups game objects

into subsets which are independent and cannot interact during the current

update. That is, objects within the same subset may potentially interact with

each other, but not with any object in any other subset. These subsets are

inferred from the spatial distribution of objects. Each object forms the node

of a graph G(V,E), where an edge ei,j ∈ E represents the Euclidean distance

between objects i and j in the game world coordinate system. Each object has

an associated maximum range of movement in the current frame di, such that

if ei,j ∈ E > (di + dj) then it is impossible for the two objects to interact. A

connected components algorithm is used to identify subsets such every node

vi ∈ V is assigned to a subset Sα such that:

vi ∈ Sα −→∃vj6=i ∈ Sα : ei,j ≤ (di + dj) ∧¬∃vk ∈ Sβ6=α : ei,j ≤ (di + dk) (1) In Cordeiro’s implementation, di = dj = dk a constant equal to the action

distance of entities in the game world: that is, the maximum spatial

interaction of an entity, as defined within the engine (which is independent

of frame rate). The subsets then form distinct workgroups which may be

safely executed concurrently on separate threads. Each thread is managed

separately: a copy of the relevant parts of main memory is created for each

using a feature of the Linux-kernel known as copy-on-write [32]. These copies

are nonintersecting, and so trivially resynchronized at the end of the reply

phase. Cordeiro et al. use a dynamic load-balancing strategy to distribute

workgroups on a per-frame basis across the available threads (including the

main thread). This is achieved by weighting each package according to the

number of objects it represents, then distributing packages based on a

Longest Processing Time First (LPT) algorithm. They were able to increase

the the server time spent in parallel execution to 55%, from the 40%

achieved by Abdelkhalek and Bilas. The final frame process structure is

shown in Figure

1.

2.4. Motivation for Our Work

The work presented by Cordeiro et al. implements a lockless game server,

dynamic load balancing, and is clearly generalizable: these game semantics

9

are common to comparable real-time simulations, and could support other

types of games. However, there are a number of issues:

1. It is difficult to critically compare performance with other studies.

Thismainly due to the inconsistent use of ad-hoc metrics, without

consideration of how informative they are, or how they respond to

operating parameters. Cordeiro et al. use aggregated thread workload,

and frames per second, to examine performance: we will later show

that other metrics give a better analysis of performance.

Figure 1: A concurrent QuakeWorld frame, as implemented by Cordeiro et al.

2. The authors report a better performance using three parallel

threadsrather than four. This appears spurious, and warrants further

investigation.

3. The interaction range used to construct workgroups (di in Equation 1)

is an operational parameter which reflects specific game semantics, but

Process World State

Receive Client Input

Entity Pre-
processing

Load Balancing

Process Client
Requests

Process Client
Requests

Process Client
Requests

Process Client
Requests

Send Client
Responses

Send Client
Responses

Send Client
Responses

Send Client
Responses

State
Synchronisation

10

which also directly affects server performance. The effect of varying

this parameter warrants investigation.

3. Experimental Setup

Our study is empirical in nature, and comprises a set of four experimental

investigations. The experiments were conducted using eight PCs, connected

on a LAN, one of which ran the game server code. The configuration of these

machines is shown in Table 1. The last two experiments make use of an

additional PC with a six-core CPU, specified in Table 2, to run the game server.

The server threads we create in our experiments run on individual CPU cores

(up to six).

Processor (CPU) Intel Core 2 Quad Q8200

Graphics Card (GPU) N/A

System Memory (RAM) 4GB 800MHz DDR2 SDRAM

Operating System (Client) Microsoft Windows 7 32-bit

Operating System (Server) Ubuntu Linux 9.10 32-bit
Table 1: Hardware specification 1

Processor (CPU) AMD Phenom II X6 1035T (2.60GHz)

Graphics Card (GPU) ATI Radeon HD 5670

System Memory (RAM) 4GB 1333MHz DDR3 SDRAM

Operating System (Server) Ubuntu Linux 10.04 64-bit
Table 2: Hardware specification 2

One machine was used to run the server, while the remaining machines

were used to run game clients. The number of clients required to test

performance made the use of human players impractical: instead, each ran

an automated client-side agent, or bot. The code to control the agent was

originally developed by Cordeiro et al., and we modified it to operate on a

Windows 7 (32-bit) platform. The bot control code simply issues a walk

command to the server every 10 client frames, and another action command

(e.g. jump or shoot) to the server, every 5 frames (client-side). The number

of requests per second received by the server is therefore independent of the server’s frame-rate, consistent for a fixed number of clients, and scales

linearly with the number of connected clients. Cordeiro et al. indicated that

11

this gave a per-client message rate comparable to a human player (see [14]).

Using this simple client-side bot we were able to run up to 32 such clients per

machine, so that we could easily operate two hundred attached clients using

a manageable number of physical machines.

For the purpose of comparative evaluation it was also necessary to scale

the performance of the game server to our LAN infrastructure. Initial

experiments showed that several hundred connected clients were required

to stress the server; however, the LAN (10Mb/s) did not carry sufficient

bandwidth to support such large numbers of clients: packet congestion

frequently caused client connections to fail. We were able to scale the server

performance such that it could be stressed by fewer (approximately 200) clients, by adding an additional artificial processing overhead to the server’s
player entity processing function. We found experimentally that a fixed

processing overhead of 300µs per entity was suitable. Whilst this scaling is artificial, any game engine’s entity processing is of arbitrary complexity. Our
evaluation is comparative, and intended to represent a generic game server

process and hardware setup: scaling the server performance in this way is

representative of a game engine with more complex entity processing, and

allowed us to perform a full investigative analysis within our hardware

parameters.

3.1. Our Experiments

Our work comprises four distinct experiments. Each examines both an

aspect of thread workload balancing, and together they represent an

investigation of performance metrics for a multicore server:

1. In our first investigation we set a baseline by reproducing Cordeiro et

al.’s experiments on our platform. We add server throughput

(previously used for a serial server [9]) as a metric, and investigate the

relationship between throughput and frames per second (used by

Cordeiro et al.).

2. We investigate performance using different (standard) dynamic

loadbalancing strategies, and examine scaling from one to four threads.

We investigate the effectiveness of aggregated thread workload,

standard deviation of workload, and thread wait time, as comparative

metrics.

3. Extending to six threads, we further analyze thread wait time.

12

4. We conclude by considering the effect of reducing workgroup size

byvarying the parameter di in Equation 1, and discussing how this

impacts on game mechanics.

We present the results for each experiment as a graph (or set of graphs)

in which each data point is a measurement of server performance in some

configuration: using a particular load balancing algorithm, with specific

numbers of threads and attached clients. For example, LPT with 4 threads

and 96 connected clients. We vary these parameters to derive performance

graphs, which form the basis of our analyses. For each data point, we run the

sever for a predefined amount of time (approx. 180 seconds). Moreover, we

repeat each run 5 times, giving around 15 minutes of game play from which

that data point is measured. We use multiple runs to aggregate the possible

effect of any external processes or initial conditions. Our choice of 5

specifically was limited by practical considerations.

Each experiment comprises several 10s of data points gathered from

hundreds of individual runs, each of which may involve hundreds of clients.

A high level of automation was therefore critical to running these

experiments, which we achieved using a bespoke client control program

capable of automatically creating, connecting and managing multiple clients

across multiple machines.

3.2. Metrics

In our experiments we use a range of performance metrics. Some of these

are collated from other studies (Cordeiro et al., Abdelkhalek et al. [9]); others

are new metrics which we introduce ourselves. The full set used in our

experiments are:

1. Frames Per Second (FPS): Commonly used as a measure of game

engine execution speed. This was calculated by dividing the total

execution time for an experimental run by the number of executed

frames. Timing was effected using the QuakeWorld engine’s timer
function, which uses the POSIX gettimeofday() microsecond system

timer.

2. Server Throughput: A measure of the server’s response to incoming
client request packets. Abdelkhalek et al. demonstrated a linear

relationship with the number of clients on a linear server, reaching a

maximum when all computational resources are fully utilized

(saturation). This value is calculated using a response counter which is

13

incremented directly before each thread sends a processed response

packet to a recipient client. As the server completes a frame, the

individual thread counters are summed to calculate the total number

of responses sent, and this value is divided by the total elapsed

execution time.

3. Accumulated Workload Distribution: Used by Cordeiro et al., shows

the total workgroup weight assigned to each thread, aggregated over

some period of time (in our case all runs for each data point, so approx.

15 minutes). Weight in this case is defined as the number of game

entities in the workgroup, and is an estimate of average processing

load.

4. Workload Standard Deviation: We introduce standard deviation of

thread workload which indicates the frame-by-frame variation of the

distribution. This is useful in characterizing time-variation (note that

average workload is not used, as it is no more informative than the

accumulated value).

5. Intra-Frame Wait Time (IFWT): Used by Abdelkhalek, this is the

average time per-frame that the main thread spends waiting for the

supplementary threads (noting that workpackages are also processed

by the main thread). A high IFWT indicates that the main thread is

being under-utilized, though a low IFWT may not necessarily show an

optimal balance. This metric is also calculated using the POSIX

gettimeofday() system timer.

6. Total Wait Percentage (TWP): We introduce IFWT measured as a

percentage of total server frame execution time.

3.3. Load Balancing Strategies

Our experiments include performance comparisons using different load

balancing strategies. Workgroups, constructed using the algorithm proposed

by Cordeiro et al., and expressed in Equation 1, are distributed between the

number of active threads: the objective is to evenly distribute processing

with the minimum overhead. The Longest processing Time First strategy used

by Cordeiro et al. is well motivated, but this comparison provides a useful

context for investigating the use of different metrics, and also for assessing

the importance of load-balancing on performance in this context. The load

balancing strategies we compare are as follows:

14

1. Longest processing Time First (LPT): workgroups are sorted into

order of descending size. Taking each in order, they are assigned

sequentially to the thread with the least current weight. Like Cordeiro

et al., in our implementation the first (main) thread starts with an

initial weight penalty of one, to ensure that the second thread always

receives the first and largest workgroup.

2. Shortest processing Time First (SPT): The opposite of the LPT

described above, workgroups are sorted them in order of ascending,

rather than descending, size. Our expectation is that performance will

be less optimal than LPT if there is a consistent differential in

workgroup weight size.

3. Round-Robin (RR): The simplest algorithm; it does not perform any

sorting and simply iterates through the list of workgroups and assigns

each to alternating threads. This provides a baseline performance, in

that it gives the most naive possible distribution, with the lowest

overhead, comparable to that used by Abdelkhalek and Bilas.

4. Sorted Round-Robin (SRR): An adaptation of the RR algorithm. It

sorts workgroups in order of descending size, as LPT, then iterates

through the list and assigns each in turn to an alternating thread.

4. Experiment One: Frames Per Second vs Throughput

The purpose of our first experiment is three-fold: firstly to validate and

expand the results obtained by Cordeiro et al. [14] using our own platform,

and to compare server throughput (used by Abdelkhalek and Bilas [9]) with

frames per second (Cordeiro et al.) as a performance metric. Using Cordeiro

et al.’s original code base (LPT), we took measurements for one and four
threads. Our measurements included recorded FPS and server throughput

rate for between 32 and 192 connected clients. The results are shown in

Figures 2 and 3 respectively.

Our measurements for FPS are more extensive than those presented by

Cordeiro et al., and show a clear trade-off between the computational cost of

managing multiple threads, with the number of clients which can be

supported: with lower numbers of clients (less than 112), the overhead of

maintaining multiple threads is dominant, and results in a better

performance

15

Figure 2: FPS of optimized server (LPT with 1-4 Threads)

Figure 3: Server throughput of optimized server (LPT with 1-4 Threads)

with just one or two threads. However, with more than 112 threads

connected, performance degrades quickly and the three and four thread

16

servers are superior. Figure 2 does show that FPS as a metric gives poor

differentiation with higher numbers of attached clients: the recorded FPS for

three and four threads with 192 clients is difficult to separate.

Better differentiation is evident using server throughput (Figure 3),

however. Abdelkhalek and Bilas reported, for serial execution, a linear

relationship between throughput and number of connected clients, until

peak throughout is reached at the point of saturation. In our case, we observe

the same relationship for multiple threads: saturation occurs between ≈ 100

clients (1 thread) and ≈ 176 clients (4 threads). The performance difference

between 3 and 4 threads is also much more clearly distinguishable than it is

using FPS.

We identify a relationship between throughput and FPS. For example,

comparing the performances for 2 threads, shown in Figures 2 and 3, the

linear increase in throughput from 1000 to 4000 RPPs between 32 and 128

clients is matched with an approximately linear decrease in FPS from around

400 to just under 100. Peak performance appears as a maximum in

throughout, and also as a corresponding minimum in FPS. A similar pattern

emerges for performance with 3 and 4 threads.

We conclude that there is a coupling between FPS and throughout;

however, throughput displays greater differentiation under high

computational load, and is therefore more able to identify the point of server

saturation across different numbers of threads. It is also clear that there is a

demonstrable computational overhead to maintaining multiple parallel

threads (with a significant payoff with more than 112 clients in our case).

This overhead is expended primarily on partitioning the clients into

workgroups using equation 1, copying and resynchronizing entity memory

resources, and scheduling the workgroups across the available threads

(using LPT). However, there appears to also be a diminishing return: 4

threads only marginally outperforms 3, saturating at around 176 clients

compared to 160. We examine the effect of using larger numbers of threads

in Experiment Three.

5. Experiment Two: Comparison of Load Balancing Strategies

In this set of experiments we investigate the relative performance of the

load balancing algorithms described in section 3.3. We start by considering

server throughput as a base metric, and introduce accumulated workload

17

distribution (previously used by Cordeiro et al. [14]), workload deviation,

and IFWT to further examine server behaviour.

Figure 4 shows server throughput for each load balancing algorithm.

There is a clear divergence between the algorithms starting at around 144

clients: by 176 clients, SPT and RR appear to have reached saturation, whilst

LPT and SRR are close to peak, and producing similar performances.

Figure 4: Server Throughput for all algorithms using 4 threads.

RR appears as the least effective distribution method, which may be

expected given that it is essentially arbitrary. However SPT offers little

improvement, which suggests that the variation in workgroup weight is large

enough to limit the performance gain of a this distribution strategy (at least

to the extent that it is negated by the overhead of sorting the groups). Whilst

LPT and SRR appear more effective, this result raises further questions as to

why this is the case, and how they could be further improved. Whilst server

throughput appears to be an effective comparative metric, it does not provide

much insight into why LPT and SRR are more effective, nor how we may

further optimize performance. In need of further analysis, we proceed to

consider whether accumulated work load distribution [14] can offer more

insight.

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 130 140 150 160 170 180
Connected Clients

LPT
SPT
RR

SRR

18

5.1. Accumulated Workload Distribution

Figures 5 to 8 show the accumulated workload distribution for the four

algorithms.

Figure 5: Workload Distribution for LPT using 4 threads.

The accumulated distribution for LPT (Figure 5) shows a similar profile

to that recorded by Cordeiro et al. The penalty applied to the main thread

results in an unevenly high processing load on the second thread. SPT

appears to create a more even distribution than LPT, which is somewhat

surprising given that its throughput is measured to be lower: we might

reasonably anticipate that algorithms exhibiting an even accumulated

distribution would produce more optimal performance (which is assumed by

by Cordeiro et al.). This assumption is further discredited by figure 8 which

shows that SRR produces a distinctly uneven accumulated distribution.

Our results suggest that accumulated workload is not a good indication of

comparative performance. Further inspection of the recorded data shows

that the frame-by-frame distributions are not as stable as appears in the

accumulated statistics: this variation impacts on performance. Figure 9

shows the frame-by-frame standard deviation of workload for each thread:

SPT

19

1400000

1200000

1000000

800000

600000

400000

200000

0

Thread ID

Figure 6: Workload Distribution for SPT using 4 threads.

20

1400000

1200000

1000000

800000

600000

400000

200000

0

Thread ID

Figure 7: Workload Distribution for RR using 4 threads.

21

Figure 8: Workload Distribution for SRR using 4 threads.

and RR both demonstrate comparatively high standard deviation, indicating

that this is a considerably more informative metric that the accumulated

workload used by Cordeiro et al. This observation applies equally to any

parallelization/load balancing strategy.

5.2. IFWT

We conclude Experiment Two by considering an alternative metric,

interframe wait time (IFWT), used by Abdelkhalek and Bilas to analyze

threads in their parallel implementation [25]. Whereas workload is an

estimated measure of processing weight, IFWT is a direct measure of the

actual distribution of processing time. In this case, we simplify matters by

restricting our consideration of IFWT to the main execution thread, and

results are shown in Figure 10.

The two worst performing algorithms (SPT, RR) show a relatively large

increase in IFWT with increasing numbers of players. This is consistent with

22

the high standard deviation in workload distribution reported in Figure 9.

LPT shows a much slower increase, suggesting that there is some systematic

under-utilization of the main thread (consistent with the penalty used by

Figure 9: Standard deviation of processed entity workgroups for LPT, SPT, SRR and RR.

23

Figure 10: Intra-frame wait time for all algorithms using 4 threads.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 90 100 110 120 130 140 150 160 170 180
Connected Clients

LPT
SPT
RR

SRR

24

Cordeiro et al. to locate more weight on the second thread). SRR, however,

shows a decreasing IFWT, which indicates an increasing load on the main

thread. The IFWT does not reach zero, however: referring back to Figure 9,

frame-by-frame variation means that even with a main thread which is

overburdened on average, IFWT will still be positive for some frames. High

IFWT is, then, a measurable indicator of poor load balancing. However, low

IFWT is not necessarily an indicator of good balancing as it may hide an

overburdend main thread. Our conclusions for this experiment are as

follows:

1. A high frame-by-frame variance (standard deviation) indicates an

ineffective balancing strategy which cannot be easily analyzed using

accumulated metrics, nor easily optimized.

2. Accumulated workload (used by Codeiro et al.) is generally not a reliable

metric, unless frame-by-frame variance is low.

3. A consistent IFWT (across number of clients) indicates a low

workloadvariance, and near-optimal scaling.

4. Decreasing IFWT indicates an increasing burden on the main

thread.Workload deviation will place a minimum bound on IFWT in this

case.

5. IFWT and workload deviation together capture the potential for

anyfurther optimization of a particular balancing strategy, and so may be

used to help optimize server throughput.

6. LPT and SRR have been shown as the most effective balancing strategies

on our platform.

6. Experiment Three: Increasing the number of threads

In this section we re-evaluate LPT and SRR on our second hardware

configuration (specified in Table 2) to determine whether their relative

performance is consistent across different platforms, and how well they scale

up to 6 hardware threads. In addition, we re-examine IFWT in more detail.

Figure 11 shows the measured throughput for LPT and SRR with 4, 5, and

6 threads respectively.

It is clear that the results differ somewhat from our previous hardware

configuration. In particular, SRR does not perform so well, saturating with 4

25

threads much earlier at 144 players. Conversely, LPT appears to perform

better. It is difficult to draw conclusions as to why this should be the case, as

the platform configurations are different in several respects; however, it is

clear that performance is not consistent across configurations.

Figure 11: Server throughput for LPT and SRR with four, five and six threads.

Both LPT and SRR show relatively small improvements in performance

between 4 and 6 threads. In the case of SRR, saturation occurs later with 6

threads (at 176 rather than 144 clients). However, with LPT the throughput

appears to peak around 192 players for 4, 5, and 6 threads, although the

replies sent does increase.

The results for IFWT are shown in Figure 12, and the corresponding

workload distributions for both LPT and SRR with 6 threads with 176

connect clients is shown in Figure 13. Comparison with the previous section

confirms the difference in thread loading: SRR loads the first thread whereas

LPT places more weight the second. This is further confirmed by the

measurable difference in IFWT.

IFWT for LPT (4,5 and 6 threads) shows a common profile. Initially,

between 100-140 connected clients, IFWT falls: at around 140-160 clients it

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 120 140 160 180 200
Connected Clients

LPT 4 Threads
LPT 5 Threads
LPT 6 Threads
SRR 4 Threads
SRR 5 Threads
SRR 6 Threads

26

begins to rise again, prior to reaching server saturation. This suggests that

workgroup weight imbalance increases from around 140 clients (so that

there is more differential between the first and second threads). This could

be a result of, for example, increasing player density. However, the overall

frame execution time also increases over this range, and so a corresponding

Connected Clients

Figure 12: IFWT for LPT and SRR with four, five and six threads.

27

Thread ID

Figure 13: Workload distribution for LPT and SRR with 176 connected clients [6 Threads].

increase in IFWT may, in fact, be expected regardless. This motivates us to

introduce the normalized version of IFWT: Total Wait Percentage (TWP),

which is calculated as described in section 3.2. Figure 14 shows the measured

TWP.

28

Figure 14: TWP for LPT and SRR with four, five and six threads.

Comparing figures 12 and 14, the value of TWP is significantly more

informative. For example, in the case of SRR it is now clear that, as a

percentage, the main thread spends close to zero time waiting with more

than 160 players (variations become insignificant compared to increasing

processing time). On the other hand, LPT shows a significant amount of frame

time (between 10% and 25%) for which the main thread is effectively idle.

This is consistent with the applied thread penalty, combined with low

granularity workgroups, which is also evident in the work load imbalance in

Figure 13.

Interestingly, TWP does provide some basis for quantifying the

optimization which could be achieved by better balancing the thread

workloads. For example, with 4 threads and 192 players, the main thread

TWP is measured to be around 10%. If that time is caused by additional work

load on one thread which could redistributed across all 4 threads, then

something like a 7% decrease in frame processing time could potentially be

achieved in the best case. This figure increases with the number of threads,

29

which again implies that workgroup granularity is a limiting factor. In the

next section we will examine the effect of reducing this granularity.

7. Experiment Four: Reducing the Workgroup Size

This experiment connects server metrics with game mechanics: we show

how metrics can be used to provide designers with a means of predicting how

changes to gameplay can impact on performance, scalability, and platform

requirements. Whilst accumulated workload distribution alone is not a

reliable performance metric, it can highlight systematic imbalances. For

example, the higher weight visible on the second thread for LPT is caused not

only by the penalty applied to the main thread, but also by a variation in

workgroup weights from frame to frame.

The frame-by-frame variation in workgroup weights is related to a

number of factors, including the spatial distribution of gameplay. Of key

importance is the value of the parameter di in Equation 1, which directly

affects the size and extent of those workgroups. Cordeiro et al. [14] set di to a

constant 256, which is the action range of an entity in Quakeworld. Entities

are constrained to interact with other entities within this range, within a

single frame (this is a constant value and independent of frame rate). For

comparison, the player height is 56 units, a stair step is 18 units, and the

maximum player speed is 320 units/second. Using this value guarantees that

any objects which can interact in the current frame are processed in the same

workgroup; however a lower value would result in smaller workgroups, and

so more even load balancing. For example, if the designer decided to reduce

the maximum speed of the fastest object, then di could also be reduced,

reducing workgroup size and potentially improving performance. Indeed, it

would be possible to set individual values of di on a per-object basis (though

this would increase the load-balancing overhead). This type of feedback from

implementation testing to design is potentially useful in informing a balance

between game play and performance, but is rarely available to designers in

practice.

Our final experiment compares server performance at values of 256 and

128 respectively for di. We look at both LPT and SRR with 4,5, and 6 threads,

and in each case we compare the performance using the two values of di,

across a range of metrics. Henceforth we denote results obtained for LPT

30

using smaller workgroups as LPT-S, and, similarly, SRR-S for SRR with small

workgroups.

Figure 15 shows the average workgroup sizes with di = 256 and 128

respectively, for LPT with 6 threads, as a function of the number of connected

clients. Whilst the average size for di = 256 increases from 2 to 20 over this

range, it remains at around 2 to 3 for di = 128. This clearly indicates that

reducing di has a dramatic effect on group formation, which we might expect

to be reflected in other observed server metrics.

Figure 15: Average workgroup size with modified entity pre-processing step.

7.1. Server Throughput and Workload Distribution

In terms of overall server capacity, the use of smaller workgroup sizes has

had a mixed effect. Figure 16 shows that throughput for LPT-S has improved

slightly over LPT, although the improvement is minor. However, Figure 17

shows that SRR-S has improved the throughput of the server from 144 to 192

connected clients. The change in throughput for SRR-S is such that it brings

the SRR algorithm again to an almost equal performance to LPT

(remembering that this was the case with our initial results in Section

 0

 2

 4

 6

 8

 10

 12

 14

 100 120 140 160 180 200
Connected Clients

di = 256 LPT 6 Threads,
LPT 6 Threads, di = 128

31

4).

The apparent performance parity between LPT-S and SRR-S suggests that the

resulting smaller workgroups are contributing to a much more even

Figure 16: Server throughput for LPT and LPT-S.

32

Figure 17: Server throughput for SRR and SRR-S.

Thread ID

Figure 18: Workload distribution for LPT, SRR, LPT-S and SRR-S with 176 connected clients [6

Threads].

33

distribution of processing weight across the available threads. Figure 18

shows the workload distribution for all four algorithms, where the

distribution for LPT and SRR show the same profiles as seen in Figure 13.

Initial inspection of the workload distributions for LPT-S and SRR-S

shows that there appears to be less total weight processed by these

algorithms. This disparity is a direct result of the smaller workgroup size.

With larger groups used for LPT and SRR, the weight measurement includes

entities which may be inactive (for which no input has been received for the

current frame), but which are included in workgroups with active entities.

With smaller, more fragmented groups, inactive entities are more frequently

omitted from processed workgroups, and so not measured as processed

weight. Further inspection of Figure 13 shows that the workloads for LPT-S

and SRR-S are also much more evenly distributed. Reducing di to 128 has the

effect of producing a more balanced distribution, producing close to the same

performance between LPT-S and SRR-S: the choice of balancing strategy has

less impact on performance when balancing a larger number of smaller

workgroups. This trend is to some extent predictable; however, what is

interesting in this case is that reducing di by 50% is enought to mitigate

imbalances between different strategies. Being able to quantify this is

important in optimizing the game design against server performance.

7.2. TWP for Smaller Workgroups

We conclude by examining the TWP metric for LPT/LPT-S, shown in

Figure 19, and SRR/SRR-S shown in Figure 20. Figure 21 shows a comparison

of LPT-S and SRR-S. An analysis of these graphs confirms the convergence of

performance demonstrated by server throughput and workload processing.

LPT-S shows a decrease from the 15−20% range shown by LPT to around

10%, indicating a more even processing balance across the threads. Similarly

SRR-S shows an increase from 0 to 10%, as the staircasing distribution seen

for SRR is evened out. Based on both of these results, a value of 10% for TWP

seems to correspond to optimal performance; we infer that this value reflects

the frame-by-frame variation in workload distribution, across the test frames

(TWP only measures the wait time of the first thread, and does not record

negative values).

34

Figure 19: Total wait percentage for LPT and LPT-S

Figure 20: Total wait percentage for SRR and SRR-S

35

Figure 21: Total wait percentage for LPT-S and SRR-S

8. Conclusion

Our study has focused primarily on identifying informative performance

metrics to characterize the behavior of a multicore parallel version of the

QuakeWorld game server. Existing studies of multicore game servers are

sparse: most researchers have used ad-hoc metrics with little consideration

of how to interpret results, or which are most suitable to evaluate the

performance of parallel implementation. We have collated metrics used in

these studies, proposed some new ones, and through a series of experiments

we have examined their inter-relationships and how they may best be used

to investigate the behavior of multicore server processes.

Our work is generalizable: experimental work has focused on thread

loadbalancing metrics, and is therefore directly relevant to other real-time

game world servers utilizing a stand-alone parallel architecture. Moreover,

the lockless threading architecture proposed by Cordeiro et al. [14] will

transpose to other physically-based game world servers. We concluded our

experiments by using our suite of metrics to show how the relationship

36

between game mechanics and performance can be quantified and used to

inform game design.

Our primary conclusions are:

1. We confirm that server throughput, proposed by Abdelkhalek and Bilas

[25] also works well in analyzing Cordeiro et al.’s architecture [14]. In
particular, Saturation, at an identifiable maximum, characterizes the

largest number of players which may connect to the server while

maintaining optimal performance.

2. Frames per Second, used by Cordeiro et al. is bound to throughput, but

less effective in identifying peak performance.

3. We have found that accumulated workload, used again by Cordeiro et

al., may be used to characterize average weight distribution, but is not

reliable as a performance metric due to frame-by-frame variations in

distribution.

4. Standard deviation of thread workload is a better indication of

performance: high variance indicates an ineffective balancing strategy,

and correlates with poor performance in our experiments.

5. IFWT captures aspects of both distribution and variability of

workload.We also noted that a variant of IFWT, TWP, can be used to

estimate the best possible performance that could be achieved by an

optimal balancing strategy.

6. Our experiments indicate that LPT and SRR show the best performance

on our implementation. Cordeiro et al.’s choice of balancing strategy is
shown to be well motivated.

7. We have also showed that varying the size or workgroups had a

dramatic effect on performance: in particular, reducing the size

interaction radius di in Equation 1 helped optimize both LPT and SRR,

resulting in convergence. This exemplifies how metrics can be used to

predict the effect of changes to game mechanics on server

performance.

Game servers are highly sophisticated and complex software

applications: understanding their behavior goes hand-in-hand with

performance optimization. Leveraging parallel processing architectures still

represents a challenge for future work: we see the continued development of

37

empirical analysis based on server metrics as an area which is not only

attracting academic interest, but also has the potential to deliver new and

useful tools to industry.

Continuing our own work, we consider that the architecture proposed by

Cordeiro et al. is immediately applicable to game developers, but has not yet

been fully developed. Firstly, the load balancing uses a simple workload

weighting model based only on the number of entities in a workgroup. This

appears to be an oversimplification, and more accurate weight descriptions

may well help to improve balancing (for example, help to eliminate frameby-

frame variations in thread processing). Additionally, our experiments in

Section 7 suggest that a more accurate maximum interaction range (di in

Equation 1) would help reduce workgroup size. A more intelligent method of

determining di could provide significant further optimization.

9. Acknowledgments

The authors would like to thank Daniel Cordeiro of Laboratoire d’Informatique de Grenoble for providing source code to support this study.

References

[1] W.-c. Feng, D. Brandt, D. Saha, A long-term study of a popular mmorpg,

in: Proceedings of the 6th ACM SIGCOMM workshop on Network and system support for games, NetGames ’07, ACM, New York, NY, USA,
2007, pp. 19–24. doi:http://doi.acm.org/10.1145/1326257.1326261.

URL http://doi.acm.org/10.1145/1326257.1326261

[2] Y. Deng, R. Lau, On delay adjustment for dynamic load balancing in

distributed virtual environments, IEEE Transactions on Visualization

and Computer Graphics 18 (2012) 529–537.

[3] R. Alexandre, P. Prata, A. Gomes, A grid infrastructure for online games, in: ICIS ’09: Proceedings of the 2nd International Conference on
Interaction Sciences, ACM, New York, NY, USA, 2009, pp. 670–673.

doi:http://doi.acm.org/10.1145/1655925.1656046.

[4] J. Lim, J. Chung, J. Kim, K. Shim, A dynamic load balancing for massive

multiplayer online game server, in: Entertainment Computing ICEC

38

2006, Vol. 4161 of Lecture Notes in Computer Science, 2006, pp. 239–

249.

[5] Y. Ahn, A. Cheng, J. Baek, P. Fisher, A multiplayer realtime game protocol

architecture for reducing network latency, IEEE Transactions on

Consumer Electronics 55 (2009) 1883–1889.

doi:10.1109/TCE.2009.5373746.

[6] E. Cronin, B. Filstrup, A. R. Kurc, S. Jamin, An efficient synchronization mechanism for mirrored game architectures, in: NetGames ’02:
Proceedings of the 1st workshop on Network and system support for

games, ACM, New York, NY, USA, 2002, pp. 67–73.

doi:http://doi.acm.org/10.1145/566500.566510.

[7] J. Mu¨ller, S. Gorlatch, T. Schro¨ter, S. Fischer, Scaling multiplayer online

games using proxy-server replication: a case study of Quake 2, in: HPDC ’07: Proceedings of the 16th international symposium on High
performance distributed computing, ACM, New York, NY, USA, 2007, pp.

219–220. doi:http://doi.acm.org/10.1145/1272366.1272399.

[8] R. Alexandre, P. Prata, A. Gomes, A grid infrastructure for online games,

in: Proceedings of the 2nd International Conference on Interaction

Sciences: Information Technology, Culture and Human, ICIS ’09, ACM,
New York, NY, USA, 2009, pp. 670–673.

doi:http://doi.acm.org/10.1145/1655925.1656046.

URL http://doi.acm.org/10.1145/1655925.1656046

[9] A. Abdelkhalek, A. Bilas, A. Moshovos, Behavior and performance of

interactive multi-player game servers, Cluster Computing 6 (4) (2003)

355–366. doi:http://dx.doi.org/10.1023/A:1025718026938.

[10] G. Deen, M. Hammer, J. Bethencourt, I. Eiron, J. Thomas, J. H.

Kaufman, Running Quake II on a grid, IBM Syst. J. 45 (2006) 21–

44. doi:http://dx.doi.org/10.1147/sj.451.0021.

URL http://dx.doi.org/10.1147/sj.451.0021

[11] G. J. Armitage, An experimental estimation of latency sensitivity in

multiplayer Quake 3, in: 11th IEEE International Conference on

Networks (ICON) 2003, 2003, pp. 137–141.

39

[12] E. Chapresto, K. Mitchell, F. Seron, Capture and analysis of racing

gameplay metrics, IEEE Software 28 (2011) 46–52.

doi:10.1109/MS.2011.71.

[13] A. Drachen, A. Canossa, Towards gameplay analysis via gameplay

metrics, in: Proceedings of the 13th MindTrek, ACM-SIGCHI, 2009.

[14] D. Cordeiro, A. Goldman, D. da Silva, Load balancing on an interactive

multiplayer game server, in: A.-M. Kermarrec, L. Boug´e, T. Priol (Eds.),

Euro-Par 2007 Parallel Processing, Vol. 4641 of Lecture Notes in

Computer Science, Springer Berlin / Heidelberg, 2007, pp. 184–194.

[15] M. Dick, O. Wellnitz, L. Wolf, Analysis of factors affecting players

performance and perception in multiplayer games, in: Proceedings of

Workshop on Network and Systems Support for Games, 2005.

[16] M. Bredel, M. Fidler, A measurement study regarding quality of service

and its impact on multiplayer online games, in: Proceedings of

Workshop on Network and Systems Support for Games, 2010.

[17] N. Gildea, Adapting a game engine to take advantage of multi-core processors, Master’s thesis, University of Glasgow (2007).

[18] M. Joselli, M. Zamith, E. W. G. Clua, A. Montenegro, R. C. P. LealToledo, L.

Valente, B. Feijo´, An architecture with automatic load balancing and

distribution for digital games, in: Proceedings of the 2010 Brazilian

Symposium on Games and Digital Entertainment, SBGAMES ’10, IEEE
Computer Society, Washington, DC, USA, 2010, pp. 59–70.

doi:http://dx.doi.org/10.1109/SBGAMES.2010.19.

URL http://dx.doi.org/10.1109/SBGAMES.2010.19

[19] M. P. M. Zamith, E. W. G. Clua, A. Conci, A. Montenegro, R. C. P. Leal-

Toledo, P. A. Pagliosa, L. Valente, B. Feij, A game loop architecture for the

gpu used as a math coprocessor in real-time applications, Comput.

Entertain. 6 (2008) 42:1–42:19.

doi:http://doi.acm.org/10.1145/1394021.1394035.

40

URL http://doi.acm.org/10.1145/1394021.1394035

[20] M. Joselli, M. Zamith, E. Clua, A. Montenegro, R. Leal-Toledo, A. Conci, P.

Pagliosa, L. Valente, B. Feijo´, An adaptative game loop architecture with

automatic distribution of tasks between cpu and gpu, Comput. Entertain.

7 (2010) 50:1–50:15.

doi:http://doi.acm.org/10.1145/1658866.1658869.

URL http://doi.acm.org/10.1145/1658866.1658869

[21] M. Joselli, E. Clua, A. Montenegro, A. Conci, P. Pagliosa, A new physics

engine with automatic process distribution between cpu-gpu, in:

Proceedings of the 2008 ACM SIGGRAPH symposium on Video games, Sandbox ’08, ACM, New York, NY, USA, 2008, pp. 149–156.

doi:http://doi.acm.org/10.1145/1401843.1401871.

URL http://doi.acm.org/10.1145/1401843.1401871

[22] M. P. d. M. Zamith, E. W. G. Clua, A. Conci, A. Montenegro, P. A. Pagliosa,

L. Valente, Parallel processing between gpu and cpu: Concepts in a game

architecture, in: Proceedings of the Computer Graphics, Imaging and Visualisation, CGIV ’07, IEEE Computer Society, Washington, DC, USA,
2007, pp. 115–120. doi:http://dx.doi.org/10.1109/CGIV.2007.64.

URL http://dx.doi.org/10.1109/CGIV.2007.64

[23] A. Bharambe, J. Pang, S. Seshan, Colyseus: A distributed architecture for

online multiplayer games, in: Proceedings of the 3rd ACM/USENIX

Symposium on Network Design and Implementation (NSDI06), 2006.

[24] A. Ploss, S. Wichmann, F. Glinka, S. Gorlatch, From a single- to multiserver online game: a Quake 3 case study using RTF, in: ACE ’08:
Proceedings of the 2008 International Conference on Advances in

Computer Entertainment Technology, ACM, New York, NY, USA, 2008,

pp. 83–90. doi:http://doi.acm.org/10.1145/1501750.1501769.

[25] A. Abdelkhalek, A. Bilas, Parallelization and performance of interactive

multiplayer game servers, Parallel and Distributed Processing

Symposium, International 1 (2004) 72a.

41

[26] K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, C.

Griwodz, C. Griwodz, Lears: A lockless, relaxed-atomicity state model for

parallel execution of a game server partition., in: ICPP Workshops, 2012,

pp. 382–389.

[27] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguad´e, T. Harris, M.

Valero, Atomic Quake: using transactional memory in an interactive multiplayer game server, in: PPoPP ’09: Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel

programming, ACM, New York, NY, USA, 2009, pp. 25–34.

doi:http://doi.acm.org/10.1145/1504176.1504183.

[28] V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal, E. Ayguade, T. Harris, M.

Valero, Quaketm: parallelizing a complex sequential application using transactional memory, in: ICS ’09: Proceedings of the 23rd international
conference on Supercomputing, ACM, New York, NY, USA, 2009, pp.

126–135. doi:http://doi.acm.org/10.1145/1542275.1542298.

[29] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea, W. Krick, C. Amza,

Transactional memory support for scalable and transparent parallelization of multiplayer games, in: EuroSys ’10: Proceedings of the
5th European conference on Computer systems, ACM, New York, NY,

USA, 2010, pp. 41–54.

doi:http://doi.acm.org/10.1145/1755913.1755919.

[30] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea, W. Krick, C. Amza,

Towards scalable and transparent parallelization of multiplayer games

using transactional memory support, in: Proceedings of the 15th ACM

SIGPLAN symposium on Principles and practice of parallel programming, PPoPP ’10, ACM, New York, NY, USA, 2010, pp.
325–326. doi:http://doi.acm.org/10.1145/1693453.1693496.

URL http://doi.acm.org/10.1145/1693453.1693496

[31] A. Denault, J. Kienzle, The perils of using simulations to evaluate

massively multiplayer online game performance, in: Proceedings of the

3rd International ICST Conference on Simulation Tools and Techniques, SIMUTools ’10, ICST (Institute for Computer Sciences, Social-

42

Informatics and Telecommunications Engineering), ICST, Brussels,

Belgium, Belgium, 2010, pp. 4:1–4:8.

doi:http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8632.

URL http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8632

[32] M. C. Daniel P. Bovet, Understanding the Linux Kernel, third edition Edition, O’Reilly, 2006.

