

EARLY PRAISE FOR
Development & Deployment of Multiplayer Online Games

“By far the most comprehensive book on specifics of multiplayer games.”
 - Dmitri Dain, Managing Director @Amaya Software

“Finally!”
 - Boris Taratine, Cyber Security Programme Chief Architect @Lloyds Bank Group

“Looking forward to read the book when it is finished.”
- Nuno Leiria, Senior Software Engineer @Polystream,
formerly Core Tech Programmer @Lionhead Studios

“Looking forward to read the final book. The promise is great.
Finally a book on the subject that isn’t outdated or vague.”

- Özkan Can, formerly Backend Technical Director @Blue Byte, A Ubisoft Studio

“TCP is a complex beast and you know much more about it than I do. Thank God!”
- Glenn Fiedler, GDC speaker,

veteran of AAA multiplayer development, and UDP fanboy for life

“The colossal book you are writing... looks very promising and exciting.”
- Alessandro Alinone, Co-Founder and CEO @Lightstreamer

“The really useful and highly practical book. This book will be a
valuable addition to the library of anyone game developer.”

- Michael Morgovsky, Co-Founder and CTO @Plarium

“I’ve been looking for a book like this for a decade. This will be invaluable
for teaching game devs the ins and outs of multiplayer development.”

- Robert Zubek, GDC speaker, Founder @SomaSim,
formerly Principal Software Engineer @Zynga

“Even unfinished, it already is the most comprehensive reference for networking
and multiplayer game development that I have ever seen, and it is constantly
teaching me new things. An absolute must-have for the serious developer.”

- Matt Pritchard, AAA veteran, author, and CTO @Forgotten Empires,
former RTS/FPS/IoT developer @Ensemble Studios / Valve / Disney

‘NO BUGS’ HARE
Sarcastic Developer

Co-Architect of a G20 Stock Exchange
Sole Architect of a Game with 400’000 Simultaneous Players

Author of Articles in CUJ, C++ Report, and Overload

DEVELOPMENT AND DEPLOYMENT OF
MULTIPLAYER ONLINE GAMES
From Social Games to MMOFPS, with Stock Exchanges In Between

PART ARCH.

ARCHITECTURE AND
PRE-DEVELOPMENT

Victorious warriors win first and then go to war,
while defeated warriors go to war first and then seek to win.

—Sun Tzu, The Art of War, circa 500 BC

In Part ARCH, we will discuss activities that need to be performed even before the coding can be start-
ed. It includes many things that need to be done, from formulating business requirements to setting up
your source control and issue tracking systems, with lots of critical architectural decisions in between.

VOLUME I.

GDD, AUTHORITATIVE
SERVERS,
COMMUNICATIONS

The man who moves a mountain begins by carrying away small stones.

—Confucius (5th century BC), Civilization IV (21st century AD)

Copyright © ITHare.com Website GmbH, 2015-2017

All Rights Reserved. No part of this book may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without permission in writing from the publisher.

Translated from Lapine by Sergey Ignatchenko (ITHare.com Website GmbH, ithare.com)
Cover and Interior Illustrations by Sergey Gordeev (Gordeev Animation Graphics, gagltd.eu)
Editing by Erin McKnight (Kevin Anderson & Associates, ka-writing.com)
Interior and Cover Design by A. Kate Reynolds (Kevin Anderson & Associates, ka-writing.com)

978-3-903213-05-0 – (Paperback)
978-3-903213-06-7 – (Hardcover)
978-3-903213-07-4 – (PDF)
978-3-903213-08-1 – (ePub)
978-3-903213-09-8 – (Kindle)

Published by ITHare.com Website GmbH
Hormayrgasse 7A/19
1170 Wien
Austria

CONTENTS
Chapter 1. Game-Design Document from an MOG perspective 25

Your Game As Your Baby ..26

3500-Word Crash Course for First-Time Game Developers ...27
On the GDD ...27

Subject to Change, Seven Days a Week ..28
Being Agile and Writing It Down ..29

The Overly Generic Fallacy ..29
On Project Stakeholders ...31

On Focus Testing and Playtesting...32
On Marketing and Monetization: Critical Mass ...33
On Stakeholder Availability ...34
TL;DR on Project Stakeholders ...34

On a Typical Non-MOG Team Structure ..35
Time-to-Market, MVP, and Planning ...35

Dealing with Time-to-Market ...36
On the Importance of Holding Your Horses ...37
TL;DR On a Crash Course for First-Time Developers ..38

Three All-Important GDD Rules ..39
On Separating GDD and Implementation Details ..40
Dealing with “Difficult” Stakeholders and (Jobs Forbid) Managers ...41

Limited-Lifespan vs. Undefined-Lifespan Games ..42

Client-Driven vs. Server-Driven Development Workflow ...44
Server-Driven Workflow ...44
Client-Driven Workflow ..44

Dealing with Client-Driven Workflow..45
Option 1. “Continuous Conversion”...46
Option 2. “Integrate Server into Toolchain” ...47

On Matchmaking and the Social Aspect of Your MOG ...47
Matchmaking That Doesn’t Work (As a Rule of Thumb) ..48
Matchmaking That Works ..49

On Support for Smaller Groups of Players ..52

Technical Issues Affecting Marketing and Monetization ...54

Your GDD Requirements List ...59

viii • Development and Deployment of Multiplayer Online Games

On MOG-Specific Teams ..66
Network Team ...66
Server Team ...67
Database Team ..68
Back-End Team...68

Timeline for the Back-End Team...69
All MOG-Specific Teams Must Be First-Class Citizens ...71

Running Costs Breakdown ...73

Common GDD Pitfall: Just Throw In a Multiplayer for Free ...77

Game Entities and Interactions ...79
Game Entities: What Are You Dealing With?...80
Interactions between Game Entities..80
What Should You Get? Entities-and-Interactions Diagram ...80
Examples of Entities and Interactions ..81

Social Farming and Farming-Like Games ..82
Casino Multiplayer Games ...83
Stock Exchanges, Sports Betting, and Auction Sites ..84
Large Virtual-World Games (MMOTBS/MMORTS/MMORPG/MMOFPS) ..86
Team Competitions/eSports ...88

Entities and Interactions Diagram As a Starting Point to Architect Your Game..89

Chapter 1 Summary ..90
Bibliography ..91

Chapter 2. On Cheating, P2P, and [Non-]Authoritative Servers 93
If You’re Popular Enough, They Will Find Reasons to Cheat ...94

The Big Fat Hairy Difference from E-commerce ..96

Dealing with Cheaters ..97
Gameplay ...98
Architecture ...98
Bot Fighting ...99

Attacks: The Really Big Advantage of the Home Turf ..99
Home Game ..99
Road Game ...100

Published vs Unpublished Attacks ..102
Published Attacks: Higher Impact, But Home-Turf Advantage Is Regained ...102
Unpublished Attacks ...103

Contents • ix

Attack Types ..104
Legal Stuff and Problems Banning ..104
Game Cheats ..104

Game-Rule Violations ...105
Information Exposure ..105
Reflex Augmentation ..106
Abuses of Disconnect Handling ..107
Grinding Bots ..108
Multiple Accounts ...109

Classical Attacks ..109
DB Attacks ...109
Stealing Your Source Code ...110
Password Phishing...111
Keyloggers/Trojans/Backdoors on Another Player’s Device ...112
DDoS ..113

MOG Attack Type Summary ..114

Authoritative Client: Pretty Much Hopeless Against Cheaters (Except for Console-
Only Games)...116

Code Signing—Doesn’t Really Work in a Hostile Environment (Except for Consoles)117
Theoretical Protections ..119

Cross-Checks—Undetectable Attacks, Taking Over the World, and Latencies ...119
Consensus (Actually, Majority Vote)—
Even More Latencies ..121

Trusted Nodes—Who Is the One We Trust? ..121
Homomorphic Encryption—Doesn’t Even Start to Fly ..122

Authoritative Client MOG Summary ..123

Deterministic Lockstep: No Game-Rules Violations, But Wide-Open to Information
Leaks ..124

Authoritative Server: As Cheater-Proof as They Get ..126
Authoritative Servers: Scalability Is Imperfect But Workable ..128

An Example Calculation ...130
Summary: Authoritative Server Is Not Ideal, But Is the Only Thing Workable ..131

Think Positive! Or, Maybe There’s Still Hope... ..132
Every Bit Counts: Multi-Layer Protection ...133

Bottom Line for Chapter 2: Yes, It Is Going to Be an Authoritative Server135
Bibliography ..136

x • Development and Deployment of Multiplayer Online Games

Chapter 3. Communications 139
Client-2-Server and Server-2-Client Communications ..140

RTT, Input Lag, and How to Mitigate Them ..141
Data-Flow Diagram, Take 1 ..141
Input Lag: The Worst Nightmare of an MOG Developer ...144

Input Lag: User Expectations ..144
Input Lag: How Much We Have Left for MOG ...145
Accounting for Packet Losses and Jitter ..147

Internet is Packet-Based, and Packets Can Be Lost ..147
Cutting Overhead ..148
Client-Side and Server-Side Buffering on Receipt ..150
Time Synchronization ..152

Sync-Once .. 152
Sync-Once with Subsequent Adjustments .. 153
NTP-Like Protocol .. 154
Phase-Locked Loop (PLL) .. 154
TL;DR on Time Sync ... 156

On TCP ...156
Input Lag: Taking a Bit Back ..157

Data-Flow Diagram, Take 2: Fast-Paced Game Specifics ...158
RTT ...160

LAN RTT vs Internet RTT ...162
On CDNs and Geo Server Distribution ...162
RTT and Players ...163

Back to Input Lag ..163
Data-Flow Diagram, Take 3: Client-Side Prediction and Interpolation ...165

Client-Side Interpolation ...165
Client-Side Extrapolation, a.k.a. Dead Reckoning ...166

Running into the Wall, and Server Reconciliation ...166
Client-Side Prediction ...168

Client-Side Prediction: Dealing with Discrepancies ..169
On Distributed Authority ...170

Take-3 Diagram..171
Lag Compensation—Potential for Cheating vs. Player Happiness...174

Server Rewind ..174
Subtracting Client RTT on the Server-Side ..175
Lag Compensation Is Inherently Open to Cheating… ...175
…OTOH, Player Happiness Is Much More Important ..176

There Are So Many Options! Which Ones Do I Need? ...178

Contents • xi

Game-World States and Reducing Traffic ..179
Server-Side, Publishable, and Client-Side Game-World States ..180

Limit on Bandwidth ...180
Additional Reasons to Optimize Bandwidth ..181
Triangles and Bandwidth ...183
Three Different States of MOG ..184

Client-Side State ...184
Server-Side State ..184
Publishable State ...186
Why Not Keep Them the Same?...189
Non-Sim Games and Summary ...190

Publishable State: Delivery, Updates, Interest Management, and Compression...191
Interest Management: Traffic Optimization and Preventing Cheating ...191

Implementing Interest Management ...193
Grid-Based Interest Management ... 193

Interest Management as a Way to Prevent Information-Leak Cheating ...194
On Frustum-Based Interest Management ..195

Before Compression: Minimizing Data ..197
Compression ..200

What Exactly Is “Compression”? ...201
On “Reference Bases” for Compression.. 203
“Reference Base” for Unreliable Communications Low-Latency Compressible State Sync.............................. 203

Advantage of Low-Latency Compressible State Sync over TCP and Reliable UDP ... 206
Delta Compression ...206

Two Flavors of Delta Compression ... 206
Delta Compression—Generalization to Arbitrary Trees ... 207
Delta Compression of Arbitrary Trees—Collecting Updates “On the Fly” .. 208

Dead Reckoning As Compression ..209
Dead Reckoning As Compression: Variations .. 211

Classical Compression ..212
Compressing Reliable Streams .. 212
Compressing Independent Packets ... 213
Compression Using Acknowledged Packets .. 214

Combining Different Compression Mechanisms and the Law of Diminishing Returns214
On Using Doubles with Lossless Compression .. 215

On Adaptive Traffic Management ...216
Adaptive Traffic Management—UDP ..217
Adaptive Traffic Management—TCP ..218
Adaptive Traffic Management in the Context of Authoritative Servers ..219

Traffic and Real-Time Strategies ...220
Traffic Optimization: TL;DR and Recommendations ..222

xii • Development and Deployment of Multiplayer Online Games

MMOG and Scalability ...224
On Shared-Nothing Architecture ...225
An Obvious One: Separate NPC/AI ..226
Splitting into Areas ..227
Seamless Worlds: Overlap! ..227
On Server-Side Uncertainty ...229

Eliminating Uncertainty Completely: Time Sync ...230
Synchronization without Rewind: CMS/LBTS. Lockstep ..230
Synchronization via Server Rewind: “Value Date” ...231

Transient Events, Forwarded Inputs, and (Kinda-)Broadcasted Messages232
Transient Events ..232
Forwarded Inputs...233

Potential for Information Leaks ...233
Implementation ...234

(Kinda-)Broadcasted Messages (Broadcast with Interest Management) ..234

Point-to-Point Communications and Non-Blocking RPCs ...235
RPCs ...236

Implementing Non-Blocking RPCs ...237
Void vs Non-Void Non-Blocking RPCs ...237

Non-Void RPCs ..238
Client-to-Server and Server-to-Client Point-to-Point Communications ..240

Inputs ..241
Input Timestamping ..242

“Macroscopic” Client Actions ...243
Server-to-Client ...244

Server-to-Server Communications ..245
Seamless Handling of Transient Disconnects ..245

Option 1. Separate Caller/Callee Handling ...246
Option 2. Two Guaranteed Delivery Streams ...247

Going Further: Inter-DB Async Transfer with Transactional Integrity ...248
Server-Side Entity Addressing ..251
Server-Side: TCP Often Wins Over UDP ..252
Using Message Queues for Server-to-Server Communications ..254

MQs and Transactional Integrity ...254
On Transactions in AMQP ... 256

Brokered vs Brokerless MQ...256
Broker as Directory Service ... 256
Brokers and Transactional Integrity ... 257

Using MQ on the Server-Side: Summary ..258

Contents • xiii

On Protocol Changes ...259

IDL: Encodings, Mappings, and Protocol Changes ..262
Intra-Language vs Standalone ...263
IDL Development Flow ...264
IDL + Encoding + Mapping ..265
Example: IDL ..267

On Sanitizing Input Data ...268
Test Case Generation ..269

Example: Mapping ...269
Mapping to Existing Classes ..272

Example: Encoding ...273
Protocol Changes and Backward Compatibility ..276

Field Identifiers ..276
Growing Messages. Fences ...277
Versioning ..280

Versions for Replies ...281
Merits of Versioning ..283

Which One to Choose? ..283
Implementing IDL and Specific Encodings ..284

Summary for Chapter 3 ...285
Bibliography ..287

Volume I Summary 291
What’s Next ...292

Index ...295

Letter from the Author ..307

ACKNOWLEDGMENTS

Family
It is customary for authors to say thanks to the family members who have
supported them during the endeavor of book writing. However, while I am
infinitely grateful to my family (especially to my wife Natalia), I strongly pre-
fer to thank them in person. To the best of my knowledge, they prefer it this
way too.

Comments That Helped Shape the Book
From the beginning, this book was intended as a “crowd publishing” project.
Beta chapters were published on my blog, ithare.com, as soon as they were
ready (and even before they were ready), with an aim of receiving as many
comments as possible. Overall, beta chapters from Volumes I-III got over 400
comments made by over a hundred different people. And while not all these
comments were exactly useful, there were quite a few people who pointed out
important not-too-clearly-explained things, forgotten-at-the-moment but
good-to-mention technologies and use cases, and some have also taught me
certain things (yes, I have to admit that if you’re looking for a book written
by a divine-inspired knowing-everything oracle, you’ve got the wrong one).

Here goes an alphabetical list of people who have made important com-
ments during beta testing of the book and who were also kind enough to
provide their details to be included:

B
Michael Bartnett from New York, United States
Robert Basler from Vancouver, Canada
Marcos Bracco from La Plata, Argentina

xvi • Development and Deployment of Multiplayer Online Games

C
Jean-Michaël Celerier from Bordeaux, France
Oded Coster from London, United Kingdom

D
Przemysław Danieluk from Poland
Bill Dieter from Portland, United States
Matt P. Dziubinski from Warsaw, Poland

F
Nir Friedman from New York, United States
Timothy Fries from Spring Hill, United States

I
Dmytro Ivanchykhin from Kiev, Ukraine

J
Nathan Jervis from Hamilton, Canada
Luciano José Firmino Júnior from Recife, Brazil

K
Chris Kingsley from Longmont, United States
Mario Konrad from Zurich, Switzerland

L
Ivan Lapshov from Moscow, Russia
Nuno Leiria from Lisbon, Portugal
Dmitry Ligoum from Toronto, Canada

N
Jesper Nielsen from Gråsten, Denmark

Acknowledgments • xvii

R
Nathan Robinson from Stuttgart, Germany

S
David Schroeder from Spokane, United States
Alessandro Stamatto from Porto Alegre, Brazil
Jon Stevens from Seattle, United States

T
David Turner from Leeds, United Kingdom

W
Jon “hplus” Watte

Z
Vadim Zabrodin from Novosibirsk, Russia
Robert Zubek from Chicago, United States

...and everybody else who made important
comments but declined to be included in this list.

Thanks a lot, friends; your feedback was really important to make the book
better.

Special Thanks to Kickstarter Backers
This book was Kickstarted and the money raised was used for professional
editing and design. There aren’t enough bits in the RAM of my computer
to express all my gratitude to each and every one of you. The book certainly
wouldn’t be the same without you (and your patience has certainly been saint-
ly). You’ve been a wonderful [funding] crowd—THANKS A LOT!

xviii • Development and Deployment of Multiplayer Online Games

Here goes the “Kickstarter backers’ Hall of Fame”:

0-9
10tons.com

A
ABeardOnFire
Aled
ALEJOLP
Ander Amo
Andrew
AustinK
Dan Avram
David Antúnez

(eipporko)
Guillaume A
Islam Aliev
Jonathan Adams
Jorge Moreno Aguilera
Kylie Au
Luis Armendariz
Nacho Abril
Rafael "GeekFox"

Araujo
Scott Anderson
Sergey Annenkov
Sharad Cornejo Altuzar
Tomáš Andrle
Victor da Cruz Amaro
Wali Akande

B
Alicia Boya García
Asher Baker

Babyjeans
bmac & ingrid
botiq
Bumek
busho
Christian Bryan
ck @ bsg
Cory Bloor
D Barnard
Dan Brewer
David G. Brewington II
Emeric Barthélemy
Frank Lyder Bredland
Georg Begerow
Heiko Behrens
Hrvoje Bandov
Jasmine Bulin
Kirill Belov
Leandro Barreto
Luke Beard
Marcos Bracco
Mateus Borges
Maxim Biro
Michael Brüning
Nicholas "LB" Braden
Patrick B
Patty Beauregard
Richard Baister
Robert Brackenridge
Stephen Bentley
Tomas Bilek
Vincent Bilodeau
Vincent Blansaer

Vladan Bato

C
Ben Carruthers
Bulent Coskun
caj
camfurt
Catprog
Charlie
Chris Cox
Christian Corsano
ChuangTseu
Dmitry Chuev
Edward Carmack
Ian Compton
Javier Calvo
Laurent CETIN
Liam Costello
Milo Casagrande
Morrison Cole
Neil Coles
Ozkan Can
P. Chaintreuil
Paul Caristino
Sam Coleman
Shawn Cassar
Stuart Cassidy

D
Andreas Drewke
Andy Dunn
Chris Downs
Ciaran Deasy

Acknowledgments • xix

Cristián Donoso
dajomu
Dan Dudley
Daniel Dimitroff
Daniele Dionisi

(Danguru)
dd33
Digital Confectioners
Dooks Dizzo
Jamie Dexter
Jean-Michel Deruty
Julien Dumétier
Justin Drury
Ken Drycksback
Kyle Dean
Matthew DeLucas
Matthew Douglass
Michael Dwan
Niclas Darville
Oliver Daff
Pat Duquette
Petar Dobrev
Tim Drury

E
Craig Edwards
David Erosa Garcia
Egon
empty2fill
Eric Espie
Ethereal World
Geoff Evans
Jon Edwards
Matthew Erickson

Michael Ellwood
Ryan Evans
Sebastian Eggers
Semih Energin
Vlad Engelgardt

Е
Антон Евангелатов

F
Andrew Fox
Bruno V. Fernandes
Bryce Fite
Eric Faehnrich
Glenn Fiedler
Mad William Flint
Matthew Fritz
Rosco Farrell
Rui Ferreira
Rui Figueira
Steve "Tech-Imp"

Fernandez
Thomas Frase
Zach Fetters

G
Arvid Gerstmann
Bart Grantham
Bernardo A. Gonzalez

(Jasnis)
David Garcia

(le-dragon-dev)
Dorian George
Evan M. and Nathan G.

Gerardo
Gero Gerber
giant_teapot
Jason Gassel
Jonathan Gough
Maxime Guillem
Philip Gurevich
Risnoddlas Grytarbiff
Stu 'BloodyCactus'

George
Szymon Gatner
Tadej Gregorcic
Tim Goshinski

H
Adam Hill
Alex Holzinger
Alun Hickery
Andrew Handley
Andrew Holmes
Carlos Hernando
David Hontecillas
Dermot Hannan
Garry Hornbuckle
Johannes Hartenstein
Jez Higgins, JezUK Ltd
Jurie Horneman
Lars Hamre
Martin S. Hehl
Michael Hoyt
P. Halonen
Remko van Haften
Sean Hernandez
Shawn H.

xx • Development and Deployment of Multiplayer Online Games

Tom Hawtin
Tom Haygarth
Wolfgang Haupt

I
Christopher Igoe
Dmytro Ivanchykhin
Ikrima
Improbable
Martin Ivanov
Ray Ion

J
Corinna Jaschek
Greg Jandl
JackyWongCW
Jaewon Jung
Jerry Jonsson
Jesper Geertsen Jonsson
Jonathan Johnson
JOS
Karl Jensen
Kenneth Jørgensen
Luciano Jose Firmino

Junior
Rainer Jenning
Rajnesh Jindel
Randolpho de Santana

Juliao
Robert Janeczek
Thomas Sebastian

Jensen
Wilmot-Albertini

Jordan

K
Allan Kelly
Andrew Koenen
Andreas Koenig
Bernhard Kaufmann
Bronek Kozicki
Chris Kingsley
Daniel Kirchen
DM Klein
Dongseob Kim
Ivan Kravets
Joona-Pekka Kokko
Kristofer Knoll
Kwaki3
Lars-Göran Karlstedt
Malte Krüger
Marko Kevac
Matej Kormuth
Mike Kasprzak
Patrick Kulling
Pawel Kurdybacha
Pit Kleyersburg
Roope Kangas
Shay Krainer
Vladimir “ai_enabled”

Kozlov
Wesley Kerr

L
Andrew Lee
Andrew Lombardi
Antony Lloyd
Callum Lawson
César Laso

Damien Lebreuilly
Daniel Ludwig
David Latham
Evgenii Loikov
Game L10N,

localizedirect.com
Jamie Law
Jan-Christoph

Lohmann
Javi Lavandeira
Jeffrey Lim
Johan Lohmander
Justin LeFebvre
Justin Liew
KC Lee
LordHog
Mikola Lysenko
Mun Kew Leong
Richard Locsin
Wilhansen Li

M
Adam Mikolaj
Altay Murat
Andrew McVeigh
Angel Leigh McCoy
Benoit Maillot
Bradley Macomber
Brett Morgan
Brian Marshall
Chris Murphy
Dan "DMac"

MacDonald
Fernando Matarrubia

Acknowledgments • xxi

Gordon Moyes
Heather Martin
Hervé MATYSIAK
Jeroen Meulemeester
Johan Munkestam
John McDole
Kevin McCabe
Marcus Milne
Martin Moene
Mārtiņš Možeiko
Matthew Ma
Matthew Mckenzie
MaxHouYeah
Maximilian Mellhage
Michael Mayr
Michal
Michal Mach
Mike
mp3tobi
Oddur Magnusson
Richard Matthias
Richard Maxwell
Ronald McCormick
Rory Marquis
Seamus Moffat
Seth J. Morabito
Shawn MacFarland
Stefan Moschinski
Thijs Miedema
Tobi Müller
Troy McAnally
Umar Mustafa
Vlad Micu

N
André Pacheco Neves
Andrey Naumenko
Dan Nolan
Ivan Nikitin
J. Djamahl Nolen
Marek Niepiekło
Nischo
NOM
Simon Nicholass
Tivadar György Nagy
Tran Dang Nguyen

O
Albert Olivera
Andreas Oehlke
Bradley O'Hearne
Carsten Orthbandt
David Osborne
Jason Olsan
Jonathan Ogle-

Barrington
Lukas Obermann
Magnus Osterlind
OakFusion.pl
Ryan Olds

Ø
Knut Ørland

P
Alex Price
Alexander Popov

Alexandru Pana
Andreas Pfau
Behrouz Poustchi
Ben Perez
David Pong
Donald Plummer
Eric Pederson

(sourcedelica)
James Pelster
Jamie Plenderleith
Jason Pecho
Lloyd Pearson
Matt Pritchard
Maxxx Power
Michael Powers
Pablo Díaz Pumariño
paste0x78
Patrick Palmer
Penda
Peter Petermann
Phil Peron
Pindwin
PragTob
Rafael Pasquay
Scott Posch
Sylvain P.
Tim Plummer
Tomaso Pye
Tony P
Wayne Pearson
Yevgeniy Pinskiy

Q
Andrew Quinn

xxii • Development and Deployment of Multiplayer Online Games

R
Agata Ratz
Anton Rogov
Chris Rice
Clay Ravin
Darren Ranalli
Denis Reviakin
Francois Rouaix
Guillermo Gijon Robas
James Rowbotham
Juan Rufes
Juanma Reyes
Maxime Raoust
Michael A. Ryan
Pasha Riger
Peter Richards
RagManX
Ralph Reichart
Rdslw
Really Good TV
reopucino
Reuben R
Ron Roff
RyanH
Scout Rigney
Valentinas Rimeika
Zeno Rawling

S
Albert Smith II
Brian Sheriff
Christian Funder

Sommerlund
Christopher Sierra

Dan Sosnowski
David Salz
David Sena
David Sheldon
Deovandski Skibinski
Dylan "PoundCat" Spry
Enrico Speranza
Eric Schwarzkopf
Erik Sixt
Ewan Stanley
Fabian Schaffert
Fredrik Stromberg
Geoff Schemmel
Håkan Ståby
Harvinder Sawhney
http://sava.ninja
Jeff Slutter
Joey "TML" Smith
Jonathan Soryu
Kevin Salvesen
Kishimoto Studios
Kostiantyn

Shchepanovskyi
Kurt "Thunderheart"

Stangl
Lennart Steinke
Marcin Slezak
Mario Sangiorgio
Michael Savage
Michael Schuler
Michel Simatic
Morgan Shockey
Moriel Schottlender
Nathanael See

Philip Stein
Raphael Salomon
René Schmidt
Richard Searle
Robert Singletary
Rory Starks
Ross Smith
sassembla
SemanticSiv
Sergio Santana Ceballos
SleepyRabbit-David
Spielraum Tirol
Sproing Interactive

Media
Stef
Tania Samsonova
Tengiz Sharafiev
Tero Särkkä
Todd Showalter
Victor Savkov
Wilson Silva
Winston Joseph Smith
Zsolt Somogyi

Ś
Grzegorz Świt

T
Barrie Tingle
Chris Threlfo
Daniel Espino Timón
Diogo Teixeira
Garai Tamás, Gerendás

András

Acknowledgments • xxiii

James Tatum
Julian Tith
Matt Toegel
Nicolas Tittley
Rajan Tande
Rodney J. Thomas
Ryszard Tarajkowski
Steven Turek
Test_nuke
Theo
Tim Tillotson
Troxbanv
tuntematon
Wei Tchao

U
uonyx
Urs

V
Alex Vaillancourt
Carson V
Felton Vaughn
Sam Velasquez
Silvo Vaisanen

Thomas Viktil
Yoann Le Verger

W
Andre Weissflog
Andres Weber
Ashley Williams
Bret Wright
Chris Wine
Christian Weiss
Daniel Wippermann
David Wyand
Dominik Wit
Garrick Joshua

Williams
James Wright
Jate Wittayabundit
Jonathan Watson
Jorik van der Werf
Kevin Waldock
Lee Wasilenko
Mike Watkins
Nicholas Wymyczak
Nick Waanders
Peter Wolf

Richard Williams
Simon Withington
Wanderer
wcampos
WeirdBeard Games
Windbringer

X
Xenide
Xlxla
Xywzel

Y
Jason Young
Kyungho Yun
Rouzbeh Youssefi
Tim Yates
Weikie Yeh

Z
George Zakharov
Maxim Zaks
Mike Zbleka
Z-Software
Zara

…and all those backers who decided
to remain anonymous.

P.S. This is not the last book I’m going to launch on Kickstarter, so...stay tuned!
<smile />

INTRODUCTION

THE STORY
BEHIND THIS BOOK

- Once upon a time…
- boy, how do they come up with these catchy openings?

—Garfield the cat

Once upon a time, in the rabbit warren of Bunnylore, there lived a young
software developer bunny.

2 • INTRODUCTION

And he was that much obsessed with writing bug-free software¹ that pretty
soon he got the nickname of No Bugs.

He quickly got into an architect’s shoes,² and in this capacity he took part
in quite a few projects, including seemingly different ones such as:

a. A stock exchange for a G20 country, and

b. A game handling hundreds of thousands of simultaneous
players (and making hundreds of millions of dollars in the
process).

At some point in his career, he started to write articles for industry journals,
and then started a software development blog. Everything was going his way
until on a {sunny|rainy|gloomy|pick your poison} day, he opened a book on
multiplayer game development and found as many as sixteen different mis-
takes (and thirty-nine instances of these mistakes) on just two leaves [Hare].

From this point on, he started to research other books about multiplayer
game development, and found that there are only two related books that are
worth opening.³

That was when No Bugs started to think about writing his own book
about development and deployment of multiplayer online games.

But he’ll do a better job describing it himself.

¹ No Bugs: Obsessive-Compulsive Wannabe-Perfectionist. Guilty as charged.

² No Bugs: More like “chief cook and bottle washer,” if you ask me.

³ No Bugs: since that time, the third such book has been published (see Recommended
Reading section below for all three). TBH, with the field to be covered being that large,
it didn’t change the landscape much.

The Hare and The People Behind • 3

THE HARE AND THE
PEOPLE BEHIND...

About the Author: The author of this book is a No Bugs
Hare from the warren of Bunnylore. He is known for being
a columnist for Overload Journal (ISSN 1354-3172) and
for his significant contributions to the software develop-
ment blog ithare.com. As No Bugs is a rabbit with a mother

tongue of Lapine, he needed somebody to translate the book into human lan-
guage. And of course, as the book is highly technical, to translate technical
details with the highest possible fidelity, he needed a translator with substan-
tial software development experience.

About the Translator: This book has been translated from
Lapine by Sergey Ignatchenko, a software architect since
1996. He is known for writing for industry journals since
1998, with his articles appearing in CUJ, Overload, C++
Report, and (IN)SECURE Magazine. His knowledge of

Lapine is quite extensive, and he routinely translates the column No Bugs
writes for Overload. During Sergey’s software architecting career, he has led
quite a few projects, including as a co-architect of a stock exchange for a G20
country (the same software has been used by stock exchanges of several other
countries), and as a sole original architect of a major gaming site (with hun-
dreds of thousands of simultaneous players, billions of database transactions
per year, and that processes hundreds of millions of dollars per year). As a
kind of paid hobby, he also invents things: he’s an author and co-author of
about a dozen of patents (unfortunately, owned by his respective employers).

About the Illustrator: Illustrations for this book are by
Sergey Gordeev, currently from gagltd.eu. He is a profes-
sional animator with a dozen awards from various an-
imation festivals, and is best known for directing a few
animated Mr. Bean episodes.

4 • INTRODUCTION

About the Editor: Erin McKnight is an internationally
award-winning independent publisher and the editor of
multiple books of fiction and non-fiction from both emerg-
ing and eminent writers. She was born in Scotland, raised
in South Africa, and now resides in Dallas—though this is

her first time working with the Lapine language.

ON REAL-WORLD EXPERIENCES
All happy families are alike; each unhappy family is unhappy in its own way.

—Leo Tolstoy, Anna Karenina

As mentioned above, the trigger for writing this book was realizing the piti-
ful state of MOG-related books. However, there was another experience that
served as additional motivation to write this book.

Quite a few times, when speaking to a senior dev/architect/CTO of some
gamedev company (or more generally, any company that develops highly
interactive distributed systems), I’ve been included in a dialogue along the
following lines:

- How are you guys doing this?
- Psssst! I am ashamed to admit that we’re doing it against each

and every book out there, and doing this, this, and this...
<pause>
- Well, we’re doing it exactly the same way.

This basically means two things:

 ▶ There are MOG practices out there that do work for more than one
game.

 ■ Probably, there are even practices that can be seen as “best
practices” for many games out there (stopping short of saying
that all successful projects are alike).

What is This Book About? • 5

 ▶ OTOH, lots of these practices are not described anywhere (never
mind “described in one single place”), so each team of multiplayer
gamedevs needs to re-invent them themselves. <ouch! />

This is where Development and Deployment of Multiplayer Online Games tries
to come in. Overall,

this book is an attempt to summarize a body of
knowledge that is known in the industry, but is
rarely published, let alone published together.

In other words, this book (taken as a complete nine volumes) intends to cover
most of the issues related to architecting, developing, and deploying an MOG
(with a few exceptions as outlined below).

Of course, given the scale of this (probably overambitious) task, I will
almost certainly forget quite a few things. Still, I will try to do my best.

WHAT IS THIS BOOK ABOUT?
Whenever you look at a book for the first time, you naturally have two ques-
tions: “What is this book about?” and “Is this book for me?” Let’s start with
answering the first one.

Genres: From Social Games to MMOFPS,
with Stock Exchanges In Between
First, let’s consider the spectrum of the game genres where experiences and
techniques shared within this book may be relevant. And surprisingly, all the
multiplayer games, from social ones on one side of the spectrum to MMOFPS
on the other, have a lot in common and, as a result, this book aims to cover
all of them.⁴

⁴ Exactly as it says on the tin.

6 • INTRODUCTION

Looking at it from 30,000 feet, all MOGs use the Internet, and the Inter-
net is all about packets being exchanged (with each of the packets at risk of
being lost). Even if we consider higher-level abstractions (moving from con-
sidering IP packets, which correspond to L3 in ISO/OSI network model, to
L4), we’ll see that there are basically only two L4 protocols we can realistically
use for gaming purposes and these are UDP and TCP. Moreover, as we’ll see
in Volume IV’s chapter on Network Programming, even when using TCP for
interactive purposes, there is a need to keep in mind those underlying IP
packets and their potential loss.

Server-Side also has quite a few similarities across the genres. As we’ll see
in Volume III’s chapter on Server-Side Architecture, even web-based archi-
tectures (which are typical for social games) are not that drastically different
from “classical” simulation-oriented servers as it might seem on first glance.
And when speaking about persistence (as discussed in Volume III and in more
detail in Vol. VI’s chapter on Databases), well, all the MOGs need their DBs,⁵

 and these DBs (once again) tend to be quite similar across the board. And
I didn’t even start to mention such common-for-most-of-the-games topics
as authoritative servers, payments, random number generation, CRM (as in
Customer Relation Management), organizing your Servers within the data-
center, DDoS protection, and so on.

Of course, there will be variations between different genres. In partic-
ular, Clients are going to be rather different, though even with Clients cer-
tain concepts will apply more or less consistently; and, of course, latency
requirements will also be very different, causing quite a few complications-
necessary-for-MMOFPS to be pointless for social games. Of course, I’ll try to
pinpoint these differences wherever I can spot them; however, be sure to
Bring Your Own Salt when applying advice from this book to your specific
game (see the BYOS As in, “Bring Your Own Salt” section below). Using ad-
vice that is generally-good-but-inapplicable-to-your-specific-case is a Big Fat
Problem™ in software development in general (and, unfortunately, games are
no exception).

⁵ Or a reasonable facsimile.

ISO/OSI Model
The Open Systems
Interconnection model
(OSI model) is a conceptual
model that characterizes
and standardizes the
communication functions
of a telecommunication
or computing system
without regard to their
underlying internal structure
and technology.

—Wikipedia

What is This Book About? • 7

Stock Exchanges Are Games.
Even Worse, They’re Betting Games

Anybody who plays the stock market not as an insider
is like a man buying cows in the moonlight.

—Daniel Drew

By this point, I have hopefully managed to convince you that all multiplayer
games have a lot in common. However, you may still wonder how come stock
exchanges also qualify as games.

Games (especially those that have any association with betting something
and receiving a reward) tend to have a significant social stigma attached to
them. In other words, if you tell somebody that you’re playing poker (or bet-
ting on an outcome of sports) as a way of paying your bills, chances are you
won’t be invited to that all-important BBQ held by your neighbors (especially
those with well-respected jobs as office clerks and used-car salesmen; uni pro-
fessors are usually much more accommodating in this regard). If you tell
them that you’re getting your income from eSports you may be fine, but only
so long as they don’t realize that this means playing video games (“You’re mak-
ing your living doing what?”).

On the other hand, playing the stock exchange is traditionally viewed
differently: it is a Very Respectable Occupation™. However, let me tell you—

There is no substantial difference between
the stock exchange and games. Even worse,
there is no substantial difference between

the stock exchange and betting.

Of course, people who are playing the stock market (and especially those who
are making money from it in other ways), will tell you lots of interesting sto-
ries explaining why the stock market is so different.

Still, the sad truth is that gambling, (sports) betting, and the stock ex-
change all include the following:

 ▶ You wager some money (or the equivalent), expecting to win

Chances are you won’t be
invited anymore to that all-
important BBQ held by your
neighbors (especially those
with well-respected jobs as
receptionists and used-car
salesmen; uni professors
are usually much more

accommodating in this regard).

8 • INTRODUCTION

 ▶ There is something pretty much beyond your control happening
(ranging from the cards dealt to the company issuing a profit warning
to “Team A beats Team B” in between)

 ■ There may be some skill involved that affects the outcome,
from estimating odds in a poker hand to predicting how the
horses will run or teams will play or stocks will perform;
however, luck is still a very significant contributor to the end
result

 ▶ You either win or lose⁶ depending on that something-beyond-your-
control

After writing it down, I hope it is obvious that all of the {blackjack|poker|
betting|stock exchanges} fit firmly in this description. If you still have doubts,
you can take a look at [31 U.S. Code § 5362 – Definitions], which is as official
as it gets; we can easily see that they needed to exclude stock exchanges (as “any
activity governed by the securities laws”) explicitly(!) from the definition of “bet
or wager.”

If not for this explicit exclusion, any stock exchange would qualify as a
“bet or wager.” I rest my case.⁷

From a technical standpoint (and this is what’s important for the purpos-
es of this book),

There are very few differences between stock
exchanges and other types of games.⁸

 As I’ve worked both on a stock exchange
and a not-so-small game platform, I can

personally attest to this similarity.

⁶ Usually, lose.

⁷ BTW, I do agree that investment is different from gaming, but playing and investing are
two different things; moreover, making a living out of investment is not feasible unless
you happen to be the only heir of a really rich uncle.

⁸ Except for certain security considerations.

If not for this explicit exclusion,
any stock exchange would
qualify as a “bet or wager.”

What is This Book About? • 9

In turn, it means that a good book covering MOGs will cover most of the
technicalities that apply to stock exchanges purely as a side effect. And as I
hope this book is going to be good, well, it should also achieve it.

On Interactive Distributed Systems in General

If going beyond games and stock exchanges—given the number and scope of
the systems I’ve seen and heard of—I am prepared to be audacious and gen-
eralize my experience beyond those fields that I’ve tried myself, saying that—

Pretty much any interactive distributed
system, at least one that uses in-

memory states, is similar to a game.

In other words: if your system can live with its state being DB-only, it can be
built using usual stateless middleware; however, at the very moment when
you need an in-memory state that goes beyond the cache, you’re very much
in the realm covered by this book.

Moreover, even for some of those interactive distributed systems that are
currently storing their state within DB only, some of the techniques described
in this book (in particular, Vol. III’s chapter on Server-Side Architecture and
Vol. VI’s chapter on Databases) have been seen to perform and scale much
better than the traditional approach of throw-everything-at-DB-and-hope-it-
will-cope; as we’ll see, it is perfectly feasible to handle 100 billion real-world
OLTP transactions per year (writing ~1 trillion rows per year) from a single
pretty standard 4-Socket/4-rack-Units (4S/4U) Server box (!).

10 • INTRODUCTION

Topics: All But Gameplay/
AI/Physics/Monetization/3D
Game development and deployment is a huge task, so it is important to real-
ize what exactly we want to cover. This book is very ambitious in this regard:
by the end of Volume IX, it aims to cover all the aspects of development and
deployment for a multiplayer game, though with two (though all-important)
exceptions.

First, in this book, we won’t try to answer questions such as “What should
your game be about?” or “How should your game look?” or “What should be
your game mechanics?” or “How to make money out of your game?”; these
are all-important business questions that you need to answer yourself.

When starting development, you should know exactly how you want
your game to be played, how you want it to look, how your AI or Physics (if
applicable) will work, and how you’re going to monetize it.⁹ As a result, these
questions are completely beyond the scope of this book.¹⁰

The second all-important topic that did not really make it into this book
is 3D graphics. While there is a chapter on Graphics in Vol. V, I shall tell you
upfront that at 20,000+ words, it is still extremely sketchy and provides only
a very cursory overview of graphics (especially when it comes to 3D). Un-
fortunately, modern 3D mechanics is just way too complicated (and way too
large) to fit into this book. Fortunately, 3D is a topic that is already covered in
nauseating detail in quite a few very good books (see, for example, the list of
suggested literature in the Recommended Reading section below).

The good news is that as soon as you have answers to all the business
questions above, and have learned your graphics, this book, taken as all nine
volumes, has got you covered.¹¹ We’ll discuss pretty much everything you will
need to release your game and keep it running, from overall architecture to
deployment and post-deployment issues.

⁹ Of course, your vision will change as development goes on, but at any point you should
have a clear vision of “what you want to achieve.”

¹⁰ Note that while the business question of monetization is not covered, a technical
question of payment methods is covered to the extent possible.

¹¹ At least, I honestly hope so.

First, in this book, we won’t try
to answer questions such as
“What should your game be
about?” or “How should your
game look?” or “What should
be your game mechanics?”
or “How to make money
out of your game?”; these
are all-important business
questions that you need

to answer yourself.

What is This Book About? • 11

In other words, while I’m not about to answer the question What do you
want to do, I will try to answer How-to-do-whatever-you-want-to-do in as
much detail as I can fit into nine volumes.¹²

Game Engines: DIY vs. Re-Use vs. 3rd-Party
From our current 30,000-feet point of view, whatever you’ll be doing to devel-
op your MOG will more or less fit into one of the following patterns:

The first option (let’s name it Option DIY) is to do the whole thing your-
self, effectively making a DIY game engine. This is what I generally prefer
to deal with,¹³ but admittedly it is not always feasible. Especially if 3D is in-
volved, you’ll need to spend enormous effort on developing such an engine—
including not only the engine itself, but also a toolchain for game designers
and 3D artists—and the latter is a huge amount of work.

The second option (let’s name it Option Re-Use) is undoubtedly of much
interest for AAA development teams. It is about taking an existing millions-
lines-of-code 3D/game engine (with all the tools etc.) and building an MOG
game engine around it. That is, all the existing graphics, scripts, level editors,
etc. should remain the same, but we’ll be designing the whole network layer
ourselves, with the changes to existing engine being minimal.¹⁴

The third option (let’s name it Option 3rd-party) is traditionally attractive
for indie developers. It is about taking an existing 3rd-party game-engine-
with-network-support (such as Unity or UE) and using it to develop your
game. The technical difference from Option Re-Use is that not only is the 3D/
game-logic engine reused, but all the network layer is also a 3rd-party one.

In this book, we’ll discuss all these development scenarios. While most
of the discussion will revolve around Option DIY and Option Re-Use (both
implying that we’re doing network-related stuff ourselves), in Volume II we
will have a separate chapter, dedicated to the question of “How to use Unity

¹² As noted above; unfortunately, 3D didn’t fit.

¹³ And sometimes can even find such projects.

¹⁴ Note that in any case, there will be at least some changes. For example, questions such
as “what we should do with a player in a MMORPG when she gets disconnected” clearly
belongs to the game designer’s zone of responsibility. On the positive side, the number
of such exposures-of-network-stuff to game designers can and should be minimized.

While I’m not about to
answer the question What
do you want to do, I will
try to answer How-to-do-
whatever-you-want-to-do.

12 • INTRODUCTION

5, Unreal Engine 4, or Lumberyard for an MOG” (and yes, you still do need
to understand how the engine works with networking before committing to
using it).

That’s all that matters for now; we’ll discuss pro and contra arguments for
DIY over re-use (and more importantly, what to DIY and what to re-use) in
Vol. II.

IS THIS BOOK FOR YOU?
After describing the question of “What is this book about?” let’s proceed with
the second all-important question, “Is this book for You?”

CD not included

First, let’s briefly warn some potential readers who may be otherwise frustrated.

I have to admit that this book is not one of those “how to get rich!” books.
Moreover, it is not even one of those “how to copy-paste your game engine to
get rich!” books. The road to launching your own multiplayer online game in
a way that scales (and to getting rich in the process as a nice-to-have side
effect) is anything but easy, and it is important to realize it well before you
undertake the effort of developing your own MOG.

As a logical result of not being a book to copy-paste your game engine
from, this book does not include any CD, and neither does it include any
code for a ready-to-use MOG engine. There are, of course, occasional code
snippets here and there, but they’re intended to illustrate the points in the text
and have absolutely nothing to do with a ready-to-use game engine that you
can use as a starting point and modify later.

There are several reasons why I am not trying to make such a ready-
to-use game engine, but the main one is that trying to do so would restrict
discussion to a very limited subset of easy-to-illustrate items, which in turn
would tremendously narrow the scope of the book.¹⁵

¹⁵ Or would force me to write MOG-engine-which-covers-everything-out-there, and even I
am not that audacious.

The road to launching your
own MOG in a way that scales
(and to getting rich as a nice-

to-have side effect) is anything
but easy, and it is important
to realize it well before you

undertake the effort of
developing your own MOG.

Is This Book for You? • 13

“Nothing About Everything”

From a certain point of view, all programming books can be divided into
“books that tell everything about nothing” and “books that tell nothing about
everything.” The former are very specific, but this universally comes at a cost
of narrowing the scope to solving one very specific problem, with anything
beyond this narrowly defined problem going out the window. These books are
often useful, but often their use is limited to beginners for use as a learning
project.

The latter type of book, the kind that tells “nothing about everything,” is
trying to generalize as much as possible, at the cost of not going into imple-
mentation details at each and every corner. Usually, such books are of little
use for learn-by-example, but can help seasoned developers progress much
further by explaining not “how to do low-level things,” but rather “how to
combine those low-level things into a larger picture, and how to balance them
within that larger picture to get the desired result.” And when trying to bal-
ance things, usually the best (and maybe the only viable) way to do it is to
explain it in terms of relevant real-world experiences.

Of course, in general, the division between these book types is not that
clear, and there are some books in the gray area between these two types, but
this book belongs firmly in the “nothing about everything” camp. It correlates
well with not having a CD (as mentioned above), and with being oriented
toward intermediate developers and up (as mentioned below).

Prerequisite: Intermediate+

This book is targeted toward at-least-somewhat-experienced developers (or,
in other words, it is not a “how to develop your first program” book with IDE
screenshots and copy-paste examples). If your game project is your very first
programming project, you’re likely to have difficulty understanding this
book.¹⁶

¹⁶ Feel free to read the book in this case, but don’t complain if it turns out to be too
difficult.

The latter type of book,
the kind that tells “nothing

about everything,” is trying to
generalize as much as possible
at the cost of not going into
implementation details at

each and every corner.

If your game project is your
very first programming project,
you’re likely to have difficulty

understanding this book

14 • INTRODUCTION

I would even go so far as to say that—

The target audience for this book is from
those intermediate developers who want
to progress into senior ones, and goes all

the way up to CTOs and architects.

In particular, there will be no explanation of what event-driven programming
is about, what the difference is between optimistic locking and pessimistic
locking, why you need a source control system, and so on. Instead, there will
be discussions on how the concept of futures fits into event-driven program-
ming, when the use of optimistic locking makes sense for games, and how to
use source control in the presence of unmergeable files.

On the other hand, this book doesn’t rely on in-depth knowledge in any
specific area. To read and understand this book, you don’t need to be a net-
work guru who knows every tiny detail of RFC 791 by heart; neither do you
need to have hands-on experience with shaders and/or CUDA; even less
do I expect you to be a C++ wizard who is capable of writing an arbitrary
Turing-complete program in templates, or a DB/2 expert who can predict
how execution plan will be affected by adding “1=0” to “WHERE” clauses, or
an admin guru able to configure BGP-based DDoS protection without con-
sulting any documentation (BTW, to be honest, these things are beyond my
own capabilities too).

Of course, 3D graphics experience may be helpful for 3D MOGs, and
knowledge of network basics and sockets won’t hurt, but whenever discussing
the issues that go beyond “things that every intermediate-level developer out
there should know anyway,” I will try to provide pointers “where to read about
this specific stuff if you happen to have no idea about it.”

And last, but certainly not least —

Even if you’re an experienced developer but
have worked on neither single-player 3D

games nor on multiplayer games, it would be
unwise to start with a multiplayer 3D game.

Is This Book for You? • 15

Both 3D games and multiplayer games are overwhelming subjects even if tak-
en separately, so trying to learn them within the same development effort is
likely to be catastrophic.

That being said, I am sure that going into multiplayer 3D games is
possible both from the single-player 3D game side and from the non-3D
multiplayer side (the latter includes social games and stock exchanges).

On LAN-Based Games and Peer-to-Peer Games

Historically, lots of multiplayer game development (especially by indie ga-
medevs) was concentrated on LAN-based and peer-to-peer games.

I have to admit that I am not a fan of peer-to-peer game architectures
(not even of the variety that elects one of the peers to act as a temporary au-
thoritative server). One reason is that such architectures are inherently wide
open to cheaters, so as soon as your game is large enough to attract hundreds
of thousands of people-who-don’t-know-each-other, it is going to be hacked
(for a discussion on cheating, please see Chapter 2).

As a result, this book mostly discusses things in the context of Author-
itative Servers (and BTW, there is more or less a consensus in the industry
that these are the way to move ahead); moreover, it assumes that the Server
is controlled by your company (and not sitting at home behind NAT on an
ADSL connection). Still, quite a few of the concepts described in this book
apply to the peer-to-peer games, and even to LAN-based games. However, if
your game is LAN-based, be careful and don’t rely on everything I’m writing;
balance of factors affecting decisions is significantly different for LAN-based
games and, as a result, quite a few things can be significantly simplified when
developing for LAN.

Both 3D games and
multiplayer games are

overwhelming subjects even
if taken separately, so trying

to learn them within the
same development effort is

likely to be catastrophic.

16 • INTRODUCTION

Recommended Reading

Programming in General
 ▶ The Art of Computer Programming by Donald E. Knuth (especially

Volume 1)
 ■ Don’t try to solve all the exercises, though—that is, if you

want to get to the coding before retirement.

Game Programming (Not Really Network-Related)
 ▶ Game Programming Patterns by Robert Nystrom
 ▶ Game Engine Architecture by Jason Gregory
 ▶ Game Coding Complete by Mike McShaffry and David “Rez” Graham
 ▶ Game Programming Gems series

 ■ While the books in this series are extremely popular, a word
of caution is necessary. These books consist of various arti-
cles written by various authors, and as a result quality tends
to vary significantly. IMO, the quality of Game Programming
Gems (of those parts that I am able to judge) usually varies
from “pretty good” to “real gem”; this is much better than
most of the books out there (though IMO the quality has
degraded somewhat over time).

 ▶ Game Engine Gems series (not to be confused with Game Program-
ming Gems series above)

 ■ In the same manner as with Game Programming Gems, the
quality of articles IMO varies from “so-so” to “real gem.”

3D Programming
 ▶ 3D Game Engine Architecture: Engineering Real-Time Applications

with Wild Magic and 3D Game Engine Design: A Practical Approach
to Real-Time Computer Graphics by David H. Eberly

 ▶ Real-Time Rendering by Tomas Akenine-Möller, Eric Haines, Naty
Hoffman

 ▶ GPU Pro series

Recommended Reading • 17

Network Programming (Not Game-Related)
 ▶ Unix Network Programming, Volume 1: The Sockets Networking API

by W. Richard Stevens
 ▶ Honestly, you won’t really need anything else in this department (ex-

cept for this book, of course <wink />). Windows programming is not
that different from Unix when it comes to sockets, and MSDN will be
enough to figure out the differences if you run into them.

Game Network Programming

TBH, most of the books written about network games are very poor (and, as
noted above, this was the main motivation behind writing this one). However,
there are some books worth mentioning:

 ▶ This book, of course¹⁷

 ▶ Multiplayer Game Programming by Joshua Glazer and Sanjay Madhav
 ■ While I think that descriptions of real-world stuff in this

book are way too sketchy (all the Server-Side specifics dis-
cussed on the five pages within the Scalability section, and
three more pages within the Security section. Gimme a
break!), and I have quite a few disagreements with this book
(especially in the Security section), it is still one of the very
few books on the subject worth opening.

 ▶ Massively Multiplayer Game Development and Massively Multiplayer
Game Development 2 (edited by Thor Alexander)

 ■ Note that these two books (similar to the Game Gems series
above) are actually a series of articles written by different
authors, and quality varies greatly from one article to anoth-
er. For the Massively Multiplayer Game Development series,
the quality of the articles varies from “outright misleading”
to “real gems.” In other words: take everything from these
books with a really good pinch of salt (i.e. make sure to take
even more salt than for this book).

¹⁷ Yes, I know that being humble isn’t one of my virtues.

18 • INTRODUCTION

C++

For those new to C++
 ▶ C++ Primer (5th Edition(!¹⁸)), by Stanley Lippman
 ▶ Programming: Principles and Practice Using C++ (2nd Edition(!)), by

Bjarne Stroustrup

For those experienced with C++,
but potentially needing an upgrade to C++11/C++14

 ▶ The C++ Programming Language (4th Edition(!)), by Bjarne Stroustrup
 ▶ Effective Modern C++ by Scott Meyers

Security
 ▶ Applied Cryptography by Bruce Schneier
 ▶ Security Engineering by Ross Anderson

TBH, unless you’re dealing with a stock exchange, IMO you’ll need only one
of these two books.

HOW TO READ THIS BOOK

Conventions
This book uses more or less traditional conventions, but there are still a few
things that may require some explanation.

First, there are those pull-quotes in the margins—the ones with my face
inside a circle. These are just repetitions of the same sentences that are already
present in the text of the book, but that reflect my emotional feeling about
them. Whenever I’m telling something, I honestly believe it is true; however,
whether or not I like it is a completely different story, and I want to be able to
express my feelings about the things I’m saying (and without cluttering the
main text with long descriptions of these feelings).

¹⁸ Earlier editions don’t cover C++11

There are those pull-quotes
in the margins—the ones

with my face inside a circle.

How to Read This Book • 19

Then there are “wiki quotes.” These are intended to introduce certain
terms that are more or less well-known in some industries, but which may be
completely new for some readers. I am not able to discuss these terms in-
depth myself (the book is already over the top, page-wise), but am rather
suggesting taking a look at them elsewhere (as always, Wikipedia and Google
being the primary candidates).

Code Samples

As is expected from a development book, there will be code samples included.
Most of the samples in the code are in C++; however, this certainly does not
mean that the ideas are limited to C++. On the contrary. Most of the examples
(except for one C++-specific chapter in Vol. V) are intended to apply to pretty
much any programming language and C++ is used as the most common pro-
gramming language used for game development.¹⁹

Also, please note that the samples should be treated as just that, samples,
to illustrate the idea. Except when speaking about it explicitly, I am not trying
to teach you C++ or C++ best practices. Therefore, whenever I am facing
the dilemma of “whether to make the big idea behind it more obvious, or to
follow best practices,” I am likely to sacrifice some of the best practices in the
name of the point-at-hand being more understandable.

My Captain-Obvious Hat
With the target audience of this book being pretty broad,²⁰ I am bound to
explain things-that-are-considered-obvious by certain groups of people (but
which may still be unclear for another group). Moreover, for each and every
bit in this book, there is somebody out there who knows it. So, please don’t
complain that “most of the stuff in this book is well-known”—it certainly is
and, as noted above, the whole point of the book is to “summarize a body of
knowledge that is known in the industry, but is rarely published.”

¹⁹ And also the one I know the best.

²⁰ I admit being guilty as charged regarding an attempt to reach as many people as I can.

Wikipedia
Wikipedia is a free online
encyclopedia that aims to
allow anyone to edit articles.

—Wikipedia

20 • INTRODUCTION

As a result, please don’t hit me too hard when I’m saying things that are
obvious specifically to you. I can assure you that there are developers out
there who don’t know that specific thing (and don’t rush to name those idiots,
as they’re likely to know some other stuff that you don’t know yet²¹).

I will try to include notices whenever I know for sure that a certain section
of the book is not interesting for a certain group of people (for example, my
musings on graphics will certainly be way too obvious to 3D professionals).
Still, it is unlikely that I’ve managed to mark all such places, and I apologize for
any inconvenience caused by reading stuff-that-is-obvious-to-you.

Terminology
As for any wide-but-not-so-formalized field, MOG development has its share
of confusing terms (and, even worse, terms that have different meanings in
different sub-fields, ouch!). I am not going to argue “which terms are ‘correct’”
(it’s all in the eye of the beholder, which makes all the arguments on terminol-
ogy silly to start with). Instead (and taking into account that using the terms
without understanding their meanings is even sillier), I am going to define
how-I-am-going-to-use some such terms.

MMO vs MOG

The very first term that causes quite a bit of confusion is the definition of
“Massively Multiplayer Online Games” (a.k.a. MMOGs and MMOs).

The point of confusion lies with those games that have tons of players, but
don’t have all of them within one single game world. As the games with the
most players online (think CS or LoL) tend to fall in this category, it is quite
an important one. In this regard, one school of logic says, “Hey, it is multi-
player, it is online, and it has a massive number of players, so it is an MMO.”
Another school of thought (the one that happens to take over Wikipedia’s

²¹ And if you already know everything under the sun, you probably should have written
your own book on MOGs and spared me the effort.

I will try to include notices
(like this one) whenever I

know for sure that a certain
section of the book is not

interesting for a certain group
of people (for example, my
musings on graphics will

certainly be way too obvious
to 3D professionals).

How to Read This Book • 21

article on MMOGs²²) says that to qualify as an MMOG, it is necessary to run
the whole thing within one single instance of the Game World.

As promised, I won’t go into detail on terminology, just noting that to
avoid any potential for confusion, I will try to avoid using the term “MMO”
(except for the much better defined MMORPG and maybe MMOFPS). Which
means that—

What we’ ll be discussing in this book is
named Multiplayer Online Games, even when

they have massive numbers of players.

In fact, most of the time I’ll assume that we’re speaking about the game able to
handle hundreds of thousands of simultaneous players; this is the only thing
that really matters (and whether to name it MMOG or just MOG is not of that
much interest).

Server

In MOG world, the term “Server” is badly overloaded, and can be used to
denote several different things.

One such meaning is “server,” as in “physical server box”; another is a
“place where players can connect” (for example, “West-Europe Server”).
However, in spite of the name, the latter is actually almost universally imple-
mented as a bunch of physical Servers (usually residing within one Datacen-
ter). To make things even more confusing, people often use the term “servers”
for different instances of your Game World (which in turn can be pretty much
anything: from an instance of a battle arena where the play occurs, to the
whole instance of a complicated MMORPGs Game World).

To avoid unnecessary confusion, for the purpose of this book, let’s name
the physical server box a Server, and a bunch of physical servers residing
within a single datacenter a Datacenter. As for “game world instances,” we’ll
name each of the logically separated entities running on the physical server

²² Note that as of the beginning of 2017, the Wikipedia article on MMOGs violates quite a
few fundamental Wikipedia policies.

Most of the time I’ll assume
that we’re speaking about
the game able to handle
hundreds of thousands of
simultaneous players; this

is the only thing that really
matters (and whether to

name it MMOG or just MOG
is not of that much interest).

22 • INTRODUCTION

box a Game Server; when speaking about more specific types of Game Server,
we’ll say Game World Server or Matchmaking Server, or Cashier Server, etc.
Once again, it is not because “these definitions are ‘right’” in any way—it is
just a convention I prefer to use.

Dedicated Server

Another ongoing source of confusion with regard to MOGs is the definition of
the “dedicated server.” In the hosting industry, there is a very well-established
understanding that it is a “server box where you have root/Administrator ac-
cess”; usually such “dedicated servers” are available for rent, and the term is
used to differentiate “dedicated servers” (physical boxes) from “virtual servers”
(which is just a part of the physical box, and, in some cases, such as within the
cloud, can also migrate with time from one physical box to another).

On the other hand, for MOG development, there is a very different com-
mon understanding of the term “dedicated server,” which roughly means
something along the lines of “instance of the game that doesn’t have graphics
directly attached to it” (this definition is most popular among indie gamedevs
and is coming from Client-Centric Development Flow, which we’ll discuss in
Chapter 1).

For the purpose of this book, I’ll try to avoid using the term “dedicated
server” at all to avoid confusion; however, if there is an occasional slip of the
tongue (or whenever I am speaking about renting Servers from ISPs), I mean
the first definition (i.e. a “physical server box, usually rented from hosting ISP”).

BYOS (As in, “Bring Your Own Salt”)
One last thing I would like to mention before we proceed to more practical
matters. There is not one single sentence in this book (or any other book for
that matter) that is to be taken as an “absolute truth.” In the practical world
(especially in game development), for each and every “Do THIS_THING
this_way” statement, there exists a counterexample illustrating that some-
times THIS_THING can (or even should) be done in a different (and often
directly opposing) manner.

In the practical world
(especially in game

development), for each
and every “Do THIS_THING
this_way” statement, there
exists a counterexample…

How to Read This Book • 23

All advice out there has its own applicability limits, and so does any ad-
vice within this book. When I know of certain game-related scenarios where
these limits are likely to be exceeded (and the advice will become inapplica-
ble), I will try to mention it. However, it is extremely difficult to predict all the
usage scenarios in a huge industry such as game development, so you should
be prepared that some of the advice in this book (or any other book for that
matter) is inapplicable to your game without warning.

Therefore, take everything you read (here or elsewhere) with a good
pinch of salt. And as salt is not included with the book, you’ll need to bring
your own. In more practical terms—

For each and every decision you make based on
advice in this book, ask yourself:

Does This Advice Really Apply to My Specific Case?

24 • INTRODUCTION

Bibliography
2006. 31 U.S. Code § 5362 - Definitions.

https://www.law.cornell.edu/uscode/text/31/5362.
Hare, ‘No Bugs’. 2015. How many mistakes can fit into 100 lines of book

tutorial code. http://ithare.com/how-many-mistakes-can-fit-into-
100-lines-of-book-tutorial-code-part-1/.

CHAPTER 1.

GAME-DESIGN
DOCUMENT FROM
AN MOG PERSPECTIVE

So, you have a Great Idea for your Next Big Thing™ multiplayer online
game, and know every detail about its upcoming gameplay, physics, and
graphics. Now the only tiny thing you need to do is program it.

26 • CHAPTER 1: Game-Design Document from an MOG Perspective

Unfortunately for you (and fortunately for me as an architect and the au-
thor of this book <wink />), development and subsequent deployment for a
multiplayer game is not that simple. There are many details you need to take
into account to have your game released, to be able to cope with millions of
simultaneous players having very different last-mile connections, and to make
the game work with 0.01% unplanned downtime while being able to add new
game features twice a month.

YOUR GAME AS YOUR BABY
You don’t “make” a violin. It is barrels and benches which are “made.”

And violins—just like bread, grapes, and children—are born and raised.
—Nicola Amati character from Visit to Minotaur

A game being developed is pretty much like your baby. It will go through all
the stages that are typical of development, from conception to infancy and
then to toddlerhood. While development of your game certainly doesn’t stop
at that point, in this book we won’t discuss how to raise your game beyond
toddlerhood; child and teen issues (both with games and real children) are
too often of a psychological nature and are beyond the mostly physical issues
we’re about to discuss.

“You,” as used throughout this book, actually means “parent of your game
baby.” “You” can be anything from a 300-developer team on one side of the
spectrum to a single developer on the other. What is important for us now is
not the size of the team, but how the team feels about the project.

If you (as a future parent) don’t feel that your future game is your baby,
think twice before conceiving it. Doing such challenging development with
only money in mind might not be the best decision in your life. If you’re
starting to develop only for money without any feelings for the project, then
there are two possible outcomes. In the first case, you will gradually become
attached to the project and eventually will get those all-important positive
feelings about its development, greatly increasing the chance of success. In
the second case, you keep doing it for money; ironically enough, with such

Crash Course for First-Time Game Developers • 27

a purely money-oriented approach, the chance of making a great game (and
making money from it) becomes infinitesimally small.

TL;DR:

Don’t start development unless your team is
passionate about your upcoming game.

3500-WORD CRASH COURSE FOR
FIRST-TIME GAME DEVELOPERS
As I’ve mentioned, we’re working under the assumption that you already have
a Great Game Idea™ (with as complete an understanding of planned user ex-
perience, physics, and AI as is possible at this time), you’re really passionate
about it, and you are eager to start development.

What should your first step be? Start coding? Nope. Choose the program-
ming language? By the tiniest of margins closer, still very much a no. Your first
step should be to understand what exactly you’re going to achieve.

For any game, there are quite a few things that are dictated by your future
players (and other project stakeholders), and are commonly written down as
a Game Design Document (GDD).

On the GDD
In the game-development industry, it is common to have a GDD that de-
scribes (from an extremely high level) “how the game should work,” and
includes characters, gameplay, etc. And not only it is common to have a GDD,
but there are also very good reasons to have one. A GDD provides an under-
standing of what you’re going to achieve, and is essentially a prerequisite for
successful development. Sure, smaller teams can get away without a formal
GDD (effectively keeping it in mind), but even for these, spending half a day
to write it down and discuss tends to help a lot.

This section is not intended for
experienced game developers,

especially for those coming
from AAA gamedev companies.

Please skip to the Three All-
Important GDD Rules section.

28 • CHAPTER 1: Game-Design Document from an MOG Perspective

For those developers coming from other fields, a GDD is pretty much like
your typical “Business Requirements” document, as it applies to a game.

Now, let’s discuss a few all-important properties of the GDD. For the time
being, we’ll discuss common properties of a GDD that apply to both single
and multiplayer games; we’ll discuss the differences of a multiplayer-oriented
GDD starting from the Limited-Lifespan vs. Undefined-Lifespan Games sec-
tion below.

Subject to Change, Seven Days a Week

It is to be understood that a GDD tends to change very often, and is certainly
not carved in stone. This is to be expected for most software projects, and
applies in spades to game development. Therefore:

Expect your GDD to change, and leave
lots of room for these changes.

Even if you’re told that a certain thing will “never ever” change, keep in mind
that “never ever” will probably come much sooner than you expect. This is
not to say that you should write an “absolutely universal” system able to deal
with any change (see about the dangers of being overly generic below); this is
to suggest that you not be too upset when you’re forced to rewrite 50% of the
system when a thing-that-you-were-told-will-never-change does change
overnight. Oh, and do keep records of these assurances, so when the GDD
changes, you can explain why such a simple thing (from the point of view of
the stakeholder) requires rewriting half the system.

Sure, it is the very same profound truth that the whole agile movement is
speaking about since time immemorial,²³ but let’s keep in mind that some of
the profound truths (this one included) happen to occasionally be applicable
in the real world.

²³ More precisely, since 2001

Even if you’re told that a
certain thing will “never ever”

change, keep in mind that
“never ever” can come much

sooner than you expect.

Crash Course for First-Time Game Developers • 29

Being Agile and Writing It Down
One important thing to understand is that a GDD being agile doesn’t imply
that you don’t need to write it down. While each of the GDD requirements
may change later, at every point it should be clear (and agreed by both stake-
holders and developers) what you’re trying to achieve right now. When (not
if!) the GDD changes—fine, you will update it.

I usually suggest that you treat your GDD as one of the documents under
your source-control system. In any case, the GDD tends to have effects similar
to those of an extremely high-level header file in C/C++: as with changing a
high-level header file, changing a GDD can be very expensive, but in a major-
ity of cases doesn’t mean rewriting everything out there, especially if you have
prepared for at least some of the changes.

The Overly Generic Fallacy
Sculpting is easy. You just chip away the stone that doesn’t look like David.

—(Mis)Attributed to Michelangelo

When speaking about agility and taking the “be ready for changing require-
ments” adage to the extreme, there is often a temptation to write a system-
that-is-able-to-handle-everything and which therefore will never change
(and handling “everything” will be achieved by some kind of configuration or
script or...).

As a programmer, I perfectly understand the inclination to “write Good
Code™ once so we won’t need to change it later.” Unfortunately, it doesn’t work
this way in the real world. The issues with this overly generic approach start
with the time it takes to implement, but the real problems come later, when
your overly generic framework is ready. When your overly generic code is
finally completed, it turns out that either (a) “everything” as it was imple-
mented by this system is too narrow for practical purposes (i.e., it cannot
be really used, and often needs to be started from scratch), or that (b) the
configuration file/script are at best barely usable (insufficient, overcompli-
cated, cumbersome, etc.). In an extreme case of overly generic software, its
configuration file/script is a fully fledged programming language in itself, so

When speaking about agility
and taking the “be ready

for changing requirements”
adage to the extreme, there
is often a temptation to write

a system-that-is-able-to-
handle-everything and which
therefore will never change.

30 • CHAPTER 1: Game-Design Document from an MOG Perspective

after doing all that work on the overly generic system, we need to learn how
to program using this (strange and usually not exactly convenient) program-
ming language, and then to program our game using it—which means that
after spending all the time on the overly generic system, we’re essentially back
to square one.²⁴

In fact, systems-that-can-handle-everything already exist and there is
nothing bad about them. Actually, any Turing-complete programming lan-
guage²⁵ can indeed handle absolutely everything; in a sense, Turing-complete
programming language represents absolute freedom. However, as writing a
Turing-complete programming language is normally not in the game-devel-
opment scope, our role as game programmers should be somewhat different
from just copying compiler executable from one place to another and saying
that our job is done.

What we as programmers are essentially doing is restricting the abso-
lute freedom provided by our original Turing-complete language (just like a
sculptor restricts the absolute freedom provided to him by the original slab
of stone), and saying that “our system will be able to do this, at the cost of
not being able to do that.” Just as the art of sculpting is all about knowing
when to stop chipping away at the stone, the art of the software design is all
about feeling when to stop taking away the freedom inherent to programming
languages.

Coming back to Earth from the philosophical clouds—

When developing a game (or any other project),
it is very important to strike The Right Balance™
between being overly generic and overly specific.

²⁴ BTW, creating a domain-specific programming language optimized for a game may
make perfect sense; the point here is not aimed against developing scripting languages
where they make sense and provide additional value specific to the game domain, but
against being overly generic just for the sake of writing-it-once-and-forgetting-about-it.

²⁵ And I don’t know of any practical programming language that is not Turing-complete.

Turing-
complete
A programming language is
said to be Turing complete or
computationally universal if it
can be used to simulate any
single-taped Turing machine.

—Wikipedia

Crash Course for First-Time Game Developers • 31

On Project Stakeholders
Each and every software development project out there has project stake-
holders. In general, a stakeholder can be an investor, a manager, and/or a
customer.²⁶

For games, it is often translated into producers²⁷, marketing and monetiz-
ing folks, CSRs (a.k.a. “support people”), and, of course, players. For games,
players are an extremely important type of stakeholder.

One thing that is very important for the game to be successful, is to—

Have your project stakeholders, including future
players, represented in your development process.

If your project stakeholders don’t participate in your development process,
chances are that your game will fail in one way or another. And for games,
project stakeholders must include future players of your game.

How to represent future players within your team is a bit of a different
question and is not that obvious. Quite often, it is done by a “focus group,” but
this is not that universal and is even controversial. Actually, the question of
“whether to use focus groups” is up to you—

What is not up to you, however, is having
somebody represent future players.

Depending on the development environment, it may be a producer who rep-
resents the players’ point of view, or it may be a game designer, but as a rule
of thumb, the further this person is from knowing “how the bytes are moved
around to make things work,” the better; otherwise, there is the risk of her
becoming a victim of “not seeing the forest for the trees” syndrome.

²⁶ For game development, the term “project stakeholders” is not really common, but
relevant people and dependencies still exist, so I will use the term in the sense that it
is common for general software development.

²⁷ I don’t want to engage in a discussion of whether a producer qualifies as a “project
stakeholder” or a “product owner”; this is not important at this point.

CSR
Customer service
representatives (CSRs) …
interact with customers to
provide answers to inquiries
involving a company’s
product or services.

—Wikipedia

32 • CHAPTER 1: Game-Design Document from an MOG Perspective

Unfortunately, when we (as programmers) are writing code (and, to a
lesser extent, when game designers are designing levels, etc.), it affects our
judgment about the game a lot; in other words, we know too much about the
game internals (and on efforts we need to spend to develop this or that partic-
ular feature) to represent the opinion of “an average player out there.” While
our suggestions (based on this knowledge) can be very valuable, the decisions
about gameplay should generally be made by those future players who are not
programmers.

On Focus Testing and Playtesting

During game development, there may be two different stages at which players
can possibly participate in testing.

At earlier stages, it is known as “focus testing” (disclaimer: Your Ter-
minology Mileage May Vary). The key here is that “focus testing” is usually
performed before there is something tangible to show the players [Pfister]. In
the gamedev world, quite a few prominent developers have said very harsh
things about it, such as “screw focus groups” [Brightman] and “focus groups
have become an f-word” [Donovan].

At later stages, when there is something that can be played, it is known
as “play testing.” To confuse things further, there can also easily be “focus
groups” during “play testing.”

I am not going into a lengthy discussion about this rather controversial
subject, but will instead mention a few (hopefully rather obvious) points:

 ▶ First, it is quite clear that you should not use your “focus group” to try
and figure out “what the Big Idea is behind your game” (this decision
should be yours and yours alone, otherwise you are in a Really Big
Trouble™).

 ▶ On the other hand, ironing out relatively minor details (and these
may include such things as 3D models and graphics, though you
should make an effort to put them into context) is often beneficial.
This may open the door for “focus testing” as defined above, though I
won’t say that you’re necessarily wrong if you’re not doing it.

You should not use your
“focus group” to try and
figure out “what the Big

Idea is behind your game.”

Crash Course for First-Time Game Developers • 33

 ▶ Whether you’re doing “focus testing” or not, you would be really crazy
not to perform “play testing” (this may include “alpha,” “closed beta,”
“open beta,” and whatever-other-letter-of-Greek-alphabet-you-prefer).

 ■ This “play testing” may or may not include “focus groups”;
TBH, I am not a big fan of “focus groups” in a traditional
sense, where players may interact with one another (as this
kind of interaction may easily lead to suppressing opinions
from all-but-the-most-vocal-members-of-the-group), but,
well, I am pretty sure that it is possible to have a use for the
traditional focus group.

 ■ Overall, how to do your “playtesting” depends on many fac-
tors; the most important thing, however, is to start it very
early in the process and adjust it whenever it doesn’t work.

On Marketing and Monetization: Critical Mass

On the other hand, having only future players as project stakeholders is not
sufficient. For your game to survive, you will most likely need some kind of
monetization. And those people who’re responsible for monetization are also
very important project stakeholders and must be involved in game develop-
ment. Otherwise, you can end up with a game that everybody loves, but—
as you didn’t take monetization into account—you just don’t have enough
money to run your servers and pay developer salaries.

Moreover, without help from your marketing and monetization team,
you may be missing an all-important item in the whole MOG puzzle. I am
speaking about the answer to the “how to achieve ‘critical mass’” question.
In short, in a classic catch-22 scenario, until your game has X players, it will
lose players because there aren’t enough other players to play with; this often
makes a “critical mass” problem a life-and-death one for indie MOG teams.
“Critical mass” depends heavily on the game type (and even more on your
matchmaking algorithm), but as an extremely rough rule of thumb, you need
to have at least a few hundred players at all times of day to stand a chance.

For your game to survive,
most likely you will need

some kind of monetization.

34 • CHAPTER 1: Game-Design Document from an MOG Perspective

In any case, within the scope of this book, we won’t concentrate on mar-
keting or monetization as such. However, as we’ll see below in the Technical
Issues Affecting Marketing section, there are quite a few mostly technical de-
cisions that will significantly affect your monetization and marketing efforts.
See the section below for further discussion.

On Stakeholder Availability

One thing to keep in mind about stakeholders is that it is not a one-way street
of: “stakeholders have said; developers are doing it.” Ideally, you should have
a culture of “if developers are in doubt, they should ask project stakehold-
ers”; from my experience, it is such teams that tend to produce Really Great
Games™ (YMMV; batteries not included).

However, for this to work, we do need to have a stakeholder available
during all stages of the game-development process. In other words, if we (as
developers) have any doubt about any issue related to the GDD, we should
have somebody on hand to ask for their authoritative opinion.

TL;DR on Project Stakeholders

To summarize our discussion of project stakeholders and their role in game
development:

 ▶ Participation of both future players and other stakeholders (such as
the marketing and monetization team) in developing the GDD is ab-
solutely necessary.

 ■ The same stands for amending the GDD as the project goes
ahead.

 ▶ No stakeholders—no GDD—no development. It is that simple. Doing
it any other way is extremely risky, at the very least.

Participation of both future
players and other stakeholders

(such as the marketing
and monetization team)
in developing the GDD is

absolutely necessary.

Crash Course for First-Time Game Developers • 35

On a Typical Non-MOG Team Structure
For a typical non-multiplayer game, the following teams usually participate
in game development (listed more or less according to their order in the food
chain):

 ▶ Business and Monetization

 ▶ Producer(s)

 ▶ Game Designers

 ▶ Artists (all kinds)

 ▶ Programmers (also known as Engineers)

 ■ This certainly includes runtime programmers

 ■ In addition, for 3D games (and other games with heavy tool-
chains), there are also tools programmers

I don’t want to elaborate further on these teams; Google and other books
referenced within the Introduction will provide additional information,
if desired. Let’s just note that the size of each of these teams can vary from
half-a-person (i.e., a person working simultaneously on several teams) to a
hundred-people. In other words, another way to see it (especially in small
development environments) is to consider these as not teams, but roles.

What is important, though, is that for an MOG team there will be addi-
tional four(!) teams or roles discussed below in the On MOG-Specific Teams
section.

Time-to-Market, MVP, and Planning
When developing a game (or any other software), it is important to deliver
it while it still makes sense, market-wise. If you take too long to develop, the
whole subject can disappear or at least become much less popular, or your
graphics can become outdated.²⁸ For example, if you started developing a
game about dinosaurs during the dinosaur craze of the 1990s but finished it

²⁸ Not to mention that you can simply run out of money for the project.

36 • CHAPTER 1: Game-Design Document from an MOG Perspective

only in 2015, chances are that your target audience has shrunk significantly
(to put it very mildly).

That’s why (unfortunately for us developers) we will be universally pushed
to deliver our game ASAP (with a common target date being “yesterday”)—
there is no way around it. If leaving this without proper attention, it will inevi-
tably lead to a horrible rush at the end that results in dropping essential features
(while a lot of time was already spent on non-essential ones) and skipping most
of the testing. As a result, it will very likely lead to a low-quality game.

Dealing with Time-to-Market

Dealing with this time-to-market problem is not easy, but is possible. To avoid
a rush at the end, there are two things that need to be done.

The first is defining a so-called Minimum Viable Product (a.k.a. MVP).
You need to define what exactly you need to be in your first release. The com-
mon way to do it is to do roughly the same thing you do when packing for
a camping trip. Start with things-that-you-may-want-to-have and that will
make your first list. Then, go through it and throw away everything except the
things that are absolutely necessary. Note that you may face resistance from
stakeholders in this regard; in this case, be firm: setting priorities (in particu-
lar, answering questions such as “do you folks want feature set A on date A, or
feature set B on date B?”) is vital for the health of the project.

On the other hand, having an MVP does not mean having a half-baked
product (see, for example, [Joseph Kim]); this is where the art of game design
really lies—how to design a game that is delivered “soon enough” but is also fun.

The second endeavor you need to undertake to avoid that rush-which-
destroys-everything is as obvious as it is universally hated by programmers. It
is planning. You do need to have a schedule (with appropriate time reserves),
and milestones, and you more or less need keep to the schedule. As Kim’s Law
from [Joseph Kim] states:

Develop a Minimally Viable Product
with Maximum Viable Planning

We will be universally pushed
to deliver our game ASAP

(with a common target date
being “yesterday”)—there

is no way around it.

Crash Course for First-Time Game Developers • 37

On the Importance of Holding Your Horses
When you’re developing your first game, it is often tempting to say “hey, we
will be using such-and-such a game engine, so all we need is to implement
our game around this engine.” Or (especially if you’re coming from web de-
velopment) to say pretty much the same thing, but instead about building
the game around the database. Or building your game around some protocol
(TCP or UDP).

However, at this stage of the development process, it is extremely import-
ant to realize that you still don’t really have sufficient information to make
architectural decisions. All these engines, databases, and protocols are noth-
ing more than implementation details, and we’re not at the implementing
stage yet (and by far, too).

While your multiplayer game is likely to have some kind of graphics
engine, and very likely to have some DB to provide persistence, and will
certainly need to run on top of some IP-based protocol, it is way too early to
make any of them a center of your game universe. In particular, even the
decision of whether your game should be game-engine-centric, or 3D-
engine-centric, or DB-centric, or protocol-centric, requires an understand-
ing of game mechanics.

Making these decisions (and actually any architectural decisions) before
you have your GDD and Entities-and-Interactions diagram²⁹, can severely
restrict your choices, and if you have made a mistake with such a decision
(and when you’re deciding without having sufficient information, mistakes
are more than likely), it may easily lead to grossly inefficient and even com-
pletely unworkable implementations.

For example, if you decide that “our system should be DB-centric, with
100% of the state being written to DB at all times,” and your system hap-
pens to be a blackjack site, your implementation will cause about 10x more
DB load than an alternative one; plus, you will get a bunch of issues with
implementing a rollback in case your site crashes (which causes many games
to be interrupted in the middle and, with a multiplayer site, you do need some
kind of rollback). Usually, the optimal implementation for many of the casino

²⁹ Described later in this chapter.

While your game is likely to
have a 3D engine, and very
likely to have some DB to

provide persistence, and will
certainly need to run on top
of some IP-based protocol,
it is way too early to make

any of them the center
of your game universe.

38 • CHAPTER 1: Game-Design Document from an MOG Perspective

multiplayer games is with state of the table being stored in-memory only (and
synchronized with DB only when a single game is completed), but this won’t
become obvious until you draw your Entities-and-Interactions diagram.

As another example, if you decide that “our system should be game-en-
gine-centric,” and your game engine of choice doesn’t support so-called “In-
terest Management” (which will be discussed in Chapter 3), you may end up
with a system that works reasonably well for small virtual worlds, but that is
completely unscalable to larger ones due to O(N2) traffic, which pretty much
inevitably arises from the everybody-interacts-with-everybody assumption.

TL;DR On a Crash Course for
First-Time Developers
Phew, it seems that we’re done with the crash course for those of us who didn’t
participate in larger game developer projects. Let’s summarize our findings:

 ▶ A GDD is an absolute must.

 ▶ Stakeholders participating in the game-development process is also
a must.

 ■ Stakeholders must include both somebody-representing-
future-players and monetization and marketing teams

• Developers (even heavily playing developers), while
being stakeholders, are not sufficient to represent
players. In other words, you should have non-devel-
oping players as stakeholders.

 ▶ Minimum Viable Product and Maximum Viable Planning are Good
Things™.

 ▶ Before a GDD is written and an Entities-and-Interactions diagram
is completed, it is way too early to decide on implementation details,
including, but not limited to:

 ■ Game engines
 ■ Databases
 ■ Protocols

A GDD is an absolute must.

Three All-Important GDD Rules • 39

THREE ALL-IMPORTANT GDD RULES
There are three extremely important (and unfortunately, way too often over-
looked) rules when it comes to a GDD. While they’re about different facets of
pretty much the same thing, I still prefer to state them separately. The first is:

The GDD should be written by Project
Stakeholders (and not by Programmers)

As programmers, we should by all means be involved in the development of
our GDD, and raise hell when something is not doable (preferably in a form
more polite than “are you guys crazy or what?”), but we should be ready to
accept decisions of stakeholders when they insist (that is, as long as they’re
staying away from implementation details; see below).

After spending quite a few years programming, I know that this is a tough
one, but on the other hand, I am the first to admit that I can get carried away
with something that is very nice to implement, but which won’t make much
difference for the player. BTW, the opposite tendency, avoiding features that
are difficult to implement, tends to be equally devastating to the quality of the
end product. Either way, however, illustrates the main problem with GDDs
being written by programmers: we as programmers are usually too closely
involved with implementation details, which makes it too difficult for us to
see the Big Picture. In a sense, it is a classical “can’t see the forest for the trees”
problem and, as with any other psychological problem, it is extremely difficult
to find a workaround.

Rule #2 which needs to be kept in mind when writing our GDD is:

The GDD is not about “HOW we do it?”,
but is only about “WHAT do we do?”

As a task definition written by stakeholders (and not programmers), the GDD
is not supposed to get us into a lengthy discussion on implementation details.
Of course, things that are outright impossible to implement should be filtered
out and, of course, it is perfectly okay for a programmer to say during a GDD

I can get carried away with
something that is very
nice to implement, but

which won’t make much
difference for the player.

40 • CHAPTER 1: Game-Design Document from an MOG Perspective

discussion that “hey, implementing this feature will take us an extra three
months” (which in turn requires an understanding, but not an explanation,
of “how to do it”). However, these two types of feedback³⁰ are the only types
of feedback related to implementation details that should be allowed into a
GDD discussion (and note that they’re also very much along the lines of Rule
#3 below).

As a way to make the second rule more specific (which in turn allows us
to enforce it), I’ve found that the following Rule #3³¹ tends to work very well:

The GDD MUST be written exclusively in
players’ terms; the rest is implementation

details that do not belong in the GDD.

For example, players do care about the platforms where they will be able to
run your game, so “which platforms are to be supported?” is certainly a part
of your GDD; but, on the other hand, players don’t care about the program-
ming language you will be using (as long as it can run on all those platforms).
As another example, players do care about response times and may care about
how-your-app-works-over-firewalls, but they don’t care if you achieve those
response times and working-over-firewalls via TCP or via UDP, as long as the
whole thing does work.

On Separating GDD and
Implementation Details
Why are Rules #2 and #3 so important? Because writing GDD requirements
in terms of implementation rather than in player terms may severely hurt
your ability to choose an optimal way to implement your game.

For example, if you write down a bad GDD requirement: “We must write
our app in Java” (instead of the good one: “Our app must run on Windows,
iPhone, and Android”), you won’t even start to think about writing your app

³⁰ Actually, we can consider it one type of feedback, as “outright impossible to
implement” can be re-formulated into “it will take us 100 years to implement.”

³¹ Which, BTW, is a close cousin of “ubiquitous language” from [Elbaum and Scott].

If you write down a bad GDD
requirement: “We must write
our app in Java” (instead of
a good one: “Our app must

run on Windows, iPhone, and
Android”), you won’t even

start to think about writing
your app in C++ and porting

it to Android using NDK.

Three All-Important GDD Rules • 41

in C++ and porting it to Android using NDK (with a rather minimal Java UI),
and you’ll miss an opportunity to consider emscripten (more on it in Vol.II’s
chapter on Client-Side Architecture). While there is no guarantee that these
options are better, throwing them out of the window without proper consid-
eration is rarely a wise decision.

As another example, if you write a bad GDD requirement: “We must use
UDP” (instead of a good one: “In 99.99% of cases, we need an average delay
of at most 200ms between the user pressing a button and it showing up for
the other users”), you won’t even start to learn about the ways to improve
TCP interactivity (which will be described in Vol. IV’s chapter on Network
Programming), and may miss an opportunity to make your app more fire-
wall-friendly and to simplify your development by using TCP. Or, the oth-
er way around, you may write a bad GDD requirement “We must use TCP”
(instead of a good one: “We must have TLS-class security”), and may miss
an opportunity to make your app more responsive via implementing it over
UDP (using DTLS and/or TLS-over-reliable-UDP for security purposes, as it
will be described in Vol. IV).³²

In short, we can say that writing a GDD in player terms allows you to
keep your options open—and keeping your options open is in general a Good
Thing™.

Dealing with “Difficult” Stakeholders
and (Jobs Forbid) Managers
The separation between the GDD and implementation details means that if
your project stakeholder (future player, marketing guy, manager, investor,
etc.) says “we need to write into our GDD that our game must be written in
Java” (or “must use TCP,” etc.), you need to explain that this is an implemen-
tation detail, and ask for a definition in terms that are obvious to the player.

³² Note that while “we need to use UDP” (or TCP for that matter) may be a valid GDD
requirement in some cases (for example, when you’re writing a communication library,
and your user is a programmer, so she knows about UDP), it doesn’t apply to games. You
may need to use UDP for your game—it is not just a GDD requirement, but a technical
decision of “how to implement these GDD requirements.”

42 • CHAPTER 1: Game-Design Document from an MOG Perspective

Moreover, if such a “difficult” stakeholder is a manager and after all the
explanations³³ is still insisting that using {Java|TCP|UDP|whatever-other-
implementation-detail} should be a part of the GDD, you really need to think
about whether you want to work on this project, as such a deep misunder-
standing of a basic concept is often a symptom of super-micromanagement
and upcoming deep conflicts with this specific manager.

LIMITED-LIFESPAN VS.
UNDEFINED-LIFESPAN GAMES
One of the GDD requirements for your upcoming MOG is very important
from a development perspective, but is not too well known (and is more or
less multiplayer-specific too), so I’ll try to explain it. This GDD requirement
intends to describe the projected lifespan of your game. As we will see further
down the road, game lifespan has significant implications on the game archi-
tecture and design.

Starting from the times of the Ancient Gamedevs (circa 1980), most
games released were sold (more or less like a book is sold). It had a naturally
limited lifespan, such a game, for one simple reason: to make more money,
the producer needed to release another game and charge for it. This is a clas-
sical (not to say necessarily outdated) game business model, and multiplayer
online games that are intended to have a limited lifespan share quite a bit with
traditional game development. In particular, limited-lifespan games are
normally built around one graphics engine. Moreover, more often than not,
such an engine is tightly coupled with the rest of the game. And for a game
that is not going to be sold two years from now, it makes sense: then, there will
be another game, and another (bigger and better) game engine.

However, as game development was evolving from Ancient Gamedev
Times toward the XXI century, game producers came up with a brilliant idea
of writing a game once and exploiting it pretty much forever (monetizing it
via either subscriptions or ongoing in-game purchases); this plays especially

³³ BTW, in some cases, a reference to [Elbaum and Scott] may help. No warranties of any
kind; batteries not included

It had a naturally limited
lifespan, such a game, for

one simple reason: to make
more money, the producer
needed to release another

game and charge for it.

Limited-Lifespan vs. Undefined-Lifespan Games • 43

well for the likes of an MOG: if your game is good enough, once you get loyal
players, you can make sure that they’re playing for years and years. As a result,
these days quite a few multiplayer games are intended to have a potentially
unlimited lifespan. The idea behind it runs along the following lines:

“Let’s try to make a game and get as much
as we can out of it, keeping it while it is

profitable and developing it along the road.”

Indeed, games such as stock markets, World of Warcraft, poker sites, or Top
Eleven Football Manager, are not designed to disappear after a predefined
time frame. Most of them are intended to exist for a long while (providing
jobs to developers and generating profits for owners), and this observation
(actually, a GDD-level requirement) makes a substantial impact on some of
the architectural choices.

Most importantly for us now, for undefined-lifespan games, there is too
much risk in relying on a third-party game engine. If your engine is not 100%
your own, a question arises: “Are you 100% sure that the engine will be around
and satisfy the demands of your players in 5-10 years?” This, in turn, has sev-
eral extremely important implications, shifting the balance toward DIY (more
on DIY in Vol. II) and/or going for an ability to switch the engines (which,
in turn, requires severely reduced coupling with the graphics engine, using
isolation layers such as Logic-to-Graphics Layer discussed in Vol. II’s chapter
on Client-Side Architecture).

There are also several other cases where being an undefined-lifespan
game affects architectural decisions; I’ll try to mention them in appropriate
places in the book.

Indeed, games such as stock
markets, poker sites, World
of Warcraft, or Top Eleven
Football Manager are not

designed to disappear after
a predefined time frame.

44 • CHAPTER 1: Game-Design Document from an MOG Perspective

CLIENT-DRIVEN VS. SERVER-DRIVEN
DEVELOPMENT WORKFLOW
With preliminaries more or less out of the way, let’s discuss one more issue
that is specific to multiplayer games; it is the difference in development work-
flows depending on the specifics of your MOG.

From my experience, for MOG development there are two quite different
development patterns; let’s name them “Server-Driven Development Work-
flow” and “Client-Driven Development Workflow.” It is not that one is better
than the other for all of the games; rather, each is optimal for a range of game
genres.

Server-Driven Workflow
Server-Driven Development Workflow usually arises when the game is (al-
most) completely defined by its rules³⁴, and no (or little) visual stuff is needed
for game designers to work. In other words, game designers live in the world
of game rules, and pretty much nothing more; in particular, level design is
either non-existent or is very rudimentary. This happens for quite a few games
out there, usually whenever 3D is not necessary (or at least not mandatory):
stock exchanges, casino-like games, social games—all of these (and quite a
few mobile-oriented games too) are often made using Server-Driven Devel-
opment Workflow.

With Server-Driven Development Workflow, toolchains are rudimentary
and Server Team is the one implementing the rules of the game, and the Cli-
ent is merely executing instructions coming from the Server-Side. In short,
Server is king.

Client-Driven Workflow
In contrast, Client-Driven Development Workflow is more typical for
3D-based simulation-related games (think MMORPG or MMOFPS), and is
much closer to the workflow that is used for classical single-player games. In

³⁴ N.B.: rules may include using randomicity.

Client-Driven vs. Server-Driven Development Workflow • 45

this case, game designers cannot just lock themselves up inside rule world,
and during design they need to see the things as they will look on the Client.
Heavy dependency of the gameplay on game levels, combined with the need
to render it in a 3D engine, is a very strong indicator of the Client-Driven
Development Workflow coming in.

With Client-Driven Development Workflow, game designers work with
visual stuff (such as level design) a lot, and toolchains are universally heavy.³⁵
Usually it leads to a situation where game designers design a Game World
without caring too much about the distributed nature of the game, but in
terms of “whenever PC comes within 30m of this point while not having level
29, he gets beaten badly” (with this point defined via clicking at the visual
map). Moreover, working in these terms is probably the only feasible option
for these game genres (otherwise game designers wouldn’t be able to do their
job at all, as there are too many things for them to care about).

Overall, for Client-Driven games, development workflow revolves around
the Client-Side, with minimal involvement of the distributed machinery (at
least as it is seen by game designers). In short, Content (and Client) are pretty
much Kings.

BTW, Client-Driven Workflow doesn’t mean that your game will have
Authoritative Clients or anything of the kind; all those Server-Side authorita-
tive objects and Client-Side proxies of those objects can³⁶ appear within your
Client-Driven game too. However, your workflow, when adding new NPCs
(or any other in-game entities), will be about creating them within some kind
of level editor, which is essentially a Client-Side tool.

Dealing with Client-Driven Workflow

When facing Client-Driven Workflow, there are two distinct options, with
game designer experience looking quite similar on the surface, but all the
other things being quite different under the hood.

³⁵ Okay, sometimes they’re very heavy.

³⁶ And as we’ll see in Chapter 2, should.

For MMORPG or MMOFPS,
game designers cannot just
lock themselves up inside
a rule-based world, and
during design they need
to see the things as they
will look on the Client.

46 • CHAPTER 1: Game-Design Document from an MOG Perspective

Option 1. “Continuous Conversion”
The first option (and this is what is often done by indie guys using 3rd-party
game engines) is to make all the development “as if ” it is a single-player game
and then to “convert” it to a multiplayer one as a separate effort (though it
must be a continuous one; more below). In other words, all the toolchains of
existing non-MOG game engines work without even knowing about the mul-
tiplayer stuff, and it is considered a job of the Server Team to “convert” the
game into a real MOG. This approach might work, though you must make
sure to start this “conversion” long before the game development is completed
(in fact, it should be done right after the game rules are more-or-less estab-
lished, and in parallel with level design). Such continuous “conversion” (and
associated testing with simulated latencies, packet loss, etc.) is absolutely nec-
essary to make sure that all the distributed problems that weren’t accounted
for by your game designers³⁷ are ironed out as soon as possible. Postponing
such “conversion” to later stages of game development means postponing
multiplayer testing, and is known to be completely suicidal.

If going this way (and for indie development, you’ll probably want to do
it), you basically have two further choices:

 ▶ Option 1a, to use game-engine-integrated support for the Server-Side

 ▶ Option 1b, to write:

 ■ An export tool to export level information from Client-Side
3D engine into your-own-format

 ■ Your own Standalone Server (using your-own-format to
obtain level information).

As for specific 3rd-party game engines (and associated network libraries) that
can be used for Client-Driven Workflow, we’ll discuss them in Vol. II’s chapter
on 3rd-party Game Engines.

³⁷ And you can be 99% sure that there will be plenty of such unaccounted-for-by-game-
designers {multiplayer|latency|packet loss} issues.

Postponing such “conversion”
to later stages of game

development means
postponing multi-player
testing, and is known to
be completely suicidal.

On Matchmaking and The Social Aspect of Your MOG • 47

Option 2. “Integrate Server into Toolchain”
The second option (the one I would suggest—that is, if you can afford it), is
to incorporate your Server-Side into your toolchain. This means that each
time a game designer launches the game to see what has changed due to her
last level change, it is in fact not only her Client that is launched, but rather a
bunch of processes:

 ▶ her Client, plus

 ▶ a full-scale Server, plus

 ▶ some simulated players, plus (ideally)

 ▶ simulated network with simulated network problems.

Of course, such an integration is much more difficult to implement than just
using “Continuous Conversion,” but on the other hand, it provides much bet-
ter feedback for the game designers. While this approach is still not sufficient
to get rid of all the network-related issues and bugs,³⁸ it does allow you to
catch some of the bugs and issues earlier (which in turn speeds up develop-
ment and improves overall quality).

ON MATCHMAKING AND THE
SOCIAL ASPECT OF YOUR MOG

N.B.: In this section—as well as across the whole book—we’ll be
using the definitions of Servers and Datacenters that were given
in Introduction. Very briefly: “Server” is a physical server box, and
“Datacenter” is a bunch of Servers sitting within the same ISP.

For a successful MOG, it is very common to have megatons of players play-
ing on tons of different Game Worlds. In this context, the question of “how

³⁸ They will still need to be found out during beta testing, ideally by relying on
deterministic behavior to reproduce situations that lead to player complaints in your
lab, as discussed in Vol. II’s Chapter on (Re)Actors and in [Aldridge].

48 • CHAPTER 1: Game-Design Document from an MOG Perspective

we assign players to different Game Worlds?” arises.³⁹ This process is usually
referred to as “matchmaking.”

Matchmaking That Doesn’t
Work (As a Rule of Thumb)
As we’ll see in Vol. III (chapter on Server-Side Architecture), implementa-
tion-wise it is often tempting to consider all your players a commodity, and
to permanently assign players to your Game Worlds prohibiting any com-
munication between players in those Game Worlds. Implementation-wise, it
corresponds to an architecture⁴⁰ with each of the Game Worlds having its
own database, absolutely separated from anything else.

However, you should be really careful with this kind of “random perma-
nent matchmaking,” as it has a lot of negative implications in the context of
socializing.

Let’s note that pretty much any kind of out-of-game integration (Face-
book and any kind of game-specific forum included) requires some kind of
interaction between players just because they want to interact (and not be-
cause your rule engine decided that these two players permanently belong to
the same Server). This leads us to the following all-important observation—

If you don’t think that interaction of
players just-because-they-happen-to-want-

it is a GDD Requirement, think again.

As an example, even a simple “Play with your Facebook friends” feature re-
quires players to “know” about one another, and to interact with one another.
This is not to mention that some players may want to play with some specific
player (either because they like the guy, or because they like beating the guy;
regardless of their motives, the end result is still pretty much the same). And

³⁹ I consciously avoid speaking about “shards” in this chapter, as I consider a “shard” an
implementation detail, and we’re not there yet. At this point, we’re speaking only about
separate “Game Worlds” as it is visible to players.

⁴⁰ And exactly because of the reasons we discuss here, this architecture tends to fail
badly when facing real-world games.

However, you should be
really careful with this kind

of “random permanent
matchmaking,” as it has a lot
of negative implications in
the context of socializing.

On Matchmaking and The Social Aspect of Your MOG • 49

there are also forums (“it would be cool to play with you, what’s your han-
dle?”), and off-line tournaments, and who-knows-what.

One of the very popular social(!) games I’ve seen relied on limited kinda-
socializing within a single Server, with players randomly (and permanently!)
assigned to each of the Servers (basically, just load-balancing them); as a re-
sult, the socializing aspect of the game (which the game was trying to push)
was experiencing problems because of such random and permanent assign-
ments; all kinds of makeshift quick-and-dirty sorta-fixes were applied—and
it still didn’t work as expected for a long while, causing all kinds of complaints
from the players.

Sure, for non-social games, socializing capabilities are traditionally con-
sidered unimportant, but from the data I’ve seen, IMO it follows that to make
the game successful, every bit that can help to improve popularity counts, and
this socializing bit is usually of significant importance. OTOH, as always (and
especially in this case), don’t take my words for granted and make sure to ask
your monetizing and marketing team whether they feel such an interaction
might be necessary from the point of view of their monetizing and marketing
strategy.

Matchmaking That Works
Now, let’s see how this requirement of allowing-people-to-play-with-those-
they-know is usually satisfied in practice.

From what I’ve seen, the following approaches seem to work reasonably
well from a socializing point of view:

 ▶ Separate Datacenters, with players able to select a Datacenter. This
is the approach MOGs are using since time immemorial (though
Datacenters are usually named “Servers,” adding to the confusion),
especially for those games that are very latency-sensitive (see the
discussion on it in Vol. III’s chapter on Server-Side Architecture).
On the other hand, while this approach works, it tends to cause split
communities, which can be a blessing or a curse depending on the
specifics of your game.

Sure, for non-social games,
socializing capabilities are
traditionally considered

unimportant, but from the data
I’ve seen, IMO it follows that

to make the game successful,
every bit that can help to
improve popularity counts.

50 • CHAPTER 1: Game-Design Document from an MOG Perspective

 ■ Note that, as discussed above, it is rarely a good idea to per-
manently assign your players to individual Servers within
a Datacenter; in other words, each Datacenter (such as a
North-America Datacenter, which is usually presented as an
“NA Server” to players) is better kept as a single entity from
the players’ point of view, with no further (and rather artifi-
cial) subdivisions such as “NA1,” “NA2”, etc.

 ■ Even in this case, it is usually quite beneficial to have play-
er accounts the same across the different Datacenters. Even
if you don’t want to allow players to transfer their respec-
tive in-game assets (such as current level, artifacts, whatever
else) between Datacenters, having players have one unified
account across all your Datacenters (or at the very least ID/
login, which is unique across the board) is a Big Help™ when
it comes to such things as fighting cheaters, credit-card fraud,
and monetization (and don’t forget about your poor CSRs,
a.k.a. support, who need to deal with this mess).

 ▶ Whether your players have selected their Datacenter, or you have one
big DB handling all of your players, there is the question of “how
Game World Instances are created.” For this, I’ve seen or heard of the
following approaches:

 ■ Game World Instances created on-demand by Matchmaking
process/Server (for example, when there are enough players
to start a tournament, match, or something). Usually such
systems are lobby-based, and allow you to express your in-
terest in playing some kind of game.

• In this case, consider allowing players to select who-
they-want-to-play-with (for example, via joining
a “party,” but implementation details may vary). It
does help to invite friends from Facebook to play.

 ▷ You may even want to allow players to have
their own “events” (with them controlling
who’s invited). However, this tends to work

Whether your players have
selected their Datacenter, or

you have one big DB handling
all of your players, there is
the question of “how Game

World Instances are created.”

On Matchmaking and The Social Aspect of Your MOG • 51

reasonably well only for really-popular-
games with really-popular-forums.

• Alternatively, you may want to have a ranking-based
matchmaking, but this usually lacks a socializing as-
pect (and once again, it may be a blessing or a curse
depending on the specifics of your game).

 ■ For MMORPGs, splitting players between different Game
World Instances is a well-known technique. One thing to
keep in mind is to know that Game World Instances can be
spread over different Servers (and even over different Data-
centers), so there is no 1-to-1 match between Game World
Instances (which are user-visible, and therefore are subject
of GDD) and Servers (which are an implementation detail).
With regard to socializing, I’ve seen two quite different ap-
proaches when assigning players to different MMORPG
Game World Instances:

• Completely random, without any affinity between
players and Game World Instances.

• With “probabilistic” distribution of players to dif-
ferent Game World Instances, with “probabilities”
taking into account affiliations between players.
One example of such a system is Guild Wars II
megaservers; while introducing megaservers into
Guild Wars II did cause significant controversy (as
absolutely-any-change-of-this-scale for an existing
game would), they seem to work pretty well from a
socializing point of view.

Let’s also note that anything else (beyond user-selected Datacenters and
user-visible Game World Instances) is of no direct interest to players, and
therefore qualifies as an implementation detail. All the intra-Datacenter par-
titioning, sharding, etc. fall under this category. And as with any other imple-
mentation detail, they should not affect your GDD (well, at least in theory).

52 • CHAPTER 1: Game-Design Document from an MOG Perspective

TL;DR of this section on Matchmaking and Socializing—

When thinking of your matchmaking
algorithms, make sure to take socializing

capabilities into account.

Sure, it might happen that your specific game will be better without socializ-
ing; however, it should be a very conscious decision to reject socializing rather
than to realize that “it just so happened” when it is too late to change things.

ON SUPPORT FOR SMALLER
GROUPS OF PLAYERS
One very important (and IMO way-too-often-ignored) GDD-related ques-
tion is related to providing support for relatively minor groups of players. This
includes questions such as “Our game is Windows-based, should we spend
time to support players with Windows 7?” and “Should we support players
with a merely DirectX 10 GPU?” or “Should we support those players who
don’t have UDP access to the Internet?”

Usually, game developers prefer not to bother with such support (con-
centrating on supporting just the “latest greatest” hardware and software);
however, the answer to this question is not that obvious, and its discussion
SHOULD involve both the development team and the marketing team.

One all-important issue to be kept in mind when making this kind of
decision is a second question of “how competitive the market for our game
is?” In other words:

 ▶ If your game is the only kid on the block and has no competition, it
is often better not to bother with support for Windows 7 or for TCP
and to invest your efforts elsewhere.

 ▶ On the other hand, if your game enters a highly competitive field
(think “social farming games,” “casino games,” or MOBA), then the
whole picture can be very different. For example, if we have 5-10% of

On Support for Smaller Groups of Players • 53

players who don’t have UDP access, at first glance it looks like quite a
small percentage. However, if most of the well-established competi-
tors do not support UDP, then this 5-10% can become our ticket to
start growing—just because this 5-10% of players have nowhere to
play except for our game(!). For example, if speaking about the
non-competitive market, 5% of the market is just 5% of our players; on
the other hand, if we’re entering a market that has 10 competitors with
equal-with-us-strength-but-without-support-for-non-UDP-players,
the market share analysis changes drastically. In the latter case, and
with players distributed as 95% with UDP support and 5% without,
we’ll get 1/11th of UDP-supporting 95% (~=8.5%); plus, we’ll get the
entire 5% of non-UDP-supporting players. This, in turn, means that
adding TCP support to our game would increase our overall player
base not by 5%, but by (13.5/8.5-1)=59% (!).

Of course, spending time on supporting really ancient technologies (which
are both too different from the modern ones and aren’t being used, like
WinXP in 2017) is rarely worth the trouble; however, aspects of support for
less-competitive (but still at least somewhat-popular) portions of the player
population do need to be taken into account when making decisions about
supported platforms and technologies.

If most of the well-established
competitors do not support
UDP, then this 5-10% can
become our ticket to start

growing—just because all this
5-10% of players have nowhere

to play except for our game.

54 • CHAPTER 1: Game-Design Document from an MOG Perspective

TECHNICAL ISSUES AFFECTING
MARKETING AND MONETIZATION

Regardless of the specific genre of your MOG, chances are that you’re making
it for profit. Or at the very least, you need to pay for your servers. In any case,
as noted above, you’re likely to need marketing and monetization teams.

Within the scope of this book, we won’t discuss marketing questions such
as “How to make gameplay more enjoyable” or “How to get that critical mass,”
etc. Instead, we will concentrate on the technical issues that may affect your
marketing and/or monetization, so that you can take them into account (and
tell your marketing folks in advance too, so it won’t be an unpleasant surprise
for them later, huh). Off the top of my head, I can think of several technical
fields that may affect marketing efforts for your MOG:

 ▶ Support for not-so-latest-and-greatest hardware/software, as discussed
above.

Within the scope of this book,
we will concentrate on the
technical issues that may

affect your marketing and/
or monetization, so that you
can take them into account.

Technical Issues Affecting Marketing and Monetization • 55

 ▶ Matchmaking issues, as discussed above.

 ▶ “Soft” launch. “Soft” launch usually means releasing your game at
different times for different regions (and/or for different platforms).
And while it does reduce the pressure on technical teams (especially
if “soft-launching” on one platform), we need to keep in mind that
for MOGs “soft launch” often affects “critical mass” in a negative way
(especially if the competition is significant).

 ■ In turn, it does affect the question of “whether we want to get
all the platforms at once, or one at a time.”

 ▶ Minimizing steps for a potential player on the way to start playing.
In general, the smaller the steps your potential player needs to take
to start playing your game, the better (that is, if after each step your
player gets something of value; for example, can see a bit more). This,
in turn, can be aided and abetted by the following technical means:

 ■ Making your first download smaller. The shorter the time
your player needs to wait before seeing something, the bet-
ter; you can download other optional stuff such as themes,
additional characters, additional levels, etc. later on from
the game itself. As an additional (though admittedly rath-
er minor) benefit, you won’t be paying for the traffic of full
downloads of those players who throw away your game after
the first thirty seconds.

• Note that having a separate downloader (which does
nothing but starts a large 10G download) does not
qualify as “making your first download smaller” for
this purpose. To keep your player happy, it is para-
mount to show her something of value (and seeing
“Please wait… ETA—10 hours” clearly does not
qualify as such).

To keep your player happy,
it is paramount to show
her something of value

(and seeing “Please wait…
ETA—10 hours” clearly does

not qualify as such).

56 • CHAPTER 1: Game-Design Document from an MOG Perspective

 ■ Allowing loginless spectators. If your potential player can
download something quickly and can watch some of your
games in real-time (as well as observe that “see, there are lots
of people playing; it should be interesting”) without having
to go through your registration form, it tends to help increase
your player numbers (from what I’ve seen, it helps quite a
bit, though your mileage may certainly vary). And even if
your game is a competitive one, so cheating is an issue, you
can still usually show some of the low-level games (where
cheating will have much less impact), and/or show games
with a delay, and/or show just recordings of the Big Games of
Pros. Of course, it is up to your team to decide whether you
want it, but both the technical team and the marketing team
should be involved in this discussion (and the result of this
discussion should certainly belong to the GDD). Also note
that loginless spectators tend to go very well with web-based
Clients (discussed a bit below).

 ■ Allowing 3rd-party social logins (Facebook or Twitter or
Google+ or Steam or…). Filling out a registration form is
usually a rather big step for the player, and 3rd-party so-
cial login tends to simplify the process significantly (though
TBH, I don’t have stats on player acceptance for social logins
in games).

• If you’re bold enough, you may even restrict your
logins to only some kind of social login. This “so-
cial-only” login policy has two benefits:

 ▷ First, you’ll be getting all-important infor-
mation about whether the account is asso-
ciated with a real person, which provides
big advantages from an anti-cheating point
of view (more in Vol. IV’s chapter on Basic
Security and Vol. VIII’s chapters on Bot
Fighting and Other Player Abuses).

Technical Issues Affecting Marketing and Monetization • 57

 ▷ Second, implementing your own login
properly requires a lot of effort (usually
much more than integrating three of the
popular social logins, though see below on
browser-less apps). More on it in Vol. IV’s
chapter on Basic Security.

 ▷ If you’re using a downloadable Client, make
sure to double-check how you’re going to in-
tegrate it with your social-login platforms.
While there exists a generic way that works
pretty-much everywhere-where-you-can-
open-a-default-browser-window (see Vol.
II’s chapter on Client-Side Architecture for
details), it is still better to double-check that
it is working for your platforms/3rd-party
logins.

 ■ No-download web-based Client (even if it is a spectating-on-
ly one). If you can show your players what your game is
about, without requiring them to install your app, you can
often improve your conversion rates for people coming to
your site quite a bit. Such spectator-only web clients go hand
in hand with loginless spectators, mentioned above.

• Keep in mind that you indeed may want to restrict
such a web-based Client to be spectating-only (or
play unranked games only, or something else along
the same lines), at least to deal with cheaters (more
on cheating in Chapter 2 and Vol. VIII). And, while
we’re at it, when implementing such a web-based
Client, keep in mind that leaks of code from a web-
based Client into a “real” one can defeat many of your
defenses, so you might want to separate code bases
for a hackable web-based Client and a “real” one.

If you can show your players
what your game is about
without requiring them to

install your app, you can often
improve your conversion
rates for people coming
to your site quite a bit.

58 • CHAPTER 1: Game-Design Document from an MOG Perspective

 ▶ A very different thing from having a full-scale web-based Client is
forcing your players to use both your downloadable Client (for the
game itself) and a web-based interface (for “side” stuff such as stats,
purchases, etc.) on the same platform, and this is IMO generally a
Bad Thing™ for the game.

 ■ Of course, if your game has a downloadable Client, having
two separate interfaces (one primary, for game-only via game
Client, and another secondary, for “side” stuff) might look
technically appealing on the first glance (it often requires
significantly less effort to implement than doing everything
via your game Client). However, this split-interface approach
does have its drawbacks (and quite significant ones at that).
These drawbacks are both technical (mostly security-related)
and marketing and monetization ones. Among the latter are
such things as inconvenience of the switch-from-client-to-
web for the player (hey, you don’t want to make the payment
more difficult than is necessary, do you?), complicated inte-
gration between two interfaces (limiting options available to
marketing and monetization teams), and creating an unwel-
come feeling of an “unfinished product.” Overall, as a player,
I hate using both Client and web browser for the same game
(though web-based social login is usually okay).

• Note that using an in-app web-browser (the one that
looks like part of your Client) is a completely differ-
ent thing from a GDD perspective (and usually qual-
ifies as an “implementation detail” of overall Client,
but is not without its own drawbacks); what matters
for GDD is whether in-game purchases, stats, etc.
will look like a part of the Client from the player’s
perspective. For the discussion on implementing it,
see Vol. II’s chapter on Client-Side Architecture.

 ■ On the other hand, if you really feel that such an abomina-
tion will speed development up significantly, you may want

Your GDD Requirements List • 59

to raise a question whether it is okay to do it this way during
your GDD meeting (and make sure to write this “okay”
down in GDD). What you must not do, though, is start to
implement it without having an okay from your marketing
and monetization teams (I know of a few cases where they
were jumping pretty high at the very mention of this thing).

YOUR GDD REQUIREMENTS LIST
By this point (and with or without reading all the stuff above), you’ve got your
list of GDD requirements for your game. While your list is unique for your
game, there are some things that need to be present:

 ▶ A very detailed description of the user experience (including game
logic, UI, graphics, sounds, etc.). This is what is traditionally present
in traditional (non-MOG) GDDs. While it is going to take most of
your GDD, it is game-specific so we cannot really elaborate on it here.
However, there are lots of much-less-obvious (and MOG-specific)
things that need to be written down; see below.⁴¹

 ■ One thing of specific interest for our purposes: Is your game
supposed to be 3D or 2D? Note that at least in theory, dual
2D/3D interface can be implemented, especially for those
games with an “undefined” lifespan.

 ■ Another question that is extremely important for us is re-
lated to development flow. Is your development flow going
to be Client-Driven or Server-Driven (in the sense defined
above)?

 ▶ Projected lifespan of the Game (is it “release, then three DLCs over
two years, and that’s it,” or “running forever and ever, until death
do us part”?). For further discussion, see the Limited-Lifespan vs
Undefined-Lifespan Games section above.

⁴¹ Obviously, it doesn’t really matter whether you write all the MOG-related stuff into a
GDD itself, or into a separate document that accompanies the GDD; however, it is as
important as the GDD itself, and should be treated as such.

Note that at least in theory,
dual 2D/3D interface can

be implemented, especially
for those games with an

“undefined” lifespan.

60 • CHAPTER 1: Game-Design Document from an MOG Perspective

 ▶ List of platforms you would like to support for the Client-Side app.

 ■ One interesting twist is that you may want to implement a
web-based Client, even if you can provide only spectator-only
functionality over the web (see brief discussion in the Tech-
nical Issues Affecting Marketing and Monetization section
above).

 ▶ List of supported video cards (DirectX/OpenGL versions, etc.).

 ▶ List of platforms/video cards you want to support in the very first
release (for the Client, that is)

 ■ You need to keep in mind that the role of different platforms
is quite different for MOGs than for traditional games. As
mentioned above, a “soft launch” may be detrimental for
“critical mass,” and if your marketing folks think this is the
case, it may be an argument for going for “release all the plat-
forms at once” (or at least “release those platforms that are
rather technically similar at once”).

 Note that the list of platforms for the Server-Side is normally an
implementation detail, and as such doesn’t belong to the GDD (for
further discussion, see the Three All-Important GDD Rules section
above). Neither do programming languages, frameworks, etc.

 ▶ In-game timing requirements (i.e. “how long it may take for the
player to see what is going on”); note that they should include both
“how long it may take for the player to see the result of her own ac-
tions” (this is known as “Input Lag,” which will be discussed in detail
in Chapter 3), and “how long it may take for the player to see the
result of the actions of others.” With regard to such timing require-
ments, writing “As fast as possible” is not really useful, but statements
such as “our game should be at least as fast as such and such a game,”
or “it should be fast enough so nobody on our team can say it is slug-
gish” is much better (if you can get “at most X milliseconds delay
between one user pressing a button and another seeing the result,” it’s
even better, but don’t count on being able to write it down correctly
from the very beginning).

“As fast as possible” is not
really useful, but “at least as
fast as such and such game”
or “fast enough so nobody
on our team can say it is
sluggish” is much better

Your GDD Requirements List • 61

 ■ Closely related to timing requirements is the question of
your game being “synchronous” or “asynchronous.” In oth-
er words, do your players need to be simultaneously online
when they’re playing?⁴² Most of the time, fast-paced games
will be “synchronous” (it doesn’t make much sense to play
MMOFPS via e-mailing “I’m shooting at you; what are you
going to do about it?”), while really slow-paced ones (think
chess by snail mail) will be “asynchronous.”

 ▶ What types of client connection do you need to support? Do you
need to support dial-up (hopefully not)? What about playing over
3G? What about supporting play over GPRS?

 ■ What about firewalled connections? According to [Roskind],
6-9% of Internet users cannot use UDP—and, most likely, it
happens because of firewalls.

 ▶ What is your target geographical area? While “worldwide” always
sounds like a good idea, for some very fast-paced games, it might
be not an option (this will be discussed in Chapter 3 and Vol. III’s
chapter on Server-Side Architecture), and you might need to support
regional Datacenters. In addition, considerations such as “when most
of the players are available” can affect some types of gameplay (for ex-
ample, if in your game one player can challenge another, with a loser
losing by default, you will most likely need to have “time windows”
where such challenges are allowed, with the timing of these “time
windows” tied to real-world clock in the relevant time zones).

 ■ If it is “worldwide,” a closely related question is “are you al-
lowed to split your players into separate groups geo-wise
(with only players within the same geo group being able to
play with one another)?” While, say, continent-specific serv-
ers may be necessary from a technical standpoint (usually
due to latencies, see Chapter 3 for discussion), it may also

⁴² I don’t want to get into a lengthy hair-splitting discussion of whether this property
should be named “temporal” or “synchronous”; let’s simply use the name “synchronous”
for the purposes of this book.

62 • CHAPTER 1: Game-Design Document from an MOG Perspective

easily affect marketing efforts, so you do need to agree with
your marketing team whether it is allowed or not.

 ▶ Which socializing features do you want to have? Do you want an
“Invite your Facebook friends to our game” feature? Do you need a
feature such as “hey, there are five of your Facebook friends on server
XX right now; would you like to join them?” And so on and so forth.

 ■ Make sure to pressure your monetization team about this
one to make sure that you know as much as possible in ad-
vance. In particular, if they tell you “inviting Facebook
friends will be the only thing we’ll ever need,” don’t trust
them; I have never seen a game for which this is really the
only thing necessary, social-wise.

 ▶ A detailed description of your Matchmaking Algorithm: how
Game World instances are created? How they’re populated? And
don’t forget about social implications of these decisions (see the On
Matchmaking and the Social Aspect of Your MOG section above for
more discussion).

 ▶ Do you want/need to support “instant gameplay” (i.e. the player
being able to start enjoying your game without waiting for a huge
download)? While potentially possible – it is not that easy, and needs
to be planned well in advance (see Vol. II’s chapter on Client-Side
Architecture for a brief discussion of progressive downloads).

 ▶ Are you going to support spectators? In other words, will it be pos-
sible just to observe the others playing without playing yourself?
If spectators are possible (and game download is small enough), it
tends to work as quite a big incentive to start playing (“I’ve seen it,
and I like what’s going on, so why not try playing it myself?”).

 ■ As noted above in the Technical Issues Affecting Marketing
section, even if your game is highly competitive (and ob-
serving can reveal information causing cheating), there are
usually things that you can show without compromising the
integrity of your game (examples include showing low-lev-

Make sure to pressure your
monetization team about

this one to make sure
that you know as much
as possible in advance.

Your GDD Requirements List • 63

el games, showing games with delay, and recordings of
high-profile games).

 ■ If spectators are possible, will you require a login for specta-
tors? For free-downloaded games of a smaller size, I’ve seen
the ability to observe the game without the need to enter any
information, providing a significant advantage (which comes
at almost-zero cost if your infrastructure is good enough).
See also the Technical Issues Affecting Marketing section
above.

 ▶ Are you planning to have your big finals shown in real time to
thousands and hundreds-of-thousands of spectators? NB: We’ll see
why it is important from technical perspective, in Vol. III’s chapter on
Server-Side Architecture.

 ■ What about recording big finals and allowing spectators to
watch them later?

 ▶ What do you need to write into your database (so that your
Customer-Support and Marketing-and-Monetization Teams are ca-
pable of doing their job)? While writing each and every move is not
realistic (neither is it necessary), you will be surprised by how many
things Marketing will want to know, and it is better to account for it
from the very beginning.

 ▶ Do you need to implement i18n in the very first release or it can be
postponed?⁴³

 ■ For your i18n, do you need to support Asian languages?

• If yes, do you need to support Japanese kanji or
Chinese?

• What about Korean Hangul?

 ■ For your i18n, do you need to support right-to-left languages
(Hebrew or Arabic)?

⁴³ Okay, okay, in some cases you might want to ignore it completely.

i18n
Internationalization (frequently
abbreviated as i18n) is the
process of designing a software
application so that it can
potentially be adapted to
various languages and regions
without engineering changes

—Wikipedia

64 • CHAPTER 1: Game-Design Document from an MOG Perspective

 ▶ Is it acceptable to have a separate Client and web-based second-
ary interface in a separate browser window (such as “we’ll use web
browser with a separate login for in-game purchases”)? While I am
usually quite a strong opponent of the separate-browser-window sec-
ondary interfaces (both on technical and marketing grounds; see the
Technical Issues Affecting Marketing and Monetization section above),
it can still save you a bit of development time, so having it as an open
option (in case you run out of time—and this, as we all know, is ex-
actly what usually happens) might be useful.

 ▶ What about 3rd-party (social) logins? Do you need them? Is it okay
to use only 3rd-party logins? (see discussion in the Technical Issues
Affecting Marketing and Monetization section above).

 ▶ Client-update requirements. There is a requirement that is (almost)
universal for all multiplayer games: “We do need a way to update
the Client automatically, simply when the player starts the app”; still,
make sure to write it down. However, there are two more subtle ques-
tions for a Client update:

 ■ Is it acceptable to stop the Game World while the Clients are
being updated? How long is this stop-the-Game-World al-
lowed to take?

 ■ Is it acceptable to force-update Client apps (or at least not
allow playing with an out-of-date Client)?

• If not, for how long (in terms of “months back” or
“versions back”) do you need to support backward
compatibility?

 ▶ Server-update requirements. Most of the Server-Side stuff qual-
ifies as “implementation details”; however, whenever the Server is
stopped, it’s certainly visible to the players, so “how often we need to
stop the Server for software upgrades” is a perfectly valid GDD-level
question. Is it acceptable to stop the game while the Server is being
updated? How often are Server updates planned? With the game be-
ing multiplayer, stopping and then resuming the Game World may

Is it acceptable to stop
the Game World while the
Clients are being updated?

Your GDD Requirements List • 65

become quite a Pain in the Neck™ for players. However, allowing
for Server updates without stopping the game world can easily be-
come a much bigger Pain in the Neck™ when developing your system
(see Vol. IX for some hints in this direction), so you need to think
in advance about whether the effort is worth the trouble. Unless a
non-stopping Server requirement is really significant for your game
(or your monetization), you may want to try dropping it from the
GDD and explicitly state that you can stop the server once-per-N-
weeks (and also whenever an emergency Server update is required)
to update Server-Side software (where N depends on the specifics of
your game).

 ▶ Fault-tolerance requirements. This one requires a bit of explana-
tion. Most likely, your game will be running on several commodity
Servers. And commodity Servers do fail from time to time (in the
very best case, once per Server per 3-5 years or so; however, if you’re
running 100 of such Servers, the probability of one of them failing is
more like several-times-a-month). The Big Question™ we’re asking
here is the following: what is an acceptable behavior when such a
hardware (or OS) failure occurs? Is it okay for the whole game site to
go down? Or is it acceptable for those games that were running on
the failed Server to be restarted from scratch—while all other games
continue without a blink? Or you want a full-scale fault tolerance
(i.e., whatever happens, the Server goes ahead without a hitch) for
some of the critical Servers (like “The Server Running Tournament of
the Year”)? Or maybe you want such a full-scale fault tolerance for all
your Servers? All of these are possible, but making it happen requires
a lot of planning in advance. And if you have any doubt as to what-
exactly-you-want in this department, make sure to read the rather
detailed discussion of Fault Tolerance in Vol. III.

 ▶ In-game payment systems, which may need to be supported in the
long run (these have implications on security, not to mention that you
need to have a place for them within your architected system). Even if
it is “the game will be free forever and ever,” or “all the payments will

Even if it is “the game will
be free forever and ever”

or “all the payments will be
done via Apple AppStore,” it
needs to be written down.

66 • CHAPTER 1: Game-Design Document from an MOG Perspective

be done via Apple AppStore,” it needs to be written down. Oh, and if it
is “all the payments will be done via Apple App Store” and there is a
“Windows” in the list of the platforms to be supported, there is a like-
ly inconsistency in your GDD, so either drop “Windows” or think
about specific App Stores for the Windows platform, or be ready to
support payments yourself (which is doable, but is a really big Pain in
the Neck™, so it’s better to know about it well in advance).

Yes, it is a long list, but as we will see over the course of the book, we will in-
deed need all these things to architect your MOG. It means that if your list is
missing any of these, at some point you will need to go back to the drawing
board and get them out of the project stakeholders.

ON MOG-SPECIFIC TEAMS
One question that is closely related to the GDD (at least because all the teams
should be represented during GDD discussions—at least by their respective
team leads—is the issue of MOG-specific teams. That is, in addition to those
traditional teams participating in the game development (see the On a Typ-
ical Non-MOG Team Structure section for a more-or-less-typical list), for an
MOG there are usually four additional teams: Network Team, Server Team,
Database Team, and Back-End Team.

Network Team
Your Network Team is responsible for development of a network communi-
cation layer. At the very least, it includes marshalling and dealing with stuff
such as UDP and TCP. I usually argue that the Network Team is also respon-
sible for developing an infrastructure (or “middleware”) for event-driven
programming and/or (Re)Actors (see Vol II for a detailed discussion on the
benefits of event-driven programming and/ (Re)Actors); however, this is not
strictly required. In any case, the idea here is very simple—

On MOG-Specific Teams • 67

You certainly don’t want your game programmers
to deal with both your game logic and
network peculiarities at the same time.

Even if you’re a small development shop and your programmers need to work
part time on game logic and part time on network stuff—it is still beneficial to
keep infrastructure-level code and game-logic code as separate as possible.
Moreover, in my experience, doing it in a different manner (i.e., intertwining
socket-handling code with game logic) is an almost-guaranteed way to ensure
a disaster.

Server Team
Your Server team (at least in terms-that-are-used-within-this-book) is re-
sponsible for Server logic (this includes both Server simulation logic and
any other logic, such as payment logic, tournament logic, etc.). Of course,
diversity of the tasks involved can mean a further splitting of the Server Team
into smaller task-specific teams.

We won’t go into further detail on the responsibilities of different Server
Teams here, but they will become obvious throughout the book. Just one thing
to note is that in most cases, even if your development flow is Client-Driven
as defined above, you will still need your Server Team⁴⁴ to deal with that “on-
going conversion” from Client to Server mentioned above (or with integrating
the Server into your toolchain), with optimizing Server-Side, with non-Game-
World game entities (Cashier, payment gateways, etc.), and so on and so forth.

⁴⁴ As with anything else, for small development teams it might be a part-time role instead
of a dedicated team.

Even if you’re a small
development shop and your
programmers need to work

part time on game logic
and part time on network
stuff, it is still beneficial to
keep infrastructure-level

code and game logic code
as separate as possible.

68 • CHAPTER 1: Game-Design Document from an MOG Perspective

Database Team
Pretty much any MOG has its own database,⁴⁵ and as a Big Fat Rule of
Thumb™, you’ll need a Database Team to deal with it. Not surprisingly, the
Database Team is responsible for your database(s), and I usually argue for it
handling all the aspects of the database, from development to DBA tasks, and
from OLTP to analytics (more on it in Vol. VI’s chapter on Databases).

This team is routinely responsible for maintaining database structure
(both logical and physical), for ensuring data consistency (which goes above
and beyond simple SQL-level constraints), for providing DB manipulation
APIs to other teams (with these APIs ensuring data consistency), for replicas,
for database performance, for optimizing DB requests, and last but certainly
not least, for scalability.

BTW, about DB and scalability: for a properly architected Server-Side, the
database almost universally becomes the bottleneck of the whole system; it
means that the ability of your game to scale will depend on the Database Team
in a big way. We’ll discuss DB scalability in Vol. VI’s chapter on Databases and
in Vol. IX.

Back-End Team
Back-End Team is the team that is probably the most persistently ignored/
downplayed, and ignoring it is a mortgage-crisis-size mistake.

In general, the Back-End Team is responsible for providing all the tools
necessary for your support people/CSRs to do their job. And, believe me—

For an MOG, support can provide a big
fat advantage over the competition.

Sure, if your game is one-of-a-kind with no rivals in sight, support isn’t too
likely to be that important; however, as soon as there is competition, support
can easily become the reason players prefer you over the competition.

⁴⁵ Or a reasonable facsimile; even if you’re storing your persistent objects in files, we’ll
still name it “DB” for the purposes of our current discussion.

The ability of your game to
scale will depend on the

Database Team in a big way.

On MOG-Specific Teams • 69

BTW, whenever I speak about “support” or “CSRs,” I mean the whole
spectrum of support tasks, from the handling of trivial “I forgot my pass-
word” requests⁴⁶ all the way to sophisticated cheating investigations that can
easily take several days to accomplish (and can have a profound effect on
players, including such unpleasant-but-sometimes-necessary decisions as
disqualifying a tournament winner due to cheating).

Back to the Back-End Team and its role. As noted above, the Back-End
Team is responsible for making the work of the support team as efficient as
possible, and it can make a really big difference.

In particular, it is a big mistake to think that 3rd-party tools taken “as is”
(i.e., without any adjustments for your specific game) will work—they won’t.
In other words, even if you’ll be using a 3rd-party Customer Relations Man-
agement (CRM) tool,⁴⁷ you’ll need to integrate it with your databases for your
support processes to make any sense.

And there will be reports over your own databases (in one game I know,
there are over 500 such reports), and tools to manipulate the DB, and ac-
cess to the monitoring tools (integrating them with other tools, like “tell me,
wasn’t our system overloaded at the moment when this e-mail came in?”),
and alerts so that CSRs on duty know when something goes wrong with the
servers (and can call admins or developers or…), and so on.

Timeline for the Back-End Team

As we can see, there are lots of things for the Back-End Team to do. However,
unlike with all the other gamedev teams (whether MOG-specific or not), for
the Back-End Team most of these tasks will become clear only when you have
your game more-or-less ready. Sure, there are some things that are obvious
from the beginning (like “I forgot my password” one), but, most of the time,
load on the Back-End Team will increase dramatically after the launch of the
“public beta.”

⁴⁶ However good your UI/help/FAQ is, there will be lots of people writing about it.

⁴⁷ And the “3rd-party vs in-house” decision is not really as obvious as it might look at first
glance.

For the Back-End Team, most
of these tasks will become

clear only when you have your
game more-or-less ready.

70 • CHAPTER 1: Game-Design Document from an MOG Perspective

As a result, my suggestion with regard to the Back-End Team is usually
along the following lines:

 ▶ From the very beginning, do have the Back-End Team, but with min-
imal resources (as in “just a Back-End Team Lead” if you can afford
it, or a partial-time role if you cannot).

 ■ For the time being, the Back-End Team should deal with
tasks-that-are-necessary-for-a-pretty-much-any-game,
including things such as:

• Identify the 3rd-party CRM you’ll be using (or de-
velop your own)

• Play with your CRM and integrate it with your DB

 ▷ Make sure that all incoming e-mail requests
have respective player accounts identified
(if there is any reference of this e-mail in
any of your DBs, it should be automagically
identified)

 ▷ Spend time on a few very obvious requests
(such as “I forgot my password”). Make sure
that these requests can be handled absolute-
ly efficiently (i.e., there are only 2-3 clicks to
handle it; more details will be discussed in
Vol. VII’s chapters on Back-End Tools and
CRM).

• Develop a few very simple reports against your DB
(like “show me all the details and all the playing his-
tory of the player by his ID”).

• Develop a few very simple tools to manipulate your
DB (normally via APIs provided by your Database
Team). Such tools should include at least such things
as “add new CSR,” “assign roles to a CSR,” and so on.

On MOG-Specific Teams • 71

 ■ In other words, the idea is to prepare the framework to deal
with the future tasks that will be coming. At the very least
such a framework should include:

• CRM system—including integration with your DBs(!)

• Reporting system (read-only reports over DB), usu-
ally directly using SQL (or NoSQL; more in Vol. VI’s
chapter on Databases)

• DB manipulation system (usually via calling APIs
provided by Database Team)

 ▶ As the game is about to be open to the public (as a launch or a “public
beta”), make sure to allocate additional resources to your Back-End
Team (it will certainly become a full-size team if your game is suc-
cessful) and start working closely with the CSR team lead to see what
they need to improve their performance (most of the time it will be
identifying the most time-consuming and mundane tasks and auto-
mating them).

All MOG-Specific Teams Must
Be First-Class Citizens
Unfortunately, in quite a few development companies, MOG-specific teams
(Network Team, Server Team, Database Team, and Back-End Team), while
present, are treated as second-class citizens when compared with the huge
and all-important 3D Team.⁴⁸ Most importantly, Network, Server, and Data-
base Teams are often disregarded by the company management and (as a
result) by fellow programmers. If 90% of the arguments between your Server
team lead and your 3D team lead end up in favor of the latter (either because
he is also an overall architect, or just because it “so happens”), you’re very
likely to have this problem.

⁴⁸ Closely related is an erroneous belief that back-end performance is not important; it
is—see below for a discussion about Server costs.

In quite a few development
companies, MOG-specific

teams (Network Team, Server
Team, and Database Team),

while present, are treated as
second-class citizens when
compared with the huge

and all-important 3D Team.

72 • CHAPTER 1: Game-Design Document from an MOG Perspective

With the Back-End Team, the situation is even worse. While in most en-
vironments, the necessity of Network, Server, and Database Teams is at least
acknowledged, the Back-End Team is all too often created as an afterthought.

I tend to attribute this phenomenon to historical reasons. Quite a few
companies out there moved from single-player game development to MOG
development. And for single-player games, there is the adage “content is
king” (with programmers routinely interpreting it as “3D is king”). And as
a natural result of this perception (exacerbated by the fact that those pes-
ky network and Server folks came into a well-established company, with a
well-established culture of “3D is all that matters”), it is almost inevitable that
without any additional effort to alleviate this problem, network, server, and
database gals and guys are treated as second-class citizens.

However, I would argue that for MOGs, the answer to the question “who
is king?” is substantially different. IMNSHO, for MOGs it is gameplay that is
king (yes, even more king than the content). If you have any doubts, you can
take a look at many highly successful MOGs (including, but not limited to,
Lords & Knights and Top Eleven), all having little to virtually zero content (at
least under a traditional definition of the term).

As a result, MOGs are not only no longer about content and 3D and there
are other teams that have the-same-order-of-magnitude impact on the end
result. Please do your game a favor and openly acknowledge it⁴⁹; it will sig-
nificantly improve overall results. These improvements can be two-fold: (a)
better decisions can be made (because the needs of the Server-Side won’t be
neglected anymore), and (b) because of better morale of the MOG-specific
teams.

BTW, I am not saying that Network, Server, and Database Teams are the
only teams that deserve respect. What I am arguing for is—

All programming teams, from the 3D Team on
one side to the Back-End Team on the other side,
are equally important for the MOG to succeed.

⁴⁹ Of course, as I am usually in the Network Team, it will also be a favor for me, but I
prefer to keep this consideration under wraps.

However, I would argue that
for MOGs the answer to

the question “who is king?”
is substantially different.

Running Costs Breakdown • 73

At the very least, it stands because you cannot possibly release your game
without any of these teams. And any attempt to shift the balance in favor of
one of the teams is usually devastating to the overall game quality.

Note that this observation doesn’t really depend on you using Client-
Driven Development Workflow, or a Server-Driven one. Even for a game with
a Client-Driven Development Workflow, network, server, database, and back-
end folks are really important (or, to quantify this statement, if they’re doing
their job poorly, your game won’t fly regardless of the brilliant efforts of the
other teams).

RUNNING COSTS BREAKDOWN
One additional thing that you should do alongside writing your GDD is cal-
culating the breakdown of running costs for your game when it becomes op-
erational. The reason for doing it now (and not “some time later”) is apparent:
if the per-player cost of running your game is higher than your expected
per-player monetization—in this case, you obviously have a Big Fat Problem™
on your hands (which in turn will affect your GDD). In addition to the usual
and obvious things such as initial development costs, an MOG introduces
quite a few new items to the list:

 ▶ Software maintenance costs.⁵⁰ If you think that your programmers
will have nothing to do when the game goes live, forget it. For most
successful online games, teams tend to increase (rather than decrease)
after the game is launched, but in any case there are lots of things to
do. It is especially true for your Server Team and Back-End Team
(which tend to grow like crazy for pretty much any successful MOG).

 ▶ Game Server costs. Regardless of whether you are using a cloud or
renting a “dedicated server” from your ISP, there will be costs. It is
impossible for me to tell you how many Servers you will need; you
will need to estimate this yourself (and it is not going to be easy).

⁵⁰ While not really “new,” it is different enough to be mentioned.

If the cost of running your
game is higher than your
expected monetization,

you have a Big Fat
Problem™ on your hands.

74 • CHAPTER 1: Game-Design Document from an MOG Perspective

 ■ However, as soon as you have your number-of-players-
per-Server (which can easily vary from 1,000 players/
workhorse-Server⁵¹ to 50,000 players/workhorse-server de-
pending on your game), you can estimate server costs per
player with certain confidence.

 ■ As of the beginning of 2017, one “workhorse” 1U/2-socket
Server (with 2x8 cores and 64G RAM,⁵² and not including
OS) in a decent datacenter⁵³ could be rented for about $150-
$200/month.⁵⁴ Contrary to popular belief, cloud Servers
(more specifically IaaS virtual servers), while providing elas-
ticity and per-hour⁵⁵ billing, tend to be more expensive than
dedicated ones even when rented on a per-month basis (the
cost benefit of the cloud comes when you need your Servers
only for not-so-many hours a month). More on renting “tra-
ditional virtualized cloud vs. bare-metal cloud vs. dedicated
Servers” when it comes to games will be discussed in Vol.
VII, but for an original very rough estimate, the data above
should be more-or-less sufficient for you to get the order of
magnitude of your Game Server expenses.

 ■ If your game needs Server-Side GPU, then things will be-
come more complicated. There will be some discussion on
it in Vol. III’s chapter on Server-Side Architecture, but over-
all perception at the moment is as follows—don’t hold your

⁵¹ For simulation-based MOGs, 1,000 players/Server, or 100 players/core seems to be a
kind of “de-facto industry standard” in a sense that this number was observed in quite a
few very different simulation-based games.

⁵² This is more or less a “sweet spot” for quite a few games, though your own “sweet spot”
can be quite different.

⁵³ But with you being responsible for all the server management, except for hardware
replacements. Also note that exotic locations tend to be much more expensive than
“mainstream” ones, so if your game (usually a stock exchange, casino, or bookmaker)
has some strange legal requirements of “where the servers should be located,” check
specific prices for a specific location (and, while you’re at it, also change the quality of
connection at their location, the more exotic the location, the more quality varies).

⁵⁴ Prices mentioned in this book are toward the lower end of the spectrum. In other
words, you won’t usually be able to find reasonable-quality things at 2x a lower price
(but you will easily be able to find the same things as 5x or 10x more expensive).

⁵⁵ Or even “per-second.”

Rack Unit (U)
A rack unit (abbreviated U
or RU) is a unit of measure
defined as 1.75 inches (44.45
mm). It is most frequently
used as a measurement of the
overall height of 19-inch and
23-inch rack frames, as well
as the height of equipment
that mounts in these frames.

—Wikipedia

Contrary to popular belief,
cloud Servers, while providing
additional elasticity and per-
hour billing, tend to be more

expensive than dedicated ones
even when rented on a per-

month basis (the cost benefit
of the cloud comes when you

need your Servers only for
not-so-many hours a month).

Running Costs Breakdown • 75

breath over it, as Server-Side GPUs tend to be significantly
more expensive than desktop ones.

 ▶ Database Server/Backup costs. Even if your game is a simulation,
you can count on all kinds of things going into the database (and
on your Marketing and Monetization Teams asking for all kinds of
reports over this database). What kind of information you’re going to
save in your database follows from your GDD requirements, so you
should be able to get a very rough estimate for the amount of stor-
age you’ll need. 4-socket DB server (say, 4x8 cores with 128G RAM
and 6x500G SSD) is going to set you back around $1,500/month, and
additional HDD storage can be obtained (very roughly, as pricing
depends on implementation details greatly) at approximately $10/
month per 1TB of non-RAID-ed HDD storage (RAID-ed SSD can go
as high as $100/month per 1TB; more on it in Vol. VII’s chapter on
Preparing for Launch).

 ▶ Admin costs. All those Servers need to be administered, and the
more Servers (and, even more importantly, types of Servers) you
have, the more admins you will need. For quite a few games, at some
point you’re likely to also need a DBA.

 ▶ Costs of outgoing traffic. Exactly as it was for CPU costs, only you
can tell how much traffic your game will need. However, as soon as
you’ve estimated your traffic, you can estimate your traffic costs. Es-
timating traffic is generally an even worse exercise in guesswork than
estimating CPU, but it still needs to be done.

 ■ In the real world, I’ve seen games with traffic being anywhere
between 1kbit/s/active-player to 200kbit/s/active-player,
depending on the nature of the game;⁵⁶ note that for social
and other asynchronous games, the concept of active-player
doesn’t apply, so calculations will be quite different but still
necessary and doable.

⁵⁶ Note that achieving this kind of numbers is not trivial, and your Network Team
will spend a lot of time and effort to get there. See more discussion on traffic and
optimization in Chapter 3.

76 • CHAPTER 1: Game-Design Document from an MOG Perspective

 ■ As of the beginning of 2017, reasonably good pricing (at a
reasonably good datacenter) for traffic went at about $300/
month for an “unmetered” 1Gbit/s connection, and at around
$2,000/month for an “unmetered” 10Gbit/s.⁵⁷

 ▶ DDoS protection costs. If your game is successful, you will likely
need to protect it from DDoS (details of DDoS protection will be
discussed in Vol. VIII, but for now let’s note that for synchronous
games you will likely want DDoS protection based on BGP-level traf-
fic redirection in case of attack). As for the costs of such BGP-level
DDoS protection, they depend greatly on a vendor, your incoming
bandwidth, and the capacity of DDoS attacks you want to deal with.
However, to get an extremely rough (i.e., within an order of magni-
tude) idea about the cost of such DDoS protection, you may take
something like $5K/month per 1Gbit/s of your normal incoming(!)
traffic (YMMV; batteries not included).

 ▶ Last, but certainly not least, there are support costs. These are
quite difficult to estimate in advance, but I can share one real-world
observation in this regard. A game that had some hundreds of
thousands of simultaneous players had received dozens of thousands
of e-mails per day(!). To deal with it, they needed to keep a support
team of hundreds of people (distributed over twenty-four hours)
just to answer e-mails. That being said, their support was almost
universally “the best e-mail support you could wish for” (and they
probably could get away with much smaller support teams if they’d
left their players less satisfied⁵⁸), so it is more of an upper-bound for
the number of e-mails; on the other hand, their support was extreme-
ly well-organized (100+ e-mails per person per day requires quite a
bit of organization, especially as trivial e-mails such as “I forgot my

⁵⁷ Therefore, even for a rather “traffic-hungry” game of 200kbit/s/player, you should be
able to run up to 50,000 simultaneous players (at peak time) over that $2k/month
unmetered link. That is, if your Network Team can squeeze your game into 200kbit/s/
player. Also note that for cloud servers, traffic can be up to 10x more expensive (!).

⁵⁸ In particular, because the better support experience your players have, the more they
are inclined to use it again.

If your game is successful,
you will likely need to
protect it from DDoS.

Common GDD Pitfall: Just Throw in a Multiplayer for Free • 77

password” represent only 80% of all incoming traffic, and the rest can
require much more time to analyze and respond to).

 ■ BTW, if you dream of providing phone support, your costs
will go off the charts really quickly. One potential exception
is if you have a small team that initiates voice conversations
from its side based on e-mails; however, opening your sup-
port to a well-known phone number is going to cost you way
too much.

 ■ Live chat support is not necessarily prohibitively expensive,
though it easily might become so. I’d suggest to stay clear of it
for as long as possible (at least until you have all the machin-
ery and people for e-mail support).

Of course, the numbers above provide only a very rough idea about the costs,
but let’s hope that your estimates will show that you have ample reserve so that
your game remains viable even if the original costs are somewhat underesti-
mated. In practice, most of the prices for services tend to drop rather than rise
as the time goes by, but as they love to say in the financial industry, past perfor-
mance doesn’t really guarantee anything (and also there are always things that
were originally unaccounted for or estimates being too optimistic).

COMMON GDD PITFALL: JUST THROW
IN A MULTIPLAYER FOR FREE
One scenario that never works but is still reported to be tried as late as 2016
is when your game is planned as a single-player one and then somebody says
“hey, let’s add multiplayer capability to our game!—shouldn’t be difficult com-
pared to what-we’ve-already-done.” Of course, this sounds very attractive to
managers and marketing, as they get “something they can sell” and “for free.”
There is only one problem with this approach—

I don’t know of one single instance where it worked

Hey, let’s add multiplayer
capability to our game!—

shouldn’t be difficult compared
to what-we’ve-already-done.

78 • CHAPTER 1: Game-Design Document from an MOG Perspective

As noted above, MOGs are very different from single-player games; there are
several new teams involved, and even for a Client-Driven Workflow, integra-
tion with the Server-Side (and testing the game in a multiplayer environment)
should be done all the time, otherwise multiplayer aspect(s) of your game
won’t work.

If your manager won’t believe me on this account, ask him to take a look
at well-known efforts by major gamedev companies. Just one example: when
it took the makers of Elder Scrolls about seven years to get to their very first
MOG (and not as-top-notch as their single-player stuff), this should provide
a hint that adding multiplayer functionality is usually not as easy as it sounds.
There are tons of other similar examples out there, but I will leave Googling
as a reader exercise.

In other words, if you want multi-layer capability for your game, it can be
done. However, it won’t be easy, and making your game an MOG will likely sig-
nificantly change lots of processes within your software development life cycle.

Game Entities and Interactions • 79

GAME ENTITIES AND INTERACTIONS

After you have your GDD with all the requirements listed, I argue that the
next step for an MOG should be to draw an Entities-and-Interactions dia-
gram specific to your game.

While you may think that such a diagram is “obvious,” it is still much
better to have it drawn and discussed, at the very least to make sure that ev-
erybody has the same understanding of what exactly constitutes “obvious.” In
particular, it is important to remember all the non-Game-World entities such
as Cashier, payment processors, and social networks (while the two last ones
are not really something you’re going to implement yourself—most likely, you
will need to implement integrations with them, so they do belong to your
Entities-and-Interactions diagram).

80 • CHAPTER 1: Game-Design Document from an MOG Perspective

Game Entities: What Are You Dealing With?
In each and every game, you have some Game Entities that you’ll be dealing
with. For example, in an MMORPG, you’re likely to have PCs, NPCs, zones,
and cells; in a casino game, you have lobbies, tables, and players; in a social
farming game, you have players and player farms. Of course, every game will
contain many more entities than I’ve mentioned above, but they depend on
the specifics of your game, so you’re certainly in a much better position than I
am to write them down. And if you feel that you’re about to be hit by “not see-
ing the forest for the trees” syndrome, you can always replace your diagram
with several (organized in a hierarchical manner), so that each contains only
a manageable number of entities.

Interactions between Game Entities
Pretty much inevitably those Game Entities of yours will need to interact with
one another. Players reside within cells that in turn reside within zones, PCs
interact with NPCs, players sit and play on casino tables, and players interact
with other player’s farms. All these interactions are very important for the
game architecture, and need to be written down as a part of your Entities-
and-Interactions diagram. Even more importantly, you need to be reasonably
sure that you have listed all the interactions you can think of at the moment.

What Should You Get? Entities-
and-Interactions Diagram
As a result of the process of identifying your Game Entities, you should get
a diagram (let’s name it “Entities-and-Interactions diagram”) showing all the
major Game Entities and, even more importantly, all possible interactions
between these entities.

One thing that must be included in the Entities-and-Interactions diagram
(alongside gameplay-related entities) is entities related to monetization (pay-
ments, promotions) and entities related to social interactions. In other words,
if you’re going to rely on viral marketing via social networks, you’d better

Even more importantly,
you need to be reasonably
sure that you have listed

all the interactions you can
think of at the moment.

Game Entities and Interactions • 81

know about it in advance; as discussed below, the impact of social interactions
on architecture can be much more significant and devastating than a simple
“we’ll add that Facebook gateway later.”

Examples of Entities and Interactions
To give you a bit of an idea on entities and interactions, I’ll try to describe
typical entities for some popular game genres. Note that as with any other
advice, in this book or elsewhere, your mileage may vary, and you need to
think about specifics of your game rather than blindly copying typical entities
mentioned below!

Also, please note—

Example diagrams provided here are
extremely sketchy and illustrate only

a few aspects of each game

(to give a very general idea of what the Entities-and-Interactions diagrams
might contain in general). In practice, your own diagrams will usually be
much more elaborate.

As we’ll see from the diagrams, quite a few include Game Entities that
can be named Game World entities (places where actual gameplay and most
inter-player interaction is happening) and/or Matchmaking entities. While
these terms are sometimes not that well defined and are not universal, we will
still use them as a way to generalize certain observations throughout the book
(in particular, in Vol. III’s chapter on Server-Side Architecture).

And, last but not least, while you may (and actually should) think that
you already know everything about your game by this point, it is still very
important to have this diagram drawn; otherwise you may easily end up with
differing vision among team members, which can cost you much more than
time spent on this diagram (in particular, forgetting about the Cashier and
associated interactions is rather common at the early stages of development
and, if it happens, can cause quite a bit of trouble later on).

82 • CHAPTER 1: Game-Design Document from an MOG Perspective

Okay, with all the preliminaries aside, we can finally get to the example
diagrams.

Social Farming and Farming-Like Games

While the social games genre is wide and difficult to generalize, one sub-genre,
social farming games, is straightforward enough to describe. In farming and
farming-like games, the number of different entities and especially interac-
tions between them are quite limited. Entities are usually limited to players
and their farms (the latter including everything-that-can-be-found-on-the-
farm). Interactions (beyond the player interacting with their own farm) are
also traditionally very limited (though they are all-important from the social
point of view).

Game Entities and Interactions • 83

NB: On all our example Entities-and-Interactions diagrams,
we will draw external (to our game) entities as dotted.⁵⁹

You should keep in mind that in most cases there is one significant caveat to
remember: it is a mistake to think that you can randomly separate players on
different servers and allow only interactions within one such server; see more
discussion on it in the On Matchmaking and the Social Aspect of Your MOG
section above.

Casino Multiplayer Games

With casino multiplayer games, everything looks quite simple: there are tables
and players at these tables. However, in some of the casino games (notably in
poker), choosing an opponent is considered a skill, and therefore players should
be able to choose who they want to play against. It implies another game en-
tity—a lobby, where the opponents can be selected. An example Entities and
Interactions diagram for multiplayer blackjack is shown in Fig 1.2:

⁵⁹ At the architecture stage, we’ll need to make appropriate gateways to communicate
with external entities such as “Facebook” or “Credit Card,” but we’re not there yet; see
Vol. III’s chapter on Server-Side Architecture for an appropriate discussion.

84 • CHAPTER 1: Game-Design Document from an MOG Perspective

Note that for this example diagram, among quite a few other things, we’ve
omitted social interaction; you will need to add it yourself, as it is appropriate
for your specific game.

Stock Exchanges, Sports Betting, and Auction Sites

As was already noted in the Introduction, stock exchanges and auction sites
are so close to betting that you’ll be facing significant difficulties when trying
to describe the difference between the three (except, obviously, for the so-
cial stigma traditionally attached to betting). With stock exchanges, auction
sites (think “eBay”), and betting sites, the entities involved are the same. It is
players (though, of course, for a stock exchange you need to describe them
as “traders” or “dealers”), and listed shares (or sporting events or products).
Players don’t interact directly, however, indirect interaction does exist via cre-
ating some actions (“orders” or “bets”) related to stocks or events or products.

Fig 1.3 shows an example Entities and Interactions diagram for a stock
exchange:

Game Entities and Interactions • 85

86 • CHAPTER 1: Game-Design Document from an MOG Perspective

Large Virtual-World Games
(MMOTBS/MMORTS/MMORPG/MMOFPS)

Despite all the differences (including very different latency tolerance, which
can significantly affect architecture and protocols; see the discussion on han-
dling latencies in Chapter 3), from the point of view of the Game Entities
involved, all the virtual-world games tend to be more or less similar. In par-
ticular, in these games there are players (PCs), there are NPCs; also there are
usually cells and zones containing those cells,⁶⁰ which represent a virtual
world (VW) where interactions between PCs and NPCs are occurring. The
player option of choosing who she wants to play with may or may not be
provided; however, even if it is not provided, and you think that you can
toss your players around your virtual worlds as you wish, arbitrary player
separation (assigning player to servers without any inter-server interaction)
becomes infeasible as soon as you introduce a social feature such as “Recruit
a Friend (and play with her later).” See further discussion on arbitrary play-
er separation in the Matchmaking That Doesn’t Work (As a Rule of Thumb)
section above.

Fig. 1.4 shows an example Entities and Interactions diagram for an
MMORPG:

⁶⁰ While names may vary, the concepts behind are usually more or less the same.

Game Entities and Interactions • 87

88 • CHAPTER 1: Game-Design Document from an MOG Perspective

Team Competitions/eSports

Last but not least, let’s describe two game genres that are currently the most
popular multiplayer games out there; I’m speaking about Multiplayer Online
Battle Arenas (MOBAs) and team-based First-Player Shooters (FPS).

While the mechanics of MOBA and FPS-based games are very different,
once again, from an Entities and Interactions point of view, most of these
games will follow pretty much the same pattern shown on Fig 1.5:

Game Entities and Interactions • 89

BTW, if you feel that this diagram looks very similar to Fig 1.2 (the one about
casinos), well, that’s because these diagrams are similar. In any case, players
come to a Lobby or Matchmaking server and then play in a Game World
based on their selection or matchmaking—that’s pretty much it. The only sig-
nificant differences from an Entities-and-Interactions point of view between
team competitions and casino-like games are that (a) with team competitions,
well, there are teams (which are optionally used as a part of matchmaking
process), and (b) unlike with casinos, for team competitions, Game Worlds
where all the play happen, are usually assigned instead of being selected by
players.⁶¹ How the money obtained via the Cashier is spent depends on the
game and its monetization, but usually there are quite a few things to buy (as
well as tons of discussion on the Internet regarding which of these items are
“pay to win” and which aren’t; fortunately, within the scope of this book, we
don’t need to get onto this discussion minefield).

Entities and Interactions Diagram As a
Starting Point to Architect Your Game
This Entities-and-Interactions diagram you’ve got is one of those things that
will affect your architecture greatly. In particular, it is a starting point to realize
what kinds of “implementation entities” (such as Servers, OS processes, DB ta-
bles, rows, and columns, etc.) you need to implement your Game Entities and
how to map your Game Entities into your implementation entities.

In Vol. III (more specifically—in the chapter on Server-Side Architecture),
we’ll discuss Game Servers as a way to implement some of the Game Entities
mentioned above; as a rule of thumb, the types of Game Servers you have will
map one-to-one to such Game Entities as Game Worlds, Tournaments, Cashier,
and gateway-with-Facebook.

⁶¹ i.e., while players can select a type of the Game World, they normally cannot select
specific opponents to play with.

90 • CHAPTER 1: Game-Design Document from an MOG Perspective

CHAPTER 1 SUMMARY
To briefly summarize the main takeaways from Chapter 1:

 ▶ GDD is an absolute must.

 ■ The GDD must be written with both Project Stakeholders
and developers participating, but with Project Stakeholders
having the final say.

 ■ The GDD must be written only using those terms that are
understandable to Players.

 ▶ There are significant peculiarities related to MOG GDDs (and MOG
development in general), in particular:

 ■ MOGs often have undefined or unlimited lifespans, which
brings lots of further implications.

 ■ There are two distinct workflows for MOG development:
Client-Driven and Server-Driven.

 ■ Matchmaking mechanisms happen to be extremely import-
ant both gameplay-wise and architecture-wise.

 ■ Marketing and monetization approaches must be taken into
account from the very beginning.

• And there are quite a few technical decisions that
can also help them(!).

 ■ Compared to single-player game development, for an MOG
four more teams are necessary. These are Network Team,
Server Team, Database Team, and Back-End Team.

• Contrary to current practices in quite a few gamedev
companies, these teams must be treated as first-class
citizens.

 ■ Running costs can kill your MOG and must be estimated
from the very beginning.

 ▶ Make sure to draw your Entities and Relations diagram before going
any further.

Chapter 1 Summary • 91

 ■ This diagram should contain not only your Game World
entities, but also all of your {monetization|socialization|
payment|…} entities, and all the known interactions between
the Game Entities too.

Bibliography
Aldridge, David. 2011. I Shot You First: Networking the Gameplay of

HALO: REACH. http://www.gdcvault.com/play/1014345/I-Shot-
You-First-Networking.

Brightman, James. 2012. GDC: Cliff Bleszinski: “Screw focus groups, they
suck”. http://www.gamesindustry.biz/articles/2012-03-09-gdc-cliff-
bleszinski-screw-focus-groups-they-suck.

Donovan, Tristan. 2011. Focus Groups, Testing, And Metrics: Developers
Speak. http://www.gamasutra.com/view/feature/134870/focus_
groups_testing_and_.php.

Elbaum, Dan, and Carlin Scott. 2013. “The Perfect Couple: Domain
Models & Behavior-Driven Development.” PNSQC 2013
Proceedings.

Kim, Joseph. 2015. Mobile Game Design: Iteration vs. Planning,
MVP = Dangerous! http://www.gamasutra.com/blogs/
JosephKim/20150224/237157/Mobile_Game_Design_Iteration_vs_
Planning_MVP__Dangerous.php.

Pfister, Andrew. 2015. Coming into Focus: Understanding Video
Game Market Research. http://www.gamasutra.com/blogs/
AndrewPfister/20150529/244601/Coming_into_Focus_
Understanding_Video_Game_Market_Research.php.

Roskind, Jim. 2013. Quick UDP Internet Connections.
https://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf.

CHAPTER 2.

ON CHEATING, P2P, AND
[NON-]AUTHORITATIVE
SERVERS

When developing an MOG, there is one extremely important thing to re-
member. This phenomenon is virtually nonexistent for non-multiplayer games,⁶² and
is usually of little importance for LAN-based multiplayer games—but is absolutely
critical for over-the-Internet games. I’m speaking about player cheating.

⁶² Well, except for “unlock level” and “infinite health” kinds of cheats, but these rarely cause too much trouble for the
game ecosystem.

94 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

Player cheating is One Big Problem™ for all successful MOGs. The problem is
that ubiquitous for multiplayer games that we can say—

If your MOG doesn’t have players cheating,
it is either that you’re not looking for cheaters

thoroughly enough, or you are not successful yet.

Note that in this chapter we will only briefly mention most of the cheats, and
will concentrate only on those cheats that are essential for our architectural
decisions. In-depth discussion on the subject of “how to deal with cheating”
belongs in Volume VIII (chapters on Bot Fighting and Other Player Abuses).

IF YOU’RE POPULAR ENOUGH,
THEY WILL FIND REASONS TO CHEAT

Khajiit… are intelligent, quick, and agile.
They make excellent thieves due to their natural
agility and unmatched acrobatics skill.

—Elder Scrolls

You may think that players have no reason to cheat for your specific game. For
example, if your game has nothing that can be redeemed for money, you may
think that you’re safe regardless of the number of your players. In practice, it
is exactly the other way around: if your game is popular enough, they will find
a reason to cheat regardless of (a lack of) direct monetization options for the
cheating.

Just one example from real life. Once upon a time, there was a free poker
site out there where players got “play chips” for free, and were able to play
with them. There was nothing that could be done with those “play chips,”
except for playing (so they could not be redeemed for anything-which-has-
real-value). At that time, it seemed to the team that there was no reason to
cheat on the site; none whatsoever, right? Real life has proven this assumption
was badly wrong.

If You're Popular Enough, They Will Find Reasons to Cheat • 95

The thing was that the players were able to put all their “play chips” on the
table; while doing so made very little sense from a poker point of view, they
were using the amount of their chips to brag about “how good a player I am.”
And as soon as they started to brag about their play chips, one guy had the
thought, Hey, I can sell these play chips on eBay, and players will pay—just
to look better than they are! And as soon as eBay sales started, the cheating
became rampant (with lots of multiple accounts to get those free chips, and
with lots of “chip dumping” to pass them along).

While I (and probably you) cannot imagine spending twenty real dollars
to get two million “play chips” with no other value than helping you boast that
you’re a “really good player” (when you’re not), we know for sure that there
is a certain percentage of people out there who will do it. It is just a matter
of probabilities, so if your game has enough players, you can count on such
things happening.

BTW, the same aspect of human nature is currently being successfully
exploited for monetization purposes by numerous modern games (especially
social games); however, at this point, we’re not concerned with exploiting hu-
man vices ourselves (it is a job for monetization guys, and beyond the scope
of this book), but with the technical aspects of preventing cheating.

For us gamedevs, the moral of the story is—

Even if you think that players have zero
reason to cheat, given that your site is

popular enough, they will find a reason.

As soon as your game reaches 1,000 simultaneous players, you’re likely to
have singular cheaters. And when the number goes up to 100,000, you can
be 100% sure that cheaters are there (and if you don’t see them, it just means
that you’re not looking for them hard enough). While the number of cheaters
does depend on the kind of goodies you provide to your players, and cheater
numbers may easily vary by an order of magnitude, I daresay⁶³ that chances
of you having a game with 100,000 simultaneous players and not having any

⁶³ Yeah, sometimes I love a bit of ye olde English.

The thing was that the players
were able to put all their “play

chips” on the table; while
doing so made very little

sense…they were using the
amount of their chips to imply

“how good a player I am.”

96 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

cheaters are negligible, pretty much regardless of what the exact game is that
you’re running.

THE BIG FAT HAIRY DIFFERENCE
FROM E-COMMERCE
One thing to keep in mind is that game cheaters are very different from
e-commerce fraudsters. With e-commerce, those who’re trying to get around
the system are either trying to angle the promotions or are outright fraud-
sters.⁶⁴ When speaking about games, the reasons behind cheating are much
more diverse. For players, in addition to all the reasons to cheat described
above, there are many others.

For example, as it has happened with “play chips” (see the If You’re Popular
Enough, They Will Find Reasons to Cheat section above), people cheat just to
claim that they’re better players than they really are. Or they cheat because they
feel that the game rules are unfair (to them, that is). Or they cheat just because
of the perception that “everybody else does it anyway,” so they need to cheat to
level the field. Or they try to save some time by using “bots” instead of “grind-
ing” themselves. The possibilities are really endless here.

This, in turn, means that the line which separates “cheaters” from “honest
players” is much more blurred with games than in e-commerce. Throw in the
fact that e-commerce fraud is an outright crime and, say, using “bots” to avoid
“grinding” is punishable at most by a ban on the site (which can be bypassed
rather easily, at least unless you’re paying for your game and the name on your
credit cards is Rumpelstiltskin. For more discussion, see Vol. IV, chapter on
Basic Security, and Vol. VIII), and you will realize—

Lots of people who would never ever cheat in
e-commerce will easily cheat in online games.

⁶⁴ There are also people who want to use your site as a testing ground to improve their
hacker skills or to brag about them after breaking you, as well as hacktivists, but
fortunately, they’re relatively few and far between.

This, in turn, means that the
line which separates “cheaters”
from “honest players” is much

more blurred with games
than in e-commerce.

Dealing with Cheaters • 97

While the number of “honest players” in online games still exceeds the number
of “cheaters” by a wide margin, you cannot rely on the e-commerce experience,
which usually goes along the lines of, “Oh, merely 0.3% of our customers are
frauds.”⁶⁵

The second difference between e-commerce frauds and game cheaters is
that due to much more significant interaction between players in games than
in e-commerce—

Even a relatively small number of game cheaters
can easily ruin the whole game ecosystem.

As one example: if enough people are using bots to get an unfair advantage
with your game (for example, to react to threats more quickly than a human
can), your game will start to deteriorate—and in extreme cases can get to the
point of being completely unplayable. In other words: dealing with cheaters is
not all about money; it is about preserving the very substance of your game.

DEALING WITH CHEATERS
As noted above, cheaters are pretty much inevitable for any sizeable game. It is
just a fact of life (just like “it is rainy outside today”). The real question, both
in terms of rain and cheaters, always goes as follows: “Sure, it is pretty bad, but
what can or should we do about it?” If it is raining—we’re taking an umbrella;
it won’t protect us 100%, but with some luck (and if it is not also windy)—an
umbrella can provide a more-or-less adequate protection from rain.

Pretty much the same goes when dealing with cheaters. While it is not
realistic to obtain 100% protection, it is generally possible to get some that is
more-or-less adequate. In general, there are three things that can (and usually
should) be done in this regard.

⁶⁵ The number can vary significantly, but in e-commerce it is almost universally below 1%
(and at ~1.5% of chargebacks, which include both frauds and honest mistakes, heavy
penalties start to kick in; more in Volume VI’s chapter on Payment Processing).

Dealing with cheaters is
not all about money; it is
about preserving the very
substance of your game.

98 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

Gameplay
The first thing to think about is whether gameplay of your game encourages
cheaters. This is a controversial point (after all, technicalities are not supposed
to affect gameplay), but you need to analyze what your players will probably
do to cheat. Try to put yourself in a cheater’s shoes and think, What would I
do myself if I’d been paid for cheating the system?⁶⁶

Sometimes, such analysis can reveal that that cheating is going to be that
easy that it will essentially kill the game; this tends to be especially import-
ant in eSports-like gaming environments. And sometimes you can find that
there is a gameplay change that would be minor for honest players, but which
reduces the potential for cheating manifold.

BTW, there is a rather large camp of developers out there (usually coming
from outside gamedev, and/or with an academic background), that says, “Hey,
if the gameplay isn’t bulletproof against cheating, you shouldn’t even think
about releasing it.” I’m completely against this kind of attitude (in particular
because I’m not even sure that there exists a single game that is indeed 100%
bulletproof). What I am saying is that there might be a way to adjust gameplay
a little so it doesn’t aid and abet cheaters (and, as a nice side effect, often such
an adjustment leads to the game rules being more straightforward).

Architecture
As a next step, you need to make sure that your architecture does not help
cheaters. If it does, you will be in Really Big Trouble™ as soon as your game
becomes popular. For example, if your game is a first-person shooter using
Authoritative Clients, be prepared for all kinds of cheats up to “magic tele-
ports”; these cheats can easily become bad enough to make your game barely
playable. Then, in the best case, such cheats will cause you to start a series of
extremely painful refactorings (see, for example, [Harton]), in the worst one,
they may even kill your game completely.

⁶⁶ Note that at this point we’re speaking about abusing gameplay as such, without
exploiting implementation loopholes etc. OTOH, certain technicalities (such as “it is not
possible to have 100%-reliable identification of a player’s device” and “it is not possible
to provide a 100% guarantee that our Client wasn’t modified”) do need to be taken into
consideration.

You need to make sure
that your architecture

does not help cheaters.

Attacks: The Really Big Advantage of the Home Turf • 99

We’ll look more at it later, starting with the Authoritative Client: Pret-
ty Much Hopeless Against Cheaters section. <spoiler>Very briefly: for most
games, we’ll need to stick to Authoritative Server architectures.</spoiler>

Bot Fighting
And the last-but-certainly-not-least aspect of dealing with cheaters is direct
cheater fighting. As a rule of thumb (and unless you’re a stock exchange), it
can usually be postponed until you deploy your game. As soon as your game
is out of the door (and is alive and kicking), you need to start proactively
looking for cheaters (more on it in Vol. VIII’s chapters on Bot Fighting and
Other Player Abuses), and deal with them as soon as you find them.

Details of direct fighting with cheaters will be discussed in Vol. VIII; for
the time being, we just want to ensure that our architecture will allow us to
perform such cheater fighting without rewriting the whole thing.

ATTACKS: THE REALLY BIG
ADVANTAGE OF THE HOME TURF
When dealing with cheaters (in the realm of classical security, they are usually
named “attackers”), it is very important to understand the fundamental dif-
ferences between the two classes of the attack scenarios.

Home Game
In the first class of cheating or attack scenarios, the cheater or attacker tries to
affect something that is under your direct control. For games, this “some-
thing” is usually your Server.

In such cases, you essentially have an inherent advantage from the very
beginning; while attacks are always a possibility, for this first class of attacks,
all are inevitably related to the bugs in your implementation. In other words—

In the first class of cheating
or attack scenarios, the

cheater or attacker tries to
affect something which is
under your direct control.

For games, this “something”
is usually your Server.

100 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

Whenever you have something that is under
your control, you’re generally more-or-less

safe, save for implementation problems.

Of course, there are lots of bugs to be exploited, but you do have a fighting
chance, and as soon as a specific bug is fixed, the attacker will need to find
another bug, which is not that easy if you’ve done your job properly.

One example of such attacks happening “on your home turf ” is attacking
your Server, aiming to get some information such as “what is going on under
fog of war,” or even changing gameplay; while this is often possible, usually
you do have a fighting chance against these attacks.

Road Game
The second class of attack scenarios is related to those cases where the attack-
er has your software⁶⁷ (such as your Client) under his full control, and can do
whatever-he-wants with it. In these cases, things are much worse for you. In
fact, whatever you do with your Client, the attacker is generally able to reverse
engineer it and do whatever-they-want with your game from that point.

Examples of such attacks include such hacks as see-through-walls (a.k.a.
wallhacks, or closely related lifting-fog-of-war hacks, a.k.a. maphacks) if
your Client has this information, changing packet timestamps to whatever-
attacker-wants (to abuse lag compensation), and all kinds of bots running on
top of your Client.⁶⁸

Sure, you can try to obfuscate your intentions (and your Client), but given
enough effort (and we’re not speaking about “the time comparable to lifetime
of our sun”), any obfuscation can be broken. In terms of classical security, in
this second class of attack scenarios, all you have at your disposal is so-called
“Security by Obscurity,” which (under traditional security models) is not con-
sidered security at all; while we will need to resort to “Security by Obscurity”
in some cases,⁶⁹ we need to realize that—
⁶⁷ In fact, the same logic applies even if the attacker has your hardware device.

⁶⁸ N.B.: proxy bots are a bit different, though.

⁶⁹ Notably for bot fighting and for preventing multiple accounts, where there are very few
other ways of protection, if any.

Security by
Obscurity
is the use of secrecy of the
design or implementation
to provide security. A
system relying on security
through obscurity may
have theoretical or actual
security vulnerabilities, but its
owners or designers believe
that if the flaws are not
known, then attackers will
be unlikely to find them.

—Wikipedia

Attacks: The Really Big Advantage of the Home Turf • 101

“Security by Obscurity”, while sometimes
the only protection available at our

disposal, cannot be relied on.

To summarize the discussion above:

When speaking about cheaters, an advantage
of “home turf ” (having control over software or
device) makes a huge difference. In particular,

you cannot really protect something that
you place into the attacker’s hands.

The situation in this regard is that bad that even if you could give each player
a hardware device, these devices would also be hacked (to see the spectrum
of attacks available on hardware, see [Skorobogatov]). In general, whatever-
you-give-to-player should be considered hackable; the only thing we can do
about it is increase the cost of hacking, but completely preventing the hacking
is out of question.⁷⁰

On the other hand, in general, security is not about making something
completely unbreakable; instead, the only aim for any security system out there
is to increase the cost of breaking in. Ideally, security aims to increase the cost
of the attack above the value of the data within to make the attack econom-
ically unviable, but actually every bit of security counts. As a result I am a
strong proponent of the view that while obscurity MUST NOT be used as a
replacement for serious/”real” security,⁷¹ obscurity still MAY be used to com-
plement “real” security (and a special case of it is when “real” security doesn’t
exist at all, which is what we have when speaking about “Road Game” class
of attacks).

⁷⁰ In particular, Skorobogatov (the author being one of the top researchers in the field of
hardware protection) says that “given enough time and resources any protection can be
broken” (and he’s speaking about breaking specialized hardware(!)).

⁷¹ The one that doesn’t rely on hiding anything but the key.

102 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

PUBLISHED VS
UNPUBLISHED ATTACKS
Our next consideration of cheating and attacks is the one related to the attack
being published or not. While Rule #3 from [Pritchard] states that “cheaters
actively try to keep developers from learning their cheats,” this is not always
the case.

Sometimes, cheaters do publish their attacks; the reasons for doing it
vary. I’ve seen attacks published just to hit the site badly, to brag about being a
Really Good Hacker™, to “level the field,” and—probably the most frequently
occurring one—to sell the attacking {tool|script| …} for money.

Published Attacks: Higher Impact, But
Home-Turf Advantage Is Regained
Whatever the reason for publishing the attack, it will have quite a few effects on
your game. On the one hand, it will make the impact of the attack significantly
worse. First, everybody interested in cheating can get the attack (sometimes
for free or for as little as 0.001 bitcoin), and there will be quite a few people
doing it. This, in turn, can cause serious changes in game experience for the
other players (and this is your ultimate cheating-related nightmare). To add
insult to injury, with such an attack, everybody will know that your game is
cheatable with a few bucks, which doesn’t really help build players’ confidence;
they will start seeing cheaters even when everything is fair and square.⁷²

On the other hand, with published attacks you do regain some of the
“Home Turf ” advantage. Not that you can always completely disable the
whole attack vector for this class of attacks, but whenever you’re dealing with
an attack-on-the-Client that is published, it is you who has a “Home Turf ”
advantage half of the time.

⁷² Actually, your players will suspect cheating even without the cheat is being published,
but publicized (and working) cheats will increase their suspicions by an order of
magnitude.

Whatever the reason for
publishing the attack, it will
have quite a few effects on

your game. On the one hand,
it will make the impact of the

attack significantly worse.

Published vs. Unpublished Attacks • 103

In such cases, traditionally, the battle goes along the following lines:

 ▶ They get your Client and reverse engineer it. At this point, it is them
who has the “Home Turf ” advantage

 ▶ They publish the attack

 ▶ You {download|buy|…} the attack and reverse engineer the attacking
code. At this point, it is you who plays it on the “Home Turf.”

 ▶ You find a way to make your Client resilient to the attack.

 ▶ You publish your updated Client.

 ▶ Rinse and repeat…

Overall, as soon as you get your hands on the cheat, you can use all the same
tools and techniques that-cheaters-are-usually-using-against-you, all the way
down to IDA Pro and kernel-level debugging.

Essentially, this often becomes an exercise in “who is more persistent”—
and with you being passionate about your game (and having no other options
than to fight)—it is usually gamedevs who outlast each of the attacking teams
(note that this doesn’t prevent new attackers from appearing).

Unpublished Attacks
Unpublished attacks, while being much more difficult to deal with, present
less risk of the Doomsday scenario of game-being-ruined-because-every-
body-is-cheating. Not that you shouldn’t care about unpublished attacks;
what I want to say is just that they should usually be below published ones on
your Anti-Cheating Team priority list.

A nasty variation (lying in between published attacks and unpublished
ones) is attacks-that-are-published-in-closed-forums. This is usually done ex-
actly to prevent you from obtaining the cheat and playing against it on your
home field. Such attacks can be pretty annoying; however, if the closed-
community-where-the-attack-is-published is small, it is not too bad (as the
impact is limited). And if the community is large, you can (and usually should)

A nasty variation (lying in
between published attacks
and unpublished ones) is

attacks-that-are-published-
in-closed-forums.

104 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

infiltrate their ranks and get the copy, so, if your Anti-Cheating Team is doing
their job well, it shouldn’t be too bad either.

ATTACK TYPES
Now, let’s discuss what types of attacks or cheats are most typical in a gaming
environment, and what the impact of these attacks is if they’re successful.

Legal Stuff and Problems Banning
Even before we start to discuss technical issues related to cheating and other
attacks, we need to note that your ability to deal with cheaters starts not with
technical protection, but with your Terms and Conditions.

Just recently I had a conversation with a guy from a Really Big Company™
who said that they have huge problems with banning cheaters because to ban
the cheaters, they apparently need to prove that cheaters are cheating in a
court of law (<ouch! />).

We’ll briefly discuss related issues in Volume VII’s chapter on Preparing
to Launch,⁷³ but for now let’s note that no technical protection will help you if
your T&C is poorly written (and/or if the applicable law is on the cheater’s side).

Game Cheats
With the annoying legal stuff out of the way, we can start discussing technical
issues related to cheating. In this regard, we’ll try to classify all the attacks into
one of two broad categories: game-specific “Game Cheats” and much more
well-known-besides-game-world “Classical Attacks.”

First, let’s take a look at Game Cheats; for the time being, we’ll be looking
at them from the point of view of the advantages they provide to the attacker;
as soon as we can recognize the advantages, we’ll be able to see the potential
impact of the cheats on the game.

⁷³ Disclaimer: I am not a lawyer, and no legal advice will be provided.

Attack Types • 105

Game-Rule Violations

If your game is a soccer game and somebody is able to ensure that they score
a goal regardless of the actual position of the ball (or is able to change ball
trajectory without any players near the ball), you’re in Big Trouble™. The same
applies to any kind of fight (if the cheater is able to score a hit when shooting
or hitting in the opposite direction, things go pretty badly), and to any other
type of competitive game in general. Even not-exactly-competitive games are
subject to manipulation in this regard (especially as competitiveness is often
routinely introduced even in noncompetitive games such as social farming,
for example, via different kinds of “leader boards” etc.).

Impact: Cheating-to-affect-gameplay will become known among the
players pretty soon, and will damage the trustworthiness of your game (and
of you, too); in extreme cases, your game can become completely unplayable
because the number of cheaters is too high. Therefore, the impact of such an
attack can be classified as “high” (and can easily become “extremely high,”
especially if the exploit is published).

Attack Vectors: Whether you can protect from this type of attack beyond
“Security by Obscurity” depends heavily on your architecture. If your archi-
tecture gives the Client some kind of authority—it is sufficient to attack your
Client, otherwise—they will need to go after your Servers (and the difference
between protecting your Client and protecting your Server is the difference
between playing away and playing home). See this chapter starting from the
Authoritative Client: Pretty Much Hopeless Against Cheaters section for fur-
ther discussion.

Information Exposure
If you don’t know a secret, you won’t let it out.

—Field operative folklore

Another common class of attacks is related to the game Client knowing more
than it is supposed to be known by the player. And as soon as the Client
knows something, this information can be extracted from the Client and
shown to the cheater. Examples of such attacks include “see-through-walls”

If your game is a soccer
game and somebody is able

to ensure that they score
a goal regardless of actual
things happening on the

field, you’re in Big Trouble™.

As soon as the Client knows
something, this information can

be extracted from the Client
and shown to the cheater.

106 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

(a.k.a. “wallhacks”), “lifted-fog-of-war” (a.k.a. “maphacks”), and “seeing-
attributes-you’re-not-supposed-to-see” (a.k.a. “ESP hacks”).

Impact: These attacks tend to have a subtle impact on the game until
they’re known, but at the moment when the attack becomes published, the
impact becomes high to very high.

Attack Vectors: The problem with information leak attacks is that what-
ever-the-Client-knows is subject to the attack, with the attack happening on
the attacker’s “Home Turf.” This means that any such information can (and
will) be extracted sooner rather than later.

If your game implements something like “deterministic lockstep” (or,
more generally, relies on all the Clients keeping the same Game World state
because of feeding them identical inputs and the calculations being deter-
ministic), your game is inherently vulnerable to information leaks, and in a
bad way.

Moreover, even if you’re using authoritative servers and classical publish-
ing states with state updates coming from Server to the Client, you still need
to be very careful to prevent your Client from knowing too much. In partic-
ular, you should implement so-called “Interest Management,” as discussed in
Chapter 3, and should make sure that this Interest Management works along
the lines of “all the non-constant information is distributed to the Clients only
on a need-to-know basis.”

Reflex Augmentation

For those games that rely significantly on fast reflexes (think MMOFPS),
one obvious advantage that cheaters try to obtain is to act as if their reflexes
are better than their real reflexes. This includes such cheats as aimbots and
triggerbots.

Impact: Unless the attack is popularized, the impact can be low, but if or
when it is, it can become pretty high.

Attack Vectors: I know of three distinct attack vectors for reflex augmen-
tation. The first goes along the lines of so-called aiming bots, a.k.a. aimbots,
running on top of your Client and always hitting the target. To detect such

Attack Types • 107

Client-based bots, you do have a fighting chance using antivirus-like (and
VAC-like) scanning techniques.

Another attack vector is an aimbot implemented as a proxy. Such prox-
ies sit between your Client and your Server, and can monitor and/or modify
the traffic according to the needs of the cheater. One big problem with such
proxy-based bots is that it is next-to-impossible to detect them. Fortunately,
properly incremented encryption does protect against proxies reasonably well,
though you need to keep in mind an unusual-except-for-games attack, which
can be described as man-in-the-middle attack against attacker’s own Client.
This, in turn, calls for unusual protection measures such as running-your-
own-CA and scrambling-your-certificate-within-your-executable. In general,
encryption-related issues, as they apply to games, will be discussed in Vol. IV’s
chapter on Basic Security, and their applicability to cheating will be discussed
in Vol. VIII.

The third attack vector for Reflex Augmentation is related to Lag Compen-
sation. Lag Compensation will be discussed in Chapter 3, but for now let’s note
that for the cheater it is always possible to pretend that his lag is higher than
it really is (and to drop this additional delay whenever he really needs it). This
opens the door to improving the player’s lag exactly when it is necessary (for
example, right before the player shoots, saving a few frames’ delay on the shot).

Abuses of Disconnect Handling

If the logic of your game happens to provide any kind of benefits to those who
get disconnected, you can count on this logic to be abused. In extreme cases,
your logic may even allow someone to “cheat death” by simply plugging out
the Ethernet cable (or shutting down the Wi-Fi router) when the cheater real-
izes that he’s about to die. Even if the benefit due to the disconnect is rather
moderate and quite difficult to get advantage of (such as “disconnect on all-
in,” which was an industry standard in online poker fifteen years ago, and was
pretty much dropped because of cheating), practice shows that it too will be
abused.

Impact: Usually fairly low.

If the logic of your game
happens to provide any kind
of benefits to those who get
disconnected, you can count
on this logic to be abused.

108 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

Attack Vector: Well, disconnecting (plugging out the cable, shutting
down the home router, etc.).

From what I’ve seen, the only way to deal with abuse of disconnect han-
dling is to change your Game Logic to remove the benefit to those discon-
necting. Any other attempts (such as “let’s try to detect by the Client whether
the Ethernet cable gets unplugged”) tend to be bypassable way too easily (in
particular, in case of Ethernet cable detection, it covers only plugging out the
immediate cable, so even a simple $10 switch usually defeats such detection).

Grinding Bots

Grinding Bots (essentially automated players) are well known as a part of
any popular-enough MMORPG (or any other game where the player’s “ex-
perience” affects gameplay). As soon as you have “grinding” as a part of your
game, there is an incentive to bypass the “grinding” and get the end result
without spending hours on it.⁷⁴ For other games, reasons behind grinding
bots are different, but they do exist pretty much regardless of the genre; when
the spectrum of such bots goes from an MMORPG all the way to poker sites,
you can expect pretty much everything else in between.

Abuse scenarios using grinding bots are endless. Just as one example, if
there are goodies associated with new accounts, bots may automatically reg-
ister, play just enough to get those goodies, and then to pass these goodies
along to a consolidation account; then the consolidation account can be used,
say, to sell the stuff on eBay. BTW, if you think that this schema is too convo-
luted to work, don’t count on it: I’ve seen that happening with my own eyes.

Impact: The impact of the grinding bots usually falls in a “low to medium”
category depending on the bot being published or not.

Attack Vector: For bots (including grinding bots), there are two common
attack vectors: Client-based bots and proxy bots. These bots (and methods to
deal with them) are usually very similar to the bots discussed in the Reflex
Augmentation section above.

⁷⁴ While for a good game many people find that the “grinding” itself is fun, this doesn’t
mean that all players will agree with it.

Abuse scenarios using
grinding bots are endless.

Attack Types • 109

Multiple Accounts

Whatever your game is about, there is usually enough motivation for players
to have multiple accounts. From your side, reasons to disallow such multiple
accounts are different and vary from enforcing bans to marketing and promo-
tion-abuse considerations.

Impact: Fortunately, while multiple accounts are usually prohibited in
T&C, and do affect gameplay in subtle ways, their impact on the game is usu-
ally very limited (that is, if you manage to convince your monetization guys
that there is no 100% reliable way to identify a player’s device, so they need to
plan their promotions taking possible abuses into account).

Attack Vector: Protection from multiple accounts is mostly based on
“Security by Obscurity” (except for paid accounts, for which you can use a
credit-card number or the equivalent to identify your player, but even in this
case protection can be bypassed for quite a while). As a result, completely
preventing multiple accounts is not realistic,⁷⁵ but we can still make it a bit
more complicated for the attacker (especially on non-jailbroken phones and
consoles).

Some ways of detecting multiple accounts will be described in Vol. IV’s
chapter on Basic Security, but don’t hold your breath over them—even a
half-dedicated cheater will be able to cheat around your protections.

Classical Attacks
In addition to game-specific attacks, most of the attacks known in non-game
space apply to games too. Here, we will discuss only a few of these attacks
(those that are most popular against games).

DB Attacks

If your game is intended to last longer than one single game session (which is
almost universal for MOGs), it needs some kind of persistence (usually imple-
mented on top of a database). And if attackers can get access to your Server’s

⁷⁵ Even less realistic than for other forms of “Security by Obscurity.”

If attackers can get access
to your Server’s DB, they can
do all kinds of nasty things.

110 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

DB, they can do all kinds of nasty things. Not only can they steal (and optional-
ly publish) all your players’ passwords (though this can be mitigated by proper
password hashing, see Vol. IV for details), they can also modify your database;
for example, so that they have all the artifacts they want.

Impact: The impact of such a DB attack can be very high; in an extreme
case, it can bring your whole game down for good.

Attack Vector: To get to your DB, the attacker usually needs to go after
one of your Servers. And fortunately, whenever somebody attacks your Serv-
er, the attack happens on your home turf. Protecting Servers is a well-known
field (which we’ll discuss in Vols. IV, VIII, and IX), and Servers can be kept
reasonably clean from malware too (that is, if you’re careful enough). Not that
you can guarantee that your Servers cannot be hacked, but such hacking can
be made quite difficult (okay, let’s make it very difficult), and you should be
able to learn about the hack fairly quickly.

Stealing Your Source Code

Stealing source code (for example, via spearphishing) is a problem for any
business, but it grows to be an enormous problem for games. In some cases,
such source-code leaks become published (like in the case discussed in [Par-
kin]), but if it is a cheater who steals your code, he’s likely to keep it to himself,
so it is very difficult to say how often such occurrences happen.

Impact: As games (especially game Clients) rely heavily on Client-Side
obfuscation, stolen source code will almost instantly defeat all such obfusca-
tion, making your game wide open to a whole bunch of cheats.

Attack Vector: The most common attack vector to enable stealing of the
source code is spearphishing (usually with a sprinkle of social engineering). As
it is extremely difficult to protect yourself from spearphishing attacks (even
RSA has fallen to such an attack (see [Bright]), and RSA guys are usually light
years ahead of any gamedev company security-wise), for large companies it is
usually a good idea to mitigate the potential impact from one such attack.

Such mitigation can go at least in three directions:

The most common attack
vector for stealing-your-code

attacks is spearphishing
(usually with a sprinkle
of social engineering).

Attack Types • 111

 ▶ My favorite: limiting reliance on Client obfuscation. While obfusca-
tion of the Client is known to be necessary for a few things in a game
world, IMNSHO, it is very heavily overused. Moving authority to the
Server-Side is possible for at least 99% of the things within your game,
and limiting information-on-the-Client to “only-whatever-the-
Client-needs-to-know-to-render” can be done for vast majority of
the data too, and so on. Yes, it won’t be possible to cover everything,
but from what I’ve seen, authoritative Client-Side decisions and
widely ignored Interest Management happen in many more situa-
tions than they should.

 ▶ Automated protocol obfuscation. With it in place, it will be signifi-
cantly more difficult for the attacker to get through the different parts
of your code. More on it in Vol. VIII.

 ▶ Limiting access to different parts of your source code to a need-to-
know basis; more on it in Vol. III, chapter on Pre-Coding.

Password Phishing

One wide class of attacks aims at neither your Client nor your Server, but
other players. And one way to target your players is so-called social-engineer-
ing attacks. These attacks have little to do with exploiting the technical side
of your game, but instead are about exploiting the gullibility of your players.

In particular, phishing out a bunch of passwords is really easy: just set
up a website promising “free gold” (“magical new weapon” or whatever-else-
applicable-to-your-game) for your players, ask site visitors to login with their
in-game login/passwords, and bingo! You’ve got a whole bunch of logins and
passwords that can be used for any purpose (cheating included).

Impact: Fortunately, the impact of phished passwords on the game tends
to be quite limited.

Attack Vector: All such attacks invariably get your player into the picture.
And more often than not, the player becomes the weakest link in your security.

In the world of classical security, the best way to deal with this specific
attack, which is quite dangerous in practice because of its simplicity, is using

112 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

so-called 2-factor authentication (2FA). However, convincing your players to
use 2FA (even as simple as Google Authenticator) is going to be an uphill
battle. OTOH, if (at least for some player accounts) your game does handle
really-valuable-things, and you just provide an option to use 2FA, it can im-
prove things. (a) You’ll get positive feedback from those security-conscious
players, and (b) to those complaining, you will be able to say, “Hey, we did
everything-we-could to prevent it; we even provided (and promoted) 2FA.
Please don’t blame us if you didn’t use it.” And BTW, I’ve seen 2FA used by a
game that wasn’t a stock exchange (worked like a charm, too). Implementing
2FA will be discussed in Vol. IX’s chapter on Security, Take 2.

Keyloggers/Trojans/Backdoors on
Another Player’s Device

Another type of attack that targets your players, is placing a keylogger or
some other kind of Trojan or backdoor onto player’s device (PC or phone
or…). Usually the aim of such an attack is to steal the user’s password, but
things such as “being able to know what the victim is up to” and “being able
to make an action impersonating the victim” are not unheard of.

Impact: While this kind of attack is technically not our problem as ga-
medevs (we’re not really in the picture), from the user’s perspective it is (“hey,
somebody has logged in as me and lost that Great Artifact I had, to somebody
else—without me even knowing about it!”). As a result, this attack may need
to be addressed, especially if the value of the things on the player’s account is
high enough. Fortunately, the impact of these attacks on the game ecosystem
tends to be low.

Attack Vector: As a rule of thumb, we cannot possibly control the way
the Trojan or backdoor gets onto a player’s PC. However, we can mitigate
its effects a little with the same 2FA used against password phishing; sure,
it won’t prevent “live” attacks (with the attacker seeing whatever-happens-
on-the-player’s-PC in real-time), but mounting these is significantly more
complicated than just organizing Trojan-based password stealing, so 2FA
does qualify as a way to mitigate the effects from Trojans.

2FA
is a method of computer
access control in which a
user is only granted access
after successfully presenting
several separate pieces of
evidence to an authentication
mechanism—typically at least
two of the following categories:
knowledge (something they
know), possession (something
they have), and inherence
(something they are).

—Wikipedia

Attack Types • 113

Other than that, well, it might be possible to check for the most-com-
monly-used backdoors (detecting them is not that dissimilar from detecting
bot software), but TBH, detecting a serious rootkit-based backdoor goes well
beyond our humble capabilities as gamedevs. On the other hand, it doesn’t
mean that all attackers will use serious backdoors, so IMO the jury is out on
the usefulness of this type of protection (and it can be implemented on top of
antivirus-like and VAC-like protections fairly easily too).

DDoS

DDoS attacks are fairly easily to mount, so they’re frequently mounted by
disgruntled players to vent out their frustration. For DDoS, the battle re-
ally takes place simultaneously on the attacker’s “Home Turf ” and on your
“Home Turf.”

Impact: Fortunately, DDoS attacks, while painful, usually do not last long
enough to cause too much trouble (that is, if they’re organized by a disgrun-
tled player or something). On the other hand, DDoS-based extortions (which
seemed to subside for a few years) look on the rise now, and these can be nasty
enough.

Attack Vector: There are many flavors of DDoS, but IMO the nastiest
type of DDoS is the one that simply overloads your ISP’s input channels, caus-
ing your ISP to filter your traffic out at its ingress filters (or even at its up-
stream ISP ingress filters) just to protect its other customers.

Dealing with large-scale DDoS attacks can be organized, but it requires
preparation well in advance. More on it in Vol. VIII.

IMO the nastiest type of
DDoS is the one that simply
overloads your ISP’s input

channels, causing it to
filter your traffic out at its

ingress filters, just to protect
its other customers.

114 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

MOG Attack Type Summary
Let’s summarize the attacks mentioned above in Table 2.1:⁷⁶⁷⁷

Attack Impact Attack
Vector(s)

“Home Turf”
Advantage

“Home Turf”
Advantage
if or when
the attack
is known

Where
Protection
Will be
Discussed

You Are Not
Allowed to
Ban Me!

Very High T&C /Legal N/A N/A Vol. VIII

Cheats
Game Rule
Violations

High to
Extremely
High

For Authoritative
Client: Client

Cheater’s Back and Forth This chapter⁷⁷

For Authoritative
Server: Server

Ours N/A Vol. IV, Vol. VIII

Information
Leaks

Medium to
Extremely
High

For
Deterministic
lockstep: Client

Cheater’s Back and Forth If “don’t use
it” qualifies as
a protection,
this chapter

For Authoritative
Server, and
if Interest
Management
is properly
implemented:
None

N/A N/A Chapter 3

Reflex
Augmentation

Low to
Medium

Aiming Bots
(Client)

Cheater’s Back and Forth Vol. VIII

Aiming Bots
(Proxy)

If encryption is
not implemented:
Cheater’s.
If encryption is
implemented: Ours

Same as for
non-published
attack

Vol. IV, Vol. VIII

Lag
Compensation
(Client)

Cheater’s Back and Forth Chapter 3

⁷⁶ As usual, only typical values are provided, and your mileage may vary.

⁷⁷ Well, the protection will be like “don’t use authoritative clients,” but it still qualifies as
protection.

Attack Types • 115

Attack Impact Attack
Vector(s)

“Home Turf”
Advantage

“Home Turf”
Advantage
if or when
the attack
is known

Where
Protection
Will be
Discussed

Cheats
Abuses of
Disconnect
Logic

Low Connection Cheater’s Still Cheater’s This chapter

Grinding Bots Low to
Medium

Client Cheater’s Back and Forth Vol. VIII

Proxy If encryption is
not implemented:
Cheater’s.
If encryption is
implemented: Ours

Same as for
non-published
attack

Vol. IV, Vol. VIII

Multiple
Accounts

Very Low Client Cheater’s Still Cheater’s Vol. IV

Classical Attacks
DB Attacks High to

Extremely
High

Server Ours N/A Vol. VIII, Vol. IX

Stealing Your
Source Code

Very High Development
Environment

Ours N/A Vol. VIII
and Vol. III’s
chapter on
Pre-Coding

Password
Phishing

Low Player Cheater’s
(in spades)

Still Cheater’s Vol. VIII

Keyloggers
/ Trojans /
Backdoors
on Another
Player’s
Device

Low Player’s Device Cheater’s Still Cheater’s Vol. VIII

DDoS Low Server None N/A Vol. VIII

As we can see from this table, only two of the attacks depend heavily on the
architecture: Game Rule Violations and Information Leaks (in the context of
Authoritative Clients and Deterministic Lockstep respectively). Let’s take a
closer look at the architectural approaches that affect these cheats.

116 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

AUTHORITATIVE CLIENT:
PRETTY MUCH HOPELESS
AGAINST CHEATERS
(EXCEPT FOR CONSOLE-ONLY GAMES)

From time to time, a question arises in various forums: “Why bother with
Servers, when we can have a SPOF-free, perfectly scalable system using P2P
(as in ‘peer-to-peer’)?” Moreover, there are arguments out there that the Cli-
ent-Server architectures are not scalable, and that the future lies with MOGs
being P2P. To have something concrete to argue with, I will use [Skibinsky] as
an example of such an argument.

With P2P, each Client performs its own calculations, which are then used
to determine the state of the Game World. In one example, we could say that
each player simulates her own character (and also some NPCs), and then sim-
ply sends results to all the other Clients (which simply apply these results to

SPOF
A single point of failure
(SPOF) is a part of a system
that, if it fails, will stop the
entire system from working

—Wikipedia

Authoritative Client: Pretty Much Hopeless Against Cheaters • 117

their copies of the Game World). This approach would even work, but only so
long as there are no cheaters. However, as soon as there is even one player
who wants to cheat, he can modify the Client; this is the point where things
start to become ugly. In such architectures, the other Clients will simply apply
the results-received-from-cheating-Client to their Game Worlds and our
cheater is able to get all kinds of benefits (including but not limited to instant
teleport, which is usually bad enough to kill the whole game).

Strictly speaking, not every architecture that gives the Client this kind of
authority is a P2P system; in practice, true P2P systems are relatively rare, and
architectures electing one of the Clients to be a temporary Server are much
more popular. Another variation includes the so-called non-Authoritative
Server, with the Server merely forwarding the data between the Clients. Still,
for the purposes of our current anti-cheating discussion, any kind of Author-
itative Client is pretty much the same, so we’ll consider all of them together
for the time being.

From the point of view of “Game Rule Violation” type of attacks with
an Authoritative Client, we’re essentially operating on the attacker’s “Home
Turf,” which makes us resort to “Security by Obscurity.” This problem is a
well-known one, and is widely acknowledged too; as a result, several tech-
niques are proposed to address it; unfortunately, as we’ll see below, at least as
of 2017, none of them is really workable in practice.

Code Signing—Doesn’t Really Work in a
Hostile Environment (Except for Consoles)
The first technique commonly proposed to deal with cheaters in Authoritative
Client architectures is code signing. At first glance it all sounds good: if we
have our app signed, we can be reasonably sure that it performs as we wrote it.

However, the problem with the code signing of the game (as with any
other code signing) is that as soon as the end-user himself wants to break
code signing, it becomes at best “Security by Obscurity.” This is a direct result
of the fact that as soon as the user-who-checks-the-signature turns against

As soon as there is even one
player who wants to cheat,
he can modify the Client;

this is the point where things
start to become ugly.

As soon as end-user himself
wants to break code signing —

it becomes at best
“Security by Obscurity”

118 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

us, we start operating on attacker’s “Home Turf ”: in such a case,⁷⁸ all the root
certificates (which are used to validate code signature) are under the control
of the attacker, making them essentially useless. If the attacker can modify
the root certificate, he can generate his own private/public key pair, use the
public key to make his own root certificate, and then sign his-own-code with
the private key.

Moreover, in such hostile environments, there is an even deeper question
of “who is the one performing validation?” As soon as it is the code-con-
trolled-by-user-himself performing that signature validation, he will find a
way for the validation to succeed even if the signature has nothing to do with
our private key.

BTW, [Skibinsky] also recognizes fundamental weaknesses of code sign-
ing, stating: “That still doesn’t provide 100% security”; to be completely honest,
I would go significantly further and say that, “When the user himself wants to
bypass code signing, it provides only a marginal security improvement; that is,
unless we’re speaking of consoles.”

The best protection in this field is certainly provided by consoles, and a
console does provide a reasonable level of protection until it is jailbroken; in
particular, consoles go to great lengths to disallow manipulating their root
certificates (and their signature validation code as well). On the other hand,
jailbreaks remain a Really Big Problem™ for consoles; in fact, all the major
consoles are jailbroken—the only question is not if they’re jailbroken, but
when (IIRC, PS3 has lasted the longest, for about five years without jailbreak).
On the third hand,⁷⁹ a great effort is made these days by console manufactur-
ers to prevent jailbroken consoles from going online, which is essentially a
shield-and-sword battle between hackers and console vendors; in practice, it
might indeed help our MOG purposes: that is, if your game is console-only.

I know of a few successful games that essentially rely on code signing
to prevent cheating in P2P-like architectures on consoles.⁸⁰ One prominent

⁷⁸ Which is BTW quite unusual from a traditional security point of view.

⁷⁹ You didn’t know that rabbits have three hands, did you?

⁸⁰ Actually, most of the time they’re not really “P2P,” but are more like “Authoritative
Server running on one of the consoles”; however, from a cheating point of view, it is
pretty much the same as P2P

Authoritative Client: Pretty Much Hopeless Against Cheaters • 119

example of such a game is Halo: Reach, and as far as I know, console-provided
security did work reasonably well for them to prevent cheating.

However, restricting your game to consoles-only is often not really an op-
tion, especially for an MOG (and as soon as your game runs both on console
and PC, PC is going to be the weakest link, and the one to be attacked).

Theoretical Protections
Besides the Code Signing and consoles, other anti-cheating measures were
proposed in literature (in particular, in the very same [Skibinsky]); however,
they’re of a more theoretical nature, and I don’t know of any successful game
that relies on them to deal with cheats. Here goes a very cursory overview
of these mostly theoretical techniques (with a very brief discussion of their
weaknesses).

Cross-Checks—Undetectable Attacks,
Taking Over the World, and Latencies

The first (mostly theoretical if applied to MOGs) technique to address inherent
vulnerability of Authoritative Client systems to “Game Rule Violation” attacks
is based on cross-checking of the calculations-made-by-our-potential-cheater
by other peers. While the idea sounds nice, in this way there are several Big
Problems™ too.

First, cross-checks cannot possibly detect a whole class of attacks where
the cheating node merely re-orders the packets it receives (or pretends that it
didn’t receive some of the packets), doing it of course in a way to receive an
advantage. If this is the only thing a cheater is doing, it will be able to pass all
the cross-checks (that’s by design, as packets do get delayed and dropped over
the Internet routinely, and there is absolutely no way to double-check what
was delivered and what wasn’t).⁸¹ This is one inherent and fundamental prob-
lem with cross-checking in distributed environments, though certainly not
the only one.
⁸¹ While for any specific attacking pattern it might be possible to demonstrate that the

attacker’s packet loss or reorder statistics are out of the ordinary, doing it without
knowledge of the attack specifics is extremely difficult (if possible at all).

First, cross-checks cannot
possibly detect a whole

class of attacks where the
cheating node merely re-

orders the packets it receives
(or pretends that it didn’t

receive some of the packets).

120 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

Next, we need to mention that the nodes performing cross-checks are
themselves vulnerable to cheating. Note that even the Bitcoin system (which
solves only a singular problem that is extremely narrow compared to general
gaming) has an inherent 50% attack (i.e., if cheaters can control 50% of the
network, they take it over), and Bitcoin performs cross-checks essentially
over their whole network. With the inevitably selective nature of the cross-
checks for MOGs (we simply cannot perform all the calculations on all the
nodes due to performance limitations), things won’t be any better for MOGs.
Moreover, we cannot expect MOG players to be as diligent as people run-
ning Bitcoin nodes, which enables attacks such as “Hey, let’s install this new
free cool mod with such and such features” (effectively modifying all such
Clients to run under the cheater’s control. Bummer). In addition, the prob-
lem of “Taking Over the Game World” can be easily exacerbated by creating
a caste of “trusted nodes” (in such cases, the attacker doesn’t need to take
over the whole world, but just build their own network of nodes that “trust”
one another); for more discussion on “trusted” nodes, see Trusted Nodes—
Who Is the One We Trust? subsection below.

And last but certainly not least, all these cross-checks will inevitably lead
either to significant additional delays (which is unacceptable for the vast ma-
jority of games), or to cross-checks being performed not in real time, but “a
bit later.” The latter approach raises another Big Question™: “What shall we
do with the game world when the cheater is caught?” Sure, we can ban the
cheater for life (or more precisely, “until he opens a new email account and
registers again”), but what should we do with the consequences of his cheat-
ing actions? This question, to the best of my knowledge, has no good generic
answer: leaving cheater deeds within the world is at best unfair to the others
(not to mention that a cheater may cheat in the interests of another player),
and rolling the whole world back whenever the cheater is found is impractical
(not to mention the frustration of all the players not affected by cheating, but
losing significant time of their play).

I will stop short of saying that cross-checks can’t possibly work for
MOGs⁸² and instead note that with cross-checks (a) there are many more

⁸² After all, they do work for distributed computing, though constraints for MOGs and
distributed computing are very different.

We cannot expect MOG
players to be as diligent
as people running Bitcoin

nodes, which enables attacks
such as “Hey, let’s install

this new free cool mod with
such and such features.”

Authoritative Client: Pretty Much Hopeless Against Cheaters • 121

problems than solutions, and (b) I don’t know of a successful MOG that relies
on cross-checks to address cheating.

Consensus (Actually, Majority Vote)—
Even More Latencies
A further development of cross-checks is so-called consensus-based solu-
tions. One example of such a system is Bitcoin, another one is a newer “Stellar
Consensus Protocol” a.k.a. SCP [Joyce Kim]. Actually, both of these systems
demonstrate the aforementioned latency problems; in short, they’re damn
slow. And while SCP claims to reach consensus in a mere 2-5 seconds (which
indeed is a huge improvement over Bitcoin), this is still waaaaay tooooo
loooong for a vast majority of the games out there.

Trusted Nodes—Who Is the One We Trust?

Yet another mostly theoretical technique more or less commonly proposed
to address cheating in Authoritative Client architectures is a kind of “trust”
system, with some of the nodes being trustworthy, and some being untrust-
worthy, and then only trustworthy nodes being used for calculations that
affect our Game World.

While the idea looks attractive at first glance, there is a fundamental
problem when trying to apply it to an MOG. The problem is simple: who are
we going to trust?

In this regard, I don’t know of any good strategy; instead, there are several
questions for which I don’t have good answers. Examples of these questions
include:

 ▶ How to identify node if its owner wants to change the identity? Tying
identification to device is impossible (except, maybe, for consoles; see
above). Tying to easily changeable things such as IP or email is outright
silly. And while it is possible to generate the key and store it on the de-
vice, and it will serve as a more-or-less reasonable identification as long

Who are we going to trust?

122 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

as the device is not hacked, such a key can be easily erased, so it won’t
prevent the owner from changing the identity.⁸³

 ▶ If we cannot identify nodes when their owners want to change the
node identity, how we’re going to punish cheaters? And if we don’t
punish, what will prevent them from cheating again and again?

 ▶ What is the minimum number of organized cheaters necessary to
“take over the world” (this number will inevitably be lower than the
number in an absence of “trustworthy” nodes)?

IMO, the combination of these unanswered questions makes any “trusted
node” approach fairly hopeless for a large-scale MOG based on Authorita-
tive Client. In particular, there is no obvious way to prevent somebody from
creating several dozens (or several-hundred, if necessary) of accounts, to
make them trust one another, reaching “trusted node” level (the one allowed
to perform calculations), and then to use these nodes (acting in sync) to
run a game according to their own rules (outvoting and potentially banning
any “honest” node whose calculations conflict with theirs). Moreover, this
is actually a very high-risk scenario: imagine your game being overtaken by
cheaters who can play their own game, while still using your software and
your marketing assets and efforts; sounds like an Ultimate Nightmare™ for
an MOG company.

Homomorphic Encryption—Doesn’t Even Start to Fly

In theory, there is yet another technique, based on so-called homomorphic
encryption. The theory behind it is very complicated and is well beyond the
scope of this book, but the end result can be stated as follows: it is possible
(both in theory and in practice) to build a system that uses other nodes in
a completely non-transparent manner, so they’re performing calculations
without any ability to cheat (and even without an ability to read the data
that they’re processing). However, once again, while interesting in theory,
this approach is not practical, at least not for MOGs: overheads incurred

⁸³ In other words, such a key can only provide positive identification, not negative.

Authoritative Client: Pretty Much Hopeless Against Cheaters • 123

even by the latest greatest homomorphic systems are huge enough to prevent
even using them for environments that are much less demanding perfor-
mance-wise than games. And for games, it is a non-starter (at the very least,
for the foreseeable future).

Authoritative Client MOG Summary
To summarize the discussion on Authoritative Client MOGs above: while
Authoritative Client architectures (including both pure P2P and server-
running-on-one-of-Clients) are known to work more-or-less okay for com-
munities that can trust one another—

As of now, I don’t see how an Authoritative Client
MOG can provide reasonable protection from a

dedicated cheater (except for console-only games).

BTW, I am certainly not alone in this understanding: the movement against
Authoritative Clients (and toward Authoritative Servers) is gaining more and
more traction within the industry (see, for example, [Sweeney] and [Fiedler,
What every programmer needs to know about game networking], just to
name a few).

While in theory there might be games that can be protected using Author-
itative Clients (as in, “I don’t have formal proof that such games can’t possibly
exist”), think more than twice when choosing to rely on Authoritative Clients
beyond consoles. Oh, and make sure to re-read the If You’re Popular Enough,
They Will Find Reasons to Cheat section above.

The movement against
Authoritative Clients (and

toward Authoritative Servers)
is gaining more and more

traction within the industry.

124 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

DETERMINISTIC LOCKSTEP:
NO GAME-RULES VIOLATIONS, BUT
WIDE-OPEN TO INFORMATION LEAKS
Another rather popular idea for multiplayer games (especially for real-time
strategies) is to make sure that all the Clients have an exactly identical state.
This is achieved by (a) having all the code for all the Clients being exactly
the same and deterministic, (b) having exactly the same initial state, and (c)
feeding exactly the same inputs to all the Clients. For more discussion on
Deterministic Lockstep specifics, see the all-time classics of [Terrano and
Bettner] and [Fiedler, Deterministic Lockstep].

BTW, let’s note that Deterministic Lockstep as such does not prevent us
from having an Authoritative Server: at least in theory, we could run the Au-
thoritative Server that is identical to any of the Clients (and will take its data
as authoritative to figure out who won). On the other hand, such a Determin-
istic-Lockstep-with-Authoritative-Server is rarely used in practice; IMO, it
mainly happens for two reasons. (a) For quite a few games it is okay to merely
poll several Clients at the end of the “game event” (such as RTS battle), and
unless at least half of the players is cheating, it is trivial to find out the real
winner just by figuring out the majority (on the other hand, if the battle is a
match between two parties, it is not possible to completely rule out that one
whole party cheats). (b) As achieving 100% cross-platform determinism is
next-to-impossible, this Deterministic-Lockstep-with-Authoritative-Server
approach doesn’t fly well for Clients running on non-PC platforms (including
consoles).

Going back to our current anti-cheating analysis, we can see that Deter-
ministic Lockstep (whether with Authoritative Server or not) does prevent
the modifying-gameplay kind of cheating pretty well (especially if an Author-
itative Server is present, or if the possibility of 50%+ of cheaters can be ruled
out), which is, obviously, a Good Thing™.

However, the grass is not all that green on the Deterministic Lockstep
side. The problem is that with Deterministic Lockstep, all the Clients are
bound to keep the whole state of the Game World. This means that a dedicated

The problem is that with
Deterministic Lockstep, all the
Clients are bound to keep the

whole state of the Game World.

Deterministic Lockstep • 125

cheater can easily extract the state of Game World from the Client, and can
easily implement all those see-through-walls and lifted-fog-of-war cheats
(a.k.a. wallhacks and maphacks).

In addition, Deterministic Lockstep has some purely technical problems
(ranging from difficulties with achieving 100%-deterministic behavior across
different platforms to having to wait for the slowest-guy-at-the-moment).
These problems have lead Glenn Fiedler to write, “I recommend using deter-
ministic lockstep over the internet for 2-4 player games only.”

On the other hand, there is still one very popular case for Deterministic
Lockstep (especially among indie gamedevs)—it is Real-Time Strategy (RTS)
games. Still, unless proven absolutely hopeless for a specific game, I very clearly
prefer “classical” Authoritative Servers (i.e. Authoritative Servers that replicate
their state to Clients, and not Deterministic-Lockstep-with-Authoritative-
Server) even for RTS; actually, the only argument against Authoritative Servers
for RTS is traffic, but it seems to be solvable; see discussion in Chapter 3 on ways
to optimize RTS traffic. And with traffic problems out of the picture, Authorita-
tive Servers very clearly win over Deterministic Lockstep for several significant
reasons:

 ▶ With classical Authoritative Servers, the slowest player no longer
holds everybody else up. This becomes a clear prerequisite if you
want to have Game Worlds with more than 5-10 players.

 ▶ With classical Authoritative Servers, whomever lost connection can
still reconnect in a finite time (and for Deterministic Lockstep, this
problem was very unpleasant, in particular, with earlier versions of
Heroes of the Storm⁸⁴).

 ▶ With classical Authoritative Servers, there is an option to utilize all of
the advantages of UDP (using it for eventually consistent state sync
and reducing observable latencies more than is possible to achieve
with reliable UDP; more on it in Vol. IV’s chapter on Network Pro-
gramming). While usually RTS is relatively insensitive to latencies,
improving latencies never hurts.

⁸⁴ Later, they fixed it via creating snapshots, but snapshots are a Big Headache™.

126 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

 ▶ With classical Authoritative Servers, you can allow players with Cli-
ents on different platforms to play in the same Game World (with
Deterministic Lockstep, doing it requires cross-platform determin-
ism, which is next-to-impossible in practice; see more discussion on
it in Vol. II’s chapter on (Re)Actors).

And most importantly: as Authoritative Servers can do Interest Management,
they greatly reduce any potential for maphacks or wallhacks. The idea behind
Interest Management is simple: with an Authoritative Server, all the game-
decision logic resides on the Server, and the Client is essentially just drawing
Server-Side state. As a result, information sent to the Client can be limited to
(give or take) whatever-can-be-seen-on-the-screen. While the Client usually
needs to have a bit more information than fits on screen (to allow for move-
ments or scrolls or…), it is still very far from it keeping the whole Game
World. For more discussion on Interest Management, see Chapter 3.

With all this in mind, and taking into account that those wallhacks and
maphacks tend to hit exactly-those-RTS-they-are-targeting in a pretty bad
way, I tend to say that Deterministic Lockstep (at least in the context of
over-the-Internet games aiming for more than a few players) should be used
only as a last resort, i.e., if all the attempts to reduce traffic by other means
(which will be discussed in Chapter 3) fail; and, assuming that you did a good
job of optimizing traffic, this IMHO should be very unlikely.

AUTHORITATIVE SERVER:
AS CHEATER-PROOF AS THEY GET
With all these problems plaguing Authoritative Clients and Deterministic
Lockstep architectures, it is not really surprising that in recent years the “Au-
thoritative Server” approach gets more and more popular. Moreover, IMNSHO,
it the only really viable MOG architecture for most of the games out there.

In the usual approach to Authoritative Servers for a virtual world game,
Clients usually have a 3D engine, but this 3D engine is used purely for ren-
dering and not for decision-making. On the other hand, all the player inputs

As Authoritative Servers can
do Interest Management, they
greatly reduce any potential
for maphacks or wallhacks.

Authoritative Server: As Cheater-Proof as They Get • 127

(not “object coordinates resulting from movements,” but more or less “player
keypresses and mouseclicks themselves”) are sent to the Server, and it is the
Server that moves the players (and other stuff) around; it is also the Server
that makes all the decisions about collisions, hits, etc. Moreover, with an Au-
thoritative Server, it is the Server that makes all the changes in its own copy
of the game world (and the Server’s copy is an authoritative copy of the game
world, which is then replicated to the Clients to be rendered).

Among other things, it means that for Virtual World games⁸⁵ with an
Authoritative Server, it is the Server (and not the Clients) that needs to im-
plement the physics engine (though 3D rendering engines still reside on the
Clients).

On the other hand, for fast-paced games, the delays of going-to-Server-
and-back-to-Client with every keystroke are often not acceptable. In such
cases, the Client often implements some kind of “Client-Side Prediction,”
essentially applying its own inputs to its own copy of the Game World; this
Client-Side Prediction may lead to moving the PC around, and in some cases,
it may even show hits based on its own understanding of the Game World.
On the other hand, with Client-Side Prediction, the Client’s copy of the Game
World is not authoritative, so if the vision of the Server and the vision of the
Client become different, it is the Server’s copy that is always “right.” Therefore,
all effects of the decisions made by Client-Side Prediction are always transient;
moreover, the effects of these decisions do not leave the Client, so that any
cheating of anybody-but-yourself becomes unfeasible. For more discussion on
Client-Side Prediction for fast-paced games based on Authoritative Servers,
see Chapter 3.

From the point of view of preventing cheaters from affecting your game-
play, Authoritative Servers are the best thing you can have. If you have enough
checks on the Server-Side, you always can enforce game rules with relative
ease. And while when using Client-Side Prediction, temporary disagreements
between Clients and Server are possible, it is always clear how to resolve the
conflict (as noted above, it is Server that always “wins”).

⁸⁵ Such as RPGs and FPSs.

With an Authoritative Server,
it is the Server that moves

the players (and other stuff)
around; it is also the Server
that makes all the decisions

about collisions, hits, etc.

128 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

It is worth noting that merely using an Authoritative Server doesn’t nec-
essarily imply security against cheaters; Authoritative Servers merely provide
the means to make your game secure, and you will need to do quite a few
things on top of Authoritative Servers to utilize these means and make your
game reasonably cheater-proof (Interest Management, discussed in Chapter
3, being just one of these things).

Authoritative Servers:
Scalability Is Imperfect But Workable

There is only one objection against this theory,
and it is that the theory is wrong.

—C.N. Parkinson

Before committing to Authoritative Servers, let’s consider one common argu-
ment pushed by opponents of using-Authoritative-Servers-for-gaming; this is
the (mis-)argument that Client-Server systems are not scalable. In particular,
such an argument is presented by [Skibinsky], but this is by far not the only
source of such allegations. Leaving aside outright ridiculous statements such
as “one of the fundamental weaknesses of the C/S architecture is its depen-
dency on a single physical channel to the datacenter”⁸⁶ and “all packets have
to arrive from clients to a single router,” let’s concentrate on those arguments
worth discussion.

The most important line of the argument of alleged non-scalability of
Client-Server games revolves around the “O(P2) traffic estimate.” The idea
behind the argument goes as follows: first, let’s consider a game world with P
players within; now let’s consider each player making some kind of change
every N seconds, and let’s assume that this change needs to be communicated
to all the P-1 of the other players. Hence (they argue), for P players in the
world, we need to push O(P2) bytes of traffic per second, making Client-Serv-
er architectures non-scalable.

⁸⁶ Oh, really? TBH, I have yet to see even a half-decent datacenter without multi-homing.

O(n)
Big O notation is a
mathematical notation
that describes the limiting
behavior of a function when
the argument tends towards
a particular value or infinity.

—Wikipedia

Authoritative Server: As Cheater-Proof as They Get • 129

If O(P2) would indeed be the case, then we’d indeed have quite significant
scalability problems. Fortunately, in practice this O(P2) estimate doesn’t really
stand; let’s take a closer look.

First, let’s note that in the real world the number of people we’re directly
interacting with has no relation to the number of people in the world. In vir-
tual Game Worlds, it is normally the same thing—the number of people (or
other entities) players are interacting with is limited not by the world popu-
lation, but by our immediate vicinity, which in most cases has nothing to do
with the world size. This is the point where the T=O(P2) estimate falls apart
(assuming reasonable implementation), and is replaced with T=O(P)*C,
where C is the constant representing the size of this “immediate vicinity.”⁸⁷
From this point on, the estimate is no longer T=O(P2), but just T=O(P) (with
mathematicians among us sighing in relief).

In fact, this technique is well-known for MOG developers under the
name “Interest Management”⁸⁸ and will be discussed in Chapter 3.

Second, if T=O(P2) is the case, it would mean that limits on the bandwidth
of individual users would be hit pretty soon, so that even if somebody designs
a world with everybody-to-everybody direct interaction all of the time, it still
won’t run regardless of architecture (i.e., it won’t run in Client-Server, but it
won’t run in P2P either).

These theoretical exercises are also supported by practical experiences;
while the dependency of traffic from the world size is usually a bit worse
than simple T=O(P), given reasonable implementation, it is never as bad as
T=O(P2). In other words—

In a properly implemented Client-Server game,
for a large enough world population P,

traffic T is much closer to O(P) than to O(P²).

⁸⁷ In [Skibinsky], this effect is referred to as immediate action-reaction manifold, and it is
relied on to ensure P2P scalability, though for some reason it is mentioned only in the
P2P context.

⁸⁸ Yes, the very same one that helps deal with cheating.

Fortunately, in practice
this O(P2) estimate

doesn’t really stand.

130 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

This observation has one very important practical consequence: as soon as
T is close to O(P), it means that your traffic is roughly proportional to world
population P, which means that your expenses E are also proportional to P.
On the other hand, within certain non-so-implausible assumptions, your
income I is also more or less proportional to P. As long as this stands, it
means that both your income I and your expenses E grow more or less pro-
portionally to P; this in turn means that if you were making money with
10,000 players, you will still make money (and even more of it) with 1 mil-
lion players.

An Example Calculation

To bring all the big-O notation above a bit more down to earth and to
demonstrate these effects from a more practical perspective, let’s consider
the following example:

Let’s consider a game where you can interact directly with at most only
C=100 other players, regardless of the world size and regardless of the world
population P. Of course, architecting and implementing your game to ensure
a limit on C requires that you implement Interest Management, but doing so
is perfectly feasible for most of the games out there.

Let’s take the traffic estimate per player-interacting-with-another-player,
from [Skibinsky], i.e., as ~15 bytes/sec (in practice, your mileage will vary,
but if you’re doing things right, it usually won’t be off by more than an order
of magnitude, so we can take it as a rather reasonable estimate). Let’s also
assume that your monetization efforts are making you $0.05/month. And let’s
further assume that your Servers are residing in the datacenter,⁸⁹ and that
pricing is around $2,000 for an unmetered 10 Gbit/s uplink, around $300/
month for an 1 Gbit/s uplink, and around $30/month for a 100 Mbit/s uplink
(these sample prices are taken for the same datacenter of the same large host-
ing ISP at the beginning of 2017).

Therefore, when you have 10,000 simultaneous players, you’ll have traffic
of at most 15 bytes/sec/interaction * 10,000 players * 100 interactions/player
~= 1.5e7 bytes/sec ~= 0.015GByte/s ~= 0.13 Gbit/s; this will cost you around
⁸⁹ And not in your office; see Vol. VII’s chapter on Preparing for Launch for discussion.

It means that both your income
I and your expenses E grow
more or less proportionally

to number of players P.

At the same time, with
your monetization you’ll be
making around $500/month,
which means that your traffic

costs are not too bad.

Authoritative Server: As Cheater-Proof as They Get • 131

$40/month. At the same time, with your monetization you’ll be making
around $500/month, which means that your traffic costs are not too bad.⁹⁰

When you grow to 1 million simultaneous players, then your traffic per
user will increase. As noted above, T won’t grow as T~P2, but there will be a
modest increase in per-user traffic because while each part of traffic T’ (with
sum of all T's being T) can in most cases be optimized to plain T’~P; in prac-
tice usually you’re too lazy (or have too little time) to optimize all of them.
For the purpose of our example, let’s assume that your per-player traffic has
grown five-fold (you should be rather lazy—or busy—to get to 5x per-user
traffic increase, but, well, it can happen). As a result, when you grow to 1
million simultaneous players, your traffic will grow 500-fold, bringing it to 65
Gbit/s, costing you $13,000/month. While this may sound like a lot of money,
we should note that at the same time, with your $0.05/player/month mone-
tization and a million players, you’ll be making $50,000/month, which is still
much more than enough to cover traffic bills (and note that if it ever becomes
a problem, you still have that about-5x-times overhead, most of which can be
recovered given sufficient development time).

Summary: Authoritative Server Is Not Ideal,
But Is the Only Thing Workable
Let’s summarize our findings about the three different approaches in the
following table:

Scalability Resilience to Game-
Rule Violation

Resilience to
Information Leak

Authoritative Client Up to “Very Good” Poor It depends

Deterministic
Lockstep

Very Good Good Poor

Authoritative Server Acceptable Good Good

⁹⁰ Don’t rush to buy that house in the Bahamas, though—while traffic costs can indeed be
negligible, other costs, especially advertisement costs to keep new players coming, are
usually not.

132 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

Given our discussion above in the Dealing with Cheaters section, having poor
resilience to Game-Rule Violation cheating is a show-stopper for most of the
MOGs out there. And as noted above, this point of view seems to be support-
ed by MOG developers around the world. As for Deterministic Lockstep, the
combined effects of inherent Information Leak and less-than-10 max players
per Game World effectively rule it out for most of the games out there.

For most of the games out there, this leaves us with the only workable
solution: an Authoritative Server. While there are some exceptions to this rule
(in particular, console-only games that can work with Authoritative Clients,
and some of the RTS that may warrant Deterministic Lockstep), as a Big Fat
Rule of Thumb™, Authoritative Servers are the way to go.

THINK POSITIVE!
OR, MAYBE THERE’S STILL HOPE...

- Maybe there’s still hope?
- Nope!

—Garfield the cat

After reading about all the cheater-related problems discussed above, you
may get the impression that cheaters will inevitably gain the upper hand
against you. However, this is not the case. While you’re destined to spend a
large chunk of your time fighting cheaters, and zero cheating is a utopia for
any game with more than a thousand players, you still may keep your cheaters
in check and prevent them from affecting the ecosystem of your game too
much.

One thing that tends to help us greatly in this regard is based on the
following observation:

“You don’t have to run faster than the bear
to get away. You just have to run faster
than the guy next to you.” —Jim Butcher

While you’re destined to
spend a large chunk of your
time fighting cheaters, and
zero cheating is a utopia for
any game with more than a
thousand players, you still
may keep your cheaters in
check and prevent them

from affecting the ecosystem
of your game too much.

Think Positive! Or, Maybe There's Still Hope... • 133

For our anti-cheating fight, it can be paraphrased as:

“You don’t have to be 100% cheat-proof to save
your game from cheaters. You just have to do

better than the guy next to you.” —No Bugs Hare

The economy of cheats—especially of those commercially available ones—
dictates that if there are two targets, one being very juicy but very well-pro-
tected, and another being moderately juicy but poorly protected, commercial
cheaters are clearly going for the latter (and yes, I’ve seen it first-hand in real
life). After all, it is nothing personal, just business.

Every Bit Counts: Multi-Layer Protection
One all-important consequence of the reasoning above, is—

On the anti-cheating front, every bit counts.

As we cannot possibly create a bulletproof way to win the battle with cheaters,
and as the more cheating-proof we are, the less the chance that we’ll be singled
out for the attack, it makes perfect sense to add more and more defenses, try-
ing to catch cheaters from many different angles (at least as long as these
additional defenses don’t cause observable collateral damage to players).

BTW, there is one more interesting observation that supports the mul-
tilayer defense approach. If the attacker comes in, breaks your defense, and
only then do you start to think how to patch that hole, then the next time
he will be very motivated to break in (and will likely succeed). On the other
hand, if your defense has five or so layers he needs to penetrate, then after
breaking one or two (and without any positive feedback that he managed to
achieve something), he is very likely to lose all drive and faith in his abilities
(or the feeling that he’s going in the right direction).

It makes perfect sense to
add more and more defenses,
trying to catch cheaters from

many different angles.

134 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

In other words—

Don’t feed the cheater’s ego,
and don’t provide feedback to him.

A short real-world story in this regard: Once upon a time, there was a cheater
who had almost broken a communication protocol for a large game (and who
shared it in a relevant forum, asking for some minor help to complete the
break); while the game had a (near-)perfect Authoritative Server (so that it
could not be manipulated from the outside by illegal means), there was still
the possibility that people would start writing grinding bots.

As a side note: the attack was quite ingenious by the standards of that time
(the guy replaced root certificate within the Client, and then mounted a
MITM attack against his own Client to get to the protocol).

In response, gamedevs made five separate layers of protection (each of
which was sufficient to prevent the attack from happening), and deployed all
of them simultaneously. Not only has the attacker never been heard about,
but for several years there were no known protocol-level breaking attempts at
all. As a result, I think this story qualifies as pretty good (though inherently
anecdotal) kinda-evidence to support the case for multilayer protection, and
with several protection layers deployed at the same time.

MITM
a man-in-the-middle attack
(often abbreviated MITM),
is an attack where the
attacker secretly relays
and possibly alters the
communication between
two parties who believe they
are directly communicating
with each other.

—Wikipedia

Chapter 2 Summary • 135

BOTTOM LINE FOR CHAPTER 2:
YES, IT IS GOING TO BE AN
AUTHORITATIVE SERVER
Summarizing from Chapter 2:

 ▶ Cheating is One Big Problem™ for MOGs

 ▶ Players will cheat even if you’re sure they have zero reason to

 ▶ Game-Rules Violations is one of the big potential problems for your
game

 ▶ P2P and other Authoritative Client-based architectures provide very
poor protection against Gameplay Cheating

 ▶ Deterministic Lockstep has inherent weakness to Information Leak
cheats, and a bunch of other limitations making it unsuitable for
MOGs

 ▶ Despite some claims to the contrary, Authoritative Servers can be
made scalable

 ▶ Given the balance of pros and cons, Authoritative Servers look like
the best option as of now; some (including myself) will even argue
that in most cases it is the only viable option. While exceptions are
theoretically possible, they are quite unlikely.

As a result—

For the rest of this book, we will discuss
Authoritative Servers and only Authoritative Servers.

The two possible exceptions where you might deviate from the Authoritative
Server model are the following:

 ▶ Console-only games with multiplayer capability. In this case, a rather
popular (and apparently working) solution is to use one of the consoles

136 • CHAPTER 2: On Cheating, P2P, and [Non-]Authoritative Servers

as an “elected” Authoritative Server. While I am not a big fan of this ap-
proach, it might fly (and has been seen to fly for real-world games too).
BTW, most of the stuff within this book will still apply to such MOGs
(with one of the consoles acting as an elected Authoritative Server).

 ▶ RTS games with only-a-few-players within the same Game World.
Some of these games might require a Deterministic Lockstep to deal
with all those thousands of simultaneously moving units. Still, I’d rath-
er not write Authoritative Servers off, at least until you (a) read Chapter
3 on known ways to compress these units, and (b) experiment with
such compression yourself (as it applies to your specific game). If you
manage to limit your traffic while staying within Authoritative Server
model, you’ll be able to get quite a few benefits from it.

Phew. I hope that I managed to convince you to use Authoritative Servers for
your next MOG; while there can be some rather narrow exceptions, I am pret-
ty sure that for the vast majority of the games out there, it is the way to do it.

Bibliography
Bright, Peter. 2011. Spearphishing + zero-day: RSA hack not “extremely

sophisticated”. http://arstechnica.com/security/2011/04/
spearphishing-0-day-rsa-hack-not-extremely-sophisticated/.

Fiedler, Glenn. 2014. Deterministic Lockstep. http://gafferongames.com/
networked-physics/deterministic-lockstep/.

—. 2010. What every programmer needs to know about game networking.
http://gafferongames.com/networking-for-game-programmers/
what-every-programmer-needs-to-know-about-game-networking/.

Harton, Eugen. 2016. Once A Cheater Always A Cheater: Gotta Catch ‘Em All.
http://www.gdcvault.com/play/1023193/Once-A-Cheater-Always-A.

Kim, Joyce. 2015. Stellar Consensus Protocol: Proof and Code.
https://www.stellar.org/blog/stellar-consensus-protocol-proof-code/.

Parkin, Simon. 2016. Catching up with the guy who stole Half-Life 2’s
source code, 10 years later. http://arstechnica.com/gaming/2016/06/
what-drove-one-half-life-2-super-fan-to-hack-into-valves-servers/.

Chapter 2 Summary • 137

Pritchard, Matthew. 2000. How to Hurt the Hackers: The Scoop on Internet
Cheating and How You Can Combat It. http://www.gamasutra.com/
view/feature/3149/how_to_hurt_the_hackers_the_scoop_.php.

Skibinsky, Max. 2005. “The Quest for Holy Scale.” In Massively
Multiplayer Game Development 2, 339-373.

Skorobogatov, Sergey. 2011. “Hardware Security of Semiconductor Chips:
Progress and Lessons”.
http://www.cl.cam.ac.uk/~sps32/NCL_2011.pdf.

Sweeney, Tim. 2009. Unreal Networking Architecture.
https://docs.unrealengine.com/udk/Three/NetworkingOverview.html.

Terrano, Mark, and Paul Bettner. 2001. 1500 Archers on a 28.8: Network
Programming in Age of Empires and Beyond. http://www.gamasutra.
com/view/feature/131503/1500_archers_on_a_288_network_.php.

CHAPTER 3.

COMMUNICATIONS

Now, after all the preliminaries, we’re finally ready to discuss what MOGs
are all about—communications. However, please don’t expect me to discuss
much of the lava-hot “UDP vs. TCP” topic—we’re not there yet (most of this question,
along with the ways to mitigate their respective issues, will be discussed in detail in
Volume IV’s chapter on Network Programming). For now, we need to understand the
principles behind the MOG operation; mapping them to specific technologies is a re-
lated but different story, and we’ll follow up with the discussion in Vol. IV.

140 • CHAPTER 3: Communications

CLIENT-2-SERVER AND
SERVER-2-CLIENT COMMUNICATIONS
As we discussed at length in Chapter 2, throughout this book we’ll be speak-
ing about Authoritative Servers. While much of the same logic will apply
to scenarios when the Server app runs on one of the player’s computers
(consoles, etc.), we’ll still call it a communication between the “Client” and
the “Server.”

In this regard, several different types of communication arise (see, for
example, [Aldridge]):

 ▶ Player Inputs, going from Client to Server. These are inputs such as
player clicks and controller inputs—plain and simple. NB: As discussed
in Chapter 2, with Authoritative Servers, we cannot process inputs and
make game-related decisions on the Client—and should instead feed
them (pretty much as mouse and/or keyboard clicks) to the Server.

 ▶ State Sync, going from Server to Client.⁹¹ State Sync is synchroniza-
tion or replication of the current state of the Game World from our
Authoritative Server to the Client. We’ll name the state that is syn-
chronized over the network “Publishable State” (and as we’ll see be-
low, it will usually be different from both the Server State and Client
State). Note that achieving this eventually synchronized copy of the
current Publishable State on the Client in a way that is efficient both
latency-wise and traffic-wise is not trivial (and we’ll discuss it in the
“Reference Base” for Unreliable Communications section below), but
for now we just need to assume that it is usually possible.

 ▶ Transient Events, going from Server to Client. These include things
such as “there is a bullet hit at this point,” and are usually implemented
on top of some kind of broadcasted or multicast messages.⁹² The main
difference from “Publishable State” sync is that Transient Events make
sense only “right now” and, if they’re lost, there is no point sending

⁹¹ Also known as “state replication.”

⁹² As Interest Management can and sometimes should apply to Transient Events, it can be
some kind of “filtered broadcast”; see below.

State Sync is synchronization
or replication of the current

state of the Game World
from our Authoritative
Server to the Client.

RTT, Input Lag, and How to Mitigate Them • 141

them again, which makes them an ideal case for an unreliable message
delivery (or an unreliable RPC call).

 ▶ Forwarded Inputs, going from Server to Client. These are essential-
ly “hints” to allow Client-Side Prediction to account for movements
of other players better, and may be either inputs of other Clients, or
(more often) derivatives-made-by-Server-from-other-player-inputs.
The rough idea goes along the lines of “if certain movement is already
indicated by the player’s input, but is not really visible yet within the
Publishable State, then to make the Client-rendered-representation
more precise, it may be beneficial to use other players’ inputs to im-
prove Client-Side Prediction.”

 ■ On the other hand, this additional information is ripe for
Information Leak cheats, so, as a rule of thumb, I’m against
Forwarded Inputs (though I still admit that keeping players
happy usually outweighs anti-cheating considerations). More
discussion on Forwarded Inputs will follow in the Forwarded
Inputs section below.

RTT, INPUT LAG,
AND HOW TO MITIGATE THEM
For the time being, we’ll concentrate on the two most obvious things—
Player Inputs and State Sync. In other words, we’ll be speaking about the
Client sending Player Inputs to the Server, and receiving back updates-to-the-
Game-World-State.

Data-Flow Diagram, Take 1
Note that if your game is fast-paced (think MMOFPS or to a
lesser extent first-person MMORPG), the approach described
with regard to the Take 1 Diagram, won’t allow you to produce
a game that doesn’t feel “sluggish” (it will work, but won’t feel
responsive when run over the Internet). However, please keep

142 • CHAPTER 3: Communications

reading, as we need it as a starting point for our further discussion
that will lead us to schemas suitable for fast-paced games.

First, let’s take a look at a very simple data-flow diagram for a typical not-so-
fast MOG:

Despite the visual simplicity of this diagram, there are still a few things to be
mentioned:

RTT, Input Lag, and How to Mitigate Them • 143

1. All the specific delay numbers on the right side are for example pur-
poses only. Your Mileage May Vary, and it may vary greatly. Still, the
numbers do represent a realistic (and even “quite typical”) case.

2. It may seem that the Client here is pretty “dumb.” And yes, it indeed
is; most of the Game Logic in this picture resides on the Server-Side.

a. On the other hand, in most of the games there are some
player actions that cause Client-only changes (and don’t
cause any changes to the Server-Side game world). These
actions can and should be kept to the Client. These are
mostly UI things (like “show and hide HUD,” and usually
things such as “look up”), but for certain games this logic
can become rather elaborate. Oh, and don’t forget stuff such
as purchases, etc. If you keep them in-game (see Vol. II for
further discussion), it will require quite a few dialogs with
associated Client-Side logic (such as “select an item” and
“enter payment details”, etc.), and these dialogs are usually
also purely Client-Side until the moment when the player
decides to go ahead with the purchase.

3. Last, but certainly not least: for fast-paced games, there is one big
problem with the flow shown on this diagram, and the name of the
problem is “latency.” It is obvious that for this simplistic data flow, the
delay between the player pressing a button and her seeing the results
of herself pressing the button (which is known as “input lag”⁹³), will be
at least so-called round-trip-time (RTT) between the Client and the
Server (which is shown as 100ms for Fig 3.1; see the RTT section be-
low for more discussion regarding typical RTTs out there). In practice,
though, there is quite a bit added to the RTT, and for our example on
Fig 3.1, 100ms RTT resulted in 227 overall delay. And if this delay ex-
ceeds typical human expectations, the game starts to feel “laggy,” all
the way down to “outright unplayable.” Let’s take a closer look at these
all-important input lags.

⁹³ IMO a misnomer, but I don’t want to invent my own terminology where not absolutely
necessary.

For fast-paced games,
there is one big problem

with the flow shown in this
diagram, and the name of
the problem is “latency.”

144 • CHAPTER 3: Communications

Input Lag: The Worst Nightmare
of an MOG Developer

Note: if your game is slow- or medium-paced (including casino-like
games such as poker), you can safely skip to the Game-World States
and Reducing Traffic section.

As noted above, for MOGs the most critical concern is related to the rela-
tion between two times: input lag and related user expectations. Let’s consider
both in detail.

Input Lag: User Expectations

First, let’s take a look at user expectations and, of course, user expectations
are highly subjective by definition. However, there are some common obser-
vations that can be obtained in this regard. As a starting point, let’s quote
[Wikipedia, Input Lag]—

“Testing has found that overall ‘ input lag’
(from controller input to display response) times

of approximately 200 ms are distracting to the user.”

Let’s take this magic number of 200ms as a starting point for our analysis.
And, give or take, it is also corroborated in several other sources. In [Al-
dridge], numbers between 100ms and 300ms are mentioned as critical for
the gameplay of Halo: Reach—though it is unclear whether it is about just
network lag or overall input lag. [West] notices that 10/60th seconds = 167ms
feels “quite responsive,” but says that 200ms “is too long to wait for a gun to
fire.” The ballpark number of 200ms is also consistent with other indepen-
dent observations on human reaction time. For example, [Lipps, Galecki and
Ashton-Miller], based on a study of reaction times of sprinters competing in
the Beijing Olympics, state that, “At the 99.9% confidence level, neither men
nor women can react in 100 ms, but they can react in as little as 109 ms and
121 ms”; while it is not exactly the same as noticing the lag, it still gives us the
same order of magnitude, and (keeping in mind that these numbers are for

If your game is slow- or
medium-paced (including
casino-like games such as

poker), you can safely skip to
the Game World States and

Reducing Traffic section.

RTT, Input Lag, and How to Mitigate Them • 145

top sprinters in the world) seems to confirm that the 200ms number is prob-
ably not too far off. In a completely different setting [Human Benchmark],
after measuring over 40 million reaction-time clicks for Internet users, an
average reaction time of 279 milliseconds (with the median at 268 ms) was
observed, which is also pretty close to the magic number of 200ms.⁹⁴

On the other hand, we should note that for competitive purposes (like
MMOFPS or MOBA), each and every millisecond does count, but as long as
our MOG (a) stays below 100-200ms, and (b) delays are consistent for differ-
ent players, we should be fine.

On the third hand <wink />, let’s note that strictly speaking the num-
ber is not universally 200ms, that estimates by different people will vary, and
that the tolerance does vary across different genres. Still, even for the most
time-critical games, a number below 100-150ms is usually considered “good
enough” and for any real-time interaction a lag of 300ms will be felt easily
by lots of your players (though whether it will feel “bad” is a different story).
To be more specific, for the remaining part of this chapter let’s consider two
sample games: one is OurRPG with an input lag tolerance of 300ms (let’s as-
sume it doesn’t have fights and is more about social interactions, which make
gameplay less critical to delays), and another game is OurFPS with input lag
tolerance of 150ms.

Let’s also note that these 150-300ms of input-lag tolerance is just a fact of
life (closely related to human psychology or physiology, etc.) so that we can-
not really do much about it.

Input Lag: How Much We Have Left for MOG

The first problem we have is that there are several things eating at this 150-
300ms original lag allocation (even without our MOG code kicking in). This
includes lag introduced by game controller, lag introduced by rendering en-
gine (which depends on many things, including the size of the render-ahead
queue), and display lag (mostly introduced by LCD monitors).

⁹⁴ Especially as their measurements seem to include input+display lags, though not RTT.

These 150-300ms of input
lag tolerance is just a fact of
life (closely related to human

psychology or physiology
etc.) so that we cannot
really do much about it.

146 • CHAPTER 3: Communications

Typical mouse lag is 3-6ms [Pasini], less for gaming mice. For the pur-
pose of our discussion, let’s account for any game-controller lag as 5ms.

Typical rendering engine lags vary between 50ms and 150ms. 50ms (=3
frames at 60fps) is rather tricky to obtain, and is not that common, but is still
possible. A more common number (for 60fps games) is 67ms (4 frames at
60fps), and 100-133ms is not uncommon either (see [Leadbetter]).

Typical display lag (not to be confused with pixel-response time, which
is much lower and is heavily advertised, but it is not the one that usually kills
the game) as of 2017 starts from 10ms, has a median of around 40ms, and
goes all the way to 100ms (see [DisplayLag.com]).⁹⁵

It means that out of the original 150-300ms, we need to subtract a number
from 65ms to 255ms. Which, in turn, implies that for quite a few players out
there, the game is lagging even before an MOG and network lag has kicked in.

To be more specific, let’s note that we cannot really control such things as
mouse lag and display lag; we also cannot realistically say “hey guys, to play
our game you must get the Absolutely Best Monitor,” so at least we should
aim for a median player with a median monitor. Therefore, we should assume
that out of our 150-300 ms, we need to subtract around 95ms (5ms for a game
controller or mouse, 50 for a rendering engine, and 40 for a median monitor).

Now let’s take a look at the lag introduced by a rendering engine. Here, we
can make a difference. Moreover, I am arguing that—

For MOGs, rendering latencies are even more
important than for single-player games.

The point here is that for a single-player game, if we’d manage to get overall
input lag say below 100ms, it won’t be that much of an improvement for the
player, as this number is below the typical human ability to notice things.
However, for an MOG, where we’re much closer to the magic 150-300ms
because of RTTs, effects of the reduced latency will be significantly more
pronounced. In other words, the difference between 100ms and 50ms for a

⁹⁵ As of the beginning of 2016.

The difference between 100ms
and 50ms for a single-player
game won’t feel the same as

the difference between 200ms
and 150ms for an MOG.

RTT, Input Lag, and How to Mitigate Them • 147

single-player game won’t feel the same as the difference between 200ms and
150ms for an MOG.

For the purpose of our example calculation, let’s assume that we’ve man-
aged to get or make a rendering engine with a reasonably good 50ms latency.
This (as mentioned above) means that we’ve already eaten 95ms out of our
150-300ms initial allocation. And even if everything else works lightning fast,
we need to have RTT<55ms for OurFPS, and RTT<205ms for OurRPG. While
it might look pretty good to us, these numbers are still not telling the complete
truth (and we’ll see why, in a moment).

Accounting for Packet Losses and Jitter

At first glance, it seems that our calculations above show that we can get away
with a simplistic diagram from Fig. 3.1, even for some of fast-paced fps-based
games.

Well, actually, we cannot, at least not yet: there is one more important
network-related complication that we need to take into account. To get the
data from Client to Server, we need to send it over the Internet, and sending
data over the Internet has its own peculiarities with regard to delays.

Internet is Packet-Based, and Packets Can Be Lost
First, let’s talk a little bit about the mechanics of the Internet (only those that
we need to deal with at the moment). I’m not going to go into any detail or
discussions here (we’ll discuss these things in Vol. IV’s chapter on Network
Programming); for the time being, let’s just take it as an axiom that—

When data is transmitted across the Internet,
it always travels within packets, and each
of these packets can be delayed or lost.

This stands regardless of the exact protocol used (i.e. whether we’re working
on top of TCP, UDP, or something more exotic such as GRE). While TCP
handles packet loss internally (retransmitting packets when necessary), such

148 • CHAPTER 3: Communications

losses invariably cause delays; in other words, TCP just trades packet delays
for losses.

In addition, let’s take as another axiom that—

Each of these packets has some overhead.

For TCP, the overhead is 40+ bytes per packet; for UDP it is usually 28 bytes
per packet (that’s not accounting for Ethernet headers, which add their own
overhead). For our current purposes, exact numbers don’t matter too much;
let’s just note that for small updates they’re substantial.

Now let’s see how these observations affect our game data flow.

Cutting Overhead
The first factor we need to deal with is that for a fast-paced game, sending out
a world update in response to each and every input is not feasible. This (at
least in part) is related to the per-packet overhead we’ve mentioned above. If
we need to send out an update that some PC has started moving (which can
be as small as 8 bytes), adding overhead of 28-40 bytes on top of it (which
would make 350-500% overhead) doesn’t look good.

That’s at least one of the reasons why game simulation is usually run with-
in a pretty much classical “game loop,” but with rendering being replaced with
sending out updates:⁹⁶

while(true) {
 TIMESTAMP begin = current_time();
 process_input();

 update();
 //update() normally includes all the world simulation,
 // including NPC movements, etc.

 post_updates_to_clients();
 //here, we’re effectively combining all the world updates
 // which occurred during current ‘network tick’

⁹⁶ For a discussion on game loops, see Vol. II’s chapter on (Re)Actors.

For TCP, the overhead is 40+
bytes per packet; for UDP
it is usually 28 bytes per

packet (that’s not accounting
for Ethernet headers).

RTT, Input Lag, and How to Mitigate Them • 149

 // into as few packets as possible,
 // effectively cutting overhead

 TIMESTAMP elapsed = current_time()-begin;
 if(elapsed<NETWORK_TICK)
 sleep(NETWORK_TICK-elapsed);
}

With this approach, we’re processing all the updates to the “game world” one
“network tick” at a time. The size of the “network tick” varies from one game
to another, but 50ms per tick (i.e., 20 network ticks/second) is not an uncom-
mon number (though YMMV may vary significantly(!)).

Note that on the Server-Side (and unlike for a usual Client-Side game loop
from Vol. II) the choice of different handling for time steps is limited, and that
on the Server-Side it is usually pretty close to the code variation above (the
one waiting for the remainder of time until the next “tick”). Moreover, more
often than not, it is written in an event-driven style along the following lines:

void GameWorld::process_event(const Event& event) {
 //here ‘event’ contains ALL the client inputs
 // that came in but are not processed yet

 process_input(event);
 update();
 post_updates_to_clients();

 post_timer_event_to_myself(SLEEP_UNTIL,
 event.started+NETWORK_TICK);
}

(for an extensive discussion on event-driven programming, see Vol. II’s chap-
ter on (Re)Actors).

For the purposes of our example, let’s assume that we have a “network
tick” of 1/20s (=50ms), so that we’re adding 0 to 50 ms (depending on when
the player’s input came in relative to the “network tick” start) of additional
latency; let’s denote it as (0:50)ms. Then our remaining allocation of latency
for OurFPS becomes (5:55)ms, and for OurRPG, (155:205)ms.

150 • CHAPTER 3: Communications

Client-Side and Server-Side Buffering on Receipt
So far it looks good, but we still haven’t dealt with the packet losses and spo-
radic delays (also known as “jitter”).

If we stay within the simplistic schema shown on Fig. 3.1, then each lost
(or substantially delayed) packet coming from the Server to the Client will
mean visible (and unpleasant) effects on the player’s screen: everything will
stop for a moment, and then “jump” to the correct position when the next
packet arrives.

To deal with it we need to introduce a buffer on the Client-Side (let’s
name it “buffer-on-receipt”) by simply delaying “normal” incoming packets
for some predefined delay time dt. This is done with a single aim in mind: if
one of the packets gets delayed (for time t < dt), we will be able to act “as if ” it
was not delayed at all (simply reducing dt for this packet). It can be illustrated
by the following diagram:

If we stay within the simplistic
schema shown in Fig. 3.1,
then each lost packet will

mean visible (and unpleasant)
effects on the player’s screen:

everything will stop for a
moment, and then “jump” to
the correct position when
the next packet arrives.

RTT, Input Lag, and How to Mitigate Them • 151

The “Server” timeline shows packets as they were sent by the Server; if we’re
doing a good job on the Server-Side, they will come at regular intervals. How-
ever, the picture on the Client-Side (middle timeline) will be very different.⁹⁷
As we can see, some packets can get lost (such as Packet 3) and delays can
vary greatly (representing “jitter”); dashed lines within this timeline represent
expected positions of delayed packets.⁹⁸

The third timeline (“after Buffer-on-Receipt” one) shows how delays and
packet loss can be handled by our Buffer-on-Receipt. Handling delays is quite
obvious here; what is more interesting is the handling of packet loss. Here we
do not have any information from Packet 3 (as it was lost in transit); however,
by the time we need to emit Packet 3 from our Buffer-on-Receipt, we already
have Packet 4—so we can interpolate the data from Packet 2 and data from
Packet 4 to get an “approximated” Packet 3' (and replace the lost Packet 3); see
also the Client-Side Interpolation section below.

The delay dt we need to introduce with this buffer-on-receipt depends on
many factors, but even with the most aggressive UDP-based state-sync algo-
rithms (the ones that allow us to reconstruct the whole state on each network
tick), the minimum we can do is have a buffer of one network tick to account
for one-lost-packet-in-a-row.⁹⁹ In practice, the buffer of around 1-3 “network
ticks” is usually desirable.

On the other hand, it should be noted that this Client-Side buffer-on-
receipt may be somewhat reduced due to the overlap between our buffer-on-
receipt and the render-ahead buffering used by the rendering engine (see Vol.
V’s chapter on Graphics 101 for a brief discussion of buffering techniques
by graphics engines). It would be incorrect, however, to say that you can
simply subtract the time of render-ahead buffer by the rendering engine (by
default 3 frames=50ms for DirectX) from the time that we need to add for
RTT purposes. Overall, this is one of those things that you’ll need to find out
yourself for your specific game.

⁹⁷ N.B.: In practice, the second timeline will usually be shifted much more to the right than
shown in Fig 3.2, but for the purpose of our discussion, Fig 3.2 will do.

⁹⁸ Actually, determining these expected positions for the packets is not really trivial; the
task is very similar to the problem normally solved by Phase-Locked Loops in hardware.

⁹⁹ In theory, it is possible to bypass this restriction, but in most cases it won’t be practical
because of correlations between packet losses.

As by the time we need to
emit Packet 3 from our Buffer-
on-Receipt, we already have
Packet 4—we can interpolate
the data from Packet 2 and

data from Packet 4 to get an
“approximated” Packet 3’ (and

replace the lost Packet 3).

152 • CHAPTER 3: Communications

In addition to the Client-Side buffer-on-receipt (which accounts for loss
or jitter of packets sent by Server to Client), there is often another (Serv-
er-Side) buffer-on-receipt that is needed to account for jitter of the packets
sent by the Client to the Server (these packets usually contain player inputs).

For the purpose of our example, let’s assume that we have a “network
tick” of 1/20s (=50ms), and that we have both Client-Side and Server-Side
buffers-on-receipt delaying by a very aggressive 1 network tick. It means that
we’ve already run out of our latency allocation for OurFPS (our remaining
time is (-45:-95)ms; i.e., we’re 95ms behind for OurFPS even before RTT kicks
in), but still have (55:105)ms left for RTT for OurRPG.

Time Synchronization
As soon as we say that we’re no longer doing things “as soon as they arrive
from the Server-Side,” we’re pretty much bound to perform some kind of time
sync between the Server and the Client. First, as our Server is authoritative,
we’re speaking about synchronizing time on our Client with the sequence of
the packets coming from the Server, at least so we can say when we expect the
next packet. Also, we’ll assume that all Server packets are timestamped.¹⁰⁰
Now we’re ready to discuss different time sync-algorithms that allow us to get
the Client time synced with the Server.

Overall, there are several approaches, and no single one is ideal. We’ll
briefly discuss each.

Sync-Once
The simplest idea is to sync the time between the Client and the Server once
(at the beginning of the game session or game event or…) and then rely on
both the Client and the Server clock running at pretty much the same speed.

One way to implement simple one-time time sync is described in [Simp-
son], and it works. On the other hand, I am not a big fan of one-time time
synchronization (this or any other) for two quite big reasons:

¹⁰⁰ Actually, if they’re sent at well-known intervals (as they normally are), simple packet
number (which can also be seen as a “tick stamp”) will do.

As soon as we said that we’re
no longer doing things “as

soon as they arrive from the
Server-Side,” we’re pretty
much bound to perform
some kind of time sync

between Server and Client.

RTT, Input Lag, and How to Mitigate Them • 153

 ▶ If it is off once, we don’t have any chance to fix it (in spite of all the
information we’re continuously obtaining). And if the Internet hap-
pened to behave really weirdly during the original time sync (which
is bound to happen from time to time, at least for some of your
players because they got unlucky), it can lead to pretty nasty desyn-
chronizations.

 ▶ As typical PC/Server clock precision (actually, precision of the quartz
crystal the PC is using) can easily be at 20ppm (20 parts per million,
or 2e-5), it means that we can get a discrepancy of 1 frame (1/60sec)
within as little as 400 seconds (~=7.5 minutes).¹⁰¹ While not exactly
fatal for most games out there, it indicates that we can indeed run into
certain time-sync issues, causing unnecessary pain for our players.

One additional thing to remember about Sync-Once (and actually, any other
time-sync algorithm) is that I strongly suggest implementing time sync using
the same communications means as the communications you’re normally us-
ing. I.e., if your normal game protocol uses TCP, don’t implement time sync
over UDP and vice versa; also using NTP as such (or SNTP), in spite of NTP/
SNTP lying on top of UDP is not desirable as routers can handle it very differ-
ently from ordinary UDP. The latter is not that strict a requirement (after all,
time sync is time sync, give or take), but doing it otherwise tends to cause
certain subtle issues (first, it can easily affect firewalled players, but my feeling
is that time sync itself can also be affected).¹⁰²

Sync-Once with Subsequent Adjustments
It is possible to improve Sync-Once time sync by adjusting time sync after
initial synchronization.

For example: if we see that the time-stamped Server-Side packet came
significantly earlier than we’d expected, it may indicate either that the RTT has
changed (for example, due to a route change), or that Server time is currently

¹⁰¹ That’s for the worst case of the difference between the Server and the Client quartz
crystals being 40ppm.

¹⁰² In particular, because packet delays on the way forward and the way back can be
different for different protocols.

If it is off once, we don’t
have any chance to fix it.

NTP
is a networking protocol
for clock synchronization
between computer systems
over packet-switched, variable-
latency data networks.

—Wikipedia

154 • CHAPTER 3: Communications

ahead of Client time. And if Server-Side packets start to arrive consistently
later,¹⁰³ it may indicate that the Client time moved ahead (or again, an RTT
has changed). And to distinguish between an RTT change and time-sync drift,
we could make the Server include into the packet fields such as number-of-
last-received-packet-from-this-Client and time-since-last-received-packet-
from-this-Client. Combined, this information will allow us to adjust time
sync, and also to measure changes in RTT.

Alternatively, we can just re-initiate time sync (similar to that Sync-
Once) at some frequency (like “once per minute”). It has its own dangers (in
particular, answering the question “what to do if the discrepancy on second
measurement is very large?” is not that easy), but overall it might work.

Overall, I tend to like such Sync-Once-with-Subsequent-Adjustments
(especially the first subtype described above, the one with gradual re-adjust-
ment) better than simple Sync-Once.

NTP-Like Protocol
Another option is to use NTP-like protocol using your Server as a kinda-NTP
source. Though, if going this way, do not use real NTP; syncing your Client
system-wide time to your Server, instead of just syncing your intra-game
time, is not what your players will appreciate.

Also, while NTP as such is known to be very reliable (and addresses both
problems of sync-once), implementing full-scale NTP just for game purposes
is IMO serious overkill.

Phase-Locked Loop (PLL)
Last, but not least, another algorithm that is directly related to time sync
(while being pretty much unused by games¹⁰⁴) is so-called Phase-Locked
Loop (PLL). Strictly speaking, PLL doesn’t really synchronize time; what it
is doing is creating a clock that is synchronized (both frequency-wise and
phase-wise) with an incoming signal (in our case, with packets coming from

¹⁰³ As in “arriving later five times in a row.”

¹⁰⁴ Disclosure: I didn’t use PLLs in this context, but I had a great experience with them
elsewhere.

Overall, I tend to like such
Sync-Once-with-Subsequent-

Adjustments (especially
the first subtype described

above, the one with gradual
re-adjustment) better

than simple Sync-Once.

PLL
is a control system that
generates an output signal
whose phase is related to
the phase of an input signal.
While there are several
differing types, it is easy
to initially visualize as an
electronic circuit consisting of
a variable frequency oscillator
and a phase detector.

—Wikipedia

RTT, Input Lag, and How to Mitigate Them • 155

the Server, as shown on Fig 3.2). However, very often such a clock-synchro-
nized-with-incoming-signal is exactly what we need. This is especially true
when speaking about our buffers-on-receipt, as such a clock will answer the
question of “when to expect the next packet” in nearly-the-best-possible-way.

PLLs are used all over the place in electronics (you can count on at least
several of them running within your PC and another few in your phone right
now), and they are the best (by far) way to synchronize to incoming signals
with a more-or-less-known frequency, but for some reason they’re neglected
in software.

Note that PLL as such won’t account for RTT (though it will re-adjust
when RTT is changed); however, PLL can be aided with RTT information (for
example, using the same fields in the packet as we discussed in the context of
Subsequent Adjustments to Sync-Once) to achieve a real time-sync solution
(that is, if you need it).

As for implementing PLL itself in software, it is much easier than it might
seem at first glance. Essentially, it consists of a phase detector (which says by-
how-much our prediction-of-the-next-Server packet went wrong, which is
basically the difference between predicted_time and arrival_time), integrator
(can be as simple as “multiply current integrator value by k<1 and add new
value” on each oscillation), and a variable-frequency oscillator (which can be
implemented by simply using the current output of the integrator to calculate
the period of the next oscillation, which in turn will be implicitly based on
the Client’s system clock frequency, but this is exactly the point). That’s pretty
much it (and the output of our oscillator will be the predicted_time). On the
other hand, be prepared to play with numbers quite a bit to get it working
(it is not rocket science, but for the first time it can take quite a bit of effort);
in particular, (a) make sure that your k is very close to 1 (though it must be
strictly <1), (b) make sure that the output of your integrator can’t change your
oscillation period by a factor of more than 1e-4 or so,¹⁰⁵ and (c) make sure
that with zero input from the integrator, your oscillator generates “normal”
(=“expected”) frequency of your Server packets.
¹⁰⁵ Formally, this should be a hard upper bound for potential discrepancy between the

Client and the Server oscillators; in practice, given that typical quartz crystals these
days are 20ppm=2e-5 (which implies a potential discrepancy of 40ppm=4e-5), 1e-4 is
not a bad starting point.

Note that PLL as such won’t
account for RTT; however,
PLL can be aided with RTT
information to achieve a
real time-sync solution.

156 • CHAPTER 3: Communications

TL;DR on Time Sync
Overall, time sync between the Client and Server is quite easy to implement
“somehow” (and it will work), though implementing it in a reliable way
(the one that won’t fail even when the network of your player behaves really
weirdly) can be rather challenging. As a result, you may need to experiment
with your time sync in your “public beta” quite a bit (and I cannot predict in
advance which of the time-sync methods will work for your game).

On TCP
Above we’ve discussed how the picture looks if we send IP (or UDP) packets
ourselves. If we’re using TCP, things are rather different.

I don’t want to get onto a flamewar-ridden minefield of “TCP vs UDP”
right now (we’ll do it in Vol. IV’s chapter on Network Programming), but will
just mention two things that are relevant to our discussions in this chapter:

 ▶ Without packet loss, TCP can be made to have the same latencies as
UDP. If we’re using TCP_NODELAY for our TCP connection and
there is no packet loss, TCP will behave very similarly to UDP (there
will be differences, but they will be pretty much negligible in most
usage scenarios).

 ▶ In the presence of packet loss, however, TCP loses badly to UDP,
latency-wise. If we’re using TCP stream under significant packet loss,
two things happen that are bad for latency:

 ■ The first is that as TCP is a stream, all the packets following
the lost one will be delayed (in spite of being already available
on the receiving side) until the lost packet is retransmitted
and received (this is known as “Head-of-Line blocking”).

 ■ The second thing that happens at this point is that the lost
packet is normally retransmitted only after 200ms’ time.¹⁰⁶

¹⁰⁶ Strictly speaking, an RFC says it should be a minimum of 1 second, but in practice
these days it is more like 200ms. On the other hand, there are exceptions, and it may
be retransmitted earlier, but usually we shouldn’t rely on it. For more discussion on TCP
retransmit timeouts (RTOs), see Vol. IV’s chapter on Network Programming.

RTT, Input Lag, and How to Mitigate Them • 157

• Moreover, if there are two packets lost in a row, the
additional delay grows 3x (to ~600ms), and if there
are three packets lost in a row, 7x (to ~1.5 sec). BTW,
if we have 5% packet loss for a game sending 20
packets/second, three packets in a row will get lost
every 5 minutes or so. For more detailed discussion,
see Vol. IV.

 ■ Combined, it means that the entire communication will
probably get stuck for hundreds of milliseconds on a regular
basis (once per several minutes).

As a result, for Server-to-Client connections over TCP, we’re speaking about
retransmit delays of the order of hundreds of milliseconds, which in turn will
usually force us to have our own buffer-on-receipt delays of the order of half-
a-second or more, which is substantially higher than the buffer of 1-2 network
ticks we need for UDP-based connectivity.

These delays-in-case-of-packet-loss are one of the big reasons TCP is not
popular (to put it mildly) among the developers of fast-paced games (and for
good reason¹⁰⁷). On the other hand, using TCP for Server-2-Server commu-
nications is a very different story (in particular, because packet loss within a
single Datacenter should happen only once in a blue moon).

Input Lag: Taking a Bit Back

One trick that may be used to reduce a feeling of “input lag” by the player a lit-
tle bit is introducing Client-Side animations. If, immediately after the button
press, the Client starts some animation (or makes some sound, etc.), while at
the same time (i.e., at the beginning of the animation, or even before it) the
Client sends the request to the Server-Side, then from the player’s perspective
the length of the animation is “subtracted” from the “input lag.” For example,
if in a shooter game you’ll add a 50ms trigger-pulling animation (while send-
ing the shot right after the button press), then, from a player’s perspective,
the “Input Lag” will start 50ms later, so, in a sense, we reduce perceived lag

¹⁰⁷ Though see discussion on UDP-over-TCP in Vol. IV.

Using TCP for Server-2-
Server communications
is a very different story
(in particular because

packet loss within a single
Datacenter should happen
only once in a blue moon).

158 • CHAPTER 3: Communications

by these 50ms. Adding tracers to the shoots is known to create a feeling that
bullets travel with limited speed, buying back another few frames (however,
tracers are more controversial, at least at close distances).

While the capabilities of such tricks are limited, when dealing with Input
Lag, every bit counts, so you should consider if they are possible for your
game.

Taking such trickery into account (and assuming that we got 50 ms “back”
as a result) means that we’re a bit better (but still behind) for for OurFPS with
(5:-45)ms (that’s before accounting for RTT(!)); for OurRPG, let’s assume that
we’ve found similar animations, so that we have (105:155)ms left for RTT.

Data-Flow Diagram, Take 2:
Fast-Paced Game Specifics

Note: If your game is fast-paced (think MMOFPS), the
approach described with regard to the Take 2 Diagram is still
likely to feel “laggy.” However, please keep reading, as we
will discuss the remaining problems, and the ways to deal
with them, in Take 3 (which is in turn based on Take 2).

The considerations discussed above (game loop, Client-Side buffer-on-
receipt, Server-Side buffer-on-receipt, and “taking back” animations) lead us
to Fig 3.3:

RTT, Input Lag, and How to Mitigate Them • 159

160 • CHAPTER 3: Communications

As noted above, it is already behind for OurFPS, even before we start to
account for RTT (!).

BTW, one additional problem with Fig 3.3 is that we effectively have our
visual frame rate equal to “network tick”; as “network ticks” are often kept
significantly lower than 60 per second (in our examples, it was 20 per second),
it means that we’ll be rendering at 20fps instead of 60fps, which is certainly
not the best thing visually.

On the other hand, for OurRPG, we still have that (105:155)ms of time
reserve to account for RTT. Let’s see whether it is able to stand against
real-world RTTs.

RTT
Now let’s take a look at that RTT monster, which often appears at night, in
our worst nightmares, and is eating all the cookies we’ve hid under the pillow
all that’s left of our input lag allowance.¹⁰⁸

First, let’s note that while RTT (=“Round-Trip Time”) depends greatly
on the player’s ISP (and especially on the “last mile” connection), even in a
very ideal case, there are hard limits on “how low you can go with regards to
RTT.” Very roughly, for RTT and, depending on the player’s location, you can
expect the ballpark numbers shown in Table 3.1 (assuming the very best ISPs,
etc. Getting worse is easy; getting significantly better is usually not exactly
realistic):

¹⁰⁸ To make things worse, this monster is usually quietly hiding behind the curtain of LAN
until you start to test with real-world RTTs.

One additional problem
with the diagram Fig 3.3

is that we effectively have
our visual frame rate equal

to “network tick”; in our
example, it means that we’ll

be rendering at 20fps instead
of 60fps, which is certainly
not the best thing visually.

RTT, Input Lag, and How to Mitigate Them • 161

Player Connection RTT (not accounting for “last mile”)
On the same-city “ring” or “Internet Exchange” as server
(see [Wikipedia, Internet Exchanges], but keep in mind
that going out of the same city will increase RTT)

~10-20ms

Inter-city, cities separated by distance D At the very least, 2*D/ cfib (cfib being speed of light within
optical fiber, roughly cvacuum/1.5, or ~2e8 m/s). Practically,
add around 20-50ms depending on the country.

Trans-US (NY to SF) At the very least (limited by cfib) ~42 ms; in practice at
least 80 ms.

Trans-Atlantic (NY to London) At the very least (limited by cfib) ~56 ms [Grigorik];
in practice at least 80 ms.

Trans-Pacific (LA to Tokyo) At the very least (limited by cfib) ~90 ms, in practice at
least 120ms.

A Really Long One (NY to Sydney) At the very least (limited by cfib) ~160 ms [Grigorik];
in practice at least 200 ms.

In addition, you need to account for a player’s “last mile,” as described in
Table 3.2:

Additional “last-mile” RTT…
…added by player’s “last mile”: cable [Grigorik] reports ~25ms. My own experience for

games is about 15-20ms¹⁰⁹
…added by player’s “last mile”: (A)DSL [Grigorik] reports ~45ms. My own experience for

games is more like 20-30ms¹⁰⁹
…added by player’s Wi-Fi ~2-5ms (assuming immediate connection to Wi-Fi

router, without repeaters or wireless access points)

…added by player’s concurrent download Anywhere from 0 to 1000ms and more

Two things to keep in mind in this regard:

 ▶ If your Server is sitting with a good ISP (which it should), it will be
pretty close to the backbone, latency-wise. This means that in most of
the “reasonably good” cases, a real player’s latency will be one num-
ber from Table 3.1, plus one or more numbers from Table 3.2 (as the
Server’s “last mile” latency can be written off as negligible); it is still
necessary to double-check it (for example, by pinging from another
Server).

¹⁰⁹ The difference can be attributed to downloads that tend to cause longer RTTs; also
gamers tend to invest in better connectivity.

If your Server is sitting with
a good ISP (which it should),
it will be pretty close to the

backbone latency-wise.

162 • CHAPTER 3: Communications

 ▶ The numbers above are for hardware Servers sitting within datacen-
ters. Virtualized servers within the cloud tend to have higher RTTs
(see Vol. VII for further discussion), with occasional delays (when
your cloud neighbor suddenly starts to eat more CPU or bandwidth
or...) easily going into the multiple-hundreds-of-ms range. BTW,
speaking of clouds: in quite a few places, you can get cloud without
virtualization, usually referred to as “bare-metal cloud” or something
similar; this kind of cloud will eliminate these additional delays. For
more discussion on cloud vs. traditional rented Servers, see Volume
VII’s chapter on Preparing for Launch.

LAN RTT vs Internet RTT

LAN-based games (with typical wired LAN having RTTs below 1 ms, and
even Wi-Fi normally being below-5ms range) can’t really be compared to
MOGs, latency-wise. If your MOG needs comparable-to-LAN RTT to be
playable—sorry, it won’t happen (but see below about the Client-Side predic-
tion that may be able to alleviate the problem in many cases, though at the
cost of significant complications).

On CDNs and Geo Server Distribution

One may say “hey, as we need to improve latency, let’s just use CDN—
problem solved.” Unfortunately, it is not that easy. Those traditional CDNs
that are used to improve latencies for web sites don’t work for reducing game
latency.¹¹⁰ The reason is that traditional CDN is all about caching the data
closer to the end-user (which indeed improves latency; that is, as soon as the
request can be served from the cache, without going to the Server). However,
for games (and especially for fast-paced ones), the data still needs to go the
whole way from the Client to the Server, which eliminates any latency benefits
from the CDN.

¹¹⁰ CDNs still may be used (and often are) for tasks such as game-content distribution,
but the game itself is usually out of the question.

CDN
A content delivery network
or content distribution
network (CDN) is a globally
distributed network of
proxy servers deployed in
multiple data centers.

—Wikipedia

RTT, Input Lag, and How to Mitigate Them • 163

Similar-to-CDN latency improvement, however, can be (and often is)
achieved by distributing your game servers so that each of your customers has
a Server more-or-less nearby. More on it in the Back to Input Lag section below.

RTT and Players

While we’re on the subject of RTT, let’s mention three things that your sup-
port folks will certainly need to tell to your players with regard to RTT and
latency (and sooner rather than later):

1. No, better bandwidth doesn’t necessarily mean better latency (you
will need to tell it to your players to answer questions such as “how
come that exactly as soon as I’ve got a better 100Mbit/s connection,
your servers started to lag on me? Are you guys punishing players
with good connections?”)

2. It is easy to show whatever-number-we-want in the Client as a “cur-
rent latency” number, but comparisons of the numbers reported
by different games are perfectly pointless (this actually is a Big Fat
Argument™ to avoid showing any latency numbers at all, though
publishing the number is still a GDD-level decision).

3. When saying “it was much better yesterday,” are you sure that nobody
in your household is running a huge download?

Back to Input Lag
From Table 3.1 and Table 3.2, we can see that in the very best case (when both
your Server and your Client are connected to the very same intra-city ring
or exchange, everything is top-notch, last mile is a non-overloaded cable, no
concurrent downloads running in the vicinity of the Client while playing,
etc.), we’re looking at 35-45ms RTT. Which means that—

For FPS-like games, and without special
trickery, we’re out of luck even if all the
players are on the same city exchange.

No, better bandwidth
doesn’t necessarily

mean better latency.

164 • CHAPTER 3: Communications

Within the same (large) country, the best-possible RTT goes up to around
80-100ms. Which means that with a simple diagram from Fig 3.3 we still
might be able to handle OurRPG; that is, if you restrict your players to one
country (creating something like “US Server,” though in fact it will be a whole
Datacenter full of Servers). Actually, country-specific Datacenters are very
common, and are not that difficult to implement and maintain, but they still
restrict the flexibility of your players (and also can have adverse effects on
“player critical mass,” as defined in Chapter 1). While it might happen that
you won’t have a choice in this matter, it is still important to understand all
the implications of such a decision.

Single-continent Datacenters (with RTTs in the range of 100-120ms) are
close cousins of country-specific ones, and are also frequently used for fast-
paced games. Even with special stuff such as Client-Side Prediction, for fast-
paced games such as MMOFPS, you may easily end up with per-continent
or per-country Datacenters. On the other hand, for single-continent Data-
centers, even for OurRPG, we’re already starting to hit the “being sluggish”
threshold, so even for non-FPS games we may need some further trickery (as
described below).

Purely geographically, for the US the best Datacenter location for a
time-critical game would be somewhere in Arkansas. More realistically (and
taking into account real-world cables), if trying to cover the whole US with one
single datacenter, I would seriously consider Dallas or Chicago; such a choice
would limit the maximum RTT while making the games a bit more fair.

If you want a worldwide game, then maximum-possible RTT goes up
to 220+ms, making even OurRPG feel sluggish without the special stuff dis-
cussed later. Worse, there will also be a significant difference for different
players. While simple data flow shown on Fig 3.3 might still fly for a relatively
slow-paced worldwide RPG (think Sims), worldwide MMOFPS and MOBAs
based on it are usually out of the question.

All these observations lead us to the next iteration of our flow diagram,
which introduces substantial (and non-trivial) processing on the Client Side.

Within the same (large)
country, the best-possible RTT
goes up to around 80-100ms.

RTT, Input Lag, and How to Mitigate Them • 165

Data-Flow Diagram, Take 3:
Client-Side Prediction and Interpolation
So far, with Fig 3.3 we have two annoying problems: one is excessive lag, and
the other is low Client-Side frame rate. The latter problem occurs because if
implementing your game exactly as shown on Fig. 3.3, client-frame rate is
stuck at the network tick rate, and as the typical network tick rate is 20 ticks/
second, you’ll end up with the Client-Side rendering at 20fps, which is quite
a problem visually.

To deal with these problems, we need to introduce some processing on
the Client-Side. I won’t go into too much detail here, giving only a basic de-
scription of the algorithms involved; for further discussion, please refer to
the excellent series on the subject by Gabriel Gambetta [Gambetta, Fast-
Paced Multiplayer]; while he approaches the subject from a slightly different
perspective, all techniques discussed are the same.

Client-Side Interpolation

The first thing we can do is related to the Client-Side buffer-on-receipt (the
one we introduced for Take 2 and Fig 3.3). To make sure that we don’t render
at the “network tick” rate (but render at 60fps instead), we can (and should)
interpolate the data between the “current network tick” and “previous net-
work tick” within our buffer-on-receipt.

For example, if our “network ticks” go at a rather typical 20 ticks/second,
we can get our Client-Side rendering run at 60fps—simply creating two out of
three rendered frames via such Client-Side Interpolation.

This does make movement visually smoother and we’ll get back our 60fps
rendering rate, and without any increase to traffic. Such Client-Side Interpo-
lation is quite a trivial thing and doesn’t lead to any substantial complications.
On the negative side, while it does make movement smoother, it doesn’t help
improve input lag.

166 • CHAPTER 3: Communications

Client-Side Extrapolation, a.k.a. Dead Reckoning

The next thing we can do is go beyond interpolation and do some extrapola-
tion. In other words, if we add velocities to our Game World state,¹¹¹ then—
in case we don’t have the next update yet because the packet was delayed—
we can extrapolate the object movement to see where it would move if
nothing unexpected happens.

The simplest form of such extrapolation can be done by a simple calcu-
lation of x1=x0+v0, but can also be more complicated, taking into account,
for example, acceleration. This is also known as “dead reckoning,” though the
latter term is used in several similar, but slightly different, cases, so I’ll keep
using the term “extrapolation” for the specific logic described above.

The benefit of such extrapolation is that we can be more optimistic in
our buffering, and not account for the worst-case when three packets are lost
(extrapolating instead in such rare cases). In practice it often means (as usu-
al, YMMV) that we can reduce the “stutter” in case of packet loss, which is
especially important for our very aggressive buffer-on-receipt being just one
single “network tick.”

Running into the Wall, and Server Reconciliation
I can hear the sound of a brick wall in distress.

—Super Rock from The Furchester Hotel

On the flip side, unlike interpolation, extrapolation causes significant compli-
cations. The first set of complications is related to internal inconsistencies.
What if while we’re extrapolating NPC’s movement, he runs into the wall? If
this can realistically happen within our extrapolation, causing visible negative
effects, we need to take it into account when extrapolating and detect when
our extrapolated NPC collides, and maybe even start an appropriate anima-
tion. How far we want to go this way depends (see also the Client-Side
Prediction section below), but it may be necessary.

¹¹¹ These velocities can either be transferred as part of the “World Update” message or
calculated on the Client-Side.

The next thing we can do is
go beyond interpolation and

to do some extrapolation.

What if while we’re
extrapolating NPC’s movement,

he runs into the wall?

RTT, Input Lag, and How to Mitigate Them • 167

The second set of extrapolation-related issues is related to so-called
“Server Reconciliation.” It happens when the update comes from the Server,
but our extrapolated position on the Client is different from the Server’s.

BTW, this difference can happen even if we’ve faithfully replicated 100%
of the Server-Side logic on the Client Side just because we didn’t have enough
information at the point of our extrapolation. For example, if one of the other
players has pressed “jump” and this action has reached the Server, on our Cli-
ent-Side we won’t know about it for at least another 100ms or so, and there-
fore our perfectly faithful extrapolation will lead to different results than the
Server’s.

When such a conflicting update comes in to the Client, this is the point
when we need to “reconcile” our Client-Side vision of the Game World with
the Server-Side vision. And as our Server is authoritative and “always right,”
it is not that much of a reconciliation in a traditional sense, but “we need to
make the Client world look as we’re told by the Server.”

On the other hand, if we implement Server Reconciliation as a simple fix
of coordinates whenever we get the authoritative Server message, then we’ll
have a very unpleasant visual “jump” of the object between the “current” and
“new” positions.

To avoid this, one common approach (instead of jumping your object
to the received position) is to start a new prediction (based on new coordi-
nates) while continuing to run the “current” prediction (based on currently
displayed coordinates), and to display a “blended” position for the “blending
period” (with the “blended” position moving from the “current” prediction to
the “new” prediction over the tick). For example:

displayed_position(dt) = current_predicted_position(dt) * (1-alpha(dt))

 + new_predicted_position(dt) * alpha(dt),

where alpha(t) = dt/BLENDING_PERIOD, and 0 <= dt < BLENDING_PERIOD.

Other ways to reconcile include splines or Bezier curves, and also variations
of blending (including so-called projective velocity blending, which as [Mur-
phy] suggests tends to cause the least problems when predicting fast-moving

168 • CHAPTER 3: Communications

objects). For a solid overview of these reconciliation techniques (and of other
issues related to physics-based predictions in general), make sure to take a
look at [Murphy].¹¹²

Client-Side Prediction

With Client-Side Interpolation and Client-Side Extrapolation, we can reduce
stutter a bit (and also pump the rendering frame rate up to 60fps <phew />).
However, even after these improvements, it is likely that the game will still
feel “sluggish” (our calculations above show that even OurRPG is likely to feel
“laggy” if its servers are used beyond one single country).

To improve things further, it is common to use “Client-Side Prediction.”
The idea here is to start moving the player’s own PC as soon as the player has
pressed the button, completely eliminating this “sluggish” feeling for PC
movements. Indeed, within the Client we do know what the PC is doing, and
can show it; and if we’re careful enough, our prediction will be almost-the-
same as the server authoritative calculation, at least until the PC is hit by
something that has suddenly changed trajectory (or came out of nowhere)
within these 300ms or so.

Implementation-wise, Client-Side Prediction can be implemented, for
example, via duplicating a part of the Server-Side Game Logic¹¹³ on the Cli-
ent. It should be noted that for the purposes of Client-Side prediction, we
do not really need 100% cross-platform determinism between the Client and
the Server (see more discussion on cross-platform determinism in Vol. II’s
chapter on (Re)Actors), and “almost-the-same” behavior of the Client and the
Server is fine (as any small discrepancies, such as those resulting from differ-
ent rounding etc. will be fixed as part of the “reconciliation” process that will
follow shortly—again, within at most 300ms or so).

If you’re going to dive into the depths of Client-Side Prediction, make
sure to read both [Gambetta, Fast-Paced Multiplayer (Part II): Client-Side

¹¹² Note, though, that I don’t interpret [Murphy] as suggesting transferring quaternions over
the network (and that I still insist on using Euler angles—or compressed quaternions—for
data transfer, as discussed in the Before Compression: Minimizing Data section below);
using quaternions for calculations is a different story, which I have no problems with.

¹¹³ Including simulation.

The idea here is to start
moving the player’s own
PC as soon as the player
has pressed the button,

eliminating this “sluggish”
feeling for PC movements.

RTT, Input Lag, and How to Mitigate Them • 169

Prediction and Server Reconciliation] and [Fiedler, State Synchronization]:¹¹⁴
both provide a more in-depth analysis than I can fit here (or am qualified to
perform).

Client-Side Prediction: Dealing with Discrepancies
On the negative side, Client-Side Prediction may cause serious discrepancies
between the “Game World as seen by the Server” and the “Game World as seen
and shown by the Client” (i.e., between Server State and Client State). While
this effect is very similar to the “reconciliation problem” that we’ve discussed
for “Client-Side Extrapolation,” for Client-Side Prediction the discrepancy is
usually more severe than for mere Client-Side Extrapolation. The reasons for
this increased discrepancy for Client-Side Prediction are twofold:

 ▶ First, it happens due to a significantly larger time gap between the
Client-Side Prediction and obtaining authoritative data from the
Server-Side.

 ▶ Second, with Client-Side Prediction, other players are adding their
inputs, which affect the Server but are usually not accounted for by
Client-Side Prediction.

 ■ This effect, however, can be mitigated by the Server forward-
ing other players’ inputs to all the Clients, so the Client can
predict better (for more details, see the Forwarded Inputs
section below, including a discussion on the increased risk of
Information Leak cheats).

A few things to keep in mind when implementing Client-Side Prediction:

 ▶ Most of the time, you’ll need to keep a list of “outstanding” (not
confirmed by the Server yet) input actions, and re-apply them after
receiving every authoritative update; otherwise, unpleasant visual
effects can arise (see [Gambetta, Fast-Paced Multiplayer (Part II):

¹¹⁴ While [Fiedler, State Synchronization] is in fact about distributed authority schemas
(which I argue against because of cheating, see the On Distributed Authority section
below), most of the discussion there is actually also directly applicable to Client-Side
Prediction.

On the negative side, Client-
Side Prediction may cause quite
serious discrepancies between

“Game World as seen by Server”
and “Game World as seen and
shown by Client” (i.e., between
Server State and Client State).

170 • CHAPTER 3: Communications

Client-Side Prediction and Server Reconciliation] for further discus-
sion of this phenomenon).

 ▶ As noted in [Fiedler, State Synchronization], in some cases you may
need to add more information (such as velocities) to your Publish-
able State to enable Client-Side Prediction.

 ▶ The problem of PC-running-into-the-wall (once again, in a manner
similar to Client-Side Extrapolation, but with more severe effects due
to a larger time gap) usually needs to be addressed.

 ▶ To make it even more complicated, inter-player interactions can be
not as well-predicted as we might want, so making irreversible de-
cisions (like “the opponent is dead because I hit him and his health
dropped below zero”) purely on the Client-Side is usually not the best
idea (what if he managed to drink a healing potion that you don’t
know about yet, as the packet from the Server telling you about it is
still en route?). In such cases, it is usually better to keep the opponent
alive on the Client-Side for a few extra milliseconds, and to start the
ragdoll animation only when the Server does say he’s really dead; oth-
erwise, visual effects like when he was starting to fall down but then
sprang back to life (because Client-Side Prediction and Server-Side
authoritative version worked a bit differently) can be very annoying.

On Distributed Authority
One thing that should be mentioned in regard to Client-Side Prediction is that
on the way of implementing it, there is a very dangerous pitfall. As soon as we
implement Client-Side Prediction, we have a (non-authoritative) simulation
on the Client Side; and as soon as we have simulation on the Client-Side, there
may be the desire to make “a tiny bit of it” authoritative.

Such systems, with a distributed authority between
the Client and the Server, should be avoided.

The problem with such systems is that as soon as you move even a tiny bit of
authority to the Client, it becomes very easy to add more and more authority

RTT, Input Lag, and How to Mitigate Them • 171

there. Eventually you will get a working game, but, as lots of decisions are
made on the Client-Side, it won’t stand any chance against cheaters even in
the medium run.

I don’t want to go into the dangers of Authoritative Clients here once
again (there was a long discussion on it in Chapter 2). Let’s just note that
there was more than one major game that ran into severe cheating prob-
lems because of such a distributed-authority approach; moreover, one of the
companies behind these games is currently in their second year of rewriting,
trying to move all the Client-Side decision-making to the Server-Side (where
it belonged in the first place).

Take-3 Diagram

Adding these three Client-side Improvements (Client-Side Interpolation, Cli-
ent-Side Extrapolation, and Client-Side Prediction) gets us to Fig 3.4:

172 • CHAPTER 3: Communications

RTT, Input Lag, and How to Mitigate Them • 173

As we can see, the processing of the authoritative data coming from the Serv-
er is still quite slow. But the main improvement in perceived responsiveness
for those-actions-initiated-by-the player (and it is these actions that cause the
“laggish” feeling, as timing of the actions by others is not that obvious for the
player) comes from the Client-Side Prediction and the rendering of this pre-
diction. Client-Side Prediction is processed purely on the Client-Side, from
receiving controller input, through Client-Side Prediction, and goes directly
into rendering, without going to the Server at all, which (as you might have
expected) helps latency a lot (resulting in T7 for PC being around T0+112ms,
which is, for the example above, ~200 ms better than T7 for non-PCs). Of
course, it is just a “prediction” (and in a sense is “fake”), but if it is 99% correct
99.99% of the time (and in the remaining cases the difference is not too great),
it feels okay for the player, and this feeling is exactly what our players want us
to achieve.

With Fig 3.4 (and especially Client-Side Prediction) we’ve managed to
get quite an improvement, at least for those actions initiated by PC; at 112ms
lag, the game won’t feel too sluggish. But can we say that with these num-
bers everything is now good? Well, sort of, but not exactly. The remaining
problem is that there is still a significant (and unavoidable) lag between any
update-made-by-Server and the moment when our player will see it. This (as
[Gambetta, Fast-Paced Multiplayer (Part IV): Headshot! (AKA Lag Compen-
sation)] aptly puts it) is similar to living in a world where the speed of light is
slow, so we see what’s going on with a perceivable delay.

In turn, for some really fast-paced games (think shooters), it leads to un-
pleasant scenarios when I’m, as a player, making a perfect shoot from a laser
weapon, but I’m missing because when my shot reaches the Server, I’ll be
late by about 100ms or so (and the target will move by that time). And this
is the point where we’re getting into the realm of controversy, known as Lag
Compensation.

174 • CHAPTER 3: Communications

Lag Compensation—
Potential for Cheating vs. Player Happiness

Three Client-Side improvements we’ve discussed above are very common
for fast-paced games (in spite of implementation complexities) and are also
known to work very well. The next bunch of improvements, known as Lag
Compensation, is more controversial.

There are at least two distinct forms of Lag Compensation (probably
more). The first is known as “Server Rewind.”

Server Rewind
The classical form of Server Rewind is aimed to fix the problem outlined
above, the one where a player is making a perfect shot and missing because
his “press button” message reach the Server only later, when the target has
already moved.

The idea behind Server Rewind is that the Server (keeping an authorita-
tive copy of everything) can reconstruct the world at any moment, so when
the Server receives your packet saying you’re shooting at the moment T (and
all the other data such as the angle at which you’re aiming etc.), the server
can “rewind” the world back to that moment T of your shot and make a judg-
ment whether you hit or missed based on that information. This can be used
to compensate for the delay, and therefore make players’ “clean shots” much
better.

On the other hand, “Server Rewind” may easily lead to a different player,
who already managed to hide behind the wall, being shot anyway. In a sense,
we’re trading one perception-lag-related problem (“not hitting from an ob-
viously ‘clean shot’”) for a different perception-lag-related problem (“being
hit when already safe”). However, as this second problem tends to cause less
annoyance for players, Server Rewind is usually a reasonable thing to make
your players happy.

RTT, Input Lag, and How to Mitigate Them • 175

Subtracting Client RTT on the Server-Side
In [Aldridge], a different type of Lag Compensation is described. In Halo:
Reach, they had an “Armor Lock” and the problem was that whatever they
were doing, the moment when the “Armor Lock” was starting to protect the
player who invoked it wasn’t exactly the moment that the players were expect-
ing (which led to lots of player complaints in public beta).

To deal with it, the best solution they found was changing game mech-
anics on the Server-Side: instead of the delay-between-button-is-pressed-
and-armor-lock-applied being exactly 3 frames—on the Server-Side, they
made it “3*frame_time - this_player_RTT” so that the player herself started
to experience protection exactly when she was expecting it (after 3 frames of
animation on her Client); this approach, while being inconsistent in the Serv-
er space, has made players happy, and this is ultimately what really matters.

Lag Compensation Is Inherently Open to Cheating…
The whole Lag Compensation thing can be seen as a clean win for everybody.
However, there is an all-important consideration that you need to think about
well before starting to implement any kind of Lag Compensation. It is that—

All kinds of Lag Compensation are
inherently open to cheating.¹¹⁵

With Server Rewind, if I can send my timestamp to the Server and the Server
implicitly trusts it, I am able to cheat the Server, making the shot a bit lat-
er while pretending it was made a bit earlier. With subtracting Client RTT,
cheating is trickier, but it is possible to simulate higher RTT while the cheater
doesn’t need it—and then to get an almost-instant reaction when he happens
to need it.

For example, if our game is a Good-Bad-Ugly-style shootout and I am the
Bad Guy cheating, I can write a bot that will introduce an additional delay for
my packets all the time (imitating higher RTT) and then, when I press “shoot,”
it can remove that additional delay. This will effectively lead to me having an

¹¹⁵ In other words, Lag Compensation is a clear win for everybody, cheaters included.

This approach, while being
inconsistent in the Server
space, has made players

happy—and this is ultimately
what really matters.

176 • CHAPTER 3: Communications

edge (equal to that additional delay) in a shootout; and as the whole point of
the shootout is about reflexes, it can have a pretty negative effect on the game-
play. Moreover, such a delay can be implemented on a separate proxy box
(which is inherently undetectable by any anti-cheating software), i.e., without
any risk to me as a cheater. Note that even encrypting traffic (which protects
from most proxy bots) is not efficient against this kind of cheating, simply
because packets can be delayed without decrypting them.¹¹⁶

In other words, Lag Compensation can be used to compensate not only
for Network Lag, but also for Player Lag (poor player reflexes), as they’re pret-
ty much indistinguishable from the Server’s point of view (which leads to
such Artificial Lag attacks being pretty much undetectable).

Note that in this respect, Lag Compensation is very different from the
three Client-Side improvements discussed above: as Client-Side Interpola-
tion/Extrapolation/Prediction do not make the Server trust the Client, they’re
inherently invulnerable to this kind of abuse.

That’s exactly why Lag Compensation is controversial, and I suggest
avoiding it for as long as you can.

…OTOH, Player Happiness Is Much More Important
On the other hand—

If it takes Lag Compensation to make your
players happy, go for it! Unhappy players will
kill your game much earlier than any cheaters.

Living in the real world, we often have to make some compromises. And al-
lowing the potential to cheat to make honest players happy is one of those
compromises that may become necessary in the real world (at least for fast-
paced games such as FPS).

¹¹⁶ It is worth noting that encryption still makes sense in this case. If the game traffic is
not encrypted, the “shoot” command (activating removal of the additional delay) can
also be automatically detected on the proxy; otherwise, the cheater would need to
have some kind of additional notification to the proxy box, but it can also be done
relatively easily in hardware.

RTT, Input Lag, and How to Mitigate Them • 177

When permitting Lag Compensation, just make sure to:

 ▶ Double-check that nothing but Lag Compensation will do to keep
your players happy. In practice, it is only very fast-paced games (FPS)
that tend to need Lag Compensation; if you’re trying to do it for an
RPG, think twice about whether you have already tried everything
else (especially Client-Side Prediction).

 ▶ Keep that lag-related potential cheating in mind, and try to mitigate
it. In particular, too great swings of timestamps and RTTs should be
detected and packets with such swings should be ignored. Jitter of
around 20ms happens all the time; 100ms does happen occasionally,
but jitters of 300+ms are probably too much (and ten seconds is clear-
ly out of the question). Not that I’m saying that they cannot happen
(and I certainly do not mean to ban such a player), but I’d say that
ignoring packets with such large jitters (or adjusting the jitter to the
nearest allowed value) will be the prudent thing to do.

 ■ Also, let’s note that (especially for a shooter game) there are
tons of other cheats you’ll need to deal with (starting from
aiming bots), so that you’re pretty much deemed to enter into
a bot-fighting mode anyway. And as soon as you deal with
bots, chances are that you’ve also dealt with most of the Lag
Compensation attacks. We’ll discuss dealing with bots in
Volume VIII’s chapter on Bot Fighting, but very shortly, to
make the lives of bot writers more difficult, you’ll need both
to encrypt your traffic¹¹⁷ (to prevent proxy bots) and protect
the integrity of your Client while it is running, and as soon as
you’ve done these two things, you’ve also already curbed
(though not 100% prevented) quite a bunch of Lag Compen-
sation attacks.

¹¹⁷ This includes protection from a man-in-the-middle attack mounted by a player against
himself, which is very unusual for classical security.

Double-check that nothing
but Lag Compensation will do
to keep your players happy.

And as soon as you deal with
bots, chances are that you’ve
also dealt with most of the
Lag Compensation attacks.

178 • CHAPTER 3: Communications

 ▶ Implement Lag Compensation on a per-action basis, monitoring the
impact of your changes on the players. And while we’re at it, make
sure to watch the GDC presentation [Aldridge]; it is a goldmine of
real-world experience in the field.

For FPS-like games, Lag Compensation is likely necessary to make your play-
ers happy. And if it happens that Lag Compensation is necessary to achieve
player happiness, well, we don’t have any other options than to do Lag Com-
pensation, whether we like it or not.

Overall, the whole reasoning above can be generalized into the following
statement (which stands pretty much across the board)—

If some feature-that-may-be-abused-by-cheaters
is necessary to make your players happy,

do it, but only after you’ve run out of non-
cheatable ways to achieve the same effect.

There Are So Many Options! Which Ones Do I Need?

With all these options on the table, an obvious question is “hey, what exactly
do I need for my game?” Well, this is a Big Question™ with no good answer
until you try it for your specific game (over a real link and/or over a latency
simulator). Still, there are some observations that may serve as a reasonable
starting point for your analysis:

1. if your game is slow-paced or medium-paced (i.e. actions are in terms
of “seconds”), chances are that you’ll be fine with the simplest data-
flow (the one shown on Fig 3.1).

2. If your game is more fast-paced (think MMORPG or MMOFPS),
you’ll likely need either the dataflow in Fig 3.3, or the one in Fig 3.4

a. In this case, it is often better to start with the simpler one
from Fig 3.3 and add things (such as Client-Side Interpo-
lation, Client-Side Extrapolation, Client-Side Prediction)

If your game is slow-paced
or medium-paced (i.e., actions

are in terms of “seconds”),
chances are that you’ll be fine

with the simplest dataflow.

Game-World States and Reducing Traffic • 179

gradually to see if you’ve already got the feel you want with-
out going into too many complications.

b. If after adding all the “Client-Side” stuff, you still have is-
sues (which you shouldn’t, except for FPS), you may need to
consider Lag Compensation, but beware of cheaters!

c. For further optimizations, you may need to go beyond the
techniques described in this book (and/or combine them
in unusual ways); however, going further is usually quite
game-specific, so it is difficult to generalize it. In any case,
what can be said for sure is that you certainly need to know
about the techniques discussed in this chapter (and also to
“feel” how they work) before trying to invent something else.

GAME-WORLD STATES AND
REDUCING TRAFFIC
By this point, we’ve finished describing data flows that may apply to your
game, and can now go one level deeper, looking into the specifics of those
messages going between the Client and the Server. First, let’s take a close look
at the message that tends to cause most of the trouble (and tends to eat the
most bandwidth). This is the “World Update” message from Fig. 3.1, and Fig.
3.3, and Fig 3.4. In turn, it is closely related to the concept of a Publishable
World State.

180 • CHAPTER 3: Communications

Server-Side, Publishable,
and Client-Side Game-World States

Among aspiring simulation-based game developers, there is often a misun-
derstanding about the Game World State, which results in the question “why
do we need to care about different States for our Game World and not have
only one state, so that the Server-Side State is the same as the Client-Side
One?” This kind of question is especially common when your development
workflow is Client-Driven (as defined in Chapter 1).

The answer is: “Well, depending on your game, you might be able to have
the same state as Client-Side, Server-Side, and even Publishable, but for quite
a few games, you won’t.”

Limit on Bandwidth

The problem here is purely technical, but very annoying—it is the problem of
bandwidth. As of 2017—

If your game is using more than 1Mbit/s/player,
you’re in Deep Trouble™.

Game-World States and Reducing Traffic • 181

Most of the serious multiplayer games out there are using between 1kbit/s
(think social games¹¹⁸) to 200kbit/s (think first-person 3D simulations) per
simultaneous player. Going further down, while desirable (due to reduced
traffic costs etc.), is usually not strictly required.

On the other hand, if your game uses over 500-1000 kbit/s/simultaneous_
player, you’ll find yourself in pretty hot water. The main problem you’ll face
will be that for quite a few of your players, with more traffic than that you’ll
overload their “last mile,”¹¹⁹ which in turn tends to bring latencies and/or
packet loss to the point where the game becomes outright unplayable. While
there are lots of ISPs saying that they’re providing speeds of “up to 100Mbit/s,”
(a) most of your players won’t be paying for this kind of bandwidth (at the
beginning of 2017, over half of all broadband connections in the world are
still (A)DSL), (b) those 10Mbit/s your player may have are usually of the “up
to” kind (=“will never be observed other than on paper”), and (c) there is
usually lots of traffic competing with your game (from downloads and tor-
rents within the same household to downloads and torrents by neighbors; see
more on the mechanics of oversubscription in Vol. IV’s chapter on Network
Programming).

As a result, I’d say that 200kbit/s is the traffic you should aim for, even in
2017, and even if your game is a simulation. Note that for mobile games (or,
more formally, for those games intended to be played over a mobile connec-
tion), your allowance is usually significantly lower—I’d say in the range of
20-50kbit/s, and the lower, the better.

Additional Reasons to Optimize Bandwidth

In addition, let’s keep in mind that sometimes reducing the Server packet size
may help even if the Client’s “last mile” overload is caused by a concurrent
download, as there are some routers out there configured to give preference to
smaller packets; we’ll have a cursory discussion of certain aspects of over-the-
Internet packet prioritization in Vol. IV’s chapter on Network Programming.

¹¹⁸ For asynchronous games, “simultaneous player” is a bit of misnomer, but at our current
level of abstraction, it will do.

¹¹⁹ Roughly, the connection from home router to ISP; see more discussion in Vol. IV’s
chapter on Network Programming.

Note that for mobile games,
your allowance is usually
significantly lower—I’d say

in the range of 20-50kbit/s,
and the lower—the better.

182 • CHAPTER 3: Communications

One further potential reason to minimize bandwidth is that traffic can
be rather expensive—depending on your monetization, that is. While traffic
prices have steadily decreased for at least the last twenty years or so—as of the
beginning of 2017, you can get unmetered 1Gbit/s for around $300/month,
and unmetered 10Gbit/s for around $2,000/month—it is still far from being
free. To put it into perspective: if you can monetize $0.05/month per player,
with each player eating 200kbit/s bandwidth (and 20% of your players playing
at your peak time) over a 1Gbit/s link, you’ll be able to run around 1Gbit/s
/200 kbit/s/simultaneous_player * 5 active_players/simultaneous_player =
250,000 active_players, paying $2,000/month for traffic (i.e., $0.008/active_
player/month), but making $0.05*250,000 = $12,500/month in monetization.

As we can see, it is all about the amount you can monetize per player;
if your monetization team can squeeze $1/active_player/month, you won’t
have much to worry about, but if you’re coming closer to $0.01/active_player/
month (which can easily happen if the vast majority of your players are free,
and the percentage of free players is growing each day), you can find yourself
under significant pressure to optimize your traffic costs. Or, looking at it from
a different perspective, by reducing your traffic costs, you may be able to get
a significant business advantage and/or tap into games that are not feasible to
monetize otherwise.

On the other hand, let’s keep in mind that for quite a few games, the costs
of renting Servers to run the game can easily overshadow traffic costs; with a
more-or-less “typical” simulation game running 1,000 simultaneous_players/
Server,¹²⁰ 5 active_players/simultaneous_player, and $200/Server/month, our
per-player Server costs can get into $0.04/active_player/month (so reducing
traffic costs of $0.008/active_player/month won’t help much). However, this
balance can change significantly if you decide to pay for “Premium”/
“Real-Time” traffic (instead of the usual “Best Effort” one that is used by de-
fault), or if you're using cloud services, which can easily charge 10x more for
the same traffic; we’ll discuss different types of traffic (actually, different types
of SLA) a bit in Vol. VII’s chapter on Preparing for Launch.

¹²⁰ A “workhorse” 1-Unit/2-Socket one.

Let’s keep in mind that for
quite a few games, the

cost of renting Servers to
run the game can easily
overshadow traffic costs.

Game-World States and Reducing Traffic • 183

Triangles and Bandwidth

I hope that I’ve managed to convince you that the number of “a few hundred
kbit/s/simultaneous_player” is the maximum you can afford these days. Now
we can get to the second part of our exercise and observe that—

If trying to push information about 3D triangles
from the Server to the Client,

we’ ll be orders of magnitude over 1Mbit/s limit.

Let’s consider a very simplistic scene from a 3D game with just five mov-
ing characters in the vicinity, represented with 10K triangles each;¹²¹ then,
even without other items (weapons, items, environment, etc.), we’re speaking
about 50,000 triangles (and for our order-of-magnitude-estimate purposes,
we can assume that the number of vertexes is about the same). As all five of
our characters are moving, so are all the vertexes; this means that on each
“network tick” we’ll need to transfer five characters/scene * 10,000 vertexes/
character * 30 bit/vertex¹²² ~= 1.5Mbit/scene, and with a typical 20 “network
ticks” per second, we’ll get to 30Mbit/second/scene, which is well over our
1Mbit/s limit, and this is for a very simplistic scene. <ouch! />

As we’ll see below, with a separate Publishable State, we could reduce such
a simple scene to about 100 bit/character/network_tick, and the entire traffic to
around 100 bit/character/network_tick * five characters/scene * 20 network_
ticks/second = 10Kbit/second/scene; this is a 3,000x improvement over trans-
ferring triangles or vertexes.

¹²¹ And this is not much by today’s standards.

¹²² That’s even if we’re using fixed-point representations, as discussed below; usual
floating-point representations will take up to 10x more.

184 • CHAPTER 3: Communications

Three Different States of MOG

Now, let’s see how to achieve this 3,000x improvement. Let’s note that the
analysis below is made for a 3D-simulation game (specifically, for OurRPG);
for some games (especially social ones), the different States described below
can be merged together, and it can even happen that you’ll have all three States
that are the same. Still, IMO it is beneficial to consider all three States as sep-
arate before deciding to merge them; in particular, it will allow you to see any
potential drawbacks of such a merge.

Client-Side State
Let’s consider an example MMORPG game, OurRPG. Let’s assume that our
players can move within some 3D world; they can talk, fight, gain experience,
and so on. Physics-wise, let’s assume that we want to have rigid body physics
and ragdoll animations, but our fights are very simple and don’t really sim-
ulate physics and instead have animated fight movements (think “Skyrim”).

If we have our game as a single-player, the only thing we’d need would be
a Client-Side State, complete with all the meshes (with thousands of triangles
per character), textures, and so on.

Server-Side State
Now, as we’re speaking about MOGs with an Authoritative Server, we need a
Server-Side State. And one thing we can notice about this Server-Side State is
that it doesn’t need to be as detailed as the Client-Side State.

In particular, as we don’t need to render anything on the Server Side, we
usually can (and should) drop all the textures on the Server-Side, and use
more low-poly 3D models on the Server Side.

Actually, to keep the number of our Servers within reason, we need to
leave only the absolute minimum of processing on the Server Side, and
achieving this “absolute minimum” can be defined as “dropping everything
that doesn’t affect gameplay.” In practice, for most classical RPGs (those
without karate-like fights where limb positions are essential for gameplay),
you can get away with simulating each of your PCs and NPCs as a box

IMO it is beneficial to consider
all three States as separate
before deciding to merge

them; in particular, it will allow
you to see any potential

drawbacks of such a merge.

In practice, for most classical
RPGs you can get away
with simulating each of

your PCs and NPCs as a box
(parallelepiped), or as a prism
(hexagonal or octagonal one).

Game-World States and Reducing Traffic • 185

(parallelepiped), or as a prism (say, a hexagonal or octagonal one). Cylinders
are also possible, though if you’re using classical polygon-based 3D simula-
tion on the Server Side, you’ll essentially end up with simulating a prism
anyway. In addition, models of your Server-Side rooms can (and should) also
be simplified greatly: while you do need to know that there is a wall there
with a lever to be pulled in the middle, in most cases you don’t need to know
the exact shape of the lever.

In extreme (I’d say “very fortunate”) cases, you won’t even need 3D on the
Server Side at all. While this is certainly not guaranteed, I suggest you start
your analysis by checking if you can get away with a 2D Server-Side simula-
tion. Even if you figure out that you do need 3D, such analysis can still help
you drop quite a few things that are unnecessary on the Server Side.

For OurRPG, however, we do need 3D on the Server-Side (well, we want
to simulate rigid body stuff and ragdolls, not to mention multilevel houses).
On the other hand, we don’t need more than a hexagonal prism (with ad-
ditional attributes such as “attacking or crouching or...” and things such as
“animation frame number”) to represent our PCs/NPCs; when it comes to
rigid objects simulated on the Server-Side, they also can be represented using
only a few dozen triangles each.

When we need to simulate ragdoll on the Server-Side, we won’t even try
to simulate movements of all the limbs. What we will do is calculate move-
ment of the center of mass of the dying character. While for some games this
may happen to result in too-unrealistic movements, for other games we might
be able to get away with it (and doing it this way will save lots of CPU power
on the Server-Side), so this is what we’ll try first. If a simple center of mass
won’t work, we might go a bit further and implement something along the
lines of the logic described in [Aldridge], but still, sending all the ragdoll sim-
ulation across the network won’t be necessary.

This polygon reduction will in turn lead to a drastic reduction in the
size of our Server-Side State compared to the classical Client-Side State (the
one we’ll need to render the game), and to a drastic reduction in CPU cycles
needed to simulate it, too.

186 • CHAPTER 3: Communications

Publishable State
Now, as we’ve got Server-Side State and Client-Side State, we need to pass
the data from the Server-Side to the Client-Side. To do so, we’ll use another
state—let’s name it Publishable State.

The most important thing about the Publishable State is that it usually
should be even simpler than the Server-Side State. Whenever we can make
Publishable State smaller, we should (see the reasoning about reducing band-
width above).

And as a Big Fat Rule of Thumb™, quite a few simplifications are possible
for the Publishable State. For example, for OurRPG we can do the following:

 ▶ To represent PCs/NPCs, we usually can (and therefore should) throw
away all the meshes and use only a tuple of (x,y,z,x-y-angle,
animation-state,animation-frame).¹²³,¹²⁴

 ■ In addition to the tuple required for rendering, there are
likely to be dozens of fields such as “inventory,” “relation-
ships with the others,” and so on; whether they need to be
published depends on your Client-Side logic.

• By default (and until proven that you need a specific
field for the Client-Side), avoid publishing these things.
The smaller your Publishable State is, the better.

• In some cases, however, you may need them. For ex-
ample, if your game allows you to steal something
from PC/NPC, then your client’s UI will likely want
to show other characters’ inventory to find out what
can be stolen. This information about the other
characters’ inventory may be obtained by requesting
your Server, or may be published. In the latter case,
it becomes a part of the Publishable State.

¹²³ Actually, we can also use this representation for Server-Side, but it may or may not
be convenient there. On the other hand, removing meshes is an almost-must for
Publishable State.

¹²⁴ Whether we need velocities to be published is not that obvious; see the Dead
Reckoning as Compression section below.

To represent PCs/NPCs, we
usually can (and therefore
should) throw away all the

meshes and use only a tuple
of (x,y,z,x-y-angle,animation-

state,animation-frame).

Game-World States and Reducing Traffic • 187

 ▷ Note that making inventory publishable
won’t have too great an effect on the update
size, as it is possible to optimize it via del-
ta compression (see the Delta Compression
subsection below); on the other hand, it
will increase traffic during initializations/
transitions.

 ▷ On the other hand, keep in mind that
publishing such information may facilitate
“Information Leak” attacks on your Client,
so if requesting the Server at the point of
“trying to steal” doesn’t feel too sluggish, it
is better to do it this way.

• Even if you need such rarely changing fields as a part
of your Publishable State, you usually should sepa-
rate them from the frequently changed ones (for
example, into separate publishable trees). As fast-
paced updates have different timing requirements
from slow-paced ones, it may easily lead to differ-
ent synchronization policies (for example, at the
UDP-level), and it is simpler to express these policies
when you have separate top-level trees. For exam-
ple, inventory is updated rarely, and is usually quite
tolerant to delays of the order of 200ms or so; as a
result, it is usually unwise to be too aggressive with
re-sending it (and as a result, it is usually okay to
use a reliable UDP channel to transfer it, waiting for
retransmit-on-200ms-timeout if the packet is lost).
On the other hand, coordinates and other rendering-
related stuff does need to be updated in real time, so
you should be quite aggressive with re-sending them
(usually they’re re-sent on each network tick until
the Server gets confirmation from the Client; more

188 • CHAPTER 3: Communications

on it in the “Reference Base” for Unreliable Commu-
nications section below).

 ▶ To represent rigid objects, we again should throw away all the meshes
and use only a (x,y,z,x-y-angle,x-z-angle,y-z-angle) tuple.

As we can see, there are quite a few ways to simplify the Publishable State,
even comparing it to the Server-Side State. From a minimizing-bandwidth
point of view, the most important simplification occurs when we’re dropping
meshes (triangles or vertexes) in favor of transferring coordinates (and ro-
tations) of the whole characters and whole objects. This usually provides a
tremendous savings in traffic.

One more thing that needs to be routinely handled as part of the Publish-
able State is chat. Going against the common practice of implementing chat as
one of the “transient events” (which are in turn usually implemented on top
of “broadcasted messages”), I usually argue for implementing chat as part of
the Publishable State (usually a slow-paced part of it). My rationale goes as
follows: the player should not feel the difference if she was disconnected and
instantly reconnected (and even less of a difference if just one packet got lost). As
a player, I hate situations when I’ve been disconnected-then-reconnected-
in-half-a-second and cannot see that-all-important-ping even in my chat his-
tory. In other words, while I am disconnected, my PC proxy in the Game
World is still connected, so at least there should be a way to learn about what
happened while I was away. To achieve this (IMO Very Desirable) behavior of
the chat history being an actual attribute of the Game World (opposed to a
“transient event,” which depends on my connectivity at the moment), the
simplest way is to implement chat as part of the Publishable State.

As soon as we’ve defined our Publishable State and got it on the Server-
Side, we need some magic to synchronize it with the Client-Side. The most
obvious way would be to just send all those updates to the Publishable State
over TCP, and it will even work for a prototype. However, when packet loss
is present, UDP-based eventually consistent synchronization is known to
allow much better latencies than TCP-based ones; we’ll discuss one such

Going against the common
practice of implementing

chat as one of the “transient
events,” I usually argue for
implementing chat as part
of the Publishable State.

Game-World States and Reducing Traffic • 189

UDP-based protocol in the “Reference Base” for Unreliable Communications
section below.

Why Not Keep Them the Same?
Now let’s go back to the question of why not to use the very same Client-Side
State as the Server-Side State and the Publishable State? While it was already
essentially answered before, this question is asked so frequently (by first-time
MOG developers, that is) that I feel obligated to re-iterate the answer (while
throwing in a few more details):

 ▶ Depending on your game, you may be able to keep all three States
the same.

 ▶ However, for a 3D simulation, it will likely lead to:

 ■ Greatly increased Server-Side CPU load (and therefore, run-
ning costs for the Servers).

 ■ Greatly increased traffic (up to the point of being completely
unplayable for most Internet players).

• This includes traffic becoming O(N2), and it will kill
larger Game Worlds (as with States being identical,
all the movements need to be transferred to all the
Clients).

 ■ Information Leak attacks. As soon as we postulate that all
three States are identical, we essentially allow the hacker
to extract all the information and provide “wallhacks” or
“maphacks.”

 ▶ The separation of different States is not limited to 3D simulations, and
some of the considerations above can easily apply to other genres. For
example, for Real-Time Strategies (RTS), all the considerations listed
for 3D games (except, maybe CPU load) still apply.

190 • CHAPTER 3: Communications

Non-Sim Games and Summary
For some of the non-simulation and non-RTS games (such as social games or
blackjack), the difference between Publishable or Server-Side or Client-Side
States can be much less pronounced, and in many cases the Server-Side State
may be the same as the Publishable State (though the Client-Side State will
often still be different).

For example, let’s consider a blackjack game with the Server-Side State
being the same as the Publishable State. In such a case, whenever a card is
dealt for a blackjack game, it can be represented as an update of the Serv-
er-Side State to reflect that the card is already dealt; as the Publishable
State is the same as the Server-Side State, the update to this Server-Side or
Publishable State will be pushed to the Client. However, all the animation
of the card being dealt is usually still processed purely on the Client-Side
(instead of simulating the card flying over the table on the Server-Side, and
transferring coordinates changing at 20 network ticks/second).¹²⁵

Now, we can try to generalize our findings over the whole spectrum of
MOGs (from social ones to MMOFPS), making two very generic (though
still quite practical) observations. First, whatever our game is, the following
inequation should stand—

Publishable State <= Server-Side
State <= Client-Side State¹²⁶

The second observation is—

We should work hard on reducing the
size of the Publishable State.

¹²⁵ Information that there should be animation can either be derived from the change of the
Publishable State on the Client-Side or sent as a Transient Event from the Server-Side.

¹²⁶ We’re speaking about their respective sizes, of course.

For some of the non-simulation
and non-RTS games (such as
social games or blackjack),

the difference between
Publishable/Server-Side/
Client-Side States can be

much less pronounced, and
in many cases the Server-

Side State may be the same
as the Publishable State

(though the Client-Side State
will often still be different).

Game-World States and Reducing Traffic • 191

Publishable State: Delivery, Updates,
Interest Management, and Compression
After we decide what the Publishable State should represent (and know how
to update it on the Server-Side), we can go further forward. The next question
we face is “how to deliver this Publishable State (including updates) from the
Server to the Client?”

Of course, the most obvious way of doing it would be to just transfer the
whole Publishable State once (when the Client is connected), and then trans-
fer updates whenever the update of the Game World occurs (which may be
“each network tick” for quite a few simulation-based games out there).

However, very often we can do better than that traffic-wise. And as re-
ducing traffic is a Good Thing™, both for reducing Server costs and players’
latencies, let’s take a closer look at these optimizations.

Interest Management: Traffic Optimization
and Preventing Cheating

The very first thing to optimize traffic (and to help against cheaters) is so-
called Interest Management. Interest Management deals with sending each
Client only those updates that the Client needs to render the scene. Interest
Management is extremely important for quite a few games out there both
because of improving traffic and reducing the potential for Information Leak
attacks.

Let’s consider OurRPG mentioned above, and the Publishable State that
needs to transfer 50 bytes/network-tick/character. Now let’s assume that
OurRPG is a big world with 10,000 players. Transferring all the data about
all the PCs to all the players would mean transferring 10,000characters *
50bytes/tick/character * 20ticks/second = 10MBytes/second to each player,
and 100GBytes/second ~= 1TBit/s total (and that’s with our Publishable
State being reasonably optimal; i.e., without transferring meshes). That’s an
enormous amount of data even for 2017, and while there are datacenters out
there able to serve this kind of traffic, it is going to be Damn Expensive; even

How to deliver this Publishable
State (including updates) from

the Server to the Client?

192 • CHAPTER 3: Communications

worse, 10Mbytes/second (~=100Mbit/s) will be way too much for most of our
potential players. Bummer.

On the other hand, if we notice that out of those 10,000 players, at any
given moment each player can see at most twenty other players (which is the
case most of the time for most of the more-or-less realistic scenes), then we
can implement so-called “Interest Management.” With Interest Management,
we can send each Client only those updates-that-are-of-interest-to-this-
particular-Client (in other words, sending only those things that are needed
for rendering). Then, we need to send only 20characters * 50bytes/tick/char-
acter * 20ticks/second = 20KByte/second to each player (200MBytes/second
total, which is going to cost roughly $1,000/month), much better.

Mathematically speaking, without Interest Management, the amount of
data our servers will need to send (to all players combined), is O(N2). Interest
Management (if properly implemented) reduces this estimate to O(N). The
same thing from a different perspective can be stated as—

Interest Management normally allows for
a capping on the amount of traffic sent
to each player, regardless of the total

number of players in the game.

Note that when choosing you Interest Management algorithm, you need to
think about worst-case scenarios when a large chunk of your players gathers
in the same place (what about that royal wedding or presidential inauguration
ceremony that everybody will want to attend?). From a traffic perspective,
this can be really unpleasant, and you do need to think about how to han-
dle it well in advance. If going beyond the most obvious (and BTW work-
ing pretty well) solution of “we don’t have any big events, so it won’t be a
problem,” things may become complicated (and if your game is a 3D one,
the same scenarios can easily raise the number of triangles to be rendered
on the Client-Side beyond any reasonable limits, bringing any graphics card
to its knees). One of the ways to deal with it is to limit the number of trans-
ferred-characters to a constant limit (ensuring that O(N) thing), and when
this limit is exceeded, to render the rest as a “generic crowd” simulated purely

Mathematically speaking,
without Interest Management,

the amount of data our
servers will need to send

(to all players combined) is
O(N2). Interest Management
reduces this number to O(N).

O(n)
Big O notation is a
mathematical notation
that describes the limiting
behavior of a function when
the argument tends towards
a particular value or infinity.

—Wikipedia

Game-World States and Reducing Traffic • 193

by the Client-Side and wandering around by some simple rules (and the same
“generic crowd” people can be rendered as really low-poly models to deal
with the number-of-polygons issue).

Implementing Interest Management
In practice, implementations of Interest Management can vary significantly.
In the simplest form, we can send only information of those characters that
are currently within a certain radius from the PC (or even “send updates only
to players within the same “zone”—whatever “zone” means). However, these
are certainly not the only ways to shoe this horse; for a list of different Interest
Management approaches with CPU-used and amount-of-information-sent
comparison, see [Boulanger, Kienzle and Verbrugge].

An interesting variation of Interest Management, described in [Barysh-
nikov], includes changing LOD depending on the distance from the PC; in
other words, a more-distant-from-the-PC object would have less information
sent (this can include such things as “fewer of the properties sent” and/or
“updates for such objects sent less frequently” and/or “acceptable level of pre-
cision loss due to lossy compression/dead reckoning being higher”).

Grid-Based Interest Management
To implement Interest Management in an efficient manner, we need to solve
the task “find the objects that are at least somewhat close to the given play-
er” very efficiently. Otherwise, we’d need to scan the whole list of the objects
belonging to the same large area served by the same Game World Server —
and do it for each Client, which would lead us to O(Nobjects*Nplayers) operations
for each simulated frame; with more-or-less typical number of objects per
Game World Server being in the tens of thousands and number of Clients
being in the hundreds, it quickly becomes extremely inefficient.

On the positive side, let’s note that the quick algorithm of looking for
those “somewhat close” objects doesn’t need to be precise, and may contain
extra objects that will be filtered out later (however, it should contain all the
objects that are potentially close). In other words, we’re actually looking for

LOD
In computer graphics,
accounting for Level of
detail involves decreasing
the complexity of a 3D
object representation as
it moves away from the
viewer or according to
other metrics such as object
importance, viewpoint-
relative speed or position.

—Wikipedia

194 • CHAPTER 3: Communications

candidates to be sent to the Client (with candidates potentially subject to the
further filtering).

To implement such a preliminary quick search, it is common to cover our
2D or 3D map with a “grid,”¹²⁷ and to maintain the position-within-the-grid
for all our objects (including players). Then, to get all the “candidates” for a
specific Client, we could get the grid cell of the respective player, and then we
could get all the objects belonging to this-grid-cell-plus-adjacent-grid-cells
as our candidates; if we optimize our data structures, this can be done very
quickly. From this point on, we can either use this list of candidates directly (it
would correspond to “Square Tile” algorithm from [Boulanger, Kienzle and
Verbrugge]), or can filter it further to the extent we want.

Interest Management as a Way to Prevent
Information-Leak Cheating
In more complicated implementations, we can take into account walls, etc.,
not transferring objects that are behind the wall from the player, or are cov-
ered by “fog of war.” As a very nice side effect, such an approach also helps to
address “see-through-walls” cheating, a.k.a. wallhack (as well as lifting-fog-
of-war, a.k.a. maphack, and reading other player attributes, a.k.a. ESP cheat).
In extreme cases, it is theoretically possible to even use frustum-based inter-
est management (more in the On Frustum-Based Interest Management section
below).

This also leads us to a second big advantage of Interest Management—

Interest Management (if properly implemented) may
allow you to address Information-Leak cheats.

The logic here is simple: if the Client doesn’t receive information on what is
going on in “fog-of-war” areas or behind the wall, then no possible hacking
of the Client will allow to reveal this information, making this kind of attack
pretty much hopeless.

¹²⁷ The size of the cell in the “grid” should be comparable to “area of interest” of the
player.

Game-World States and Reducing Traffic • 195

An extreme case of this class of cheats would be for an (incredibly stupid)
poker site, which has pocket-card data as part of a Publishable State and
doesn’t implement any Interest Management. It would mean that such an im-
plementation will send pocket cards to all the Clients (and then the Clients
won’t show other players’ cards until the flag show_all_cards is sent from the
server). Don’t do this. If you do implement it this way, the Client will be hacked
very soon, with pocket cards revealed to cheaters from the beginning of the
hand (which will ruin your whole game very quickly). Interest Management
(or, even better, excluding pocket cards from the Publishable State altogether,
with, say, point-to-point delivery of pocket cards) is an absolute must for this
kind of game. More or less the same stands for quite a few real-time strategies
out there, where lifting “fog of war,” a.k.a. maphack, would give way too much
of an unfair advantage.

On Frustum-Based Interest Management
As we’ll discuss in Vol. V’s chapter on Graphics 101, frustum is a pyramid
within our 3D Game world that includes all the stuff our player can see at the
current moment. And the idea behind the frustum-based Interest Manage-
ment is that, as we cannot see beyond the frustum, we don’t need to transfer
information about the objects outside the frustum (which in theory should
both reduce the amount of traffic sent and deal with relevant cheats).

In spite of being theoretically attractive, using frustum for Interest
Management is problematic because of two issues: First, most of the time
it doesn’t help much traffic-wise; on the other hand, for a wide range of
games, frustum-based Interest Management could still be potentially very
important to prevent Information Leak cheats(!), so we might want to keep
it regardless of traffic. However, unfortunately there is a second problem
with frustum-based Interest management—the problem of sharp turns.

If our PC makes a sharp turn, then (assuming that we’re using frustum-
based Interest Management) we will need to provide information about the
turn to the Server, which will then need to feed us a lot of information (about
all the objects that got into the frustum because of the turn); and the delay be-
tween a player pressing the button and getting a response from the Server will

An extreme case of this class
of cheats would be for an

(incredibly stupid) poker site
that has pocket cards data
as a part of the Publishable

State and doesn’t implement
any Interest Management.

Frustum
In 3D computer graphics, the
view frustum... is the region
of space in the modeled
world that may appear on
the screen; it is the field of
view of the notional camera

—Wikipedia

196 • CHAPTER 3: Communications

be at least one RTT. Therefore, if your PC is rotating with a constant angle ve-
locity, and makes a full turn in two seconds, these 100ms of delay will amount
to an angle of 18 degrees, which we’ll need to have as a “reserve” in addition
to our current frustum just in case your PC is going to turn. It might seem
a rather mild requirement, but we need to keep in mind that in case of any
occasional delay above this “reserve,” we’ll face a pretty bad choice of “should
we start to stutter” or “should we continue the turn, showing the Game World
without dynamic objects.” In addition, if the number of objects is high, send-
ing all those objects that came into view because of the sharp turn, it may also
lead to the need to transfer a few hundred kilobytes of information all of a
sudden—and this will take additional time (if the player has a pretty decent
10Mbit/s connection, transferring 100KBytes still takes 100ms. Ouch!).

In certain cases, the problem of sharp turns can be mitigated by one or
more of the following tricks: (a) adding inertia to turns, and (b) using dis-
tance-based Interest Management for close objects and frustum-based for
distant objects (as mentioned in [Glazer and Madhav, p. 257]). By adding
inertia to turns, we’ll be able to buy some more time after the turn has started
(and the Server has started to transfer the necessary data toward the Client)
and before the Client needs to show those previously unknown objects. Using
distance-based Interest Management for close objects, we’ll be able to show
the scene without stuttering and with most-important close-to-us objects,
even if a delay has occurred.

One real-world example of kinda-frustum-based Interest Management
was described in [Aldridge]. In Halo: Reach, they didn’t completely filter out
items positioned outside the frustum, but rather reduced their priority. And
given the success of Halo: Reach, there should be something right about this
approach.

Game-World States and Reducing Traffic • 197

Before Compression: Minimizing Data

One thing that needs to be mentioned even before we start to compress (and
long before we start to transfer) our Publishable State is that most of the time
we can (and should) minimize the amount of data we want to include in our
Publishable State.¹²⁸ Way too often it happens that we’re publishing data fields
in exactly the same form as they are available on the Server-Side, and this
form is usually redundant, leading to unnecessary data being transferred over
the network. A few common rules of thumb for data minimization:

1. Don’t transfer doubles; while double operations are cheap (at least
on x86/x64), transferring them is not. In 99% of cases, transferring
a float instead of a double won’t lead to any noticeable change in
rendering (while reducing traffic 2x). On the other hand, see below
regarding how to improve it further by using fixed-point numerics.

2. Do think about replacing floats with fixed-point numerics (actually,
an integer with an understanding of where the point is or, more pre-
cisely, what the multiplier is to be used to convert from Server-State
data to a Publishable State and vice versa).

a. One pretty bad example of a float being obviously too much
is transferring an angle for an RPG. Most of the time, having
the angle transferred as a 2-byte fixed-point value will cover
all your rendering needs with an ample reserve (16 bits will
allow to represent angles with a precision of 0.005 degree).
If you’re working with bits (for example, working with a bit-
stream, or packing the whole rotation as described below), a
mere 10 bits (which is 3x less than the usual 4-byte float) will
give you the precision of 0.35 degree, which is usually suffi-
cient for rendering purposes.

b. For coordinates, calculations are more complicated, but as
long as we need a fixed spatial resolution (and for rendering,
this is exactly what we need most of the time), fixed-point

¹²⁸ Strictly speaking, we may consider data minimization as a lossy Compression
Technique—but it is so important that I prefer to discuss it separately.

Most of the time we can (and
should) minimize the amount
of data we want to include

in our Publishable State.

198 • CHAPTER 3: Communications

encodings are inherently more efficient than floating-point
ones, as we don’t need to transfer the exponent for fixed-
point. In addition, with standard floats it is more difficult to
use a non-standard number of bits. For example, if we have
a 10,000m-by-10,000m RPG world, and want to have posi-
tioning with a precision of 1cm, then we need 1e6 possible
values for each coordinate. With fixed-point numerics, we
can encode each coordinate with 20 bits, for 40 bits (5 bytes)
total. With floats, it will take 2*32 bits = 8 bytes (that’s while
having comparable spatial resolution(!)), or 60% more (and
if we transfer doubles, it would go up to 16 bytes, over 3x loss
compared to fixed-point encoding).

c. Yet another case for transferring fixed-point numerics is all
kinds of currencies (actually, for most-of-the-currencies-
out-there it is cents that should be transferred, and the rest
should be just interpretation, with conversion to dollars per-
formed on the Client-Side right before displaying it)

3. Do convert your rotations (which are usually represented as quater-
nions or rotation matrices within your 3D/physics engines; see also
Vol. V’s chapter on Graphics 101), into Euler angles or some kind of
“compressed quaternions” (see, for example, [Zarb-Adami], [Fiedler,
Snapshot Compression], or [Glazer and Madhav, p. 129-130]) for
your Publishable State.

a. The problem with transferring full quaternions or matrices
is two-fold:

i. They’re redundant, which means that they’re large;
ii. Probably even more importantly, they’re redundant,

which means that the rounding of them becomes
problematic (that’s because after the severe round-
ing, their normalization is likely to be off, causing all
kinds of trouble¹²⁹).

¹²⁹ Sure, you can re-normalize both quaternions and rotation matrices after the rounding
or after the transfer, but, well, what’s the point of transferring redundant information
just to throw it away?

After the severe rounding, their
normalization is likely to be off,

causing all kinds of trouble.

Game-World States and Reducing Traffic • 199

b. Both Euler angles and “compressed quaternions” remove this
redundancy, allowing for much better resilience to rounding
(as was mentioned in particular in [McShaffry and Graham,
Chapter 14, p.471], and also observed in the real world). For
example, if using Euler angles, if we need to represent rotation
of a rigid body object with a precision of 0.35 degrees (which
can be coded with a mere 10 bits, as discussed above), we’ll be
able to fit it into 30 bits (or 4 bytes). Comparing it to transfer-
ring a float-based rotation matrix consisting of 9*4=36 bytes,
we’re speaking about a 9x difference, and if comparing to
float-based quaternions (4*4=16 bytes), it is a 4x difference.
Not too little gain for two transforms, if you ask me (note
that transforms to and from Euler representation or com-
pressed-quaternions needs to be done only for data sent over
the network and not for each and every mesh triangle with-
in our Server-Side—or Vivec forbid—Client-Side engines).
With a compressed-quaternion representation, compared to
Euler-angle representation, we’re significantly reducing con-
version complexity (that is, if your internal representation is
quaternion-based), at the cost of slightly worse errors due to
rounding (for a detailed analysis, see [Zarb-Adami]). Over-
all, which of these different compressed representations to
use is up to you; the most important thing is to use not-too-
redundant representations for the purpose of the network
transfer.

c. In some cases, you might run into problems with rounding
of the angles or rotations of the aligned surfaces (for exam-
ple, rounding the angle of the tablecloth separately from the
angle of the table can lead to pretty bad misalignments).
If this happens, one of the ways to deal with it (besides the
obvious “don’t round these specific angles”) is to encode ro-
tation of the object relative to its parent in the scene graph
(i.e., each child in the scene graph will have its rotation de-
fined in relation to its parent). In more extreme cases, you

Scene Graph
A scene graph is a
general data structure
commonly used by vector-
based graphics editing
applications and modern
computer games, which
arranges the logical and
often (but not necessarily)
spatial representation
of a graphical scene.

—Wikipedia

200 • CHAPTER 3: Communications

may need to encode angles of some children in relation to a
specific face (or edge) of the parent; this is usually sufficient to
guarantee that at least that specific face will be well aligned
with the child.

Compression

By this point, we have our Publishable State with a proper Interest Manage-
ment, and have already minimized it to eliminate unnecessary stuff¹³⁰—
but still want to reduce our traffic. As a next step, we’ll need to use some
“Compression Techniques.”

¹³⁰ This includes eliminating unnecessary-for-rendering lower “noisy” bits in coordinates
and angles, as described above.

Game-World States and Reducing Traffic • 201

What Exactly Is “Compression”?
Note that we’ll interpret “Compression” much more broadly than usual ZIP or
JPEG compression (and our Compression will use quite a few tricks that are
not typically used for generic compression), but on the other hand all of our
“Compression Techniques” will still follow exactly the same pattern:

1. Take some data on the source side of things (Server-Side in our case).

2. “Compress” it into some kind of “compressed data.”

3. Transfer the compressed data over the Internet.

4. “Decompress” it back on the receiving side (with or without data loss;
see on “lossless” vs. “lossy” compression below).

5. Get more-or-less-the-same data on the target side of things.

Also let’s note that some of the techniques described below, while being well-
known, are usually not named “Compression”; still, I think naming them
“Compression Techniques” (as a kind of “umbrella” term) makes a lot of sense
and provides quite a useful classification.

To make our Compression practical and limited (in particular, to avoid
using a Game World State for Compression), let’s define more strictly what
our “Compression Techniques” are allowed (and, more importantly, not al-
lowed) to do:

1. Our “Compression Techniques” are allowed to use a “reference base”
to reduce the amount of data sent.

a. Of course, this “reference base” should be something already
known to both sender and receiver. In particular, it may be a
buffer representing the data within the reliable stream (like
in case of LZ77 or deflate), or may be “some previously syn-
chronized snapshot of the Publishable State.” We’ll discuss
“reference bases” (both for reliable streams and for unreliable
packets) in more detail below.

We’ll interpret “Compression”
much more broadly than the

usual ZIP or JPEG compression
(and our Compression will
use quite a few tricks that
are not typically used for

generic compression).

202 • CHAPTER 3: Communications

2. Our “Compression Techniques” are allowed to know about the na-
ture of specific fields we’re transferring; these specifics can be de-
scribed, for example, in IDL (see the Example: Encoding section be-
low for IDL-related examples).

a. Just as one example, if we have two fields, one of which is
a coordinate, and another one is velocity along the same
coordinate, this relation may be used by our “Compression
Technique.”

b. “Compression Techniques” are allowed to rely on game-
specific constants, as long as they’re game-wide.

i. For example, if we know that for OurRPG the usual
pattern when the user presses the “forward” button
is “linear acceleration of A m/s2 until speed reaches
V, then constant speed V,” we are allowed to use this
knowledge (as well as A and V constants) to reduce
traffic.

3. “Compression Techniques” are not allowed to use anything else. In
other words, we won’t consider things like Client-Side-Extrapolation-
which-takes-into-account-running-into-the-wall, as “Compression”
(doing it would require “Compression” to know wall positions, and
we want to keep our “Compression” within certain practical limits).

4. “Compression Techniques” can be either “lossless” or “lossy.” Howev-
er, if our Compression is “lossy,” we must be able to put some limits
on the maximum possible “loss” (for example, if our compression
transfers “x” coordinate in a lossy manner, so that the client_x may
differ from server_x, we must be able to limit the maximum possible
(server_x — client_x)). In the sections below, all the Compression
Techniques are lossless unless stated otherwise.

Our “Compression Techniques”
are allowed to know about
the nature of the specific
fields we’re transferring.

Lossy
compression
Lossy compression (irreversible
compression) is the class of
data encoding methods that
uses inexact approximations
(or partial data discarding)
to represent the content.

—Wikipedia

Game-World States and Reducing Traffic • 203

On “Reference Bases” for Compression
The concept that we name “reference base” is extremely important for achiev-
ing good compression. There are lots of algorithms out there that rely on
it—from game-specific “Delta Compression” and “Dead Reckoning” to clas-
sical “LZ77.” Moreover, it is reference-based algorithms that tend to save the
most bandwidth (for example, within deflate it is LZ77—and not Huffman
 coding—which usually provides most of the savings).

In general, I know of two types of “reference bases” in the game con-
text. The first refers to some previous state (or “current state”). In this case,
the sender, instead of saying that “NPC coordinate is X,” can say something
like the “NPC coordinate didn’t change in this tick,” or the “NPC coordinate
changed by dX.” This kind of “reference base” is typical for Delta Compression
and Dead Reckoning.

The second type of “reference base” refers to a portion of a stream that
was recently communicated between the parties. For example, whenever an
LZ77 compressor notices that a significant portion of the stream is being re-
peated, it can replace it with a (much shorter) sequence that is understood as
“jump N bytes back from current position, and use M bytes from that point.”

“Reference Base” for Unreliable Communications
Low-Latency Compressible State Sync
Most of the commonly available compression algorithms out there aim to
work with reliable communications and reliable streams (such as TCP or or-
dered reliable UDP). However, as it was mentioned above (and as we’ll discuss
in more detail in Vol. IV’s chapter on Network Programming), such reliable
streams inherently suffer from Head-of-Line Blocking, and Head-of-Line
Blocking is really bad for our latencies.

To remove Head-of-Line Blocking (while keeping compression), it is ap-
parently possible to have a “reference base” that is known to both Client and
Server, even in the case of unreliable communications.

One way of enabling compression over unreliable low-latency communi-
cations is described, for example, in [Fiedler, Snapshot Compression]; for the

To remove Head-of-Line
Blocking (while keeping

compression), it is apparently
possible to have a “reference
base” which is known to both
Client and Server, even in case
of unreliable communications.

204 • CHAPTER 3: Communications

purposes of this book, let’s name it “Low-Latency Compressible State Sync”.
Essentially, it can be described as follows:

 ▶ Every packet going from the Server to the Client¹³¹ contains its num-
ber (can be tick number).

 ▶ There are packets going in the opposite direction (from Client to
Server; can be the same packets that carry player inputs), and they
contain an acknowledgement, which is essentially the “number of the
last packet received by the Client.”

 ▶ For each of the Clients, the Server keeps a “list of recent packets ac-
knowledged by Client.”

 ▶ Whenever the Server sends a packet, it MAY use both of the following
as a reference base:

 ■ All the packets that are on the list-of-recent-acknowledged-
packets for this specific Client. Note that a reference to
previous packets is rarely used, but still might allow for
LZ77-like algorithms (more on it in the Compression Using
Acknowledged Packets section below).

 ■ All the Game World States that were immediately produced
from these recently-acknowledged-packets. This is the most
common option used in practice.

 ▶ In any case, for such packets the Server must specify which of the
packets (or states) it refers to. In other words, our Server will be
saying “this is PACKET #Y, WHICH REFERS TO THE STATE
CREATED BY PACKET #X, and using all the Delta Compression
and Dead Reckoning COMPARED TO THE STATE CREATED BY
PACKET #X.” As we know for sure that the Client has already received
that exact PACKET #X (which should be enough to reconstruct the
state), we can be reasonably sure that on receiving our new PACKET
#Y, our Client will be able to reconstruct the whole Publishable Game
World State (as of moment #Y) correctly.

¹³¹ Actually, the same thing will work in any direction, but we’ll stick to the most common
scenario to keep the description a bit more specific.

Game-World States and Reducing Traffic • 205

 ▶ Bingo! We have our reference base (enabling delta compression, dead
reckoning, LZ77-like algorithms, etc.) over an unreliable connection.

Fig 3.5 shows one possible interaction between the Server and the Client
while using the protocol described above:

One note: the approach described above means that PACKET #Y can be eas-
ily different for different Clients (in an extreme case, it can be different for
each Client). However, as for MOGs we’re bound to use unicast anyway (more
on it in Vol. IV), so this isn’t too bad.

Another note is that with this protocol, we do not guarantee delivery of
each-and-every packet (and that’s a Good Thing™, as otherwise we’d waste lots
of time and bandwidth). Instead, what we’re doing is guaranteeing eventual
state synchronization even when some packets are lost.

206 • CHAPTER 3: Communications

Advantage of Low-Latency Compressible State Sync
over TCP and Reliable UDP
One all-important property of the Low-Latency Compressible State Sync
algorithm described above, is that, while enabling compression, it does not
introduce Head-of-Line blocking, so if the packet is lost – this algorithm
allows to avoid associated stutter and delays. In contrast, if we’re using any
compression which relies on a non-acknowledged-yet state (such as “current”
state), or on a non-acknowledged packet – we are bound to have Head-of-
Line blocking, there is no way around it <sad-face />.

Or, from a slightly different perspective:

Latency-wise, Low-Latency Compressible
State Sync usually beats Reliable

UDP¹³² which in turn beats TCP.

Delta Compression
With the definitions in place, let’s start discussing the various flavors of
Compression.

Arguably the most well-known Compression Technique used for MOGs
is so-called “Delta Compression.” Actually, there are two subtly different
things known under this name in the context of games.

Two Flavors of Delta Compression
The first flavor of “delta compression” (let’s name it “Whole-Field Delta
Compression”) is about skipping those fields that didn’t change compared
to the “reference base” (often, you’re just transferring one single bit, saying
“the next field or bunch of fields didn’t change” instead). This kind of “Delta
Compression” is an extremely common technique (known at the very least
since Quake) that is applicable to any type of field, whether it is numerical
or not. This, in turn, allows publishing such rarely changing things as play-
ers’ inventories (though see note in the Publishable State section above about

¹³² At least those systems which use Reliable UDP to construct any kind of reliable stream

Actually, there are two
subtly different things

known under the name
of “Delta Compression” in

the context of games

Game-World States and Reducing Traffic • 207

completely omitting inventory from the Publishable State, or about making it
available on demand; while not always possible, this is generally preferable).

The second flavor of “Delta Compression” (let’s name it “Incremental
Delta Compression”) is a close cousin of the first, but is still a bit different. The
idea here is to deal with situations when a numerical field does change com-
pared to the “reference base” (so skipping the field completely is not really an
option), but instead of transferring new value of the field, we transfer a differ-
ence between the “new value” and “old value.”¹³³ For example, if the field is an
x coordinate, and has had an “old value” of 293.87, the “new value” is likely
to be 293.88, and is unlikely to be zero, so the spectrum of differences be-
comes strongly skewed toward values with a smaller absolute value, which in
turn enables further optimizations. The gain here can be obtained by either
simply using fewer bits to encode the difference, or to play around with
variable-length encodings such as VLQ, or to rely on running another layer
of compression (such as Huffman coding or arithmetic coding; see the
Classical Compression subsection below), which will generally encode more-
frequently-occurring-symbols (in this case, those closer to zero) with less bits.

Let’s note that if we want it, this “Incremental Delta Compression” can
also be made “lossy.” In particular, we may round the delta transferred, as
long as we’re sure that pre-defined loss limits are not exceeded. Note that the
ensuring of loss limits usually requires the Server to keep track of the current
value on the Client Side (more strictly, the last-value-acknowledged-by-the-
Client-Side), so that rounding errors, while accumulating, still remain below
the loss limit.

Delta Compression—Generalization to Arbitrary Trees
Besides these two common flavors of Delta Compression, let’s note that Delta
Compression can be further generalized into updates of arbitrary trees; in this
case, “arbitrary tree” is a tree as defined in graph theory and, in practice, can
include such things as programming-structures-including-other-structures-
and-so-on, and scene graphs. Let’s consider this arbitrary tree as a root node,
and any node can contain some data plus some child nodes.

¹³³ For audiophiles among us, this is pretty much what (A)DPCM is doing for audio signals.

VLQ
A variable-length quantity
(VLQ) is a universal code that
uses an arbitrary number
of binary octets (eight-
bit bytes) to represent an
arbitrarily large integer.

—Wikipedia

Tree
(graph theory)
In mathematics, and more
specifically in graph theory,
a tree is an undirected graph
in which any two vertices are
connected by exactly one path.

—Wikipedia

208 • CHAPTER 3: Communications

In fact, basic logic of applying Delta Compression to such a tree is pretty
simple: if nothing in the parent node is modified, then we can send only one
bit indicating that the whole subtree-starting-with-this-node wasn’t modi-
fied, that’s it.

Things, however, start to become interesting if we want to consider a case
of partial desynchronization, which happens when the Client is a valid Client
that was synced at some time in the past, but since that point has lost some of
the updates, and rolling forward of these updates is not desirable for whatever
reason. Apparently, this problem of partial desynchronization is solvable (not
only has it been solved in practice for a game with hundreds of simultaneous
players, but it also allows for quite a few elegant solutions on top of it, saving
quite a bit of traffic while providing interactivity). Moreover, there is more
than one solution for this problem; unfortunately, these solutions are rather
complicated, so for the time being I’ll omit them from this book (please give
me a shout if you need them, though).

Delta Compression of Arbitrary Trees—
Collecting Updates “On the Fly”
When using Delta Compression for arbitrary trees (and especially scenarios
when within this tree we have a sequence or list or vector that is manipulated
by Game Logic), it may make sense to provide an API that will get the “delta”
not by calculating it by comparing two Game World States but rather by writ-
ing the “delta” right as the tree is modified.

For example, if one of our Game World State nodes is a “Chat” node,
containing a list of the ten most recent chat messages,¹³⁴ then two typical op-
erations will be “insert to the end of list” and “remove from the beginning
of the list.” While comparing two lists (“new” and “old” ones) to find out the
“delta” is technically possible in the case when generic operations are allowed
over the list, it is quite difficult (and time-consuming).

On the other hand, if instead of the usual

push_back(Container& c, T& t) function,

¹³⁴ As was noted above, I feel that in those-games-that-show-chat-history-indefinitely,
chat should be implemented via Game World State rather than via Transient Events.

When using Delta Compression
for arbitrary trees, it may make
sense to provide an API that
will get the “delta” by writing
it right as the tree is modified.

Game-World States and Reducing Traffic • 209

we’ll provide an alternative API such as

push_back(Container& c, T& t, CurrentUpdate& u),

we’ll be able to collect all the updates made to the object c (storing them with-
in the object u) not as an afterthought, but while our object c is being updated
(and then send them to Clients based solely on object u, without spending
time to calculate the difference between the trees).

In practice, from what I’ve seen, traditional “calculate the difference be-
tween two states” works best for the frequently-updated-but-simple fields
(such as coordinates or velocities), and “updates on the fly” tend to work
better for rarely-updated-but-complicated structures (such as inventory lists,
chat, and so on). As always, YMMV.

Dead Reckoning As Compression
Another big chunk of simulation-related Compression Techniques is known
as “Dead Reckoning.” Note that despite obvious similarities, use of Dead
Reckoning for the purpose of compression is subtly different from its use for
Client-Side extrapolation (see the Client-Side Extrapolation, a.k.a. Dead Reck-
oning section above);¹³⁵ in particular, Client-Side Extrapolation is all about
purely Client-Side calculations, while Dead Reckoning as a Compression
Technique involves the Server reducing the amount of data sent (relying on
the Client to use Dead Reckoning to reconstruct the data).

When using Dead Reckoning for Client-Side Extrapolation purposes,
we’re trying to deal with latency. In other words, we don’t have information
on the Client-Side (yet), and are instead trying to predict the movement, re-
ducing perceivable latency (i.e., eliminating NPC “teleports” at the moment
when we finally get the update from the Server-Side); to do it, no Server-Side
processing is required, and there is no precision loss (that is, as soon as the
Client gets the data from the Server).

¹³⁵ In literature, it is usually considered one single “Dead Reckoning” algorithm (part of
“DIS,” a.k.a. IEEE1278) that reduces both perceivable latency and traffic. However, due
to differences in both the effects and implementation, I prefer to consider these two
uses of Dead Reckoning separately.

Dead
Reckoning
In navigation, dead reckoning
or dead-reckoning (also ded
for deduced reckoning or DR)
is the process of calculating
one’s current position by
using a previously determined
position, or fix, and advancing
that position based upon
known or estimated speeds
over elapsed time and course.

—Wikipedia

210 • CHAPTER 3: Communications

When using Dead Reckoning for compression purposes, we do know ex-
act movement, and also know on the Server-Side exactly how the Client will
behave, so we can use this knowledge as a Compression Technique to reduce
traffic (normally as a “lossy” compression).

The basic idea with a classical Dead-Reckoning-as-Compression is to use
velocities to “predict” the next value of the coordinate, while putting a limit on
the maximum deviation of the Client-Side coordinate from the Server-Side
coordinate, so from a “Compression” point of view it is a “lossy” technique
with a pre-defined limit on data loss.¹³⁶

Let’s consider an example. Let’s say that we have tuple (x,vx) as a part of
our Publishable State, and that at a certain moment the Client has this tuple
as (x0,vx0), and that the Server knows this (x0,vx0) for this specific Client.¹³⁷
Now, an update comes into the Server-Side that needs to make it (x1,vx1). The
server calculates (x0+vx0,vx0) as a “predicted” state, and sees if it is “too dif-
ferent” from (x1,vx1).¹³⁸ If it is not too different, the Server can skip sending
any update for this coordinate (and, if it is too different, “Incremental Delta
Compression” can be used to send a message fixing the difference).

For further discussion of the classical Dead-Reckoning-as-Compression
(with a discussion of associated visual effects), see, for example, [Aronson].¹³⁹

One important thing to note about Dead Reckoning is that not just coor-
dinates can be compressed using Dead-Reckoning-like compression; pretty
much anything that can be predicted with a high probability can benefit from
it. One practical example of such non-coordinates compressible by dead reck-
oning is animation-frame number (that is, if you need to transfer it); most of
the time, you’ll be able to just say that the “animation frame is incremented as
expected,” which, in turn, depending on the details of your protocol, can be
transferred as one bit (in some cases, even as zero bits).

¹³⁶ While Dead-Reckoning-as-Compression can be made lossless, it won’t get much in
terms of compression, so the lossless variation is almost-never used.

¹³⁷ See the discussion about “reference bases” above.

¹³⁸ “Too different” here is the same as “exceeding pre-defined loss limit.”

¹³⁹ Despite the title, most of the discussion in [Aronson] is not about latency, but
about reducing traffic with a pre-defined threshold, which we refer to as one of the
“Compression Techniques.”

Not only coordinates can
be compressed using dead
reckoning-like compression;

actually, pretty much anything
that can be predicted with high
probability can benefit from it.

Game-World States and Reducing Traffic • 211

Dead Reckoning As Compression: Variations
Dead Reckoning, as described above, is certainly not the only way to use
kinematic equations to optimize traffic. Possible variations include:

1. Using Incremental Delta Compression to encode data when the “loss
limit” is exceeded.

2. Using accelerations in addition to velocities (and predicting veloci-
ties based on accelerations).

3. Calculating velocities or accelerations (using previous values within
the “reference base”¹⁴⁰) instead of transferring them.

4. Use of smoothing algorithms to avoid sharp change of coordinates
when the correction is issued. These are similar to the smoothing
algorithms used for Server reconciliation (see the Running into the
Wall, and Server Reconciliation section above), and the same smooth-
ing algorithm can be used for both purposes. Whether to consider
smoothing a part of Compression (or a post-compression handling)
is not that important.

5. Using knowledge about the game mechanics to reduce traffic further.
As one example, if in OurRPG velocity of PC always grows in a linear
manner with fixed acceleration until it reaches a well-defined limit,
this can be used to calculate “predicted speed” and to avoid sending
updates as long as velocities are changed along this typical pattern
(any user actions or collisions will still need to be transferred, but the
traffic gain from this class of optimizations can be pretty large).

Such is my tale about Dead Reckoning.

¹⁴⁰ This assumes that we’re keeping more than one snapshot available on both the Server
and the Client.

212 • CHAPTER 3: Communications

Classical Compression
Just as with any other compression, in the context of games, classical
compression algorithms tend to behave very differently depending on the
“reference base” they are allowed to use. In this regard, classical compression
algorithms can be divided into those working over reliable streams (effectively
using a previous part of the stream as a “reference base”), and those working
over individual packets (with no “reference base” other than the packet itself).

Compressing Reliable Streams
Quite a few of the classical lossless compression algorithms (such as ZIP, or,
more specifically, deflate) aim to compress files, or, more generally, reliable
streams (such as TCP or ordered reliable UDP streams). Most of such
classical-compression-methods-for-reliable-streams¹⁴¹ are based on two rath-
er basic algorithms. The first usually revolves around LZ77¹⁴² (with the idea
being to find similar stuff in the earlier buffer¹⁴³ and to transfer a reference to
that “earlier buffer” instead of the verbatim portion of the stream). The sec-
ond algorithm is usually somehow related to so-called Huffman coding,¹⁴⁴
with the idea being to find out which of the symbols occurs in the stream
more frequently than the others, and to use less bits to encode these more-
frequently-used symbols. Of course, there are lots of further variations around
these techniques, but the idea stays pretty much the same. And for the record,
ZIP’s deflate is basically a combination of LZ77 and Huffman coding (and,
say, LZ4 can be seen as an incarnation of LZ77 without Huffman).

Unfortunately, classical compression algorithms, such as deflate, are not
well-suited for compression of the game traffic. One of the reasons is that
(as it was shown for deflate in [Ignatchenko]), these algorithms are usual-
ly not optimized to handle small updates (in other words, “flush” operation,

¹⁴¹ That is, those algorithms that are reasonably fast to be used in games.

¹⁴² And/or its close cousins LZ78 and LZW.

¹⁴³ Effectively using “earlier buffer” as a “reference base.”

¹⁴⁴ Or a bit more efficient space-wise but significantly slower arithmetic coding; overall,
I prefer Huffman but I know a few people who insist on doing arithmetic coding. In
any case, the difference between Huffman and arithmetic coding is not that important
for the purposes of our current discussion, and you’ll be able to decide yourself when
playing with them.

LZ77
LZ77 is the lossless data
compression algorithm
published by Abraham Lempel
and Jacob Ziv in 1977.

—Wikipedia

Game-World States and Reducing Traffic • 213

which enables sending an update, is expensive for deflate and other tradition-
al stream-oriented algorithms).

On the other hand, it is possible to have a compression algorithm opti-
mized for small updates; one example of such an algorithm is an “LZHL” al-
gorithm described in the very same [Ignatchenko], designed by my esteemed
translator. Like deflate, it is a combination of LZ77-like and Huffman-like
compression, though unlike deflate, it is optimized for small updates.

Compressing Independent Packets
It should be noted that for compressing independent packets, pretty much
any algorithm using LZ77-like compression (even optimized-for-small-
updates such as LZHL) won’t work efficiently. This happens because when
trying to compress independent packets, our “reference base” is restricted to
one single packet (which is usually less than 1500 bytes), and it happens to be
way too small for LZ77 (which tends to start working reasonably well with
buffers around 4K-8K bytes, and typical deflate-like efficiency reached around
32K bytes or so).

On the other hand, for unreliable UDP packets, you can still try using
Huffman coding¹⁴⁵ (albeit without LZ77). I won’t go into too much detail on
Huffman coding as such here (it is described very well in [Wikipedia, Huff-
man coding]), however, there is one trick that may help with regard to games.

Usually, implementations of Huffman coding transfer “symbol frequency
tables” as a part of compressed data; this leads to complications in the case of
lost packets (or, if you transfer the table for each packet, the packets become
huge). For games, it is often possible to pre-calculate a symbol frequency table
(for example, by gathering statistics in a real game session), and then hard-
code this frequency table both into the Server and the Client.¹⁴⁶

If using Huffman coding (or reasonable facsimiles such as Huffman-like
or arithmetic coding) in this manner, lost packets won’t affect frequency ta-
bles at all, and this variation of Huffman coding will work trivially over both
TCP and UDP. Note though that usually gains from Huffman coding (when

¹⁴⁵ Or a Huffman-like part of LZHL, as described in [Ignatchenko], or arithmetic coding.

¹⁴⁶ This is known as “training” compression algorithm to specifics of your data.

It is possible to have a
compression algorithm

optimized for small
updates; one example
of such an algorithm is
an “LZHL” algorithm.”

214 • CHAPTER 3: Communications

taken alone, without LZ77 or other methods) are rather limited; even if your
data has lots of redundancies, don’t expect to gain more than 20% compres-
sion from pure Huffman coding, but it is still usually better than nothing.

Compression Using Acknowledged Packets
In addition to the two scenarios above (i.e., reliable streams and independent
packets), it is possible to build an algorithm that would work using “reference
base” achieved via acknowledged packets from unreliable communications
(along the lines described in the “Reference Base” for Unreliable Communica-
tions section above).

I have to admit that while I built a compression algorithm using an
external “reference base” (and it worked like a charm too), I didn’t use it for
fast-paced game-like communications. Still, it seems that such an algorithm
could work pretty well for some of the games out there. Very briefly, when ap-
plied to packets, such an algorithm would work similar to LZ77 or LZHL, but
would issue a reference like “use M bytes from packet T at offset O” (referring
only to those packets which were already acknowledged) instead of the usual
LZ77’s “jump N bytes back from current position within the stream, and use
M bytes from that point.”

Another way to think about it is in terms of “differential update” algo-
rithms (such as bsdiff), compressing the difference of the upcoming packet to
one of the previous packets. Keep in mind though that to be usable in games,
existing file-oriented differential algorithms may need to be re-optimized for
small packets.¹⁴⁷

Combining Different Compression Mechanisms
and the Law of Diminishing Returns
It is perfectly possible to use different Compression Techniques together,
combining them in different ways. For example:

 ▶ For relatively static data (such as inventory), you may want to use
Whole-Field Delta Compression, followed by Classical Compression.

¹⁴⁷ Just like deflate needed to be re-optimized, as discussed above.

It is possible to build an
algorithm which would

work using “reference base”
achieved via acknowledged

packets from unreliable
communications.

Game-World States and Reducing Traffic • 215

 ▶ At the same time, for very dynamic coordinate-like data, you may
want to use Dead Reckoning (as a lossy compression), with Dead
Reckoning using Incremental Delta Compression, and using VLQ to
encode differences.

Note that the examples above are just that, examples, and the optimal case for
your game may vary greatly.

One further thing to note when combining different compression mech-
anisms is that all of them are merely reducing redundancy in your data, so
even if they’re not conflicting directly,¹⁴⁸ traffic reduction from applying two
of them simultaneously will almost universally be less than the sum of reduc-
tions from each of them separately. In other words, if one compression gives
you 20% traffic reduction and another one another 20%, don’t expect two of
them combined to give you 20%+20%=40% or 1-(0.8*0.8)=36% reduction;
most likely, it will be less than that. While there are known synergies between
certain compression algorithms, notably for LZ77 followed by Huffman (or
for Incremental Delta Compression followed by VLQ), unfortunately they’re
few and far between.

On Using Doubles with Lossless Compression
I’ve seen quite a few games where developers were thinking along the lines
of “hey, we have this data; let’s just do Interest Management and Dead Reck-
oning, and then just feed whatever-we-have (usually expressed in terms of
variables having 8-byte double type(!)) to deflate, which will optimize our
data.” It is not that this approach won’t work at all, but it is damn inefficient.

The problem here is—

Lossless Compression is extremely inefficient for
compressing real-world floating-point numbers.

¹⁴⁸ Examples of such direct conflicts are trying to use Dead Reckoning after Classical
Compression, or using LZ77 compression after Huffman compression.

If one compression gives
you 20% traffic reduction
and another one another
20%, don’t expect two of

them combined to give you
1-(0.8*0.8)=36% reduction.

216 • CHAPTER 3: Communications

Let’s consider it from the example of the angle field. When we have an an-
gle (out of which we need only about 8-10 bits that have some meaning for
rendering) represented as an 8-byte double variable, we essentially have 11
almost-constant bits (exponent), 8-10 meaningful bits (the ones which we
really need), and 42-44 “noise” bits (those that we don’t really care about, at
least for rendering purposes).

From the point of view of compression, the real problem is that those
“noise” bits really look like “noise” (usually like “white noise”), and “noise” is
not compressible at all.¹⁴⁹

It means that lossless compression will not be able to compress most of
these 42-44 bits; in addition, if the compression is byte-oriented (like deflate),
it will additionally lose some efficiency because meaningful and meaningless
data is not byte-aligned.

Even a simple switch to floats will significantly improve the situation;
however, an even better (usually much better) approach is:

 ▶ For transferring purposes, convert your angle to a fixed-point with
only those 8-10 meaningful bits.

 ▶ Treat the value represented by these meaningful bits as one “symbol”
and feed this one symbol to Huffman (Huffman-like, arithmetic) cod-
ing with frequency tables specific to this field (or to angles in general).

This way, you’ll completely eliminate those uncompressible “noise” bits and
the rest will have a chance to exhibit some statistical patterns, with Huffman
coding being able to compress them a bit further.

On Adaptive Traffic Management

Even if your game is limited to 250kbit/s, there might be players for which
the Client channel is too narrow to deal with the data you’re sending there.
I’d say that in 2017, saturating the Client’s bandwidth with 250kbit/s is rather
unlikely for home connections,¹⁵⁰ but it may still come into play at least in two

¹⁴⁹ At least if we’re speaking about lossless compression such as deflate.

¹⁵⁰ Though even on home connections it may happen in case of concurrent downloads.

The real problem here is
that those “noise” bits look

like “noise” (usually like
“white noise”), and “noise” is

not compressible at all.

Game-World States and Reducing Traffic • 217

cases: (a) whenever you need to work over a mobile connection, or (b) if you
really need more that 250kbit/s/player.

In such cases, so-called adaptive traffic management may help; the idea
behind it is to (a) detect that the channel to the specific Client is overloaded,
and (b) reduce the traffic accordingly.

Adaptive Traffic Management—UDP
One example of what is essentially Adaptive Traffic Management over UDP
was described in [Frohnmayer and Gift] as early as 1999—and then a very
similar approach was used in Halo: Reach (as described in [Aldridge]).

The basic idea is to prioritize all-the-data-of-potential-interest-for-the-
specific-Client and push as much as of this data as we can, while avoiding
accumulation of the latencies.

Very briefly, Tribes engine (described in [Frohnmayer and Gift]) has a
Stream Manager, where the Stream Manager has limited bandwidth, with the
bandwidth limit known for each of the Clients. Armed with this information,
Stream Manager regularly¹⁵¹ creates a packet-that-will-be-sent-to-the-Client
and then allows different entities to fill this packet with the relevant data
(more prioritized data coming first). As soon as the available space in the
packet is used, the packet is sent to the Client with all the data that higher-
priority data entities managed to fit into it.

This approach is rather simple in concept (though much more difficult
to implement and tune in practice) and allows you to utilize as-much-as-
possible-of-the-Client’s-channel in a way that makes sense (i.e., providing as
much information as possible to the Client, given the limitations on Client
bandwidth). Which is exactly what Adaptive Traffic Management is about.

Last, but not least: when speaking about priorities, we may need to make
sure that low-priority objects don’t stay without updates “forever-and-ever.”
One way to do it is via a “priority accumulator” as described in [Fiedler, State
Synchronization]. Very briefly:

¹⁵¹ Normally for each network tick.

As soon as the available
space in the packet is over,
the packet is sent to the

Client with all the data which
higher-priority data entities

managed to fit into it.

218 • CHAPTER 3: Communications

 ▶ In addition to a static object priority, each object has a dynamic
“priority accumulator.”

 ▶ On each frame, we’re adding object priority to its “priority accumu-
lator.”

 ▶ When deciding what-to-send, we’re using “priority accumulators”
rather than object priorities.

 ▶ When we’re sending an object, we’re resetting its “priority accumu-
lator” to zero.

Adaptive Traffic Management—TCP
In the TCP world, the only real-world system I know that is using some kind
of Adaptive Traffic Management is the Lighstreamer server aimed for near-
real-time communications [Lightstreamer]. In a manner that is somewhat
similar to UDP, TCP-based Adaptive Traffic Management consists of two sep-
arate things:

 ▶ Bandwidth detection (for each Client separately and dynamically as a
mobile channel’s quality can vary greatly over time).

 ▶ Rate limiting based on the detected bandwidth (again, on a per-
Client basis). How to implement rate limiting is a different story.

 ■ Unlike Tribes/Halo above, to limit or control the bandwidth,
instead of prioritization, Lightstreamer uses so-called “con-
flation.” Very briefly, whenever we have a queue mounting
on the sending side, we can “conflate” several updates into
a single one, saving on traffic while preserving the last value
for each field. In other words (and very roughly), if there are
two updates of the same field in the queue, we can skip the
first one, as it will be overwritten by the second one anyway.

Game-World States and Reducing Traffic • 219

Adaptive Traffic Management
in the Context of Authoritative Servers
When looking at those games that are using Adaptive Traffic Management,
we can see that they tend to come from P2P architectures (rather than from
Authoritative Server architectures). Among other things, it can be attributed
to two factors:

1. For a long while, traffic for those games based on Authoritative Serv-
ers was bound not by the Client’s bandwidth, but by traffic costs on
the Server Side.

a. However, as we have seen (see the Additional Reasons to
Optimize Bandwidth section above), in 2017 more and more
games became bound by Server CPU costs rather than by
traffic costs (which can be caused by traffic costs going down
faster than Server costs), and this may open the door for
using all available bandwidth on the Client.

2. Adaptive-Traffic Management causes different Clients to have differ-
ent visual representations; while from the point of view of “graceful
degradation” it is certainly good, from the point of view of the games
being perfectly fair (as needed for eSports), it is not necessarily so.¹⁵²

On the other hand, Adaptive-Traffic Management certainly does have its
benefits (that is, as soon as you’re ready to foot the bill for additional Server
traffic beyond “the bare minimum necessary to make the game playable”).
In particular, it avoids excessive latencies, while providing as-much-
information-as-possible to each of the Clients (sounds pretty much like a
Holy Grail, doesn’t it?)

Whether Adaptive-Traffic Management is worth the trouble (and down-
sides listed above) is an open question (and IMO depends on the specifics of
your game). However, there is one environment where I’d expect its bene-
fits to clearly outweigh the negatives for quite a few games. In particular, for

¹⁵² Of course, any game will be unfair if played over a bad channel; however, Adaptive-
Traffic Management helps to use more bandwidth—effectively making game behavior
more dependent on traffic.

Graceful
degradation
Providing an alternative
version of your functionality
or making the user aware of
shortcomings of a product as
a safety measure to ensure
that the product is usable.

—W3C

Adaptive Traffic Management
avoids excessive latencies,
while providing as-much-
information-as-possible
to each of the Clients

(sounds pretty much like
a Holy Grail, doesn’t it?).

220 • CHAPTER 3: Communications

mobile games, with mobile games not having that much bandwidth to start
with, “graceful degradation” will often be the only viable option.

Traffic and Real-Time Strategies
Real-Time Strategies (RTS) are quite special when it comes to traffic. If your
game has a thousand units that will move in a similar, but not identical fash-
ion on one player’s click, any naïve implementation of the Publishable State
will result in traffic being unacceptable. This problem is actually that bad that
it has led to widespread use of RTS games based on Deterministic Lockstep;
however, Deterministic Lockstep tends to trade off one problem of traffic for
a whole bunch of its own very significant problems; in particular, it is inher-
ently wide open to “maphack” (“lifting fog of war”) cheating, and also has
limitations on the maximum number of players; see Chapter 2 for discussion.
As a result, I strongly suggest trying to use Authoritative Servers and Publish-
able States even for RTS—that is, unless it is proven that traffic for a specific
RTS cannot be optimized.

When optimizing RTS traffic, there are several things that can and should
be used (see also [Amir and Axelrod]; while it overlaps with the list below,
there are also significant differences, so make sure to read both):

 ▶ Interest Management is our friend (at least in larger worlds). We don’t
need to send more than a player is allowed to see (and sending infor-
mation about only those groups he can see also greatly reduces
potential for wallhacks).

 ▶ The very same observation of “1,000 units moving on one player
click” is going to help us with traffic. In particular, almost universally
these 1,000 units will be moving according to similar (though not
identical) patterns. Which means that if we encode these movements
not as 1,000 separate movements but along the lines of “this group
with 1,000 units moves to (x,y), and they should stand in a well-
known formation #N after the movement is complete,” we’re going to
save a damn lot on traffic.

Interest Management is our
friend (at least in larger worlds).

Game-World States and Reducing Traffic • 221

 ■ In some cases it might be necessary to specify deltas (from
group position to individual unit position) instead of refer-
ring to well-known formations. However, as we’re going to
use the Client only for rendering, these deltas (and actually
group positions) can be approximate; and as soon as they’re
approximate, they become compressible (in particular, it
is very likely that they will have only a few very common
values, and then they become ideal candidates for Huffman
coding). On the other hand, approximations are inherently
imprecise, so we need to be careful to avoid their accumula-
tion (see below).

 ▶ Most of AI actions can be divided into trivial ones (such as “move
along the path…”or “follow…” etc.; see [Amir and Axelrod] for
details), and these trivial AI-like actions can be delegated to the Cli-
ent. In other words, instead of saying “hey, unit has moved” each and
every time, we can say to the Client “hey, start moving this group to
(x,y) with velocity V with such and such waypoints, also taking into
account corrections for individual units within the group too.” Note
that this, while being a very efficient traffic optimization technique,
can easily become another source of imprecision (in particular, due
to the lack of 100% determinism between the Client and the Server,
or due to different information being available to the Client and the
Server at the point of decision making).

 ■ As for delegating pathfinding/A* to the target Client, it might
be partially possible, but you need to beware of delegating
decisions that might cause significantly different movements
on the Client and the Server. In particular, if there are two
significantly different paths with almost-identical costs, im-
precisions and/or not being 100% deterministic can cause
these small differences to cause the Client and Server to
choose very different paths. To avoid this, make sure that all
the stretches you’re sending between the Client and Server
are small enough so they won’t cause any trouble (in other
words, split your “move over the whole map” command into

A* Search
Algorithm
A* (pronounced as "A star") is
a computer algorithm that
is widely used in pathfinding
and graph traversal... It enjoys
widespread use due to its
performance and accuracy.

—Wikipedia

222 • CHAPTER 3: Communications

several smaller ones to make sure that the Clients don’t have
room to choose a path that is vastly different).

 ■ Note that this is different from performing pathfinding on
the source Client. Making decisions on the source Client is a
technique that is not related to traffic optimization but rath-
er to optimizing Server-Side CPU usage. From a cheating
point of view, it cannot be used to violate game rules (that
is, as long as I’m only making decisions about moving my
own units), but can facilitate some helper apps that may be
prohibited by T&C (and which may also shift game balance).

 ▶ If we allow imprecisions (which can arise in several scenarios; see
above), we must make sure that these imprecisions cannot accumu-
late. One simple way of doing it is to use commands that specify unit
final destinations rather than increments; this way, all imprecisions
will automatically become “self-healing.”

I have to admit that I didn’t see (as in “with my own eyes”) an RTS that is built
along these lines; however, from what I’ve heard (and trying to extrapolate my
experience from different fields), it seems perfectly feasible to achieve accept-
able traffic levels for an RTS while using an Authoritative Server to run it. Still,
no warranties of any kind, and make sure to test your compression before you
commit to this model.

Traffic Optimization:
TL;DR and Recommendations
It took us a while to get here, but we did it. Now we can summarize my cur-
rent feelings about optimizing MOG traffic and provide a set of personal
recommendations in this regard. As a first approximation, I suggest to opti-
mize things (roughly) in the following order:

 ▶ First, make sure that you start your analysis in terms of separate
Client-Side State, Server-Side State, and Publishable State.

It took us a while to get
here, but we did it.

Game-World States and Reducing Traffic • 223

 ■ Even if you find out later that some (or even all) of these
States will be the same for your game, it is very important to
make this kind of decision with your eyes wide open.

 ▶ Then, minimize your Server-Side State. It is important not only to
minimize traffic, but also to minimize server-side CPU load

 ▶ Then, minimize your Publishable State. Be aggressive: throw away
everything and add fields to your Publishable State only when your
Client cannot live without them.

 ■ While you’re at it, split your Publishable State into several
groups with different timing requirements.

 ■ Make sure to take a close look at the data types you’re going
to transfer. Try to avoid doubles and even floats; preferable
is fixed-point numerics. Make sure also to deal with angles
and rotations.

 ▶ Make sure to implement Interest Management.

 ▶ For RTS games, take a look at those RTS-specific optimizations
discussed above.

 ▶ Make sure to use “Whole-Field Delta Compression” to allow skipping
updates for non-changing objects.

 ■ Treat “non-changing objects” broadly; for example, for many
games out there an object that keeps moving with the same
speed in the same direction can be treated as “non-changing”
(alternatively, you can handle it via “Dead Reckoning”).

 ▶ Think about “Dead Reckoning” compression, keeping adverse visual
effects in check (and reducing the threshold if necessary).

 ■ Don’t forget about variations of Dead Reckoning; they may
make a significant difference depending on specifics of your
game.

 ▶ Think about running Classical Compression on top of the data com-
pressed by previous techniques, but don’t hold your breath over it.

Minimize your Publishable
State. Be aggressive: throw
away everything, and add
fields to your Publishable

State only when your Client
cannot live without them.

224 • CHAPTER 3: Communications

 ■ Deflate as such won’t work for most games (primarily due to
the cost of “flush”).

 ■ LZHL works okay for TCP and for reliable-and-ordered
UDP, but adapting it for unreliable and/or unordered UDP
will require an additional effort.

 ■ Huffman coding (and similar codings such as Huffman-like
and arithmetic) with pre-populated frequency tables (see
above) will work for UDP, but the gains are limited.

 ▶ When combining different compression techniques, keep in mind
that their order is very important.

 ▶ I strongly suggest separating all types of compression from the rest of
your code (including simulation code).

 ■ Moreover, I suggest that compression code should be gen-
erated by your IDL compiler based on specifications in IDL,
instead of writing compression ad hoc. More on IDL in the
IDL: Encodings, Mappings, and Protocol Changes section
below.

MMOG AND SCALABILITY
If each of your Game Worlds has only up to a dozen players by design (think
MOBA), each of them will probably be small enough to be simulated on a
single CPU core. In this case, scaling your Game Worlds to serve hundreds
of thousands of players (running over tens of thousands of Game Worlds) is
trivial.¹⁵³

However, if your game has thousands of players within one single Game
World (which makes it an MMOG according to the definition in Wikipedia),
you won’t have the luxury of your whole Game World fitting onto one CPU
core. Worse, as soon as your Game World is large enough, you won’t even
have the luxury of your whole Game World fitting onto one Server box (as

¹⁵³ Scaling your database is a different story, but we’re not there yet.

MMOG and Scalability • 225

of early 2017, pretty much the largest Server you can get without going into
highly specialized hardware is 4 sockets*24 cores/socket=96 cores, which is
quite a lot—but is usually still enough to run some kind of simulation for only
about 10K players¹⁵⁴). And as a side note, splitting the same 96 cores onto 4
“workhorse” 2-socket/24-core Servers is going to save you about 2x in Server
rental costs.¹⁵⁵

In other words, when speaking about multiple tens of thousands of simul-
taneous players within the same Game World, we won’t be able to “scale up”
and will need to “scale out.”

On Shared-Nothing Architecture
As soon as we’re into multiple Server boxes, we’ll need them to communi-
cate via some kind of message system (and each of the boxes will become a
self-contained Shared-Nothing entity).

As a side note: usually I argue for going further than that and splitting
your Game World not into Server-size Shared-Nothing pieces, but into core-
size Shared-Nothing pieces (i.e., each of the Shared-Nothing pieces will be
constrained not to the whole Server, but rather to the single core). This has
numerous benefits and we’ll discuss them in Vol. II’s chapter on (Re)Actors in
nauseating detail; for the time being, I’ll just say that such core-size pieces:

1. Allow for writing simulation in good ol’ game-loop style (which is
very straightforward),

2. Allow for significantly better debugging (including such things as
production post-factum debugging and replay-based regression
testing), and

3. Tend to perform better (due to the lack of inter-thread contention).

Still, for the purpose of this chapter, we can pretty much ignore the size of our
Game World pieces and just postulate that:

¹⁵⁴ Of course, YMMV, but 100 players/core is “kinda-industry-standard” these days.

¹⁵⁵ NB: Keep in mind that such a split leads to decreased system MTBF, but for an MMOG
handling Game World failures is a necessity anyway and is usually not that bad.

Usually, I argue for splitting
your Game World not into
Server-size Shared-Nothing
pieces, but into core-size
Shared-Nothing pieces.

226 • CHAPTER 3: Communications

 ▶ Our scalable Server-Side consists of multiple self-contained
(=“Shared-Nothing”) Pieces.

 ▶ These Pieces are communicating only via some kind of messaging.
Implementing these messages is a separate task and we’ll discuss it in
the Server-to-Server Communications section below.

And, last but not least: of course, within this chapter we’ll just scratch the
surface of the topic of MOG scalability (specifically one question of “how to
split a large Game World”). Overall scalability is much more elaborate than
this single topic, and we’ll continue to discuss scalability-related issues across
pretty much the whole book (in particular, Vol. III, Vol. VI, and Vol. IX have
a lot of scalability-related stuff).

An Obvious One: Separate NPC/AI
As mentioned above, the key reason for splitting the Game World is to avoid
one single CPU core (usually the one running the simulation/game loop)
from being overloaded. And one obvious solution (mentioned as early as in
2003 in [Beardsley]) is to separate NPCs and their AI onto separate Pieces
(with these Pieces able to run on separate cores and separate Servers, it means
that scalability has improved).

In this case, from the perspective of our Game World Pieces (those
simulating the game), the NPC/AI Pieces act quite similar to usual Clients,
communicating via (a) obtaining a more-or-less-up-to-date replica of the
current Game World’s Publishable State, and (b) sending inputs to the Game
World.

As a side benefit, this approach also tends to simplify the code of the
Game World Logic significantly as all the characters become handled in pret-
ty much the same manner, regardless of being controlled by players or AI.¹⁵⁶

¹⁵⁶ TBH, you should still expect some differences, in particular, in disconnect handling, but
these differences are usually not that drastic.

The key reason for splitting
the Game World is to

avoid one single CPU core
from being overloaded.

MMOG and Scalability • 227

Splitting into Areas
However, while separating AI usually qualifies as a Good Idea™, it is almost-
never sufficient to achieve real scalability to hundreds of thousands of players
(usually, with such an AI separation, we’re speaking about gains in the order
of 2-3x, not in the order of 10x-100x).

As a result, most of the time, when your large Game World exceeds a
certain size, you’ll need to split it into several areas (zones, cells, whatever-
other-name-you-want-to-use); then each of your sub-Game-Worlds will be
able to run on a separate Piece (which in turn will run on a separate core or
Server). This will also mean extremely good scalability: as long as you can
split your Game World into as-many-areas-as-you-need, the system will scale
in a near-perfect manner.

Within, such a sub-Game-World will work more or less as a usual Game
World, however, it will need to pass around your PCs/NPCs to other sub-
Game-Worlds.

Implementing sub-Game-Worlds is not that difficult if your Large Game
World is naturally split into zones (rooms, etc.) that do not interact with one
another directly and if each is small enough to be run on a single CPU core.
However, if you happen to have a large Game World without such obvious
boundaries, we’re speaking about a so-called “seamless Game World,” where
things tend to become difficult.

Seamless Worlds: Overlap!
One common technique to enable splitting of the seamless Game World can
be described as “split-with-an-overlap.” It is described in detail in [Beardsley]
and is still actively used these days; see, for example, [Baryshnikov].

The basic idea is to have the large seamless Game World split into several
sub-Game-Worlds, with objects close to the border (i.e., within a pre-defined
“shared area”) present on both sub-Game-World Pieces at the same time.
“Shared area” is usually defined as the one that is visible from both sub-Game-
Worlds (or, more precisely, the area that guarantees that the “area of interest”
for each player always fits into one single sub-Game-World).

The basic idea is to have
the large seamless Game

World split into several sub-
Game-Worlds, with objects
close to the border present
on both sub-Game-World
Pieces at the same time.

228 • CHAPTER 3: Communications

Then, we need to have all the objects within our “shared area” to be
present within both our sub-Game-World Pieces. Here, there is one usual
implementation, though it can be seen from two slightly different angles.

As a first option, we can say that we’re simulating the same “shared” ob-
ject in both sub-Game-Worlds (though only one remains authoritative at
any given point in time, so we always know how to reconcile). Information
from the “authoritative” sub-Game-World is pushed to the non-authoritative
one(s), and they adjust their positions to bring their objects in sync with the
authoritative representation (using reconciliation if necessary).

The second way to see pretty much the same thing is that for those objects
that are non-authoritative in our sub-Game-World, we’re obtaining information
from the other sub-Game-World, which is currently-authoritative-for-that-
object (in the same manner as Clients do), and then we also are running
Client-Side Prediction for such non-authoritative-in-our-sub-Game-World
objects (once again, using reconciliation if necessary). It is interesting to note
that regardless of how we see it (as the first option or the second), the end result
will be pretty much the same.

Note that in any case we’ll need to take care of transferring object owner-
ship from one sub-Game-World to another; this is usually not that difficult.
With only one of the sub-Game-Worlds being authoritative, it is the one that
will make the decision to pass the object around when the object crosses the
sub-Game-World boundary.

The more complicated question with regard to sub-Game-Worlds is the
one of “how exactly our Game World should be split?” Quite often, you’ll
need to resort to the model with the Pieces and sub-Game-Worlds based
on the current load of each Piece, which leads to moving sub-Game-World
boundaries. While handling these moving boundaries is possible (in par-
ticular, as described in [Beardsley] and [Baryshnikov]), it is highly game-
dependent and is often not trivial (and don’t forget to build some kind of
hysteresis into your moving-sub-Game-World-boundaries algorithms, or
you’ll end up with completely unnecessary oscillating boundaries trying to
chase the ever-changing optimum).

MMOG and Scalability • 229

On Server-Side Uncertainty
One issue that often arises within the context of sub-Game-Worlds is the
question of time synchronization between them, and the related question of
uncertainty. As noted above, when having those objects-shared-between-sub-
Game-Worlds, we cannot always guarantee that the copy of the object on the
non-authoritative sub-Game-World is exactly the same as the original object
on the authoritative server.

This is similar to the situation with the Client, which often has almost-
but-not-exactly-the-same data as the Server (see, for example, the Running
into the Wall, and Server Reconciliation section above). However, for Servers
(and sub-Game-Worlds), the situation is actually even worse, because—

These non-authoritative and non-exact
objects can interact with authoritative

ones and potentially can cause differences
in behavior of authoritative objects.

Practically in the context of games (i.e., unless you’re running a scientific sim-
ulation), most of the time such uncertainty is not a problem. While having
certainty and determinism is a Good Thing™ in general, for practical purposes
we can live with a component-level determinism (such as the one discussed in
Vol. II’s chapter on (Re)Actors), and not aim for determinism of the system as
a whole.

However, you may still need to keep this Server-Side uncertainty in mind,
as depending on the specifics of your game (and on implementation details),
it might cause rather unpleasant macroscopic effects. For example, in some
implementations your player might escape an otherwise inevitable death just
because the packet that transferred the authority about him between sub-
Game-Worlds was delayed compared to the packet that transferred the bullet
(and there was a moment when the player didn’t exist in either of the sub-
Game-Worlds and it was exactly the moment when the bullet should have hit
him). Whether it will be a substantial problem you never know, but in certain
cases it might.

Practically in the context
of games (i.e., unless you’re

running a scientific simulation),
most of the time such

uncertainty is not a problem.

230 • CHAPTER 3: Communications

Eliminating Uncertainty Completely: Time Sync

Speaking of uncertainty, there actually exists a strict way (actually, more than
one such way) to eliminate Server-to-Server uncertainties altogether (which
is equivalent to making the Server-Side, taken as a whole, deterministic).

Before we go into detail, let’s note that eliminating uncertainty is equiv-
alent to establishing one uniform time covering all the sub-Game-World,
effectively performing time sync between different sub-Game-Worlds (and
performing all the calculations according to this synchronized time). On the
other hand, the mechanics of this inter-sub-Game-World time sync is sub-
stantially different from time sync between the Client and the Server (the one
we’ve discussed in the Time Synchronization section above): in particular, for
inter-sub-Game-World time sync, there is usually no single authority for time
(in spite of each object having its own authority at each given moment, sub-
Game-Worlds themselves are usually not subordinate to one another), which
in turn causes quite a few complications.

Synchronization without Rewind: CMS/LBTS. Lockstep
One class of approaches to eliminating-uncertainty and time-sync revolves
around academy-developed algorithms such as CMS and LBTS. I don’t want
to discuss them too much (for further discussion, please refer to [Smith and
Stoner]), but, in a nutshell, the idea of these algorithms is to delay simula-
tion on all the nodes until the Server receives calculations of the previous
“network tick” from all the relevant Servers. In other words, it is a very close
cousin of “Lockstep” algorithms. While Lockstep algorithms are known to
be very fragile when Clients are involved, in the Server world (and Servers
within the same Datacenter), it might fly.

However, I would still be quite reluctant to use any kind of blocking syn-
chronization. First, the risks of stopping the whole thing just because one of
the Servers slowed down is rarely a good thing if you have a dozen Servers,
and for a hundred it is usually catastrophic. In addition, I don’t like the idea of
running at the speed of the slowest guy in the Server crowd (and at every
moment too). Still, if nothing else does the trick, these approaches have been
reported to work.

I would still be quite
reluctant to use any kind of
blocking synchronization.

MMOG and Scalability • 231

Synchronization via Server Rewind: “Value Date”
The second wide class of approaches to time-sync and eliminating uncertainty
is based on the same Server Rewind that (with respect to Lag Compensation)
we were discussing in the Server Rewind section above.

Let’s consider an example when both sub-Game-World A and sub-Game-
World B simulate their own parts of the Game World, and there is a need to
apply changes calculated by sub-Game-World A to sub-Game-World B. In
this case, all that is necessary on the side of sub-Game-World A is to send
a message to sub-Game-World B adding a timestamp with the semantics of
“when it is supposed to happen” to the message; that’s it.

On receiving such a message, sub-Game-World B would see how the cur-
rent time within its own simulation compares to the timestamp specified in
the message and, depending on the result, will do one of the following: (a)
wait until its own “current time” reaches the timestamp, (b) apply the message
immediately, or (c) “rewind” its own Game World back in time to apply the
message “as if ” it happened at whatever-time-is-specified-in-the-timestamp.

Logically, this “when it is supposed to happen” timestamp field is con-
ceptually identical to the “value date” field that is associated with SWIFT
banking transfers. As a SWIFT transfer takes time (even in 2016, it can easi-
ly take 3-5 business days(!)) and we as customers certainly don’t want our
money “hanging” somewhere without generating any interest,¹⁵⁷ each SWIFT
transfer carries a “value date” field. It means “whenever you, as the receiving
bank, get this transfer, you make sure to enter it into the target account ‘as if ’
the transfer has happened on the ‘value date’; this includes calculating all
relevant interest, etc. To implement it, at this point, the recipient bank effec-
tively “rewinds” time to the date specified in the “value date” field (due to
banking accounts being mostly independent, it is not that difficult for a
bank), then applies the transfer, and then re-calculates all the interest and
whatever-other calculations since that point.

This analogy becomes even more obvious when a “value date”-like
timestamp is used in conjunction with Inter-DB Asynchronous Transfer

¹⁵⁷ Well, these days banking interest is more of a theoretical point but, OTOH, it still
needs to be accounted for.

SWIFT
The Society for Worldwide
Interbank Financial
Telecommunication (SWIFT)
provides a network that
enables financial institutions
worldwide to send and
receive information about
financial transactions in a
secure, standardized and
reliable environment… The
majority of international
interbank messages use
the SWIFT network.

—Wikipedia

232 • CHAPTER 3: Communications

(described in the Going Further: Inter-DB Async Transfer with Transactional
Integrity section below).

Regardless of the “value date” analogy, “Server Rewind” effectively
achieves perfect eventual synchronization regardless of the relative order of
packets and calculations, and without additional latencies. Also let’s note that
for Server-to-Server communications (assuming that you control all the Serv-
ers, so they can be equally trusted), the issue of cheating (which is inherent
when Server Rewind is done according to timestamps coming from the Cli-
ent) doesn’t apply, so this downside of “Server Rewind” doesn’t apply to Serv-
er-to-Server Rewinds.

On the other hand, for most of the games out there, I’d say that making
the system “strict” and making special efforts to eliminate uncertainty is over-
kill. OTOH, if aiming for a perfectly correct Game World, I would probably
try going the way of “Server Rewinds” (that is, applying them to communica-
tions between sub-Game-Worlds).

TRANSIENT EVENTS,
FORWARDED INPUTS, AND (KINDA-)
BROADCASTED MESSAGES
After we’ve spent that much time discussing state synchronization and repli-
cation, we need to think about other types of Server-2-Client communication.

Transient Events
Should anyone here present know of any reason
that this couple should not be joined in holy matrimony,
speak now or forever hold your peace.

—Traditional phrase used during a marriage ceremony

Of the remaining types of Server-2-Client communication, let’s briefly dis-
cuss “Transient Events” first (they are usually used to implement explosions,
bullet hits, and so on).

“Server Rewind” effectively
achieves perfect eventual
synchronization regardless

of the relative order of
packets and calculations—and
without additional latencies.

Transient Events, Forwarded Inputs, and (Kinda-)Broadcasted Messages • 233

As was noted in the beginning of this chapter, Transient Events have an
important property that they don’t make much sense if delivered late; so, from
our perspective, we should either deliver them “right now” or “never.” In ad-
dition, Transient Events tend to go at the same time to all interested players,
though they may be subject to Interest Management.

Forwarded Inputs
Transient Events mentioned above are very common in games (more often
than not, explosions, bullet hits, etc. are implemented on top of them). In con-
trast, another type of Server-2-Client communication, the one that effectively
forwards inputs from other Clients to our Client, and which we’re going to
discuss now, is not common at all; on the other hand, it was successfully used
in at least one AAA game (see [Aldridge]).

The idea behind forwarding inputs goes as follows: we’re considering
a situation where some other player has already pressed a button to move
left, and the Server already knows it. However (for example, due to inertia)
it may take a while¹⁵⁸ until this movement manifests itself in the Publishable
State—and then this manifestation will be further delayed by the lag between
the Server and the Client. Therefore, if we pass this “other Client pressed a
button to move left” information to our Client, we can improve precision of
our Client-Side Prediction (and effectively reduce the lag between other-PC-
movements and show these movements on the screen of our Client).

Potential for Information Leaks

While all the logic above holds, there is a Big Fat Problem™ with such For-
warded Inputs—and the problem is once again related to cheating (more
specifically Information Leak attacks). If the cheater’s Client has information
that the opponent presses “left” but the movement to the left is not really vis-
ible yet, then a cheat that extracts this information from the cheater’s Client,
and shows an arrow pointing to the left as an overlay for the game (effectively

¹⁵⁸ Yes, 20ms qualifies as “a while” for fast-paced games.

234 • CHAPTER 3: Communications

predicting where the opponent is going to move), could change the whole
game balance drastically in favor of the cheater.

That being said, as discussed above, making players happy is usually much
more important than preventing more subtle varieties of cheating, so I can
think about a game or three (all FPS) where you might need to use Forwarded
Inputs. On the other hand, if you come to a situation where you need
Forwarded Inputs, make sure to think about whether they are indeed really
necessary for your game (or maybe you can remove the need for it just by
changing gameplay just a little).

Overall, exactly the same logic as discussed in the OTOH, Player Happi-
ness Is Much More Important section above also applies to Forwarded Inputs.
Let’s just note that the impact of cheats enabled by Forwarded Inputs may be
significantly higher than that of Lag Compensation and therefore Forwarded
Inputs should be subject to even more scrutiny that Lag Compensation before
you decide to use them.

Implementation

Implementation-wise, Forwarded Inputs exhibit pretty much the same prop-
erties as Transient Events. They also need to be transferred ASAP or never
at all, and they also tend to be intended for all players (subject to Interest
Management).

(Kinda-)Broadcasted Messages
(Broadcast with Interest Management)
As we just observed above, both Transient Events and Forwarded Inputs have
very similar requirements, so no wonder they can be implemented on top of
the same mechanism. I’m speaking about (kinda-)Broadcasted Messages.

The idea behind (kinda-)Broadcasted Messages is pretty simple—we’re
just sending something to everybody in sight, and don’t care whether our
message has made it or not (because if the message didn’t make it, re-sending

If you come to a situation
where you need Forwarded
Inputs, make sure to think

about whether they are indeed
really necessary for your game.

Point-to-Point Communications and Non-blocking RPCs • 235

the message will be a waste of resources by definition, as it will be late to the
party anyway).

As a rule of thumb, unreliable UDP packets are the best fit for implement-
ing (kinda-)Broadcasted Messages. Let’s note though that they need to be
implemented as multiple unicast UDP packets (i.e., via one packet going to
each of the players) rather than a single multicast UDP packet.¹⁵⁹

POINT-TO-POINT COMMUNICATIONS
AND NON-BLOCKING RPCS
After we’ve discussed the Publishable State and communications on top of
(kinda-)Broadcast Messages, the next (and actually last) thing we’ll need for
our MOG communication-wise is Point-to-Point communications. While
Publishable State and (kinda-)Broadcast is all about Servers communicat-
ing with Clients, Point-to-Point communications can happen either between
the Client and the Server or between two Servers. These two types of Point-
to-Point communications have quite a bit in common, but there are also
substantial differences.

In the context of Client-2-Server point-to-point communications, most
of the time we’re speaking about Clients sending their inputs (and other
requests such as commands) to the Server-Side. And in the context of Server-
2-Server communications, there are lots of different things that may require
being communicated (more on it below).

Note that the differences between TCP and UDP are still beyond the
scope until Vol. IV; we’re still (mostly) speaking of what we need and not
about how to implement it.

¹⁵⁹ There are two reasons for it: first (as discussed in Vol. IV’s chapter on Network
Programming), multicast UDP doesn’t work over the Internet. Second (as if the first
one is not enough) is that Interest Management implies that different Clients should
receive different information

As a rule of thumb, unreliable
UDP packets are the best

fit for implementing (kinda-)
Broadcasted Messages.

236 • CHAPTER 3: Communications

RPCs
Regardless of the parties involved in a Point-to-Point communication (wheth-
er it’s between Client and Server or between two Servers), all Point-to-Point
communications share certain common properties.

In particular, it is common for games to implement Point-to-Point com-
munications as non-blocking Remote Procedure Calls (RPCs). While this is
not required (and you can use a simple message exchange instead, with either
handwritten or IDL-based marshalling), non-blocking RPCs tend to be con-
venient and straightforward.

It should be noted, however, that while non-blocking RPCs are perfectly
viable for games, you really should stay away from blocking RPCs (such as
those used by DCE RPC/COM/CORBA/ICE); at the very least, as long as
we’re speaking about WAN.¹⁶⁰ We’ll discuss the reasoning behind the inappli-
cability of blocking RPCs to Internet apps in Vol. II’s chapter on (Re)Actors.

¹⁶⁰ This covers both communications between Servers and Clients, and Server-2-Server
communications that go beyond one single Datacenter.

It should be noted, however,
that while non-blocking RPC

are perfectly viable for games,
you really should stay away
from blocking RPC—at the
very least as long as we’re

speaking about WAN.

Point-to-Point Communications and Non-blocking RPCs • 237

Implementing Non-Blocking RPCs

To implement non-blocking RPCs, you need a way to specify signatures of
your remotely callable functions; such specification defines the interface (and
often protocol, though see more on encodings in the Example: Encoding sec-
tion below) between RPC caller and RPC callee.

Sometimes such specification is done by adding certain attributes to
existing functions and methods in your usual programming language. For
example, in Unity it is done by adding [RPC]/[ClientRpc]/[Command] C#
method attributes, and in UE4 it is done via UFUNCTION() C++ macros.

However, I usually prefer to define such signatures in a separate Interface
Definition Language (IDL) instead, and to process it with my own separate
IDL compiler to generate stubs (with the stubs used by application-level code
on both sides of communication).

We’ll discuss IDLs in detail (including intra-language vs standalone IDLs
too) in the IDL: Encodings, Mappings, and Protocol Changes section below; for
the time being, it is sufficient for our purposes to realize that we’ll be spec-
ifying function signatures somewhere and will be able to implement these
functions on one side of communication—and to call them on the other side.

Void vs Non-Void Non-Blocking RPCs

When speaking about non-blocking RPCs, we need to realize that, in general,
there are two cases for non-blocking RPCs.

The first case is a non-blocking RPC that returns void (and can’t throw
any exceptions). For such void RPCs, everything is simple—the caller just
marshals RPC parameters and sends a message to the callee, and the callee
unmarshals it and executes the RPC call. That’s it. From all points of view
(except for pure syntax), calling such an RPC is exactly the same as sending
a message. In other words, such a void non-blocking RPC is merely a way to
marshal its parameters.

IDL
An interface description
language or interface
definition language (IDL),
is a specification language
used to describe a software
component’s application
programming interface (API).

—Wikipedia

238 • CHAPTER 3: Communications

An example of an IDL defining void RPC (Client-to-Server one) can look
along the following lines:¹⁶¹

STRUCT Input {
 //DIRECTIONS
 bool left;
 bool top;
 bool right;
 bool bottom;

 //MODIFIERS
 bool shift;
 bool ctrl;
 };

void moveMe(Input in);

Non-Void RPCs
The second (and much more complicated) case is an RPC that either returns
a value or is allowed to throw an exception (often both). An example IDL for
such a non-void RPC is a rather common Server-to-Server RPC along the
lines of:

STRUCT PLAYERDATA {
 int level;
 int xp;

 INVENTORY inv;
 RELATIONS rel;
 ETC etc;
};

PLAYERDATA dbGetPlayer(int user_id);

The point here is as simple: to provide a way for a Game World Server to re-
quest a DB Server for data about a specific player (with PLAYERDATA being

¹⁶¹ Note that all IDL examples in this chapter do not imply any existing IDL, but rather an
example IDL (which you can implement yourself along the lines discussed in Vol. IV’s
chapter on Marshalling and Encodings).

The second (and much more
complicated) case is an RPC
that either returns a value,
or is allowed to throw an
exception (often both).

Point-to-Point Communications and Non-blocking RPCs • 239

sufficient to instantiate the player in this Game World). Note that this RPC
(unlike moveMe() example above) is inherently non-void: we do need a reply
from the other side of the conversation (DB Server), and we cannot really
proceed with other related tasks (such as player instantiation) before we get
the result back.

Such non-blocking non-void RPCs are significantly more complicated to
implement, and most of the popular game engines out there do not support
them (see Vol. II’s chapter on 3rd-party Game Engines for more information
on Unity/Photon/UE4/Lumberyard).

The main issue with implementing non-void non-blocking RPCs is for
the caller to specify what to do when the function returns (or throws an ex-
ception). In the context of event-driven programming, there are several ways
of implementing this logic (from plain message processing to co-routines,
with callback hell, lambda pyramids, futures and promises, and “code build-
er” in-between), and we’ll discuss all of them in detail in Vol. II’s chapter on
(Re)Actors. For now, let’s just note that all these methods are strictly equiv-
alent in what they’re doing, so that the choice is not about “whether it will
work,” but about “which way is the most convenient to use.” At the moment, I
personally prefer “code builder” and/or co-routines,¹⁶² with a distinct advan-
tage over futures and promises (and a whole world of advantage over other
stuff such as lambda pyramids).

Whenever your engine does not support non-void-RPCs, you can imple-
ment it on top of a void RPC function call with another void RPC function
call in the opposite direction to return the result. In such a case, our last ex-
ample will need to be rewritten along the following lines:

//Game World Server to DB Server:
void dbRequestPlayer(SERVERID where_to_reply, int user_id);
 //implementation of dbRequestPlayer()
 // calls gameWorldPCData() from within

//Game World Server to DB Server:
void gameWorldPlayerData(PLAYERDATA data);

¹⁶² That is, if they can be implemented within a given environment; see Vol. II’s chapter on
(Re)Actors for details.

Non-blocking non-void
RPCs are significantly more
complicated to implement,
and most of the popular
game engines out there

do not support them.

240 • CHAPTER 3: Communications

or in a more generic manner (to allow multiple outstanding requests from the
same Game World, which is almost-always a good idea to support):

//Game World Server to DB Server:
void dbRequestPlayer(SERVERID where_to_reply,
 int request_id, int user_id);
 //implementation of dbRequestPlayer()
 // still calls gameWorldPCData() from within

//Game World Server to DB Server:
void gameWorldPlayerData(int request_id, PLAYERDATA data);

While this will work (and again, is strictly equivalent to the other alterna-
tives discussed in Vol. II’s chapter on (Re)Actors), implementing matching
between calls and replies (which, in turn, requires storing a map of currently
outstanding calls) is quite cumbersome and inconvenient; for more details
and alternatives, see Vol. II.

Client-to-Server and Server-to-Client
Point-to-Point Communications
Now, as we’ve discussed the similarities between different flavors of point-to-
point communications, let’s start describing the differences between them.
And arguably, the most important difference between Client-to-Server and
Server-to-Server communications is related to disconnects.

As a rule of thumb, for Server-to-Server communications disconnects are
extremely rare, and all the disconnects are transient (that is, unless your whole
site is down). It means that we can expect that they are restored quickly, which
in turn means that we can (and should) try to hide a temporary loss of con-
nectivity from the application layer (i.e., “as if ” it has never happened). On
the other hand, for Client-to-Server (and Server-to-Client) communications,
this “restored really quickly” observation doesn’t stand, and dealing with dis-
connects becomes a very important part of application logic.

Let’s speak about Client-to-Server and Server-to-Client communications
first.

As a rule of thumb, for Server-
to-Server communications

the disconnects are
extremely rare, and all the
disconnects are transient.

Point-to-Point Communications and Non-blocking RPCs • 241

Inputs

One thing that you’ll inevitably need to transfer from the Client to the
Server is Player Inputs. For a non-simulation game (think blackjack, a stock
exchange, or a social game), everything is simple: you’ve got an input and
you’re sending it to the Server right away.

For simulation games, however, it is not that trivial. Traditionally, sim-
ulation-based games operate in terms of “simulation ticks” (a.k.a. “network
ticks”), and usually single-player games are just polling the state of the
keyboard, mouse, and controller on each tick. As a result, when moving
from a single-player simulation game to a network one, it is rather com-
mon to mimic this behavior just by the Client sending the state of the
(keyboard+mouse+controller) to the Server on each tick. An alternative
(and also pretty common) approach would be to send only changes to this
(keyboard+mouse+controller) state; this can be done either as soon as the
state is changed,¹⁶³ or again on each “tick.”

As long as there are no disconnects (nor packet loss), there is no that
much difference between these approaches. However, as soon as we realize
that packets can be lost (and, as a result, disconnects can happen), handling
Player Inputs becomes quite different.

If we’re transferring the state of players’ input devices on each tick, then in
case of a lost packet¹⁶⁴ the PC will effectively stop on the Server-Side; more-
over, at the same time, if we implement Client-Side Prediction (as described
in the Client-Side Prediction section above), the very same PC will still be
running on the Client Side.

On the other hand, if we’re transferring only changes to the keyboard or
mouse controller state, then in case of packets being lost, our PC will keep
running for some time (until we detect a disconnect) even if the player has
already released the button; this may potentially lead to the PC running off
the cliff even if the player’s actions didn’t cause it (just because the disconnect
happened at an unfortunate time).

¹⁶³ Though this option is rarely, if ever, used.

¹⁶⁴ That is, beyond the capabilities of the input buffer.

As soon as we realize
that packets can be lost,
handling Player Inputs

becomes quite different.

242 • CHAPTER 3: Communications

A kind of “hybrid” approach is possible if we’re using Client-to-Server
acknowledgment packets (which will arise anyway in pretty much any Game
World State Sync schema; see, for example, the “Reference Base” for Unreli-
able Communications section above) to distinguish between “player is still
keeping the button pressed” and “we have no idea, as the packet got lost”
situations. In other words, if an acknowledgment arrived but without any
information about the keyboard state change, then we know for sure what
is going on on the Client Side.¹⁶⁵ And if there is no acknowledgment, then
something is wrong with connectivity, so our Server can stop the PC before
he runs off the cliff.

Overall, there is no one universally “better” approach, so you’ll basically
need to pick one schema, try it, and test if it works and feels fine for your
purposes in case of the-worst-connections-you-need-to-handle. We’ll have
an in-depth discussion on testing (including finding and simulating bad con-
nections) in Vol. VI.

Input Timestamping
One issue that is often associated with inputs is the Client-Side input time-
stamp (in practice, usually it will be a tick-stamp).

Timestamps are indeed necessary to facilitate things such as Lag Com-
pensation described in the Lag Compensation subsection above. On the other
hand, as soon as the Server starts to trust this timestamp, this trust (just as
about any kind of trust) can be abused.

For example, if within your game you have a Good-Bad-Ugly-style
shootout and compensate for the lag, then the Bad guy, while having worse
reflexes, could compensate for it by sending a “shoot” input packet with an
input timestamp that is 50ms earlier than the packet is actually sent, essential-
ly gaining an unfair advantage for these 50ms. In general, such cheating
(regardless of the way we’re implementing our Lag Compensation¹⁶⁶) is a

¹⁶⁵ And if keyboard state change has happened, it can and should be combined with the
acknowledgment IP packet to save on bandwidth, but this is a different story, which
will be discussed in Vol. IV.

¹⁶⁶ BTW, measuring pings instead of relying on input timestamps doesn’t prevent the
cheat; it just makes the cheat a bit more complicated.

For example, if you have a
Good-Bad-Ugly-style shootout,

and compensate for the
lag, then the Bad guy, while
having worse reflexes, could
compensate for it by sending
a “shoot” input packet with an
input timestamp that is 50ms

earlier than the real time,
essentially gaining an unfair
advantage for these 50ms.

Point-to-Point Communications and Non-blocking RPCs • 243

fundamental problem of any kind of Lag Compensation, so you should be
really sure what you’re going to do with various abuse scenarios before you
introduce it. For more discussion on Lag Compensation-related cheating and
dealing with it, see the Lag Compensation section above.

“Macroscopic” Client Actions

In addition to sending bare input to the server, quite a few games out there
need to implement some Client actions that go beyond it. Examples of such
actions (let’s name them “macroscopic” actions) usually result from such se-
quences of inputs (eventually leading to an RPC call) as:

 ▶ Player looking at object (processed purely on Client-Side).

 ▶ Client showing HUD saying that “Open” operation is available be-
cause the object under the cursor is a container (again, processed
purely on the Client-Side).

 ▶ Player pressing “Action” button (which means “Open” in this context).

 ▶ Client showing a container inventory (obtained via an RPC call, or
taken from the Publishable State).

 ▶ Player choosing what to take out.

 ▶ Only then, Client invoking a Client-to-Server RPC such as
takeFromContainer(item_id, container_id).

For such “macroscopic” RPC calls as takeFromContainer(), in most cases dis-
connect during the call can be simply ignored (so that the player will need to
press a button again when or if the connection is restored).

Another set of “macroscopic” actions (usually having even longer chain
of events before an RPC call can be issued) is related to dialog-based Client-
Side interactions such as in-game purchases. In these cases, all the interac-
tions (except, maybe, for some requests for information from the Server)
usually stay on the Client-Side until the player decides to proceed with the
purchase; when this happens, the Client-to-Server RPC call containing all the
information necessary to perform the purchase is issued.

244 • CHAPTER 3: Communications

For such RPC calls, the handling of a disconnect during an RPC call is not
that obvious. If you want to be really player-friendly (and usually you should
be), you need to consider two scenarios. The first is when the disconnect is
transient and the Client is able to reconnect quickly; then, you need a mecha-
nism to detect whether your RPC call has reached the Server, to get the result
if it did, and to re-issue the call if it didn’t; this would allow you to make the
disconnect look really transient for the player and to show the result of the
purchase as if the disconnect never occurred. To implement it, you’ll need to
implement both the re-sending of the RPC call on the Client Side and deal
with duplicates on the Server-Side in a manner similar to the one described in
the Seamless Handling of Transient Disconnects section below.

The second scenario occurs when the RPC call is interrupted by the dis-
connect before obtaining the reply, and the disconnect takes that long that the
Client gets closed (or the Server gets restarted). In this case, the only things
we can practically do for the player are not directly related to the communi-
cation protocols (but they still need to be done). The two most common
features that help make the player not that unhappy in this second scenario,
are (a) to send her an e-mail if the “purchase” RPC call has reached the Server
(unfortunately, it doesn’t help to vent frustration if the call didn’t reach the
Server), and (b) to provide her with a way to see the list of all her purchases
from the Client when she’s back online (which we need to do anyway if we
want to be player-friendly).

Server-to-Client

While the Server normally sends a lot of information to the Client (both as
a part of the Publishable State and as replies to Client-to-Server RPC calls),
it is not too common to initiate an RPC call¹⁶⁷ from the Server-Side (to be
executed on the Client Side).

On the other hand, in some cases, such RPC calls (especially void RPC
calls without the need to process the reply on the Server side) are helpful.
One such example is passing pocket cards to the Client in a poker game.
¹⁶⁷ Here, we’re speaking about “making a decision to call RPC from the Client”; this doesn’t

include technicalities such as the “Server calling void RPC in response to void Client
RPC call to pass back requested data.”

The second scenario
occurs when the RPC call is
interrupted by a disconnect
before obtaining the reply,

and the disconnect takes that
long that Client gets closed
(or the Server gets restarted).

Point-to-Point Communications and Non-blocking RPCs • 245

Using Point-to-Point Server-2-Client communication will allow you to ex-
clude pocket cards from the Publishable State, and this generally qualifies as
a Good Idea™. If keeping pocket cards within the Publishable State, we’ll need
to rely on Interest Management to prevent leaking them to other players; as
not doing it properly will allow for game-killing cheating (see the discussion
in the Interest Management: Traffic Optimization and Preventing Cheating sec-
tion above), I prefer to have a more obvious separation between public and
private data than merely a filter within the Interest Management code.

In other words, IMO, while using Interest Management to filter semi-
public data is perfectly fine, using it to filter strictly private data, while possible,
can be too dangerous, so for strictly private data I would seriously consider
using Point-to-Point Server-2-Client communications to reduce the chance
of potentially-extremely-expensive mishaps.

Server-to-Server Communications

Seamless Handling of Transient Disconnects

As noted above, from the point of view of the application layer, Server-
to-Server communications can (and should) be made seamless (i.e., hiding
disconnects, which are inherently transient for Server-2-Server, from the
application layer). This is necessary not only to deal with inter-server discon-
nects at the TCP level (which are extremely rare in practice, but do happen
once in a while), but is also one of the prerequisites to deal with scenarios
when we’re restoring or moving our Game Worlds or other Server-Side enti-
ties (as discussed in Vol. II’s chapter on (Re)Actors and Vol. III’s chapter on
Server-Side Architecture).

It simplifies the job of the Server app-level developers a lot; however, this
simplicity comes at the cost of the infrastructure level doing this work behind
the scenes. Let’s discuss two ways of implementing such a “seamless transient
disconnect handling” protocol.

First, let’s note that for the purpose of this chapter, we’ll use the term
“Server-Side entity” to describe some large-scale entity, one of those discussed

From the point of view of the
application layer, Server-to-
Server communications can

(and should) be made seamless.

246 • CHAPTER 3: Communications

in Chapter 1 (such as “Game World” or a “Split-part of the Game World” or
“Lobby” or “Cashier,” etc.), and not a smaller entity such as “PC” or “NPC.”

Option 1. Separate Caller/Callee Handling
One fairly common protocol that does achieve seamless handling of transient
point-to-point disconnects implements two related but distinct parts. It can
be described as follows:

 ▶ Part I. Ensuring “at least once” delivery.

 ■ Each RPC call has its ID, and each of its replies has matching
IDs.

 ■ Caller keeps a list of outstanding RPC calls with their IDs (and
removes items from the list on receiving the matching reply).

 ■ If disconnect-and-reconnect happens, all the outstanding
RPC calls are re-issued.

 ▶ Part II. Ensuring “at most once” delivery.

 ■ Callee keeps a list of “recently processed IDs” (and associated
replies that were sent back).

 ■ If a duplicate RPC call arrives (i.e., the one with the ID from
the “recently processed” list), an associated reply is sent back
without any processing (as the processing was already done
before).

That’s pretty much it. Part I of the algorithm above is closely related to com-
mon implementation of “non-blocking non-void RPC calls” (which we’ll
most likely need anyway). To support some kind of callback (whether be-
ing OO-style callback, lambda, or future, more on them in Vol. II’s chapter
on (Re)Actors), we’ll need to keep a list of “outstanding RPC requests” (with
their respective IDs) on the caller side anyway. And as soon as we have this
list of “outstanding RPC calls,” we have sufficient information to re-send the
RPC request in case of a lost packet or disconnect.¹⁶⁸
¹⁶⁸ As noted in the Server-Side: TCP often wins over the UDP section below; we’ll probably

use TCP for inter-server communications anyway, so such a re-send will need to happen
only on a TCP disconnect and reconnect.

Point-to-Point Communications and Non-blocking RPCs • 247

On the other hand, Part I by itself, while guaranteeing that we will get at
least one RPC request on the callee side for each RPC call on the caller side,
doesn’t guarantee that it will be the only one. In other words, if implementing
only Part I above, in case of disconnects, duplicate RPC calls on the callee side
can happen for a single RPC call on the caller side. While making all the RPC
calls idempotent would solve this problem, in practice making sure that each
and every call is idempotent at the application layer is usually too much of a
burden (making it not exactly realistic).

That’s why Part II of processing (this time on the callee side) needs to be
added. If some request with an ID from a “recently processed” list comes in
to the callee side, we should just provide the associated reply without really
doing anything else. This scenario may legitimately happen if the connection
was lost-and-restored after the request was received, but before the reply was
acknowledged.

As soon as we have these two parts of processing (in practice, it will be a
bit more complicated, as information on “which replies can be dropped from
the ‘recently processed list’” will also need to be communicated, plus, most
likely, we’ll need to implement handshakes to distinguish between a new
connection and the broken one), we can say that our Server-to-Server
communication is tolerant of all kinds of transient inter-Server disconnects.

Option 2. Two Guaranteed Delivery Streams
An alternative way of dealing with such transient-disconnect issues is to cre-
ate two “guaranteed delivery” message streams (going in opposite directions).

Each of these streams will keep its own list of “unacknowledged mes-
sages” and will re-send them on the loss-and-restore of the underlying
connection; on the receiving side, a simple “last ID processed” field is suffi-
cient to filter out all the duplicates.¹⁶⁹

Once again, some additional logic of handshaking to “match” new trans-
port-level TCP connection to an existing “guaranteed message delivery
stream,” and to communicate acknowledgments (so that the sending side can

¹⁶⁹ This is assuming that message IDs are guaranteed to be monotonous, but this is trivial
to achieve.

Idempotence
Idempotence is the property
of certain operations in
mathematics and computer
science, that can be applied
multiple times without
changing the result beyond
the initial application.

—Wikipedia

As soon as we have these two
parts of processing, we can

say that our Server-to-Server
communication is tolerant

of all kinds of transient
inter-Server disconnects.

248 • CHAPTER 3: Communications

drop the messages from the “unacknowledged” list) will be necessary; overall
this schema might be a bit simpler than Option 1 (while providing exactly the
same guarantees of each RPC call initiated on the caller side, being called once
and only once on the callee side).

Going Further: Inter-DB Async Transfer
with Transactional Integrity

There are only two hard problems in distributed systems:

2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

—Mathias Verraes

One thing that should be noted about the algorithms above is that the deliv-
ery guarantees they provide stand only if we’re assuming that apps on both
sides of the communication do not crash; in other words, with the algorithms
above, we’re only handling transient failures of the communication layer.

While these guarantees certainly have their value, in quite a few contexts
(in particular, Shared-Nothing distributed databases, see detailed discus-
sion of it in Vol. VI’s chapter on Databases), consistency guarantees should
stand even if one (or both) apps performing communications crash them-
selves. In such cases, we’ll be relying on databases of each of the apps to keep
the-state-necessary-for-recovery.

For this subsection, we’ll be considering a system with two Server-Side
Entities (A and B), each having its own (and separate from everything else)
database. We’ll consider a scenario when Server-Side Entity A wants to trans-
fer something (like “an artifact”) to Server-Side Entity B.

To be sure that the artifact (which may cost thousands of real-world dol-
lars) is neither lost in transit nor is duplicated because of retransmits, and
that’s even if any or both Entities themselves can crash, we need a higher level
of guarantee (in fact, implementing an inter-DB distributed transaction).

In addition, to make sure that the Server-Side Entity B cannot possibly
block the Server-Side Entity A, we want our transfer to be asynchronous. In

One thing that should be
noted about the algorithms

above is that delivery
guarantee they provide stands

only if we’re assuming that
apps on both sides of the

communication do not crash.

Point-to-Point Communications and Non-blocking RPCs • 249

other words, we do not want to stop processing by Server-Side Entity A while
the request is going to Server-Side Entity B and the reply goes back. This re-
quirement automatically rules out using a two-phase commit protocol (this
includes XA protocol, and at least those federated databases that are based on
XA and/or two-phase commit).

Essentially, as the whole transaction is essentially asynchronous, we’ll be
speaking about providing so-called eventual consistency guarantees. In oth-
er words, we’ll be implementing so-called BASE (Basically Available, Soft
State, Eventually Consistent) guarantees, as opposed to an ACID transac-
tion involving multiple databases (the latter is impossible to achieve without
blocking). Note, however, that we’ll still use ACID-transactions-within-one-
single-DB to implement our logic.

Apparently, there is an algorithm that satisfies all the requirements above.
The protocol that guarantees inter-DB eventual consistency in an asynchro-
nous manner (i.e., without any inter-DB locks whatsoever), while providing
strict eventual-consistency guarantees even if any or all Server-Side Entities
crash¹⁷⁰ can be implemented as follows:

 ▶ Server-Side Entity A decides to transfer something to Server-Side
Entity B.

 ▶ Entity A makes an ACID transaction over its own DB, taking this
something out of a regular table and putting it to a special outgoing-
transfer table (all within the same ACID transaction!).

 ▶ Outgoing-transfer table stores (transfer-ID,transfer-data), with
transfer-ID always being incremented for each new record.

 ▶ Entity A sends a message with (transfer-ID,transfer-data) to Entity
B. How exactly the message is delivered doesn’t matter much (simple
TLS-over-TCP will do the trick).

 ▶ Entity B receives the message, checks that the transfer-ID came in
the order compared to the previous transfers coming from Entity A

¹⁷⁰ What we need is a guarantee that Entity databases should still recover from the crash,
complying with all the ACID properties after recovery. However, this is rarely a problem
for serious modern databases.

Apparently, there is an
algorithm that satisfies all
the requirements above.

250 • CHAPTER 3: Communications

(otherwise the re-initialization procedure described below applies),
and makes its own ACID transaction (over its own DB), writing the
transfer-ID into the incoming-transfers table, and adding the arti-
fact-that-was-transferred to a regular table (again, both things must
be within the same ACID transaction).

 ▶ Entity B sends an ‘ACK’ back to Entity A, informing it that “all
transfer-IDs up to and including transfer-ID=X are processed.”

 ▶ Entity A removes all the rows with transfer-ID <= X.

Let’s name this protocol an “Inter-DB Async Transfer Protocol,” and we’ll re-
fer to it quite a lot in subsequent volumes.

On first glance, our Inter-DB Async Transfer Protocol may look over-
engineered, but only until we take into consideration that our Server-Side En-
tities can fail. If they fail, with Inter-DB Async Transfer Protocol, after we get
our Entities back up, we can apply the following re-initialization procedure:

 ▶ On restart, Server-Side Entity A can see that its outgoing-transfers
table has some unacknowledged transfers.

 ▶ It sends all these unacknowledged transfers to Entity B (using the
same means as during usual communication).

 ▶ Entity B skips all the transfer-IDs that are lower than the last trans-
fer-ID in its own incoming-transfers table and processes the rest.

 ▶ Entity B issues an ‘ACK,’ which is then processed by Entity A as usual.

The key point here is that—

Inter-DB Async Transfer Protocol guarantees
transactional integrity not only if communication

is broken, but also if any of the Entities
crashes (and DBs can crash too, as long as

the ACID properties in Entity databases are
guaranteed to stand after DB recovery).

Point-to-Point Communications and Non-blocking RPCs • 251

Formal proof of this statement goes beyond this book, but it should be rela-
tively easy to understand the idea behind it. The idea revolves around an
observation that at each and every point in time there is exactly one “active”
copy of the something being transferred. While something is moved within the
boundaries of one single Entity, this is guaranteed by ACID transactional
properties over the DB of the respective Entity (specifically by letter ‘A’ and ‘D’
in ‘ACID,’ which stand for Atomicity and Durability; more on it in Vol. VI’s
chapter on Databases); and while our something is moved between the
Entities, this “exactly one active copy” is guaranteed by the way transfer-IDs
are handled.

Whenever you need to transfer something-of-real-world-value between
DBs (or more generally, to perform any kind of inter-DB transaction), I
strongly suggest that you use the algorithm above. While there are other
ways of providing inter-DB transactional integrity (notably two-phase com-
mit and XA/federated DBs), they usually have a blocking nature and, in
general, “blocking” is a foul word when we speak about scalability (more on
it in Vol. III).

Server-Side Entity Addressing

The next set of issues in the context of Server-2-Server communications is
related to how Server-Side Entities address one another. And as your Serv-
er-Side grows, this question will become more important. If your game has
thousands of Server-Side Entities, spread over hundreds of Servers (and mov-
ing around to ensure load balancing and/or fault tolerance) it may become a
significant problem.

As a rule of thumb, I usually suggest the following approach:

 ▶ First, make sure from the very beginning that your Server-Side Enti-
ties do not address one another by IP and/or port. Use meaningful
string-based entity identifiers instead (like “GameWorld-CityX-
Instance23”), or anything else to the same effect (tuples of strings, or
whatever-else, but without IPs and ports).

At each and every point in
time, there is exactly one

“active” copy of the something
that is being transferred.

First, make sure from the very
beginning that your Server-
Side Entities do not address
each other by IP and/or port.

252 • CHAPTER 3: Communications

 ▶ At the first stage, while your number of Servers is low (I’d say “up to
10 or so,” though I’ve seen up to 50 working this way without much
problem), conversion from entity identifiers to the IP:port format
can usually be done via a simple config file sitting on each of your
Servers.¹⁷¹

 ▶ Then, as the number of your Servers grows, you may need to imple-
ment some kind of directory where to look for your Server entities.
This directory can be implemented in quite a few ways (either cen-
tralized or decentralized), but it is important to remember that with a
centralized directory you create a single-point-of-failure, so it should
use some of the fault-tolerance techniques described in Vol. III.

 ▶ The most important thing here, however, is to avoid changes to your
Server-Side Entities (you may have a lot of them by this point). That’s
why Entity identifiers were so important from the beginning: as soon
as your Entities are using entity identifiers, you can change the way
Entity identifiers are mapped into IP:port pairs, without any changes
to your Server-Side Entities at all (only changing infrastructure-level
code outside of your entities, which is usually much easier to change).

Server-Side: TCP Often Wins Over UDP

One of the questions you will face when designing your Server-Side is about
the underlying protocol used for inter-server communications, whether it
should be TCP or UDP. While overall discussion of “TCP vs. UDP” won’t
happen until Vol. IV’s chapter on Network Programming, for Server-2-Server
communication it is simple enough to mention right here.

My take is simple—

Even if you’re using UDP for Client-to-Server
communications, do seriously consider using

TCP for Server-to-Server communications.

¹⁷¹ Yes, I know it is a fallacy, but you can (and probably will) get away with it as long as
the number of Servers is relatively small.

Point-to-Point Communications and Non-blocking RPCs • 253

Detailed discussion on TCP’s (lack of) interactivity is coming in Vol. IV’s
chapter on Network Programming, but, for now, let’s just say that poor inter-
activity of TCP becomes observable only when you have packet loss,¹⁷² and
if you have non-zero packet loss within the LAN that connects your Servers,
you need to fire your admins.¹⁷³

On the positive side, TCP has three significant benefits. First, if you can
get acceptable latencies without disabling Nagle algorithm, TCP is likely to
produce much fewer hardware interrupts (and overall context switches) on
the receiving Server’s side, which in turn is likely to reduce the overall load
of your Game Servers and, even more importantly, the DB Server. Second,
TCP is usually much easier to deal with than UDP (on the other hand, this
may be offset if you have already implemented UDP support to handle Cli-
ent-to-Server communications). Third, if you need to transfer large amounts
of data, TCP plays its home game, where it is extremely difficult to beat.

Overall, while TCP has a bad name for interactivity, I didn’t see any
problems when using it specifically for inter-Server communications within a
single Datacenter. When inter-Server communications go across different
Datacenters, in theory, things may become worse for TCP (as packet losses
can go higher), though if your Datacenter providers do a decent job (which
they usually do), this packet loss shouldn’t go high enough to also cause any
realistically observable latencies. On the other hand, for inter-Datacenter
communications YMMV, so make sure to test your communications under
real-world conditions before starting to rely on it.

Of course, if your communication library (such as ZeroMQ) already
provides support for UDP, feel free to try it, but don’t assume UDP will be
necessarily better for Server-to-Server: with packet loss being next-to-zero,
the whole game becomes very different (with most of the differences between
TCP and UDP disappearing).

¹⁷² That is, if you have Nagle algorithm disabled, but this capability is provided by all the
sane TCP stacks out there.

¹⁷³ There is a valid question of “if it is zero packet loss, why would we need to use TCP
at all?”; in this regard, I’ll note that when I’m speaking about “zero packet loss,” I can’t
rule out two packets lost in a day, which can happen even if your system is really
well-built. And while a-few-dozen-microseconds additional delay twice a day won’t be
noticeable, crashing twice a day won’t be good.

I didn’t see any problems
when using TCP specifically for
inter-Server communications
within a single Datacenter.

254 • CHAPTER 3: Communications

Using Message Queues
for Server-to-Server Communications

By this point, we’ve discussed quite a few complications related to Server-
to-Server communications. When speaking about implementing all of them,
a question of “hey, somebody should have already implemented all of this
stuff, and there should be a library doing it for us” naturally arises.

In particular, it is rather common to use Message Queue (MQ) products
for communications between MOG servers (for example, WoT uses Rabbit-
MQ [Baryshnikov]). Overall, I don’t see anything bad with it, as long you’re
using MQ as a mere transport (essentially as a kind of “improved TCP”).

MQs and Transactional Integrity
One of the common issues with common MQ products is that they’re often
used while assuming a level of guarantee they don’t really provide.

In particular, whenever you’re using an MQ product, extreme care should
be exercised whenever your communications require inter-DB transactional
integrity (similar to the one described above). More specifically—

Even when your MQ product supports something
named “transactional queues,” to have transactional

integrity even when Entities crash,¹⁷⁴ you need to
make sure that transactions over these queues

involve transactions with your Entity’s DB!

In other words, to ensure transactional integrity, your MQ should allow for
some kind of transaction (for example, an XA transaction) that involves
both placing the message into the outgoing queue and making the transac-
tion in your Entity’s DBMS.¹⁷⁵ Unfortunately, MQs that support this are not

¹⁷⁴ And believe me, they can crash at any moment—though they usually prefer crashing
at the worst possible moment.

¹⁷⁵ Note that as long as XA transaction is completely on one side of communication, it
doesn’t normally cause any blocking, so using XA is usually okay in such cases.

One of the common issues
with common MQ products is
that they’re often used while

assuming a level of guarantee
they don’t really provide.

Point-to-Point Communications and Non-blocking RPCs • 255

common,¹⁷⁶ so even if your MQ supports “transactional queues,” which
do guarantee all-or-nothing behavior between different messages within the
queue, usually nobody guarantees all-or-nothing behavior while you’re trans-
ferring your valuable stuff from your RDBMS to your MQ product.

For example, let’s consider that you have your usual MQ product, and
processing within the Server-Side Entity goes as follows:

1. Take out something from your regular RDBMS table.

2. Write it to the “transactional queue” of your MQ.

The problem with this process is that if your Server-Side Entity crashes be-
tween step (a) and step (b) above, you’ve lost your valuable something without
any way to recover it¹⁷⁷ after you restart your Server-Side Entity.

In contrast, our Inter-DB Async Transfer Protocol described above does
guarantee that something is never lost even in such scenarios (this is guaran-
teed because taking-out-something and putting it into the outgoing-transfer
table is made within the same RDBMS transaction, which guarantees ACID
properties, most importantly Atomicity and Durability).

On the other hand, you may run our Inter-DB Async Transfer Algo-
rithm (as described in the Going Further: Inter-DB Async Transfer with
Transactional Integrity section above) on top of MQ, essentially using MQ as
a replacement for TCP. This will provide all the guarantees we need, and
without also placing the burden of implementing XA transactions on MQ
software.

¹⁷⁶ Except for enterprise-level MQ products, which are rarely used for games. To see
whether your product of choice does it, you generally should look for “XA transaction
support” in it and, more often than not, there won’t be such a thing; and even if your MQ
does support XA transactions, you’ll need to check that your DBMS supports XA too.

¹⁷⁷ Well, except for support going through all the relevant logs and figuring it out.

On the other hand, you
may run our Inter-DB Async
Transfer Algorithm on top

of MQ, essentially using MQ
as a replacement for TCP.

256 • CHAPTER 3: Communications

On Transactions in AMQP
Advanced Message Queueing Protocol (AMQP) is an MQ protocol (with
AMQP v0.9.1 implemented, in particular, by RabbitMQ¹⁷⁸), which provides
support for transactions. However, AMQP transactions do not aim to address
inter-DB transactional integrity; instead, they are more like batching several
messages, buffering them on the receiving side, and committing (or rolling
back) all of them at once (see, for example, [Rabbit MQ]).

As a result, AMQP doesn’t seem to provide any support for inter-DB
transactional integrity. While it is still possible to use AMQP as a replace-
ment for TCP, relying on AMQP for inter-DB transactional integrity will be
a Big Mistake™.

Brokered vs Brokerless MQ
Whenever you’re using an MQ product, there can be several different models
of its operation.¹⁷⁹ In the first model, all the MQ entities are connected to a
“broker,” and each entity sends all the messages addressed to all the other
entities to the broker (of course, each message is accompanied by the address
of the target entity). This way, the “broker” has knowledge about all the enti-
ties and can easily forward messages where applicable. This is known as
“brokered” MQ architecture. And of course, the “broker” in such an architec-
ture can easily become a bottleneck (and avoiding it to become a Single Point
of Failure, a.k.a. SPOF, will also be quite a challenge).

A second model is that there is no broker, and entities interact directly. In
this case, in complicated deployments, distributing all the addresses to all the
entities that need it will become quite a problem.

Broker as Directory Service
That’s why there is an “in-between” model, which uses the “broker” only as a
kind of directory service. With such a model, each entity still connects to the
“broker,” but only to publish its name and current address (usually IP:port).

¹⁷⁸ No relation to ‘No Bugs’ Hare or ITHare.com.

¹⁷⁹ While some MQs are limited to a single model, this is just their design decision rather
than a fundamental restriction.

SPOF
A single point of failure
(SPOF) is a part of a system
that, if it fails, will stop the
entire system from working

—Wikipedia

Point-to-Point Communications and Non-blocking RPCs • 257

Then, when any entity needs to connect to another, it can go to the “broker,”
request current IP:port of the entity by the entity’s name, and connect to that
current IP:port. For further discussion see, for example, [ZeroMQ]. With this
model, the broker becomes a kinda-DNS service, and you can actually use a
good old DNS server (such as bind) to implement it without any specialized
MQ products.

However you implement this “broker as a directory service” model, it is
going to be more complicated than both previous ones, but it solves both the
“broker overload” problem¹⁸⁰ and the “how to find addresses” problem. On
the other hand, in dynamic environments it introduces a new problem: the
problem of “stale addresses” (which, in turn, can be solved, but solving it will
require further efforts).

In the MQ world, a question of “brokered vs brokerless” MQ architec-
tures is traditionally quite a hot one. However, I personally don’t see it as too
important compared to the other concepts described above. Even more im-
portantly, with quite a few products (such as ZeroMQ), it is a deployment-time
decision so you can change your architecture later if necessary. Such an ability
to change from brokered to brokerless (or vice versa) is IMO much more
important than choosing a specific model during development—just because
during development any guesswork on “how we might want to deploy it six
months from now” is pretty much hopeless.

Brokers and Transactional Integrity
One important thing to keep in mind in this “brokered vs. brokerless” debate
is that (as discussed above)—

For most of the implementations out there,
brokers have nothing to do

with Inter-DB transactional integrity.

¹⁸⁰ And while SPOF is still an issue, it is much easier—and much cheaper—to implement
redundancy for a not-so-loaded directory service than for a system pumping through
billions of messages per day.

However you implement this
“broker as a directory service”
model, it is going to be more

complicated than both previous
ones, but it solves both the

“broker overload” problem and
the “how to find addresses”

problem. On the other hand, it
introduces a new problem: the
problem of “stale addresses.”

258 • CHAPTER 3: Communications

It is often argued that brokered systems provide better delivery guarantees.
However, if considering the whole path from one DB to another (and this
is the case that really matters in practice), to achieve better guarantees, MQ
would need to integrate very closely with RDBMS (see above about XA trans-
actions or the equivalent), which is rarely the case. In practice, some of the
brokered architectures may reduce the “vulnerability window” (i.e., reducing
chances for data loss), but this is still very far from providing any kind of
guarantee (and the lack of a guarantee will hit you as soon as your game grows
large enough; from what I’ve seen, chances of such things hitting you grow in
a heavily non-linear manner with the growth of your game).

Using MQ on the Server-Side: Summary
As you’ve probably noticed, for Server-to-Server communications using MQ—

I am arguing for using MQ merely as a
replacement of a TCP-like transport.

(that is, unless your MQ product supports transactions-integrated-with-
your-DB, which is possible but unlikely).

On the other hand, even in this case, MQ products might have value for
MOGs. In particular, they may work pretty well to deal with the addressing
issues discussed above. In this case, we’ll be using MQ as a “TCP that provides
meaningful addressing rather than IP:port addressing” (for discussion on the
importance of meaningful addressing, see the Server-Side Entity Addressing
section above).

As for the “brokered” vs. “brokerless” MQs, my very rough suggestion¹⁸¹
would go along the following lines:

 ▶ Within the same Datacenter: you may use brokerless MQ (such as
ZeroMQ in brokerless configuration) for all the intra-Datacenter
communication.

¹⁸¹ =“bring even more salt than usual.”

On Protocol Changes • 259

 ■ At the same time, you may want to use a centralized broker
(with fault tolerance(!)) as a directory service for your Data-
center.

 ▶ On the other hand, whenever your messages need to go across Data-
center boundaries, I would suggest that you have a broker on each
side of the inter-Datacenter link. It can be either one-broker-per-
inter-datacenter-link or one-broker-per-Datacenter, depending on
your specifics.

However,

the most important part in this regard
is to stay flexible, and to be able to change

your deployment configuration without
changing your Server-Side code.

As noted above, an important part of it is using logical entity names (opposed
to IP:port kind of addresses) from the very beginning of your Server-Side
development.

ON PROTOCOL CHANGES
When developing our MOG, we must realize that—

our protocols will change.

As our game becomes successful, we’ll need to adjust certain things, will need
to add features, and will need to fix cheating loopholes, et cetera, et cetera.
Quite of few of these changes will require changes to our protocols. Which, in
turn, means that—

we need to have a strategy for
dealing with protocol changes.

Whenever your messages
need to go across Datacenter

boundaries, I would
suggest that you have a

broker on each side of the
inter-Datacenter link.

260 • CHAPTER 3: Communications

In this regard, there are a few very practical observations to be made:

 ▶ For Server-2-Server communications, protocol changes are rarely a
problem (most of the time, we can just recompile all-our-Servers to
the new protocol and restart them simultaneously).

 ▶ It is Client-2-Server (and Server-2-Client) protocols that tend to
cause most of the trouble in this regard.

 ▶ For Client-Server protocols, due to Client update mechanics (in par-
ticular, as we usually do not want to stop gameplay while Clients are
updated, more on it in Vol. V) we will likely need to support more
than one version of the protocol on the Server Side at the same time.
Usually it is better to think about it in terms of the “window” of pro-
tocols and/or Clients that our Server can support.

 ▶ In the real world, most of the protocol changes are about adding and
extending fields. Removing fields is rare (and leaving an unused field
is rarely a big problem).

 ▶ In general, I’ve seen three different approaches to the handling of
Client-Server protocol changes:

 ■ Version numbers. In this case, the Client has a protocol ver-
sion number (and advertises it to the Server during the very
first handshake). The Server “knows” a list of protocol versions
it supports (and refuses to work with unsupported ones).

• One of the big problems with version numbers is
that it is quite difficult to guarantee consistency be-
tween the Server’s-understanding-of-the-version-N
and the Client’s-understanding-of-the-version-N.

 ▷ This, however, can be at least partially allevi-
ated by using per-message (or per-RPC-call)
version numbers (opposed to per-Client ver-
sion numbers). If your IDL compiler supports
these per-message version numbers (more
on it in the Versioning section below), it will

It is Client-2-Server (and
Server-2-Client) protocols
which tend to cause most
of the trouble with regards

to protocol changes

On Protocol Changes • 261

certainly provide further help in this regard
(and it might even work this way <wink />).

 ▷ In theory, it might be possible to generate a
mapping of “whichever-message-versions-
correspond-to-the-Client-protocol-version”
during build time. However, it would lead
to several significant complications, which
IMVHO¹⁸² are likely to cause more trouble
than it is worth.

 ■ Named (or otherwise identified) fields. The idea is to iden-
tify each of the fields so that we can always tell which fields
were transferred and which weren’t. This approach works
well for XML (but XML is really wasteful in the context of
Client-Server communication for games) and works a bit
worse for binary protocols with field IDs (such as protocol
buffers, which, while beating XML size-wise hands down, is
still rather wasteful compared to alternatives).

 ■ Growing messages. The very basic idea about this approach
goes as follows: if we have a message that consists of some
fields, and we know the total length of the message, then
when updating our protocol we can just add fields to the end
of the message for the “newer” message format (specifying
default for all such added fields). For such optional fields, the
parser will simply check whether the message has already
ended (and fill them with defaults in this case). For an ex-
ample of this approach, see the Growing Messages. Fences
section below.

 ■ As for choosing the best model, I’ve seen growing-message-
based-formats to be quite robust in the real world.¹⁸³ On the
other hand, it seems that per-message version numbers are
likely to work pretty well too (especially if version support is

¹⁸² I didn’t try it myself.

¹⁸³ i.e., “it was not-so-easy to make a stupid mistake which would break it.”

I’ve seen growing-message-
based-formats to be quite
robust in the real world.

262 • CHAPTER 3: Communications

provided by the IDL compiler); on the plus side, versioning
can also allow obfuscation generators (more on them in Vol.
VIII’s chapter on Bot Fighting), and IMNSHO they’re very
important in the never-ending battle with cheaters. However,
I am still quite reluctant about per-Client protocol version
numbers (not that they cannot work in theory, but organiz-
ing your code to make them work is IMO going to be rather
ugly). As for identified fields, they tend to take quite a bit of
space for per-field(!) IDs (and need to reserve space for fu-
ture IDs too), so I don’t really like them for game-oriented
Client-Server communications either (NB: they’re usually
perfectly fine for Server-2-Server communications).

 ■ What’s more important though is to allow ourselves more
flexibility in this regard (so we could change the-way-we’re-
dealing-with-versions later without rewriting the whole
thing). This is where IDL comes into play, effectively isolat-
ing our APIs from our on-the-wire formats and protocols.

IDL: ENCODINGS, MAPPINGS,
AND PROTOCOL CHANGES
While we were discussing the various MOG communications, I mentioned
Interface Definition Language (IDL) quite a few times. Now it is time to take
a closer look at it.

Motivation for having an IDL is simple. While manual marshalling of
your data is possible, it is damn error-prone (you manually need to keep in
sync at least two different pieces of code—the marshalling one and the un-
marshalling one), not to mention being inconvenient and limiting for further
optimizations. In fact, the benefits of IDL for communication were realized at
least thirty years ago, which has led to the development of ASN.1 in 1984 (and
in 1993, to DCE RPC).

Marshalling
is the process of transforming
the memory representation
of an object to a data format
suitable for storage or
transmission, and it is typically
used when data must be
moved between different parts
of a computer program or
from one program to another.

—Wikipedia

IDL: Encodings, Mappings, and Protocol Changes • 263

IMO the best way to think about IDL is as a contract between the com-
municating parties. Among other things, it helps to enforce a clean separation
between parts of your program (and clean separation is a Good Thing™).

Intra-Language vs Standalone
These days in game engines, quite often a (kinda) IDL is part of the language
and the engine itself; examples include [RPC]/[Command]/[SyncVar] tags
in Unity 5, or UFUNCTION(Server)/UFUNCTION(Client) declarations in
Unreal Engine 4.

However, in most cases I still prefer to have my own IDL, and stand-
alone (i.e., not-being-a-part-of-my-normal-program) too. The reason to have
standalone IDL is that it is inherently better suited for cross-language use.

264 • CHAPTER 3: Communications

For in-language RPC declarations, we’ll need to at least specify them once
again in the second language (what makes code maintenance very error-prone,
especially when extensions to existing RPCs are involved).¹⁸⁴

The reason to have my own IDL is that none of the IDLs I know are
flexible enough to provide reasonably efficient compression for games; for
example, the per-field Encoding specifications described below are not pos-
sible;¹⁸⁵ also such features as the flexibility of having different Encodings
and Mappings, the ability to map into existing structures, and support for
protocol changes are either non-existent, or are present only in a very limit-
ed subset of existing IDL compilers. We’ll discuss “how to implement your
own IDL compiler” in Vol. IV’s chapter on Marshalling and Encodings.

Still, neither having standalone IDL nor having your own IDL is a hard
requirement, and you can get away with Unity-style or UE4-style RPC dec-
larations (especially if you don’t need cross-language capabilities, and do not
care too much about compression); however, bear in mind that keeping up
with protocol changes is going to be pretty ugly <sad-face />.

IDL Development Flow
With a standalone IDL (i.e., IDL that is not a part of your programming
language), development flow (almost?) universally goes as follows:

1. You write your interface specification in your IDL.

a. This IDL does not contain any implementation, just function
and structure declarations.

2. You compile this IDL (using IDL compiler) into stub functions and
structures in your programming language (or languages).

3. For the callee, you implement callee-side functions in your program-
ming language (they will be called by IDL-compiler-generated stubs).

¹⁸⁴ In theory, you could use one language as an IDL for another one, but I haven’t seen
such things (yet?).

¹⁸⁵ And even if Encodings (along the lines described below) are implemented as a part
of your programming language, they would make it way too cumbersome to read and
maintain.

The reason to have my own
IDL is that none of the IDLs I
know are flexible enough to
provide reasonably efficient
compression for games; for

example, the per-field Encoding
specifications described
below are not possible.

IDL: Encodings, Mappings, and Protocol Changes • 265

4. For the caller, you call the caller-side stub functions (again in your
programming language). Note that the programming language for
the caller may differ from the programming language for the callee.

One important rule to remember when using IDLs (as well as any other code
generator) is:

Never ever make manual modifications
to the code generated by the IDL compiler.

Modifying generated code will prevent you from modifying the IDL itself
(ouch), may violate the contract specified in IDL, and usually qualifies as a
Really Bad Idea™. If you feel the need to modify your generated code, it means
one of two things. Either your IDL declarations are not as you want them (then
you should modify your IDL and re-compile it), or your IDL compiler doesn’t
do what you want (then you need to modify your IDL compiler, which is easi-
ly doable as long as you have your own IDL compiler, as suggested above).

IDL + Encoding + Mapping
Now, let’s take a look at the features we want our IDL to have. First, we want
our IDL to specify protocol that goes over the network. Second, we want to
have our IDL compiler generate code in our programming language, so we
can use those generated functions and structures in our code, with marshal-
ling for them already generated by our IDL compiler.

When looking at the existing IDLs, we’ll see that there is usually one sin-
gle IDL that defines both these things. However, for a complicated distributed
system such as an MOG, I suggest having it separated into three different files
to have a clean separation of concerns, which tends to simplify things in the
long run.

The first file I’m speaking about is the IDL itself. This is the only file that
is strictly required. The other two files (Encoding and Mapping) should be
optional on a per-struct-or-function basis, with the IDL compiler using rea-
sonable defaults if they’re not specified. The idea here is to specify only IDL to

Modifying generated
code usually qualifies as

a Really Bad Idea™.

266 • CHAPTER 3: Communications

start working, but to have the ability to specify better-than-default encodings
and mappings if or when they become necessary. We’ll see an example of it a
bit later.

The second file (“Encoding”) is a set of additional declarations for the
IDL, which allows it to define Encoding (and IDL+Encodings effectively de-
fine over-the-wire protocol). In some sense, IDL itself is similar to ASN.1
definition as such, and IDL encodings are similar to ASN.1 “Encoding Rules.”
In other words, IDL defines what we’re going to communicate, and Encoding
defines how we’re going to communicate this data. On the other hand, unlike
ASN.1 “Encoding Rules,” our Encoding should be more flexible and allow us
to specify per-field encoding if necessary.

Among other things, having Encoding separate from IDL allows us to
have different encodings for the same IDL; this may be handy when, for exam-
ple, the same structure is sent to both the Client and between the Servers (as
optimal encodings may easily differ for Server-to-Client and Server-to-Server
communications; the former is usually all about bandwidth, but for the latter
CPU costs may play a significant role, as intra-Datacenter bandwidth usually
comes for free until you’re overloading the Ethernet port, which is not that
easy these days).

The third file (“Mapping”) is another set of additional declarations that
define what kind of code we want to generate for our programming language.
The thing here is that the same on-the-wire data can be “mapped” into dif-
ferent data types; moreover, there is no one single “best mapping,” so it all
depends on your needs at the point where you’re going to use it (we’ll see
examples of it below). Changing “Mapping” does not change the on-the-wire
protocol, so it can be safely changed without affecting anybody else.

In an extreme case, the “Mapping” file can be a file in your target pro-
gramming language.

ASN.1
Abstract Syntax Notation
One (ASN.1) is a standard
and notation that describes
rules and structures for
representing, encoding,
transmitting, and decoding
data in telecommunications
and computer networking.

—Wikipedia

In an extreme case,
the “Mapping” file can
be a file in your target

programming language.

IDL: Encodings, Mappings, and Protocol Changes • 267

Example: IDL
While all that theoretical discussion about IDL, Encodings, and Mapping is
interesting, let’s bring it a bit closer to Earth.

Let’s consider a rather simple IDL example. Note that this is just an ex-
ample structure in the very example IDL; the syntax of your IDL may vary
very significantly (and in fact, as argued in the Intra-Language vs. Standalone
section above, you generally should develop your own IDL compiler—that
is, at least until somebody makes an effort and does a good job in this regard
for you):

PUBLISHABLE_STRUCT Character {
 UINT16 character_id;

 //COORDINATES
 NUMERIC[-10000,10000] x;//for our example IDL compiler,
 // notation [a,b] means
 // “from a to b inclusive”
 //our Game World has size of
 // 20000x20000m
 NUMERIC[-10000,10000] y;
 NUMERIC[-100.,100.] z;//Z coordinate is within +- 100m

 //VELOCITIES
 NUMERIC[-10.,10.] vx;
 NUMERIC[-10.,10.] vy;
 NUMERIC[-10.,10.] vz;

 NUMERIC[0,360) angle;//where our Character is facing
 //notation [a,b) means
 // “from a inclusive to b exclusive”

 //ANIMATION
 enum Animation {Standing=0,Walking=1, Running=2} anim;
 INT[0,120) animation_frame;//120 is 2 seconds
 // of animation at 60fps

 SEQUENCE<Item> inventory;//Item is another
 // PUBLISHABLE_STRUCT
 // defined elsewhere
};

268 • CHAPTER 3: Communications

This IDL declares what we’re going to communicate: a structure with the
current state of our Character.¹⁸⁶

On Sanitizing Input Data
For want of a nail the shoe was lost,
for want of a shoe the horse was lost;
and for want of a horse the rider was lost;
being overtaken and slain by the enemy,
all for want of care about a horse-shoe nail.

— Benjamin Franklin, The Way to Wealth

One important feature that IDL can (and IMO should) provide is data san-
itizing. This is especially important when speaking about untrusted data
sources, and in our context it happens whenever the data is coming from
Client to Server. We’ll discuss the concept of data sanitizing in more detail
in Vol. IV’s chapter on Basic Security, but very briefly it is related to protect-
ing your Server-Side code from unexpected data coming from the Client.
Roughly the same thing stated from a slightly different perspective is that
IDL represents a contract between communicating parties, and—

It is a job of the unmarshalling code
generated by the IDL compiler to deal

with violations of this contract.

One further thing in this regard is that to perform sanitization (and enforce
the contract) efficiently, IDL should be specific enough. For example, if you
don’t have a concept of enum in your IDL, then you’ll encode enums with in-
tegers. This would mean that on the receiving side, any integer will be seen as
a valid one (while there will obviously be some invalid values). This, in turn,
will lead to a lack of checks on the receiving side, allowing unexpected values
to slip in and to cause all kinds of trouble on the Server-Side code; in extreme
cases, it can even allow the attacker to take over your Server.
¹⁸⁶ Yes, I remember that I’ve advised to separate inventory from frequently updated data

in the Publishable State section, but for the purpose of this example, let’s keep them
together.

One further thing in this
regard is that to perform
sanitization efficiently, IDL
should be specific enough.

IDL: Encodings, Mappings, and Protocol Changes • 269

To avoid these things,

Your IDL SHOULD be as specific as possible.

Examples of things that your IDL should allow in this regard include (but is
not limited to):

 ▶ Support for enums.

 ▶ Allowing to specify whether special values (such as NaN for floats)
are allowed.

 ▶ Support for allowed ranges for integers and floats.

 ▶ Support for allowed ranges of characters within strings (such as “this
is a string consisting of printable-ASCII-symbols only.”)

Test Case Generation
One more thing that we will be able to (and should) do with our IDL is to
implement IDL-based test-case generation. If we know that our field is float,
we know that there are certain special values (like NaN) that do qualify as test
cases. If we know that our field I is an unsigned integer which should be from
X to Y, we can easily generate a few test cases of interest, including such values
as 0, X-1, X, X+1, Y-1, Y, Y+1, and UINT_MAX.

These test cases may be used in at least two different ways. In the first
scenario, we can just run these tests and look at the results to see that the sys-
tem behaves as expected. In the second scenario, we can feed these tests as
“initial test cases” to a fuzz testing tool such as afl (see Vol. II’s chapter on (Re)
Actors for more on Fuzz Testing).

Example: Mapping
Now let’s see how we want to map our IDL to our programming language.
Let’s note that mappings of the same IDL may differ for different communi-
cation parties (such as Client and Server). For example, Mapping for our data
above may look as follows for the Client:

Fuzz Testing
Fuzz testing or fuzzing is a
software testing technique,
often automated or semi-
automated, that involves
providing invalid, unexpected,
or random data to the inputs
of a computer program. The
program is then monitored
for exceptions such as
crashes, or failing built-in
code assertions or for finding
potential memory leaks.

—Wikipedia

270 • CHAPTER 3: Communications

MAPPING(“CPP”,”Client”) PUBLISHABLE_STRUCT Character {
 UINT16 character_id;//can be omitted, as default mapping
 // for UINT16 is UINT16

 double x;//all ‘double’ declarations can be omitted too
 double y;
 double z;

 double vx;
 double vy;
 double vz;

 float angle;

 enum Animation {Standing=0,Walking=1, Running=2} anim;
 //can be omitted too
 UINT8 animation_frame;

 vector<Item> inventory;
};

For the Mapping specified above, the IDL-compiler-generated C++ struct
may look as follows:

struct Character {
 UINT16 character_id;

 double x;
 double y;
 double z;

 double vx;
 double vy;
 double vz;

 float angle;

 enum Animation {Standing=0, Walking=1, Running=2} anim;
 UINT8 animation_frame;

 vector<Item> inventory;

 void idl_serialize(int serialization_type, OurOutStream& os);
 //implementation is generated separately

IDL: Encodings, Mappings, and Protocol Changes • 271

 void idl_deserialize(int serialization_type,
 OurInStream& is);
 //implementation is generated separately
};

On the other hand, for our Server, we might want to have inventory imple-
mented as a special class Inventory, optimized for fast handling of specific
Server-Side use cases. In this case, we may want to define our Server-Side
Mapping as follows:

MAPPING(“CPP”,”Server”) PUBLISHABLE_STRUCT Character {
 // here we’re omitting all the default mappings
 float angle;

 class MyInventory inventory;
 //class MyInventory will be used as a type for generated
 // Character.inventory
 //
 //To enable serialization/deserialization,
 // MyInventory MUST implement the following
 // member functions:
 //
 // size_t idl_serialize_collection_get_size(),
 // const Item& idl_serialize_collection_get_item(
 // size_t idx),
 // void idl_deserialize_collection_reserve_size(size_t),
 // void idl_deserialize_collection_add_item(const Item&)
};

As we see, even when we’re using the same programming language for both
Client-Side and Server-Side, we may need different Mappings for different
sides. One classical (though rarely occurring in practice) example is that IDL’s
SEQUENCE<Item> can be mapped either to C++’s vector<Item> or to
list<Item>, depending on the specifics of your code; and as the specifics can
be different on the different sides of communication, you may need to specify
Mapping.

Moreover, in the case of different programming languages, such situa-
tions will become more frequent (in particular, collection types are usually

Even when we’re using the
same programming language

for both Client-Side and Server-
Side, we may need different
Mappings for different sides.

272 • CHAPTER 3: Communications

rather different between different languages, in spite of providing similar
functionality—and looking exactly the same on the wire).

In addition, as we can see from our example above, there is another case
for non-default Mappings, which is related to making IDL-generated code to
use custom classes (in our example, MyInventory) for generated structs (which
generally helps make our generated struct Character more easily usable).

Mapping to Existing Classes

One thing that is commonly missing from existing IDL compilers is an abil-
ity to “map” an IDL into existing classes. As soon as you have your own IDL
compiler, this can be handled in the following way:

 ▶ You do have your IDL and your IDL compiler.

 ▶ You make your IDL compiler parse your class definition in your tar-
get language (this is going to be the most difficult part, especially if
parsing C++).

 ▶ You do specify a match between IDL fields and class fields (usually
by name).

 ▶ Your IDL generates serialization and deserialization functions for
your class.

 ▶ To avoid modifying your existing classes, usually, such functions
won’t be class members, but rather will be freestanding serialization
functions (within their own class if necessary), taking the object of
the needed class as a parameter.

 ■ In programming languages such as C++, you’ll need to spec-
ify these serialization and deserialization functions as friends
of the class-you’re-serializing (or to provide a macro that will
do essentially the same thing). For other languages, different
trickery may be needed (such as internal modifier for C#).

IDL: Encodings, Mappings, and Protocol Changes • 273

Example: Encoding
We’ve already discussed IDL and Mapping (and can now use our generated
stubs and specify how we want them to look). Now let’s see what Encoding is
all about. First, let’s see what will happen if we use “naïve” encoding for our
C++ struct Character, and transfer it as a C struct (except for inventory field,
which we’ll delta-compress to avoid transferring too much of it). In this case,
we’ll get about 60bytes/Character/network-tick (with 6 doubles responsible
for 48 bytes out of it).

Now let’s consider the following Encoding:

ENCODING(MYENCODING1) PUBLISHABLE_STRUCT Character {
 VLQ character_id;

 DELTA {
 FIXED_POINT(0.01) x;//for rendering purposes,
 // we need our coordinates
 // only with precision of 1cm
 //validity range is already de ned
 // in IDL
 //NB: given the range and precision,
 // ‘x’ has 20’000’000 possible values,
 // so it can be encoded with 21 bits
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) z;

 FIXED_POINT(0.01) vx;
 FIXED_POINT(0.01) vy;
 FIXED_POINT(0.01) vz;
 }

 DELTA FIXED_POINT(0.01) angle;//given the range
 // specified in IDL,
 // FIXED_POINT(0.01)
 // can be encoded
 // with 16 bits

 DELTA BIT(2) Animation;//can be omitted, as 2-bit is default
 // for 3-value enum in MYENCODING1
 DELTA VLQ animation_frame;

 DELTA SEQUENCE<Item> inventory;

274 • CHAPTER 3: Communications

};

Here we’re heavily relying on the properties of MYENCODING1, which is
used to marshal our struct Character. For the purposes of our example above,
let’s assume that MYENCODING1 is a quite simple bit-oriented encoding
that supports delta-compression (using 1 bit from bit stream to specify wheth-
er the field has been changed), and also supports VLQ-style encoding; also,
let’s assume that it is allowed to use rounding for FIXED_POINT fields.

As soon as we make these assumptions, specification of our example
Encoding above should become rather obvious; one thing that needs to be
clarified in this regard is that DELTA {} implies that we’re saying that the
whole block of data within brackets is likely to change together, so that our
encoding will be using only a single bit to indicate that the whole block
didn’t change.

Now let’s compare this encoding (which BTW is not necessarily the best
possible one) to our original naïve encoding. Statistically, even if the Charac-
ter is moving, we’re looking at about 20 bytes/Character/network-tick, which
is 3x better than naïve encoding.

Even more importantly, this change
in encoding can be done completely separate

from all the application code(!) merely
by changing Encoding declaration.

This independence is the whole point of having Encoding separate from our
IDL. It means that we can develop our code without caring about specific
encodings and then, even as late as during “closed beta” stages, discover op-
timal encoding and get that 3x improvement by changing only the Encoding
declaration.

Such separation between the code and Encodings is in fact very useful; in
particular, it allows us to use lots of optimizations that are too cumbersome to
think of when you’re developing application-level code.

VLQ
A variable-length quantity
(VLQ) is a universal code that
uses an arbitrary number
of binary octets (eight-
bit bytes) to represent an
arbitrarily large integer.

—Wikipedia

Such separation between
the code and Encodings is in
fact very useful; in particular,

it allows us to use lots of
optimizations that are too
cumbersome to think of
when you’re developing
application-level code.

IDL: Encodings, Mappings, and Protocol Changes • 275

To continue our example and as a further optimization, we can add Dead
Reckoning, and (as usual for this line of examples, assuming that we have our
own IDL compiler) can be as simple as rewriting the Encoding above into:

ENCODING(MYENCODING2) PUBLISHABLE_STRUCT Character {
 VLQ character_id;

 DELTA {
 DEAD_RECKONING(x, vx, 0.02) {
 //0.02 is maximum acceptable
 // coordinate deviation
 // due to dead reckoning
 FIXED_POINT(0.01) x;
 FIXED_POINT(0.01) vx;
 }

 DEAD_RECKONING(y, vy, 0.02) {
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) vy;
 }

 DEAD_RECKONING(z, vz) {
 //by default, maximum
 // acceptable deviation
 // due to dead reckoning
 // is the same as for coordinate
 // (0.01 in this case)
 FIXED_POINT(0.01) z;
 FIXED_POINT(0.01) vz;
 }
 }//DELTA

 DELTA FIXED_POINT(0.01) angle;

 DELTA BIT(2) Animation;
 DELTA VLQ animation_frame;

 DELTA SEQUENCE<Item> inventory;
};

When manipulating encodings is this simple, then experimenting with en-
codings to find a reasonably optimal one becomes a breeze. How much can be
gained by such specialized encoding still depends on the game, but if you can

How much can be gained by
each such specialized encoding
still depends on the game, but
if you can try-and-test a dozen

different encodings within
a few hours, it will usually
allow you to learn quite a

few things about your traffic
(and also optimize things both

visually and traffic-wise).

276 • CHAPTER 3: Communications

try-and-test a dozen different encodings within a few hours, it will usually
allow you to learn quite a few things about your traffic (and to optimize things
both visually and traffic-wise).

Protocol Changes
and Backward Compatibility
One very important (and way-too-often-ignored) feature of IDLs is support
for protocol changes. As discussed above, when our game becomes successful,
features are added all the time, and adding a feature often implies a protocol
change. With Continuous Deployment, it can happen several times a day.

As discussed above:

 ▶ One of the requirements in this process is that the new Server always
remains backward-compatible with at least some of old Clients.

 ▶ The two most common changes of the protocols are (a) adding a new
field, and (b) extending an existing field. These are the changes that
we’ll concentrate on.

 ▶ Adding/extending fields can be achieved by different means. So, let’s
take a look at our options in more detail.

Field Identifiers

The first way to allow adding/removing fields is to have field names (or other
kinds of IDs) transferred alongside the fields themselves. This is the approach
taken by XML, as well as by Google Protocol Buffers, where everything is al-
ways transferred as a key-value pair (with keys depending on field IDs, which
can be explicitly written to the Protocol Buffer’s IDL).

Therefore, to add a field, you just add in a field with a new field-ID. That’s
it. To be able to extend fields (and also to skip those optional-fields-you-
don’t-know-about), you need to have a size for each of the fields, and Google
Protocol Buffers have it too (usually implicitly, via field type).

IDL: Encodings, Mappings, and Protocol Changes • 277

Overall, this approach works pretty well,¹⁸⁷ but has a cost: those 8-
additional-bits-per-field¹⁸⁸ (to transfer the field ID+type) are not free.

Growing Messages. Fences

The second way to allow adding fields into encoded data is a bit more compli-
cated, but allows us to deal with not-explicitly-separated (and therefore not
incurring the 8-bits-per-field cost) data streams, including bitstreams. To add
or extend fields to such non-discriminated streams, we may implement the
following approach:

 ▶ Introduce the concept of “fence” into our Encodings. There can be
“fences” within structs and/or within RPC calls.

 ■ One possible implementation for “fences” is assuming an im-
plicit “fence” after each field; while this approach rules out
certain encodings, it does guarantee correctness.

 ■ Between “fences,” an IDL compiler is allowed to reorder and
combine fields as it wishes (though any such combining and
reordering must be strictly deterministic; i.e., defined only by
input IDL+Encoding).

 ■ Across “fences,” no such reordering and combining is allowed.

 ▶ Then, adding a field immediately after the “fence” is guaranteed to
be backward-compatible as soon as we define it with a default value.

 ■ Within a single protocol extension, several fields can be added
and extended simultaneously only after a single “fence.”

 ■ To add another field in a separate protocol update, another
“fence” will be necessary.

 ▶ Extending a field can be implemented as adding a (sub-)field, with a
special interpretation of this (sub-)field, as described in the example
below.

¹⁸⁷ Well, as long as you’re careful with field-IDs.

¹⁸⁸ Google Protocol Buffers use an overhead of 8 bits per field; in theory, you may use
something different while using key-value encodings, but the end result won’t be that
much different.

Let’s introduce a concept of
“fence” into our Encodings.

278 • CHAPTER 3: Communications

Let’s see how it may work if we want to extend the following Encoding:

ENCODING(MYENCODINGA) PUBLISHABLE_STRUCT Character {
 UINT16 character_id;

 DELTA {
 FIXED_POINT(0.01) x;
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) z;

 FIXED_POINT(0.01) vx;
 FIXED_POINT(0.01) vy;
 FIXED_POINT(0.01) vz;
 }
};
//MYENCODINGA is a stream-based encoding
// and simply serializes all the fields
// in the specified order

Let’s assume that we want to extend our UINT16 character_id field into
UINT32 and add another field UINT32 some_data. Then, after making appro-
priate changes to the IDL, our extended-but-backward-compatible Encoding
may look as follows:

ENCODING(MYENCODINGA) PUBLISHABLE_STRUCT Character {
 UINT16 character_id;

 DELTA {
 FIXED_POINT(0.01) x;
 FIXED_POINT(0.01) y;
 FIXED_POINT(0.01) z;

 FIXED_POINT(0.01) vx;
 FIXED_POINT(0.01) vy;
 FIXED_POINT(0.01) vz;
 }

 //Up to this point, the bit- or byte-stream
 // is exactly the same
 // as for “old” encoding

 FENCE

IDL: Encodings, Mappings, and Protocol Changes • 279

 EXTEND character_id TO UINT32;
 //at this point in the stream, there will be
 // additional 2 bytes placed
 // with high-bytes of character_id
 // if after-FENCE portion is not present — character_id
 // will use only lower-bytes from pre-FENCE portion
 UINT32 some_data DEFAULT=23;
 //if the marshalled data doesn’t have
 // after-FENCE portion,
 // application code will get 23
};

As we can see, for the two most common changes of the protocols (adding
a field and extending a field), making a compatible IDL is simple. Moreover,
after introducing the concept of “FENCE” into IDL, making the IDL compil-
er compare these two IDLs to figure out that they’re backward-compatible is
trivial. Formally, IDL B qualifies as a backward-compatible version of IDL A,
if and only if all of the following stands:

 ▶ IDL B starts with full IDL A.

 ▶ After IDL A, in IDL B there is a FENCE declaration.

 ▶ After the FENCE declaration, all the declarations are either EXTEND
declarations or new declarations with a specified DEFAULT.

Last but not least: when implementing encoding for growing messages, we
need to make sure that every independently extendable entity (such as a
PUBLISHABLE_STRUCT) has a clear boundary in our encoding (otherwise
the parser won’t be able to distinguish between fields before and after the
fence). One way to do it is to have such independently extendable entities first
marshalled to buffer, and then further encoded as blocks of bytes; while it is
certainly not the most efficient way of marking these boundaries, it should
give an idea of what I am speaking about.

280 • CHAPTER 3: Communications

Versioning

The third approach to handling protocol changes is by supporting several dif-
ferent versions of the protocol within our Server (so that it can handle both
“old” and “new” Clients).¹⁸⁹

Let’s note that versioning is subtly different from the two methods de-
scribed above. With both field identifiers and growing messages, we were
speaking about protocols that are themselves backward compatible (i.e., with-
out any external “glue”—and forever-and-ever). In case of versioning (and as
we need to support multiple protocol versions at the same time), we’re
speaking about different on-the-wire protocols that are “glued” together to
support more than one such protocol.

Also, let’s note that here we’ll be speaking only about per-message¹⁹⁰ ver-
sioning (as opposed to per-Client versioning); as discussed above, I don’t
like per-Client versioning too much (and also it is less useful for obfuscation
purposes, which, as discussed below, are IMO one of the biggest reasons to
use versioning in the first place).

One way to deal with per-message versioning is to realize that it is only
on-the-wire format that changes (while describing essentially the same data,
and being mapped into the same structures); in other words, we are speaking
about the same IDL and Mapping, but about different Encodings for this IDL.

With this in mind, an Encoding-with-versioning may look as follows:

ENCODING(MYENCODING1) PUBLISHABLE_STRUCT Character {
 VERSION 456;

 //...
};

Another (updated) version of the same PUBLISHABLE_STRUCT Character
would look almost exactly the same, just adding a some_data field:

¹⁸⁹ In general, we may also have the Client supporting several versions of our Server;
however, to make our discussion more specific, let’s center on the “single-Server-
supporting-multiple-Clients” model.

¹⁹⁰ Or per-RPC-call.

In the case of versioning,
we’re speaking about different
on-the-wire protocols that are

“glued” together to support
more than one such protocol.

IDL: Encodings, Mappings, and Protocol Changes • 281

ENCODING(MYENCODING2) PUBLISHABLE_STRUCT Character {
 VERSION 457;

 //...
 UINT32 some_data;
};

Note that unlike with fences and field IDs, these two encodings do not need
to be related in any way and can be completely different (except that they need
to start with version_number field, which always uses the same encoding). As
a result, in general these encodings are not compatible; to make an encoding
that is able to accept both versions, we may create another “glue” Encoding:

ENCODING(VERSION-GLUE) PUBLISHABLE_STRUCT Character {
 SUPPORT VERSION 456 DEFAULT some_data=23;
 SUPPORT VERSION 457;
 //...
};

This information is sufficient to generate a parser-which-can-handle-either-
version-456-or-version-457 (and if version 456 arrives, it will populate some_
data field with the default value 23 as specified above).

Versions for Replies
By this point, we have solved the problem of dealing with multiple versions of
the sender in one single receiver. However, this alone is not sufficient to
handle different versions of the Client on our Server. Namely, in addition to
receiving different versions of our message, we also need to send different ver-
sions of the message from our Server to our Client—moreover, these
messages-being-sent-by-the-Server must match the version supported by
our Client.

There is more than one way to handle it, but at the moment I tend to pre-
fer to rely on the following observation: on the Server-Side, the vast majority
of packets¹⁹¹ sent to the Client are sent in the context of some previous request
coming from the Client. This stands regardless of whether we’re working in

¹⁹¹ Usually, it is all the packets.

In addition to receiving
different versions of our

message, we also need to
send different versions of the
message from our Server to
our Client. moreover, these
messages-being-sent-by-

Server, must match the version
supported by our Client

282 • CHAPTER 3: Communications

a simple HTTP-style request-response model or are dealing with state sync
stuff (which amounts to the Client coming and requesting “gimme the state
of Game World X, including all the future updates”).

This observation, in turn, means that we can say that whenever we send
something to the Client, we must compose it using the same version number
as was used by the Client’s request-in-the-context-of-which-we’re-sending-the-
packet. It means that we’ll need to care about matching version numbers in
our protocols, but, on the other hand, they still need to match only with-
in one context (and contexts are usually relatively limited—or at least rarely
changed).

To support this concept, we should add support for such matching
version numbers into our IDL; for example, it can be done as follows:

MATCHING-VERSIONS {
 SUBSCRIPTION_REQUEST GameWorld_Request;
 PUBLISHABLE_STRUCT Character;

 //...
};

Whenever we have such specification (which BTW can often be made im-
plicit, especially if we’re speaking about RPCs and generic implementations
of state sync), the IDL compiler can enforce that versions for all the items
listed within the MATCHING-VERSIONS clause always match when we’re
compiling Client stubs. This way, we have a guarantee that as long as our
Server always uses the version-number-from-corresponding-Client-request
to compose its reply, the Client will get exactly the version it needs.

Let’s also note that in extreme cases we can say that our context is just the
context of the Client’s connection, so all version numbers must be the same.
This would essentially lead us to a per-Client protocol version; however, I
would advise against such per-Client versions (it is significantly simpler to
keep things coherent within one single context, where changes are tightly re-
lated to one another anyway).

IDL: Encodings, Mappings, and Protocol Changes • 283

Merits of Versioning
For a long while, I wasn’t a fan of versioning (preferring growing-message
approaches). However, versioning has two advantages: (a) it allows us to drop
fields¹⁹² (and, more generally, change protocol in any way); (b) much more
importantly, it allows to use obfuscation generators; this, in turn, can provide
substantial benefits against bot writers (more on it in Vol. VIII’s chapter on
Bot Fighting).

Which One to Choose?

After describing the three ways of making your Clients backward-compatible
with your Servers, a natural question of “which one is better?” arises. As not-
ed above, I had good experiences with growing-messages, and I see significant
merits for per-message versioning too (you just cannot have too many obstacles
for bot writers, so each and every improvement is a Good Thing™).

However, what IMNSHO is most important is to

hide all these details behind the IDL
compiler, separating our code from these

complexities as much as possible.

If it is just an implementation detail of our IDL compiler, and we don’t need
to change our code (well, except for specifying defaults for missing fields in
encodings), we can change our encodings (as well as the-way-we-handle-
protocol-changes) pretty much overnight.¹⁹³ And, from what I have seen,
such flexibility is usually a Very Good Thing™.

¹⁹² And unlike Field Identifiers, it allows us to drop them without polluting Field-ID space.

¹⁹³ Note that for matching versions, we may need to add a bit of app-level code to the
Server-Side, so the process will take longer; still, most of the time it won’t be too bad.

Much more importantly,
versioning allows us to use

obfuscation generators.

284 • CHAPTER 3: Communications

Implementing IDL and Specific Encodings
In this chapter, we’ve discussed quite a lot about the principles behind IDL
and encodings. However, at this point we won’t go into any discussion about
implementing an IDL compiler or specific encodings (neither tailored to your
specific games nor existing ones such as Google Protocol Buffers). Imple-
menting IDL compiler (including encodings and marshalling) is a separate
subject that deserves a separate and rather lengthy discussion, and it belongs
to the implementation realm rather than to the architecture one, so we’ll come
back to it in Vol. IV’s chapter on Marshalling and Encodings.

Chapter 3 Summary • 285

SUMMARY FOR CHAPTER 3
We’ve spent quite a bit of time discussing MOG protocols in Chapter 3.
Trying to squeeze it into a one-page summary, I think the most important
things we’ve discussed are as follows:

 ▶ Simple “Client-to-Server-and-back” flow (shown on Fig. 3.1) often
works well for {asynchronous|social|casino|other-slow-paced} games,
but is usually not good enough for fast-paced games.

 ■ Client-Side Interpolation, Client-Side Extrapolation, and
Client-Side Prediction are your friends in this regard.

 ■ Lag Compensation (with Server Rewind or not) and Forward-
ed Inputs might help too, but they’re inherently vulnerable to
cheating, so avoid them until you’re 100% sure that they’re the
only way to keep players happy.

 ▶ You should start your analysis from Client-Side State, Server-Side
State, and Publishable State being different.

 ■ You may end up with some of them (or all of them) being the
same, but it is not that common.

 ■ Don’t even think of transferring movements of all your mesh-
es and vertexes from the Server to Clients.

• Instead, the Publishable State should describe scenes
in terms of macroscopic objects (and/or whole char-
acters).

 ■ The Server-Side State may be a low-poly version of the
Client-Side State.

 ▶ Interest Management can become the absolute must for at least two
separate reasons:

 ■ Reducing traffic (in particular, avoiding traffic growing as
O(N2)), or

 ■ Preventing Information Leak attacks.

286 • CHAPTER 3: Communications

 ▶ Minimizing data is important even before you start compression.

 ■ Quite a few important minimizing techniques are related to
fixed-point lossy representations.

 ▶ Compression goes well beyond traditional Delta Compression and
Dead Reckoning.

 ■ Classical algorithms such as deflate don’t work well for games;
however, some parts of them (in particular, Huffman coding
and its cousins), can be used.

 ▶ We should start thinking about the scalability of our MOG as early as
possible. Scaling to many small Game Worlds is easy,¹⁹⁴ but scaling
to one single large (and especially seamless) Game World can be a
challenge.

 ▶ Blocking RPCs are bad; non-blocking RPCs are good.

 ▶ For Server-2-Server communications, TCP is usually okay.

 ▶ Guarantees for reliability of Server-2-Server communications are not
as easy as they may look.

 ■ In particular, ensuring inter-database consistency guarantees
is not trivial.

• We described an Inter-DB Async Transfer proto-
col, which provides very strict eventual-consistency
guarantees without blocking.

 ▶ Using MQ for Server-2-Server communications is okay, as long as
we’re essentially using it as a replacement for TCP.

 ▶ You should use IDL, one way or another.

 ■ Standalone DIY IDL is usually preferred over an in-language
and/or third-party one.

 ■ In different contexts, the same IDL can be used more effi-
ciently with different Encodings and/or Mappings.

¹⁹⁴ Except for scaling DB, which is beyond the scope of this chapter.

Chapter 3 Summary • 287

 ■ There are at least three different approaches to providing IDL
with strict guarantees on backward compatibility. Among
them, versioning may help with obfuscation, which is in turn
important for Bot Fighting.

Bibliography
Aldridge, David. 2011. I Shot You First: Networking the Gameplay of

HALO: REACH. http://www.gdcvault.com/play/1014345/I-Shot-
You-First-Networking.

Amir, Gideon, and Ramon Axelrod. 2005. “2.8 Architecture and
Techniques for an MMORTS.” In Massively Multiplayer Game
Development 2.

Aronson, Jesse. 1997. “Dead Reckoning: Latency Hiding for Networked
Games”. http://www.gamasutra.com/view/feature/131638/dead_
reckoning_latency_hiding_for_.php.

Baryshnikov, Maksim. 2016. “Engineering Decisions behind World of
Tanks Game Cluster.” http://www.gdcvault.com/play/1022945/
Engineering-Decisions-Behind-World-of.

Beardsley, Jason. 2003. “Seamless Servers: The Case For and Against.” In
Massively Multiplayer Game Development.

Boulanger, Jean-Sébastien, Jörg Kienzle, and Clark Verbrugge. 2006.
“Comparing Interest Management Algorithms for Massively
Multiplayer Games.”
http://gram.cs.mcgill.ca/papers/boulanger-06-comparing.pdf.

DisplayLag.com. 2017. “Display Input Lag Database”.
http://www.displaylag.com/display-database/.

Fiedler, Glenn. 2015. Snapshot Compression.
http://gafferongames.com/networked-physics/snapshot-compression/.

—. 2015. State Synchronization.
http://gafferongames.com/networked-physics/state-synchronization/.

Frohnmayer, Mark, and Tim Gift. 1999. The TRIBES Engine Networking
Model.
http://gamedevs.org/uploads/tribes-networking-model.pdf.

Gambetta, Gabriel. 2013. “Fast-Paced Multiplayer (Part II): Client-Side
Prediction and Server Reconciliation”.
http://www.gabrielgambetta.com/fpm2.html.

288 • CHAPTER 3: Communications

—. 2013. “Fast-Paced Multiplayer (Part IV): Headshot! (AKA Lag
Compensation)”.
http://www.gabrielgambetta.com/fpm4.html.

—. 2013. “Fast-Paced Multiplayer”.
http://www.gabrielgambetta.com/fpm1.html.

Glazer, Joshua, and Sanjay Madhav. 2016. “Multiplayer Game
Programming.”

Grigorik, Ilya. n.d. “High Performance Browser Networking”.
http://chimera.labs.oreilly.com/books/1230000000545/ch01.html.

Human Benchmark. 2017. Reaction Time Statistics.
http://www.humanbenchmark.com/tests/reactiontime/statistics.

Ignatchenko, Sergey. 1998. “An Algorithm for Online Data Compression”.
http://www.drdobbs.com/an-algorithm-for-online-data-
compression/184403560.

Leadbetter, Richard. 2009. “Console Gaming: The Lag Factor”.
http://www.eurogamer.net/articles/digitalfoundry-lag-factor-article.

Lightstreamer. 2006. lightstreamer white paper.
http://www.lightstreamer.com/docs/Lightstreamer_WhitePaper.pdf.

Lipps, David B., Andrzej T. Galecki, and James A. Ashton-Miller. 2011.
“On the Implications of a Sex Difference in the Reaction Times of
Sprinters at the Beijing Olympics”. http://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0026141.

McShaffry, Mke, and David “Rez” Graham. 2012. “Game Coding
Complete 4th Edition.”

Murphy, Curtiss. 2011. “Believable Dead Reckoning for Networked
Games.” In Game Engine Gems 2.

Pasini, Filippo L. Scognamiglio. 2014. “The Myths Of Graphics Card
Performance: Debunked”. http://www.tomshardware.com/reviews/
graphics-card-myths,3694-4.html.

Rabbit MQ. 2011. AMQP 0-9-1 Complete Reference Guide.
https://www.rabbitmq.com/amqp-0-9-1-reference.html.

Simpson, Zachary Booth. 2000. A Stream-based Time Synchronization
Technique For Networked Computer Games.
http://www.mine-control.com/zack/timesync/timesync.html.

Smith, Roger, and Don Stoner. 2005. “2.11 Time and Event
Synchronization Across an MMP Server Farm.” In Massively
Multiplayer Game Development 2.

Chapter 3 Summary • 289

West, Mick. 2008. Measuring Responsiveness in Video Games. http://www.
gamasutra.com/view/feature/3725/measuring_responsiveness_in_
video_.php.

Wikipedia. 2017. Huffman coding.
https://en.wikipedia.org/wiki/Huffman_coding.

—. 2017. Input Lag. https://en.wikipedia.org/wiki/Input_lag.
—. 2017. Internet Exchanges. https://en.wikipedia.org/wiki/List_of_

Internet_exchange_points_by_size.
Zarb-Adami, Mark. 2002. “2.4 Quaternion Compression.” In Game

Programming Gems 3.
ZeroMQ. 2012. Broker vs. Brokerless.

http://zeromq.org/whitepapers:brokerless.

VOLUME I

SUMMARY
In this volume, we started at the very beginning—and, for games, the “very
beginning” is the Game Design Document also known as the GDD (discussed
in Chapter 1); most importantly, we concentrated on those GDD issues that
are specific for multiplayer games (and, evidently, there are quite a few).

Then, in Chapter 2, we proceeded to the all-important argument of
“should our game be P2P or Server-based, or Deterministic Lockstep-based,”
and found that, considering the risks coming from cheaters (and them at-
tacking all successful games), our only viable option for a multiplayer-game-
with-thousands-of-simultaneous-players is Authoritative Servers.

In Chapter 3, we ended preliminaries and got to the real stuff—specifi-
cally, to communications and communication flows. First, we briefly exam-
ined¹⁹⁵ different communication flows between the Client and the Server
from the viewpoint of latencies, input lag, and RTTs. We started from sim-
plistic Server->Client->Server communication (which works only for slower
games), and went all the way to Client-Side Prediction, Lag Compensation,
and Forwarded Inputs (eventually reaching the state-of-the-art latency-wise).

Then, we arrived at the all-important question of reducing traffic. This
discussion included varied topics such as having the Client State different
from the Server State and also different from the Publishable State, Interest
Management (which also has very important implications in reducing the
potential for cheating), and then we tried to systematize different flavors of
Compression.

Afterward, we briefly mentioned Scalability (it was just a small part of the
overall discussion on Scalability; more to follow in Vol. III, Vol. VI, and Vol.

¹⁹⁵ Yes, thirty pages is a very brief discussion for this kind of thing.

292 • Development and Deployment of Multiplayer Online Games

IX), and examined Server-2-Server communications (including the all-im-
portant Async Inter-DB Transfer protocol; we’ll need it desperately later to
achieve DB scalability). And, last but not least, we discussed an Interface Defi-
nition Language; while it is possible to do without IDL, it provides so many
advantages that I certainly advise not to do any serious new development
without one.

WHAT’S NEXT
Now, we’re prepared to start discussing the building blocks of our system—
and Client-Side architecture.

In Vol. II, we’ll start with Chapter 4, briefly arguing what-we-should-do-
ourselves and what-we-should-reuse.

Then, in Chapter 5, we’ll get to presenting my favorite way of implement-
ing distributed systems—(Re)Actors (a.k.a. event-driven programs, a.k.a.
Game Loops, a.k.a. ad-hoc Finite State Machines, et cetera, et cetera). While
(Re)Actors are not strictly required to get your game flying, for medium- and
larger-sized games, they tend to get you there much faster (and tend to result

294 • Development and Deployment of Multiplayer Online Games

in much more reliable programs). When speaking about (Re)Actors, we’ll dis-
cuss quite a few related issues, from handling RPC returns in a non-blocking
manner (with a whopping eight different ways to do it(!)) to determinism
(which tends to help a lot with debugging and testing, including such things
as replay-based testing and production post-factum debugging), as well as
various ways to scale and organize (Re)Actors.

Chapter 6 will be dedicated to Client-Side Architecture; we’ll examine
both generic architecture and a (Re)Actor-based one (as a specialization of the
former). In addition, we’ll also address the questions of choosing a program-
ming language for the Client-Side (including ways to use C++ for browser)
and integrating web-based stuff with downloadable Clients.

Last but not least, in Chapter 7, there will be an examination of the
different ways of “how 3rd-party game engines can be used to build your
MOG.” In particular, special attention will be paid to comparing several pop-
ular game engines (specifically, Unity, UE, Lumberyard, and Urho3D) and
also the associated network technologies and libraries (including Photon
and RUDP libraries).

This will conclude Vol. II.

INDEX
Symbols
3D graphics 10, 14
3D MOGs 14

A
Abstract Syntax Notation One (ASN.1) 262, 266
ACID 249-251, 255
Adaptive traffic management 216-219
Advanced Message Queueing Protocol (AMQP) 256
Agile/agility 28-29, 94
Android 40
Android NDK 40-41
Animation 157-158, 166, 170, 175, 184-186, 190, 210
App Store 66
Arithmetic coding 207, 212-213, 216, 224
Artificial Intelligence (AI) 10, 27, 221, 226-227
Attacks 99-106, 109, 114, 117, 119-120, 176-177, 187, 189, 191, 233, 285

DB Attacks 109-110, 115
DDoS 76, 113, 115
Keyloggers/Trojans/Backdoors 112-113, 115
Password Phishing 111-112, 115
Stealing Your Source Code 110-111, 115

Auction 84
Authoritative Client 45, 98-99, 105, 111, 114-117, 119, 121-123, 126, 131-132,

135, 171
Authoritative Server 6, 15, 99, 106, 114, 118, 123-128, 131-132, 134-136, 140,

167, 184, 219-220, 222, 229, 291

B
Backdoor 112-113, 115
Bandwidth 76, 129, 162-163, 179, 186, 188, 203, 205, 216-220, 242, 266

limits on 180-181
optimizing 181-182

296 • Development and Deployment of Multiplayer Online Games

triangles and 183
Blackjack 8, 37, 83, 190, 241
Bot 96-97, 99-100, 106-108, 113-115, 134, 175-177, 283, 287
Broadcasted messages 140, 188, 232, 234-235

C
C++ 14, 18-19, 29, 41, 237, 270-273, 294
Casino games 37-38, 44, 52, 74, 80, 83, 89, 144, 285
Chat 77, 188, 208-209
Cheating 15, 56-57, 62, 69, 93-96, 98-99, 102-104, 111, 117-122, 124, 127, 129,

132-133, 135, 141, 169, 171, 174-177, 191, 194, 220, 222, 232-234, 242-243, 245,
259, 285, 291

Abuses of Disconnect Handling 107-108, 115
Game-Rule Violations 105, 131-132
Grinding Bots 108, 115, 134
Information Exposure 105
Reflex Augmentation 106-108, 114
Security by Obscurity 100-101, 105, 109, 117

Client 6, 22, 44-45, 47, 56-58, 60-61, 64, 67, 98-100, 102-103, 105-108, 110-111,
114-117, 119-128, 131-132, 134-135, 140-141, 143, 147, 150, 152-157, 162-164,
167-171, 175-177, 179, 181, 183, 186-187, 189-196, 203-205, 208-211, 213, 216-
223, 226, 228-230, 232-233, 235-236, 241, 243-244, 260-262, 266, 26-269, 276,
280-283, 285, 291, 294

Client-2-Server (also Client-to-Server) 140, 235, 238, 240, 242-244, 252-253,
260, 285

Client-Driven Development Workflow 44, 45, 73
Client-Side Extrapolation 166, 168-171, 178, 209, 285
Client-Side Interpolation 151, 165, 168, 171, 176, 178, 285
Client-Side Prediction 127, 141, 162, 164-165, 168-171, 173, 177-178, 228, 233,

241, 285, 291
Client-Side State 184-186, 189-190, 222, 285
Client update 64, 260
Code samples 19, 148-149, 208-209, 238-240, 267, 270-271, 273, 275, 278, 280-

282
Code signing 117-119
COM 236

Index • 297

Communication ix, 41, 48, 66, 134, 139-140, 153, 157, 188-189, 203, 214, 218,
226, 232-233, 235-237, 240, 244-248, 250-254, 258, 260-262, 266, 269, 271, 286,
291-292

forwarded inputs 141, 169, 232-234, 285, 291
player inputs 126, 140-141, 152, 204, 241
state sync 125, 140-141, 203-206, 232, 242, 282
transient events 140, 188, 190, 208, 232-234

Compression 136, 191, 197, 200-201, 203, 206-207, 209-216, 222, 224, 264, 286,
291

Classical 212, 214-215, 223
dead reckoning as 193, 203-205, 209-211, 215
definition 201
Delta 187, 203-208, 210-211, 214-215, 223, 274, 286
Lossless 202, 210, 212, 215-216
Lossy 193, 197, 202, 207, 210, 215
LZ77 201, 203-205, 212-215
reference bases 140, 188-189, 201, 203-207, 211-214, 242
techniques 197, 200-202, 206, 209-210, 212, 214, 221-224, 286

Console 109, 116-119, 121, 123-124, 132, 135-136, 140
Content Delivery Network (CDN) (also “Content distribution network”) 162-163
CORBA 236
Costs 73, 77, 90, 131, 181-182, 189, 191, 219, 221, 225, 266

Administration 75
Database/Server Backup 75
DDoS protection 76
Game Server 73-74
outgoing traffic 75, 131, 181-182, 219
software maintenance 73
support 76-77

Critical Mass 33, 54-55, 60, 164
Customer Relations Management (CRM) 6, 69-71
Customer Service Representative (CSR) 31, 50, 68-71

D
Database (DB) 37-38, 48, 63, 68-69, 72-73, 75, 109-110, 224, 248-250, 286
Database Management System (DBMS) 254-255
Datacenter 6, 21, 47, 49-51, 61, 74, 76, 128, 130, 157, 162, 164, 191, 230, 236,

253, 258-259, 266
DCE RPC 236, 262

298 • Development and Deployment of Multiplayer Online Games

Dead reckoning
as Client-Side Extrapolation 166, 275
as compression 193, 203-205, 209-211, 215, 223, 286

Deflate 201, 203, 212, 214-216, 224, 286
Delta compression 187, 203-208, 221, 273-274, 286

Incremental 207, 210-211, 215
Whole-Field 206, 214, 223

Deterministic Lockstep 47, 106, 114-115, 124-126, 131-132, 135-136, 220-221,
230, 277, 291

Directory service 256-257, 259
DirectX 52, 60, 151
Distributed Denial of Service (DDoS) 6, 14, 76, 113, 115
Distributed system 4, 9, 248, 265, 293
DIY 11-12, 43, 286
Download 55-56, 62-63, 161, 163, 181, 216
Downloadable Client 57-58, 294
Downloadable Content (DLC) 59

E
E-commerce 96-97
E-mail 61, 69-70, 76-77, 244
eSports 7, 88, 98, 219
Euler angles 168, 198-199

F
Facebook 48, 50, 56, 62, 81, 83, 89
Farming-like games 52, 80, 82, 105
Fault tolerance 65, 251, 259
Fences 277, 279-281
Firewall 40-41, 61, 153
First-Person Shooter (FPS) 88, 98, 127, 145, 163, 176-179, 234
Fixed-point numeric 197-198, 223
Float 197-199, 216, 223, 269

double 197, 223
Focus testing 32-33

Index • 299

Forwarded inputs 141, 232-234, 285, 291
Frustum 194-196
Fuzz testing 269

G
Game Design Document (GDD) 27-29, 34, 37-43, 48, 51-52, 56, 58-60, 64-66,

73, 75, 77, 79, 90, 163, 291
changes in 28-29, 34

Game developers 38, 52, 180
first time 27-38

Game engines 11-12, 16, 37-38, 42-43, 46, 239, 263, 294
Game entities 45, 67, 79-81, 83, 86, 89, 91
Gameplay 10, 25, 27, 32, 45, 54, 61-62, 72, 80-81, 90, 98, 100, 105, 108-109, 124,

127, 135, 144-145, 176, 184, 234, 260
Game rule violation 114-115, 117, 119
Game world 20-22, 45, 47-48, 50-51, 62, 64-65, 81, 89, 91, 111, 116-117, 120-

121, 124-129, 132, 136, 140, 143, 149, 180, 188-189, 191, 193, 195-196, 224-228,
231-232, 238, 240, 242, 245-246, 282, 286

Overlap 227
splitting 51, 226-228, 246

Game World State 166, 180, 201, 204, 208
Client-side 64, 106, 111, 116-117, 167, 169
PublishableServer-side 64, 226

Google+ 56
Graceful degradation 219-220
Grid-based Interest Management 193-194
Grinding 96, 108
Grinding bot 108, 115, 134

H
Homomorphic encryption 122-123
Huffman coding 207, 212-214, 216, 221, 224, 286

I
ICE 236
Idempotence 247

300 • Development and Deployment of Multiplayer Online Games

Implementation 13, 37-42, 48, 50-51, 58, 60, 64, 75, 89, 98-100, 129, 168, 174,
193-195, 209, 213, 220, 228-229, 234, 246, 257, 264, 277, 282-284

Information Leak 106, 114-115, 124, 131-132, 135, 141, 169, 187, 189, 191, 195,
233, 285

Input lag 60, 141, 143-146, 157-158, 160, 163, 165, 291
Interactive distributed system 4, 9
Inter-DB Async Transfer Protocol 231-232, 248-250, 255, 286, 292
Interest Management 38, 106, 111, 114, 126, 128-130, 140, 191-196, 200, 215,

220, 223, 233-235, 245, 285, 291
Interface Definition Language (IDL) 202, 224, 236-238, 262-269, 271-272, 274,

276, 278-280, 282, 284, 286-287, 292
Compiler 224, 260, 262, 264-265, 267-268, 270, 272, 275, 277, 279, 282-284
Encoding 262, 265-267, 273-274, 277, 284, 286
mapping 262, 265, 267, 269, 272-273, 280, 286

Internationalization (i18n) 63
Internet 6, 52, 61, 89, 93, 119, 125-126, 141, 145, 147, 153, 161-162, 181, 189,

201, 235-236
iPhone 40
ISO/OSI Model 6

J
Java 40-42
Jitter 147, 150-152, 177

K
Keyloggers 112, 115

L
Lag compensation 100, 107, 114, 173-179, 231, 234, 242-243, 285
LAN-based games 15, 162
Last mile 160-161, 163, 181
Latency 6, 46, 49, 86, 121, 140, 143, 146-147, 149, 152, 156, 161-163, 173, 178,

203-204, 206, 209-210, 291
Level of Detail (LOD) 193
Limited-Lifespan Games 28, 42
Local Area Network (LAN) 15, 93, 160, 162, 253

Index • 301

LZ77 201, 203-205, 212-215
LZHL 213-214, 224

M
Macroscopic client actions 243
Man in the MIddle (MITM) attack 134
Maphack 100, 106, 125-126, 189, 194-195, 220
Mapping 262, 264-267, 269, 270,-273, 280, 286
Marketing 33, 54, 62-63, 75, 90
Marshalling 262
Massively Multiplayer Online FIrst-Person Shooter (MMOFPS) 5, 6, 21, 44, 61,

86, 106, 141, 145, 158, 164, 178, 190
Massively Multiplayer Online Games (MMOG) 20, 21, 224-225
Massively Multiplayer Online Real-Time Strategy (MMORTS) 86
Massively Multiplayer Online Role-Playing Game (MMORPG) 11, 21, 44, 51,

80, 86, 108, 141, 178, 184
Massively Multiplayer Online Turn-Based Strategy (MMOTBS) 86
Matchmaking 22, 47-50, 52, 55, 62, 81, 89-90
Mesh 184, 186, 188, 191, 199, 285
Message queues (MQ) 254-258

Brokered 256-258
Brokerless 256-258
server-side 258
server-to-server communications and 258, 286
transactional integrity and 254-255

Minimizing data 197, 286
Minimum Viable Product (MVP) 35-36, 38
Monetization 10, 33-35, 38, 50, 54, 58-59, 62-63, 65, 73, 75, 80, 89-91, 94-95,

109, 130-131, 182
Multiplayer Online Battle Arena (MOBA) 52, 88, 145, 164, 224
Multiplayer Online Games (MOG) 2, 4-6, 9, 11-12, 14, 20-22, 25, 33, 35, 42-44,

46-47, 49, 54-55, 59-60, 62, 66, 68-69, 71-74, 78-79, 83, 90, 93-94, 109, 114, 116,
118-123, 126, 129, 132, 135-136, 139, 142, 144-147, 162, 184, 189-190, 205-206,
222, 226, 235, 254, 258-259, 262, 265, 285-286, 294

302 • Development and Deployment of Multiplayer Online Games

N
Network Time Protocol (NTP) 153-154
Nodes 120, 122, 207-208, 230

trusted 120-122
Non-Player Character (NPC) 45, 80, 86, 116, 166, 184-186, 203, 209, 226-227, 246
Non-simulation games 190, 241

O
OpenGL 60

P
Packet 6, 100, 119, 128, 147-148, 150-156, 166, 170, 174-177, 181, 201, 204-206,

212-214, 217, 229, 232, 235, 242, 281-282
Packet losses 6, 46, 119, 147-148, 150-152, 156-157, 166, 181, 187-188, 205-206,

213, 241-242, 246, 253
Password 69, 70, 77, 110-112, 115
Payments 6, 10, 58, 65-67, 79-80, 91, 97, 143
Peer to Peer (P2P) 93, 116-118, 123, 129, 135, 219, 291
Personal Computer (PC) 112, 119, 124, 153, 155
Phase-Locked Loop (PLL) 151, 154
Phishing 110-112, 115
Physics 10, 25, 27, 127, 168, 184, 198
Player Character (PC) 45, 80, 86, 127, 148, 168, 170, 173, 184-186, 188, 191, 193,

195-196, 211, 227, 233, 241-242, 246
Player happiness 174, 176, 178
Playtesting 32-33
Point-to-point communications 235-236, 240, 245-246
Poker 7, 8, 43, 83, 94-95, 107-108, 144, 195, 244
Protocol 6, 37-38, 86, 111, 121, 134, 147, 153-154, 189, 205, 210, 237, 244-246,

249-250, 252, 255-256, 259-262, 265-266, 276-277, 279-280, 282, 284-286, 292
Protocol changes 259-262, 264, 276, 280, 283
Proxy bot 100, 108, 176-177
Publishable State 140-141, 170, 183, 186-191, 195, 197-198, 200-201, 206-207,

210, 220, 222-223, 226, 233, 235, 243-245, 268, 285, 291
Compression 183, 186, 188, 190, 197, 207, 223

Index • 303

Delivery 191
interest management 191-192, 195, 200
updates 188, 190-191, 210

Published Attack 102-103, 105-106, 108, 110

Q
Quaternion 168, 198-199

R
RabbitMQ 254, 256
Ragdoll 170, 184-185
(Re)Actor 66, 126, 148-149, 168, 225, 229, 236, 239-240, 245-246, 269, 293-294
Real-Time Strategy (RTS) 124-126, 132, 136, 189, 220, 222-223

traffic and 125, 220
Reconciliation 166-169, 211, 228
Reflex augmentation 106-107, 114
Relational Database Management System (RDBMS) 255, 258
Reliable UDP 125, 187, 203, 206, 212
Remote Procedure Call (RPC) 141, 236-238, 243-244, 246-248, 260, 262-264,

277, 280, 282, 294
blocking 236, 286
non-blocking 235-237, 286
non-blocking, non-void 237-239, 246
non-blocking, void 237-239, 244

Re-Use 11-12
Rigid object 185, 188
Rotation matrix 199
Round-Trip Time (RTT) 141, 143, 145-147, 151-155, 158, 160-164, 175, 177, 196,

291

S
Sanitizing 268
Scalability 68, 128-129, 131, 224, 226-227, 251, 286, 291-292
Scene graph 199, 207
Seamless game world 227, 286

304 • Development and Deployment of Multiplayer Online Games

Server 6, 9, 15, 21-22, 33, 44, 46-51, 54, 61-62, 64-65, 67, 69, 71, 73-75, 83, 86,
89, 93, 99-100, 105-107, 110, 114-118, 123-128, 130-132, 134-135, 140-141, 143,
147, 150-156, 161-164, 166-170, 173-176, 179, 181-187, 189, 191-192, 195-196,
203-204, 207, 209-211, 213, 218-222, 224-227, 229-233, 235-236, 239, 241-245,
251-254, 257, 260-263, 266, 268-269, 271, 276, 280-283, 285, 291

dedicated 22, 73
game world 21-22, 47, 50-51, 143, 163, 169, 193, 238, 240, 253
matchmaking 22, 47, 89

Server-2-Client (also Server-to-Client) 140, 157, 232-233, 240, 244-245, 260, 266
Server-2-Server (also Server-to-Server) 157, 226, 230, 232, 236, 238, 240, 245,

247, 251-254, 258, 260, 262, 266, 286, 292
Server-Driven Development Workflow 44, 59, 73, 90
Server rewind 174-175, 231-232, 285
Server-Side 6, 44-47, 60, 64-65, 67-68, 72, 74-75, 78, 111, 127, 143, 149-154, 157-

158, 167, 169-171, 175, 180, 184-186, 189-191, 197, 199, 201, 209-210, 222-223,
226, 229-230, 235, 241, 244, 251-252, 258-259, 268, 271, 281, 283

TCP v. UDP 41, 53, 139, 147-148, 153, 156-157, 188, 206, 212-213, 218, 224,
235, 246, 252-253

Server-Side entity addressing 250-252, 255, 258
Server-Side game logic 143, 168
Server-Side State 126, 180, 184-186, 188-190, 222-223, 285
Server update 64-65
Shared-Nothing Architecture 225-226, 248
Simulation 6, 44, 67, 74-75, 148, 168, 170, 180-182, 184-185, 189, 191, 209, 224-

226, 229, 230-231, 241
Single Point of Failure (SPOF) 116, 256
Social game 5-6, 15, 44, 82, 95, 181, 190, 241
Socializing 48-49, 51-52, 62
Social login 56-58, 64
Society for Worldwide Interbank Financial Telecommunication (SWIFT) 231
Soft launch 55, 60
Spearphishing 110
Spectators 56-57, 60, 62-63
Sports betting 7, 84
Stakeholder 27-28, 31, 33-34, 36, 38-39, 41-42, 66, 90
State Synchronization (also “State Sync”; also “State Replication”) 125, 140-

141, 203-206, 242, 282

Index • 305

Steam 56
Stock exchange 2, 5, 7-9, 15, 18, 44, 74, 84, 99, 112, 241
Sub-Game-Worlds 227-232

T
Teams 11, 26-27, 31, 33-35, 38, 49, 52, 54-56, 58-60, 62-63, 66-73, 75-78, 81, 90,

103-104, 182
3D 71-72
Back-End 68-73, 90
Database 68, 70-72, 90
Network 66, 71-72, 75-76, 90
Server 44, 46, 67, 71-73, 90

Terms and Conditions (T&C) 104, 109, 114, 222
Time sync 152-154, 156, 229-230
Time-to-Market 35-36
Transactional integrity 248, 250-251, 254-257
Transient disconnect 240, 244-247
Transient Events 140, 188, 190, 208, 232-234
Transmission Control Protocol (TCP) 6, 37, 40-42, 52-53, 66, 139, 147-148, 153,

156-157, 188, 203, 206, 212-213, 218, 224, 235, 245-247, 249, 252-256, 258, 286
Transport Layer Security (TLS) 41, 249
Trojan horse (also “trojan”) 112, 115
Turing-complete 14, 30
Twitter 56
Two-factor authentication (2FA) 112

U
Undefined-Lifespan Games 42-43
Unpublished Attack 102-103, 114-115
User Datagram Protocol (UDP) 6, 37, 40-42, 52-53, 61, 66, 125, 139, 147-148,

151, 153, 156-157, 187-189, 203, 206, 212-213, 217-218, 224, 235, 246, 252-253

V
Value date 231-232
Versioning 262, 280-283, 287

306 • Development and Deployment of Multiplayer Online Games

Version numbers 260, 261-262, 282
Vertex 183, 188, 285
Virtual world 38, 86, 126-127

W
Wallhack 100, 106, 125-126, 189, 194, 220
Web-based Client 56-58, 60
Windows 17, 40, 52, 66
Workflow 44-45, 90

Client-Driven 44-46, 73, 78, 90, 180
Server-Driven 44, 90

Z
ZeroMQ 253, 257-258
ZIP 201, 212

LETTER FROM THE AUTHOR
Hello, fellow game developer!

I hope you’ve found something of interest (and maybe even useful) with-
in all my barely coherent blabbering. And I hope that you’re going to get your
hands on Vol. II of this epic work.

For the time being, chapters of 1st beta of Vol. II-VI are available on ithare.
com/category/dnd-of-mogs-vol1-1st-beta/ and ithare.com/category/dnd-of-
mogs-vol2-1st-beta/, with more content added every week. If you have any
comments or criticism, please e-mail me at nobugs@ithare.com, or comment
right on the site. For this volume, Vol. I, comments from website readers (and
on Reddit) have helped add a lot of previously missing things, and have fixed
quite a few mistakes of varying severity. THANKS A LOT to everybody who
pointed out omissions and mistakes (and I hope for further comments to also
make future volumes better)!

Last but not least:

Please consider
reviewing this book on Amazon

(or Goodreads, if you already have an account). It will help both me (the
author) and others who could benefit from reading this book. The landscape
of even-somewhat-useful books on multiplayer game programming is IMO
really barren these days, so letting others know that there is something worth
reading is really important.

Best regards (and thanks for reading this far <smile />),

No Bugs Hare

