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Abstract 

Many real-time game world servers run on stand-alone PCs, such that user 

performance is bound to fairly modest hardware configurations. Studies of 

multicore architectures to optimize such servers are sparse, and evaluations 

typically involve the use of one or two arbitrary performance metrics. 

However, the behavior of game servers is complex and the interpretation of 

metrics, particularly in the case of parallel implementations, is not 

straightforward. 

Our initial interest is in efficient load-balancing of multicore game 

engines. However, the focus of this paper is on performance metrics: starting 

with proposed metrics from other works, we investigate their effectiveness 

and inter-relationships, propose new variants, and discuss how they can be 

used in combination to gain a better understanding of actual performance. 

The use of metrics to inform the design and optimization of game 

software has gained recent interest from academics and practitioners alike: 

we conclude to show, by example, how server metrics can be directly 

connected with game semantics, and used to predict the impact of game 

design changes on server performance. 
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1. Introduction 

Multiplayer games range from the technologically simple, to sophisticated 

endeavors such as Massively Multiplayer Online Role-playing Games 

(MMORPGs). The concept of a client-server architecture is ubiquitous: in 
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the case of MMORPGs, expansive environments are hosted on bespoke server 

configurations which facilitate huge numbers of users. For example, by 2007 

the game EVE Online had recorded over one million unique players since its 

launch in 2003 [1]. Whilst a significant amount of research has investigated 

the use of distributed architectures to support large-scale game servers (e.g. 

[2, 3, 4, 5, 6, 7, 8]), this type of server setup is exceptional. 

Many games allow players to create their own stand-alone ad-hoc servers 

which service smaller game worlds with tens rather than thousands of 

players. These servers run on standard consumer equipment, and 

performance is (unsurprisingly) closely bound to processing power [9]. 

Single machine servers represent a major part of the currently available 

multiplayer online gaming service, and are common for first person shooters 

games which involve fastpaced interactive gameplay and real-time 

simulation. Player experience for this game type is particularly sensitive to 

degradation in performance, in the order of milliseconds [10, 11], and so 

server optimization represents an ongoing challenge for developers. It is 

therefore surprising that relatively little work has been directed at 

optimizing stand-alone servers to utilize the parallel processing architecture 

of multicore CPUs. Game metrics have attracted recent academic interest 

(e.g. [12, 13]), and also interest from industry where they are perceived as a 

valuable tool for design, balancing, and optimization. As Abdelkhalek et al. 

note [9], benchmarking methods for interactive game servers are driven by 

somewhat different considerations from scientific processing: useful 

performance evaluation should reflect user experience in some way. Again, 

little work has yet considered suitable server-side metrics for the analysis of 

real-time multicore game engines. 

1.1. Motivation 

The starting point for our work is an existing server design proposed by 

Cordeiro et al. [14], implemented using id software’s QuakeWorld game 

server. Cordeiro’s work uses spatial partitioning to divide entity processing 
into discrete non-intersecting work packages which can executed in parallel 

(details of the architecture are given in section 2.3). Our initial interest is in 

load balancing, and optimizing the distribution of work packages across 

hardware threads; however, a survey of current work in this area reveals that 

the use of performance metrics is not standardized, making it difficult to 

compare algorithms. Moreover, a single metric is not in itself entirely 
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informative, and often leaves questions remaining about the the underlying 

processes. The measurement of performance of a multicore server thus 

becomes our primary interest, such that the motivations for our study are: 

1. To investigate the relationship (if any) between currently used 

serverside performance metrics. 

2. To determine which metric, or set of metrics, provide the most 

informative analysis of performance. 

3. As a secondary motivation, we are interested in the impact that 

thechoice of load balancing algorithm has on performance in Cordeiro 

et al.’s architecture: this provides a context for points 1 and 2. 
As mentioned, useful performance evaluation should reflect player 

experience in some way. In terms of perceived responsiveness, experience is 

a function of several factors of which server performance is just one. Others 

include data transmission latency, client-side performance, and also game 

play context: for example, the affects of latency on player experience have 

been well-studied (e.g. [11, 15, 16]). A proper analysis of perceived 

responsiveness encompasses all these factors, is context dependent, and lies 

outside the scope of the work presented here. Our focus is specifically on 

identifying meaningful comparators for multicore server architectures, 

which may be used to quantify performance and independently optimize 

design. Nevertheless, our metrics do relate directly to player experience. For 

example, we will use server throughput, which is a direct measure of the 

number of connected clients that can be processed concurrently, and so has 

a direct effect on experience. 

1.2. Contributions 

Our study takes the form of a set of empirical investigations into the 

performance of different simple load balancing strategies used in 

conjunction with Cordeiro et al.’s QuakeWorld server [14]. These 

experiments are primarily constructed to investigate the response of 

different metrics. Building on our preliminary results, presented in [xx], the 

contributions of this paper are: 

1. We evaluate the effectiveness of a range of server-side metrics 

including frames per second, server throughput, thread wait time, and 

accumulated thread work load. We present conclusions concerning 

their inter-relationships and effectiveness, and which are most useful 
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in analyzing performance. A study of performance metrics in the 

context of multicore game servers has not previously been conducted, 

and is 

of immediate use to developers working on stand-alone game server 

applications. 

2. In relationship to Cordeiro et al.’s architecture [14], we show by 
example how metrics can be used to estimate the effect of game design 

changes on server performance. 

3. We investigate the effects of different load balancing algorithms 

onserver performance. We use only simple balancing techniques, but 

these are still able to characterize the importance of effective thread 

balancing in Cordeiro et al.’s system. We further investigate how these 
results scale across varying numbers of CPU cores, ranging from one 

(serial) to six concurrent hardware threads, using our metrics. 

Whilst we use a specific architecture and game engine to conduct our 

experiments, our results are easily generalized. The proposed metrics are 

low-level statistics which describe the performance of workgroups 

processed on hardware threads: these are thus independent of the 

workgroup allocation strategy, and equally applicable to any multicore game 

server design. Furthermore, the lockless server design which we employ [14] 

is based on the semantic constraints of objects moving in a physical 

simulation. This design may therefore be transposed to any functionally 

comparable game engine (e.g. first person shooter, or game which simulates 

a physical world). 

1.3. The Structure of this Paper 

The rest of this paper is presented as follows. Section 2 reviews the 

current literature regarding parallel and concurrent processing 

architectures and metrics in game engines, specifically server-side, and 

concludes with a description of the QuakeWorld server, and a detailed 

description of the parallel implementation presented by Cordeiro et al. 

Section 3 proceeds to describe our experimental setup, and is followed by 

sections 4 to 7 which present our experimental work and discussions of 

performance metrics. We conclude with a discussion of our results, and 

motivate some conclusions regarding the use of server-side metrics, and 

load-balancing strategies for stand-alone multicore game servers. 



 

5 

2. Background and Related Work 

Whilst relatively little work has addressed the evaluation of multicore 

game servers, there has been considerable wider interest in the use of 

concurrent architectures to optimize game software. Aspects of client-side 

processing have been addressed by Gildea [17], who attempted to adapt the 

Quake 3 client to support parallel execution (with limited success). He 

identified the difficulty in reconstructing concurrent processing threads 

which access shared memory. The use of GPUs to implement concurrent 

graphics processing is well established. Their potential for use in non-

graphical processing in game engines has also been investigated: [18, 19, 20, 

21, 22]. 

Our interest lies specifically in the optimization of game servers. A 

number of studies have considered distributed architectures: Bharambe et 

al. [23] succeeded in scaling the Quake II engine over many server nodes, 

supporting hundreds of players. A study by Ploss et al. [24] parallelized the 

Quake III server using a purpose-built scalable grid framework. A number of 

other studies ([3, 4, 6, 7, 8]) have dealt with distributing game state across 

multiple nodes. 

2.1. Optimizing a Stand Alone Server 

Practical considerations dictate that ad hoc servers are implemented on 

stand-alone machines; however, relatively little work has investigated the 

implementation, optimization, and benchmarking of appropriate parallel 

architectures. As mentioned, Abdelkhalek et al. [9] analyzed the performance 

of the standard sequential QuakeWorld server, empirically determining an 

approximately linear relationship between processing overhead and the 

number of players. They discussed the difficulty of meaningful 

benchmarking: noting the functional similarity with online transaction 

processing, they propose the use of server throughput and CPU idle time, as 

performance metrics. 

In further work, Abdelkhalek and Bilas [25] implemented a parallel 

version of the QuakeWorld server. The response processing and reply phases 

were processed by concurrent threads running on separate cores of a 

quadcore CPU. Parallel execution was achieved by assigning each player 

permanently to a specific thread; however, memory synchronization was a 

limiting factor, and the resolution of lock contentions represents up to 35% 

of total execution time. An analysis showed that peak response occurs with 

around 25% more players attached than the serial version, which is a 
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significant improvement. In this work, Abdelkhalek and Bilas use only 

response rate and aggregated thread workload to analyze performance: we 

will show in our experiments that these alone are not sufficient to fully 

understand the behavior of a parallel server. Very recent and interesting 

work by Raaen et al. [26] proposes a complementary lockless processing 

architecture, implemented using a simple bespoke game. In this case, each 

entity is considered an atomic process and restrictions are placed on 

interactions. Server response time and CPU load are used to compare single 

and multi-threaded implementations, but as with Abdelkhalek and Bilas, 

these are insufficent to fully understand behaviour, or to compare with other 

architectures. 

A number of studies have explored the use of software transactional 

memory (STM), as an alternative to lock-based shared memory. Results are 

thus far inconclusive. Zyulkyarov et al. [27] built Atomic Quake upon the 

parallel QuakeWorld server developed by Abdelkhalek et al. However, their 

system was not as effective as the original lock-based system. Gajinov et al. 

[28] developed another STM-based modification of the QuakeWorld server. 

They were able to achieve better performance; however, the the overheads 

incurred by STM were again high. A subsequent study by Lupei et al. [29, 30] 

introduced SynQuake, an STM-based server derived from Quake III. These 

results were more promising, reporting better performance and scalability 

than lockbased strategies. However, their experimental work does not use 

real clients connected on a network, which are essential to accurate 

evaluation of game servers [31]. 

In most cases, one quantifiable metric such as server throughput ([27]), 

or frame execution time ([28] [29, 30]) is used in an ad hoc fashion, without 

thorough consideration of how that metric relates to the underlying 

performance. 

2.2. The QuakeWorld Server 

Several existing studies have made use of id software’s Quake series of 

game engine servers (e.g. [9, 23, 10, 24]). QuakeWorld is particularly suitable 

for academic study: the full client/server source code was released under the 

GNU General Public License in 1999, and is therefore fully accessible. Whilst 

the QuakeWorld engine is relatively old, it is directly related to more modern 

game engines. For example, it uses local prediction to compensate for 

highlatency networks, and was the first Quake engine designed for internet-
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based play. Quakeworld was used as the basis for later game engines such as 

Valve 

Software’s GoldSrc engine. 

The standard serial QuakeWorld server frame update comprises the 

following processes: 

1. Processing the world state. 

2. Receiving client input. 

3. Entity/client processing. 

4. Outputting responses to clients. 

World state processing involves entities not associated with a player, and 

consumes a small portion (5%) of the overall processing time [9]. Step 2 

collates inbound network packets: only clients which have sent input to the 

server will be processed in the current frame, and inputs are validated 

against game world semantics. Analysis by Abdelkhaleh et al. [9] shows that 

steps 3 and 4 (Entity/client processing and Outputting responses) together 

account for typically 90% of the frame processing time in the serial version. 

Moreover, execution time (in serial) scales approximately linearly with the 

number of clients. Client processing involves applying player inputs, and 

then executing the game world simulation associated with that player, such 

as movement, creation of new objects, and so on. Once all of the requests have 

been processed, the results of the frame are transmitted via the network 

connection to all clients. 

2.3. A Lockless Server Architecture 

Subsequent work by Cordeiro et al. [14] leverages game semantics to 

avoid the critical problem of synchronizing shared memory. Like 

Abdelkhalek and Bilas, concurrent processing is implemented using multiple 

hardware threads running in parallel on a multicore CPU: this is applied to 

the response processing and reply phases, which account for the majority of 

the frame processing in QuakeWorld. However, they have designed a strategy 

which predivides response and reply processing into workgroups which are 

guaranteed not to access the same memory resources. 

Each object in the game world has its own distinct memory resources, and 

response processing in QuakeWorld potentially involves processing each of 

these objects, every frame. Two objects which do not interact with each other 

may be processed concurrently without synchronization problems. 
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However, interacting objects can result in lock contentions: this is the source 

of the wait time reported by Abdelkhalek and Bilas. 

Cordeiro et al. introduce a pre-processing step which groups game objects 

into subsets which are independent and cannot interact during the current 

update. That is, objects within the same subset may potentially interact with 

each other, but not with any object in any other subset. These subsets are 

inferred from the spatial distribution of objects. Each object forms the node 

of a graph G(V,E), where an edge ei,j ∈ E represents the Euclidean distance 

between objects i and j in the game world coordinate system. Each object has 

an associated maximum range of movement in the current frame di, such that 

if ei,j ∈ E > (di + dj) then it is impossible for the two objects to interact. A 

connected components algorithm is used to identify subsets such every node 

vi ∈ V is assigned to a subset Sα such that: 

vi ∈ Sα −→∃vj6=i ∈ Sα : ei,j ≤ (di + dj) ∧¬∃vk ∈ Sβ6=α : ei,j ≤ (di + dk) (1) In Cordeiro’s implementation, di = dj = dk a constant equal to the action 

distance of entities in the game world: that is, the maximum spatial 

interaction of an entity, as defined within the engine (which is independent 

of frame rate). The subsets then form distinct workgroups which may be 

safely executed concurrently on separate threads. Each thread is managed 

separately: a copy of the relevant parts of main memory is created for each 

using a feature of the Linux-kernel known as copy-on-write [32]. These copies 

are nonintersecting, and so trivially resynchronized at the end of the reply 

phase. Cordeiro et al. use a dynamic load-balancing strategy to distribute 

workgroups on a per-frame basis across the available threads (including the 

main thread). This is achieved by weighting each package according to the 

number of objects it represents, then distributing packages based on a 

Longest Processing Time First (LPT) algorithm. They were able to increase 

the the server time spent in parallel execution to 55%, from the 40% 

achieved by Abdelkhalek and Bilas. The final frame process structure is 

shown in Figure 

1. 

2.4. Motivation for Our Work 

The work presented by Cordeiro et al. implements a lockless game server, 

dynamic load balancing, and is clearly generalizable: these game semantics 
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are common to comparable real-time simulations, and could support other 

types of games. However, there are a number of issues: 

1. It is difficult to critically compare performance with other studies. 

Thismainly due to the inconsistent use of ad-hoc metrics, without 

consideration of how informative they are, or how they respond to 

operating parameters. Cordeiro et al. use aggregated thread workload, 

and frames per second, to examine performance: we will later show 

that other metrics give a better analysis of performance. 

 

Figure 1: A concurrent QuakeWorld frame, as implemented by Cordeiro et al. 

2. The authors report a better performance using three parallel 

threadsrather than four. This appears spurious, and warrants further 

investigation. 

3. The interaction range used to construct workgroups (di in Equation 1) 

is an operational parameter which reflects specific game semantics, but 
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which also directly affects server performance. The effect of varying 

this parameter warrants investigation. 

3. Experimental Setup 

Our study is empirical in nature, and comprises a set of four experimental 

investigations. The experiments were conducted using eight PCs, connected 

on a LAN, one of which ran the game server code. The configuration of these 

machines is shown in Table 1. The last two experiments make use of an 

additional PC with a six-core CPU, specified in Table 2, to run the game server. 

The server threads we create in our experiments run on individual CPU cores 

(up to six). 

Processor (CPU) Intel Core 2 Quad Q8200 

Graphics Card (GPU) N/A 

System Memory (RAM) 4GB 800MHz DDR2 SDRAM 

Operating System (Client) Microsoft Windows 7 32-bit 

Operating System (Server) Ubuntu Linux 9.10 32-bit 
Table 1: Hardware specification 1 

Processor (CPU) AMD Phenom II X6 1035T (2.60GHz) 

Graphics Card (GPU) ATI Radeon HD 5670 

System Memory (RAM) 4GB 1333MHz DDR3 SDRAM 

Operating System (Server) Ubuntu Linux 10.04 64-bit 
Table 2: Hardware specification 2 

One machine was used to run the server, while the remaining machines 

were used to run game clients. The number of clients required to test 

performance made the use of human players impractical: instead, each ran 

an automated client-side agent, or bot. The code to control the agent was 

originally developed by Cordeiro et al., and we modified it to operate on a 

Windows 7 (32-bit) platform. The bot control code simply issues a walk 

command to the server every 10 client frames, and another action command 

(e.g. jump or shoot) to the server, every 5 frames (client-side). The number 

of requests per second received by the server is therefore independent of the server’s frame-rate, consistent for a fixed number of clients, and scales 

linearly with the number of connected clients. Cordeiro et al. indicated that 
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this gave a per-client message rate comparable to a human player (see [14]). 

Using this simple client-side bot we were able to run up to 32 such clients per 

machine, so that we could easily operate two hundred attached clients using 

a manageable number of physical machines. 

For the purpose of comparative evaluation it was also necessary to scale 

the performance of the game server to our LAN infrastructure. Initial 

experiments showed that several hundred connected clients were required 

to stress the server; however, the LAN (10Mb/s) did not carry sufficient 

bandwidth to support such large numbers of clients: packet congestion 

frequently caused client connections to fail. We were able to scale the server 

performance such that it could be stressed by fewer (approximately 200) clients, by adding an additional artificial processing overhead to the server’s 
player entity processing function. We found experimentally that a fixed 

processing overhead of 300µs per entity was suitable. Whilst this scaling is artificial, any game engine’s entity processing is of arbitrary complexity. Our 
evaluation is comparative, and intended to represent a generic game server 

process and hardware setup: scaling the server performance in this way is 

representative of a game engine with more complex entity processing, and 

allowed us to perform a full investigative analysis within our hardware 

parameters. 

3.1. Our Experiments 

Our work comprises four distinct experiments. Each examines both an 

aspect of thread workload balancing, and together they represent an 

investigation of performance metrics for a multicore server: 

1. In our first investigation we set a baseline by reproducing Cordeiro et 

al.’s experiments on our platform. We add server throughput 

(previously used for a serial server [9]) as a metric, and investigate the 

relationship between throughput and frames per second (used by 

Cordeiro et al.). 

2. We investigate performance using different (standard) dynamic 

loadbalancing strategies, and examine scaling from one to four threads. 

We investigate the effectiveness of aggregated thread workload, 

standard deviation of workload, and thread wait time, as comparative 

metrics. 

3. Extending to six threads, we further analyze thread wait time. 
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4. We conclude by considering the effect of reducing workgroup size 

byvarying the parameter di in Equation 1, and discussing how this 

impacts on game mechanics. 

We present the results for each experiment as a graph (or set of graphs) 

in which each data point is a measurement of server performance in some 

configuration: using a particular load balancing algorithm, with specific 

numbers of threads and attached clients. For example, LPT with 4 threads 

and 96 connected clients. We vary these parameters to derive performance 

graphs, which form the basis of our analyses. For each data point, we run the 

sever for a predefined amount of time (approx. 180 seconds). Moreover, we 

repeat each run 5 times, giving around 15 minutes of game play from which 

that data point is measured. We use multiple runs to aggregate the possible 

effect of any external processes or initial conditions. Our choice of 5 

specifically was limited by practical considerations. 

Each experiment comprises several 10s of data points gathered from 

hundreds of individual runs, each of which may involve hundreds of clients. 

A high level of automation was therefore critical to running these 

experiments, which we achieved using a bespoke client control program 

capable of automatically creating, connecting and managing multiple clients 

across multiple machines. 

3.2. Metrics 

In our experiments we use a range of performance metrics. Some of these 

are collated from other studies (Cordeiro et al., Abdelkhalek et al. [9]); others 

are new metrics which we introduce ourselves. The full set used in our 

experiments are: 

1. Frames Per Second (FPS): Commonly used as a measure of game 

engine execution speed. This was calculated by dividing the total 

execution time for an experimental run by the number of executed 

frames. Timing was effected using the QuakeWorld engine’s timer 
function, which uses the POSIX gettimeofday() microsecond system 

timer. 

2. Server Throughput: A measure of the server’s response to incoming 
client request packets. Abdelkhalek et al. demonstrated a linear 

relationship with the number of clients on a linear server, reaching a 

maximum when all computational resources are fully utilized 

(saturation). This value is calculated using a response counter which is 
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incremented directly before each thread sends a processed response 

packet to a recipient client. As the server completes a frame, the 

individual thread counters are summed to calculate the total number 

of responses sent, and this value is divided by the total elapsed 

execution time. 

3. Accumulated Workload Distribution: Used by Cordeiro et al., shows 

the total workgroup weight assigned to each thread, aggregated over 

some period of time (in our case all runs for each data point, so approx. 

15 minutes). Weight in this case is defined as the number of game 

entities in the workgroup, and is an estimate of average processing 

load. 

4. Workload Standard Deviation: We introduce standard deviation of 

thread workload which indicates the frame-by-frame variation of the 

distribution. This is useful in characterizing time-variation (note that 

average workload is not used, as it is no more informative than the 

accumulated value). 

5. Intra-Frame Wait Time (IFWT): Used by Abdelkhalek, this is the 

average time per-frame that the main thread spends waiting for the 

supplementary threads (noting that workpackages are also processed 

by the main thread). A high IFWT indicates that the main thread is 

being under-utilized, though a low IFWT may not necessarily show an 

optimal balance. This metric is also calculated using the POSIX 

gettimeofday() system timer. 

6. Total Wait Percentage (TWP): We introduce IFWT measured as a 

percentage of total server frame execution time. 

3.3. Load Balancing Strategies 

Our experiments include performance comparisons using different load 

balancing strategies. Workgroups, constructed using the algorithm proposed 

by Cordeiro et al., and expressed in Equation 1, are distributed between the 

number of active threads: the objective is to evenly distribute processing 

with the minimum overhead. The Longest processing Time First strategy used 

by Cordeiro et al. is well motivated, but this comparison provides a useful 

context for investigating the use of different metrics, and also for assessing 

the importance of load-balancing on performance in this context. The load 

balancing strategies we compare are as follows: 
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1. Longest processing Time First (LPT): workgroups are sorted into 

order of descending size. Taking each in order, they are assigned 

sequentially to the thread with the least current weight. Like Cordeiro 

et al., in our implementation the first (main) thread starts with an 

initial weight penalty of one, to ensure that the second thread always 

receives the first and largest workgroup. 

2. Shortest processing Time First (SPT): The opposite of the LPT 

described above, workgroups are sorted them in order of ascending, 

rather than descending, size. Our expectation is that performance will 

be less optimal than LPT if there is a consistent differential in 

workgroup weight size. 

3. Round-Robin (RR): The simplest algorithm; it does not perform any 

sorting and simply iterates through the list of workgroups and assigns 

each to alternating threads. This provides a baseline performance, in 

that it gives the most naive possible distribution, with the lowest 

overhead, comparable to that used by Abdelkhalek and Bilas. 

4. Sorted Round-Robin (SRR): An adaptation of the RR algorithm. It 

sorts workgroups in order of descending size, as LPT, then iterates 

through the list and assigns each in turn to an alternating thread. 

4. Experiment One: Frames Per Second vs Throughput 

The purpose of our first experiment is three-fold: firstly to validate and 

expand the results obtained by Cordeiro et al. [14] using our own platform, 

and to compare server throughput (used by Abdelkhalek and Bilas [9]) with 

frames per second (Cordeiro et al.) as a performance metric. Using Cordeiro 

et al.’s original code base (LPT), we took measurements for one and four 
threads. Our measurements included recorded FPS and server throughput 

rate for between 32 and 192 connected clients. The results are shown in 

Figures 2 and 3 respectively. 

Our measurements for FPS are more extensive than those presented by 

Cordeiro et al., and show a clear trade-off between the computational cost of 

managing multiple threads, with the number of clients which can be 

supported: with lower numbers of clients (less than 112), the overhead of 

maintaining multiple threads is dominant, and results in a better 

performance 
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Figure 2: FPS of optimized server (LPT with 1-4 Threads) 

 

Figure 3: Server throughput of optimized server (LPT with 1-4 Threads) 

with just one or two threads. However, with more than 112 threads 

connected, performance degrades quickly and the three and four thread 
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servers are superior. Figure 2 does show that FPS as a metric gives poor 

differentiation with higher numbers of attached clients: the recorded FPS for 

three and four threads with 192 clients is difficult to separate. 

Better differentiation is evident using server throughput (Figure 3), 

however. Abdelkhalek and Bilas reported, for serial execution, a linear 

relationship between throughput and number of connected clients, until 

peak throughout is reached at the point of saturation. In our case, we observe 

the same relationship for multiple threads: saturation occurs between ≈ 100 

clients (1 thread) and ≈ 176 clients (4 threads). The performance difference 

between 3 and 4 threads is also much more clearly distinguishable than it is 

using FPS. 

We identify a relationship between throughput and FPS. For example, 

comparing the performances for 2 threads, shown in Figures 2 and 3, the 

linear increase in throughput from 1000 to 4000 RPPs between 32 and 128 

clients is matched with an approximately linear decrease in FPS from around 

400 to just under 100. Peak performance appears as a maximum in 

throughout, and also as a corresponding minimum in FPS. A similar pattern 

emerges for performance with 3 and 4 threads. 

We conclude that there is a coupling between FPS and throughout; 

however, throughput displays greater differentiation under high 

computational load, and is therefore more able to identify the point of server 

saturation across different numbers of threads. It is also clear that there is a 

demonstrable computational overhead to maintaining multiple parallel 

threads (with a significant payoff with more than 112 clients in our case). 

This overhead is expended primarily on partitioning the clients into 

workgroups using equation 1, copying and resynchronizing entity memory 

resources, and scheduling the workgroups across the available threads 

(using LPT). However, there appears to also be a diminishing return: 4 

threads only marginally outperforms 3, saturating at around 176 clients 

compared to 160. We examine the effect of using larger numbers of threads 

in Experiment Three. 

5. Experiment Two: Comparison of Load Balancing Strategies 

In this set of experiments we investigate the relative performance of the 

load balancing algorithms described in section 3.3. We start by considering 

server throughput as a base metric, and introduce accumulated workload 
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distribution (previously used by Cordeiro et al. [14]), workload deviation, 

and IFWT to further examine server behaviour. 

Figure 4 shows server throughput for each load balancing algorithm. 

There is a clear divergence between the algorithms starting at around 144 

clients: by 176 clients, SPT and RR appear to have reached saturation, whilst 

LPT and SRR are close to peak, and producing similar performances. 

 

Figure 4: Server Throughput for all algorithms using 4 threads. 

RR appears as the least effective distribution method, which may be 

expected given that it is essentially arbitrary. However SPT offers little 

improvement, which suggests that the variation in workgroup weight is large 

enough to limit the performance gain of a this distribution strategy (at least 

to the extent that it is negated by the overhead of sorting the groups). Whilst 

LPT and SRR appear more effective, this result raises further questions as to 

why this is the case, and how they could be further improved. Whilst server 

throughput appears to be an effective comparative metric, it does not provide 

much insight into why LPT and SRR are more effective, nor how we may 

further optimize performance. In need of further analysis, we proceed to 

consider whether accumulated work load distribution [14] can offer more 

insight. 
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5.1. Accumulated Workload Distribution 

Figures 5 to 8 show the accumulated workload distribution for the four 

algorithms. 

 

Figure 5: Workload Distribution for LPT using 4 threads. 

The accumulated distribution for LPT (Figure 5) shows a similar profile 

to that recorded by Cordeiro et al. The penalty applied to the main thread 

results in an unevenly high processing load on the second thread. SPT 

appears to create a more even distribution than LPT, which is somewhat 

surprising given that its throughput is measured to be lower: we might 

reasonably anticipate that algorithms exhibiting an even accumulated 

distribution would produce more optimal performance (which is assumed by 

by Cordeiro et al.). This assumption is further discredited by figure 8 which 

shows that SRR produces a distinctly uneven accumulated distribution. 

Our results suggest that accumulated workload is not a good indication of 

comparative performance. Further inspection of the recorded data shows 

that the frame-by-frame distributions are not as stable as appears in the 

accumulated statistics: this variation impacts on performance. Figure 9 

shows the frame-by-frame standard deviation of workload for each thread: 

SPT 
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Figure 6: Workload Distribution for SPT using 4 threads. 
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Figure 7: Workload Distribution for RR using 4 threads. 
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Figure 8: Workload Distribution for SRR using 4 threads. 

and RR both demonstrate comparatively high standard deviation, indicating 

that this is a considerably more informative metric that the accumulated 

workload used by Cordeiro et al. This observation applies equally to any 

parallelization/load balancing strategy. 

5.2. IFWT 

We conclude Experiment Two by considering an alternative metric, 

interframe wait time (IFWT), used by Abdelkhalek and Bilas to analyze 

threads in their parallel implementation [25]. Whereas workload is an 

estimated measure of processing weight, IFWT is a direct measure of the 

actual distribution of processing time. In this case, we simplify matters by 

restricting our consideration of IFWT to the main execution thread, and 

results are shown in Figure 10. 

The two worst performing algorithms (SPT, RR) show a relatively large 

increase in IFWT with increasing numbers of players. This is consistent with 
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the high standard deviation in workload distribution reported in Figure 9. 

LPT shows a much slower increase, suggesting that there is some systematic 

under-utilization of the main thread (consistent with the penalty used by 

 

Figure 9: Standard deviation of processed entity workgroups for LPT, SPT, SRR and RR. 
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Figure 10: Intra-frame wait time for all algorithms using 4 threads. 
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Cordeiro et al. to locate more weight on the second thread). SRR, however, 

shows a decreasing IFWT, which indicates an increasing load on the main 

thread. The IFWT does not reach zero, however: referring back to Figure 9, 

frame-by-frame variation means that even with a main thread which is 

overburdened on average, IFWT will still be positive for some frames. High 

IFWT is, then, a measurable indicator of poor load balancing. However, low 

IFWT is not necessarily an indicator of good balancing as it may hide an 

overburdend main thread. Our conclusions for this experiment are as 

follows: 

1. A high frame-by-frame variance (standard deviation) indicates an 

ineffective balancing strategy which cannot be easily analyzed using 

accumulated metrics, nor easily optimized. 

2. Accumulated workload (used by Codeiro et al.) is generally not a reliable 

metric, unless frame-by-frame variance is low. 

3. A consistent IFWT (across number of clients) indicates a low 

workloadvariance, and near-optimal scaling. 

4. Decreasing IFWT indicates an increasing burden on the main 

thread.Workload deviation will place a minimum bound on IFWT in this 

case. 

5. IFWT and workload deviation together capture the potential for 

anyfurther optimization of a particular balancing strategy, and so may be 

used to help optimize server throughput. 

6. LPT and SRR have been shown as the most effective balancing strategies 

on our platform. 

6. Experiment Three: Increasing the number of threads 

In this section we re-evaluate LPT and SRR on our second hardware 

configuration (specified in Table 2) to determine whether their relative 

performance is consistent across different platforms, and how well they scale 

up to 6 hardware threads. In addition, we re-examine IFWT in more detail. 

Figure 11 shows the measured throughput for LPT and SRR with 4, 5, and 

6 threads respectively. 

It is clear that the results differ somewhat from our previous hardware 

configuration. In particular, SRR does not perform so well, saturating with 4 
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threads much earlier at 144 players. Conversely, LPT appears to perform 

better. It is difficult to draw conclusions as to why this should be the case, as 

the platform configurations are different in several respects; however, it is 

clear that performance is not consistent across configurations. 

 

Figure 11: Server throughput for LPT and SRR with four, five and six threads. 

Both LPT and SRR show relatively small improvements in performance 

between 4 and 6 threads. In the case of SRR, saturation occurs later with 6 

threads (at 176 rather than 144 clients). However, with LPT the throughput 

appears to peak around 192 players for 4, 5, and 6 threads, although the 

replies sent does increase. 

The results for IFWT are shown in Figure 12, and the corresponding 

workload distributions for both LPT and SRR with 6 threads with 176 

connect clients is shown in Figure 13. Comparison with the previous section 

confirms the difference in thread loading: SRR loads the first thread whereas 

LPT places more weight the second. This is further confirmed by the 

measurable difference in IFWT. 

IFWT for LPT (4,5 and 6 threads) shows a common profile. Initially, 

between 100-140 connected clients, IFWT falls: at around 140-160 clients it 
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begins to rise again, prior to reaching server saturation. This suggests that 

workgroup weight imbalance increases from around 140 clients (so that 

there is more differential between the first and second threads). This could 

be a result of, for example, increasing player density. However, the overall 

frame execution time also increases over this range, and so a corresponding 

 
Connected Clients 

Figure 12: IFWT for LPT and SRR with four, five and six threads. 
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Thread ID 

Figure 13: Workload distribution for LPT and SRR with 176 connected clients [6 Threads]. 

increase in IFWT may, in fact, be expected regardless. This motivates us to 

introduce the normalized version of IFWT: Total Wait Percentage (TWP), 

which is calculated as described in section 3.2. Figure 14 shows the measured 

TWP. 
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Figure 14: TWP for LPT and SRR with four, five and six threads. 

Comparing figures 12 and 14, the value of TWP is significantly more 

informative. For example, in the case of SRR it is now clear that, as a 

percentage, the main thread spends close to zero time waiting with more 

than 160 players (variations become insignificant compared to increasing 

processing time). On the other hand, LPT shows a significant amount of frame 

time (between 10% and 25%) for which the main thread is effectively idle. 

This is consistent with the applied thread penalty, combined with low 

granularity workgroups, which is also evident in the work load imbalance in 

Figure 13. 

Interestingly, TWP does provide some basis for quantifying the 

optimization which could be achieved by better balancing the thread 

workloads. For example, with 4 threads and 192 players, the main thread 

TWP is measured to be around 10%. If that time is caused by additional work 

load on one thread which could redistributed across all 4 threads, then 

something like a 7% decrease in frame processing time could potentially be 

achieved in the best case. This figure increases with the number of threads, 



 

29 

which again implies that workgroup granularity is a limiting factor. In the 

next section we will examine the effect of reducing this granularity. 

7. Experiment Four: Reducing the Workgroup Size 

This experiment connects server metrics with game mechanics: we show 

how metrics can be used to provide designers with a means of predicting how 

changes to gameplay can impact on performance, scalability, and platform 

requirements. Whilst accumulated workload distribution alone is not a 

reliable performance metric, it can highlight systematic imbalances. For 

example, the higher weight visible on the second thread for LPT is caused not 

only by the penalty applied to the main thread, but also by a variation in 

workgroup weights from frame to frame. 

The frame-by-frame variation in workgroup weights is related to a 

number of factors, including the spatial distribution of gameplay. Of key 

importance is the value of the parameter di in Equation 1, which directly 

affects the size and extent of those workgroups. Cordeiro et al. [14] set di to a 

constant 256, which is the action range of an entity in Quakeworld. Entities 

are constrained to interact with other entities within this range, within a 

single frame (this is a constant value and independent of frame rate). For 

comparison, the player height is 56 units, a stair step is 18 units, and the 

maximum player speed is 320 units/second. Using this value guarantees that 

any objects which can interact in the current frame are processed in the same 

workgroup; however a lower value would result in smaller workgroups, and 

so more even load balancing. For example, if the designer decided to reduce 

the maximum speed of the fastest object, then di could also be reduced, 

reducing workgroup size and potentially improving performance. Indeed, it 

would be possible to set individual values of di on a per-object basis (though 

this would increase the load-balancing overhead). This type of feedback from 

implementation testing to design is potentially useful in informing a balance 

between game play and performance, but is rarely available to designers in 

practice. 

Our final experiment compares server performance at values of 256 and 

128 respectively for di. We look at both LPT and SRR with 4,5, and 6 threads, 

and in each case we compare the performance using the two values of di, 

across a range of metrics. Henceforth we denote results obtained for LPT 
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using smaller workgroups as LPT-S, and, similarly, SRR-S for SRR with small 

workgroups. 

Figure 15 shows the average workgroup sizes with di = 256 and 128 

respectively, for LPT with 6 threads, as a function of the number of connected 

clients. Whilst the average size for di = 256 increases from 2 to 20 over this 

range, it remains at around 2 to 3 for di = 128. This clearly indicates that 

reducing di has a dramatic effect on group formation, which we might expect 

to be reflected in other observed server metrics. 

 

Figure 15: Average workgroup size with modified entity pre-processing step. 

7.1. Server Throughput and Workload Distribution 

In terms of overall server capacity, the use of smaller workgroup sizes has 

had a mixed effect. Figure 16 shows that throughput for LPT-S has improved 

slightly over LPT, although the improvement is minor. However, Figure 17 

shows that SRR-S has improved the throughput of the server from 144 to 192 

connected clients. The change in throughput for SRR-S is such that it brings 

the SRR algorithm again to an almost equal performance to LPT 

(remembering that this was the case with our initial results in Section 
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4). 

The apparent performance parity between LPT-S and SRR-S suggests that the 

resulting smaller workgroups are contributing to a much more even 

 

Figure 16: Server throughput for LPT and LPT-S. 
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Figure 17: Server throughput for SRR and SRR-S. 

 
Thread ID 

Figure 18: Workload distribution for LPT, SRR, LPT-S and SRR-S with 176 connected clients [6 

Threads]. 
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distribution of processing weight across the available threads. Figure 18 

shows the workload distribution for all four algorithms, where the 

distribution for LPT and SRR show the same profiles as seen in Figure 13. 

Initial inspection of the workload distributions for LPT-S and SRR-S 

shows that there appears to be less total weight processed by these 

algorithms. This disparity is a direct result of the smaller workgroup size. 

With larger groups used for LPT and SRR, the weight measurement includes 

entities which may be inactive (for which no input has been received for the 

current frame), but which are included in workgroups with active entities. 

With smaller, more fragmented groups, inactive entities are more frequently 

omitted from processed workgroups, and so not measured as processed 

weight. Further inspection of Figure 13 shows that the workloads for LPT-S 

and SRR-S are also much more evenly distributed. Reducing di to 128 has the 

effect of producing a more balanced distribution, producing close to the same 

performance between LPT-S and SRR-S: the choice of balancing strategy has 

less impact on performance when balancing a larger number of smaller 

workgroups. This trend is to some extent predictable; however, what is 

interesting in this case is that reducing di by 50% is enought to mitigate 

imbalances between different strategies. Being able to quantify this is 

important in optimizing the game design against server performance. 

7.2. TWP for Smaller Workgroups 

We conclude by examining the TWP metric for LPT/LPT-S, shown in 

Figure 19, and SRR/SRR-S shown in Figure 20. Figure 21 shows a comparison 

of LPT-S and SRR-S. An analysis of these graphs confirms the convergence of 

performance demonstrated by server throughput and workload processing. 

LPT-S shows a decrease from the 15−20% range shown by LPT to around 

10%, indicating a more even processing balance across the threads. Similarly 

SRR-S shows an increase from 0 to 10%, as the staircasing distribution seen 

for SRR is evened out. Based on both of these results, a value of 10% for TWP 

seems to correspond to optimal performance; we infer that this value reflects 

the frame-by-frame variation in workload distribution, across the test frames 

(TWP only measures the wait time of the first thread, and does not record 

negative values). 
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Figure 19: Total wait percentage for LPT and LPT-S 

 

Figure 20: Total wait percentage for SRR and SRR-S 
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Figure 21: Total wait percentage for LPT-S and SRR-S 

8. Conclusion 

Our study has focused primarily on identifying informative performance 

metrics to characterize the behavior of a multicore parallel version of the 

QuakeWorld game server. Existing studies of multicore game servers are 

sparse: most researchers have used ad-hoc metrics with little consideration 

of how to interpret results, or which are most suitable to evaluate the 

performance of parallel implementation. We have collated metrics used in 

these studies, proposed some new ones, and through a series of experiments 

we have examined their inter-relationships and how they may best be used 

to investigate the behavior of multicore server processes. 

Our work is generalizable: experimental work has focused on thread 

loadbalancing metrics, and is therefore directly relevant to other real-time 

game world servers utilizing a stand-alone parallel architecture. Moreover, 

the lockless threading architecture proposed by Cordeiro et al. [14] will 

transpose to other physically-based game world servers. We concluded our 

experiments by using our suite of metrics to show how the relationship 
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between game mechanics and performance can be quantified and used to 

inform game design. 

Our primary conclusions are: 

1. We confirm that server throughput, proposed by Abdelkhalek and Bilas 

[25] also works well in analyzing Cordeiro et al.’s architecture [14]. In 
particular, Saturation, at an identifiable maximum, characterizes the 

largest number of players which may connect to the server while 

maintaining optimal performance. 

2. Frames per Second, used by Cordeiro et al. is bound to throughput, but 

less effective in identifying peak performance. 

3. We have found that accumulated workload, used again by Cordeiro et 

al., may be used to characterize average weight distribution, but is not 

reliable as a performance metric due to frame-by-frame variations in 

distribution. 

4. Standard deviation of thread workload is a better indication of 

performance: high variance indicates an ineffective balancing strategy, 

and correlates with poor performance in our experiments. 

5. IFWT captures aspects of both distribution and variability of 

workload.We also noted that a variant of IFWT, TWP, can be used to 

estimate the best possible performance that could be achieved by an 

optimal balancing strategy. 

6. Our experiments indicate that LPT and SRR show the best performance 

on our implementation. Cordeiro et al.’s choice of balancing strategy is 
shown to be well motivated. 

7. We have also showed that varying the size or workgroups had a 

dramatic effect on performance: in particular, reducing the size 

interaction radius di in Equation 1 helped optimize both LPT and SRR, 

resulting in convergence. This exemplifies how metrics can be used to 

predict the effect of changes to game mechanics on server 

performance. 

Game servers are highly sophisticated and complex software 

applications: understanding their behavior goes hand-in-hand with 

performance optimization. Leveraging parallel processing architectures still 

represents a challenge for future work: we see the continued development of 
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empirical analysis based on server metrics as an area which is not only 

attracting academic interest, but also has the potential to deliver new and 

useful tools to industry. 

Continuing our own work, we consider that the architecture proposed by 

Cordeiro et al. is immediately applicable to game developers, but has not yet 

been fully developed. Firstly, the load balancing uses a simple workload 

weighting model based only on the number of entities in a workgroup. This 

appears to be an oversimplification, and more accurate weight descriptions 

may well help to improve balancing (for example, help to eliminate frameby-

frame variations in thread processing). Additionally, our experiments in 

Section 7 suggest that a more accurate maximum interaction range (di in 

Equation 1) would help reduce workgroup size. A more intelligent method of 

determining di could provide significant further optimization. 
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