
EARLY PRAISE FOR

Development & Deployment of Multiplayer Online Games

“By far the most comprehensive book on specifics of multiplayer games”
— Dmitri Dain, Managing Director @Amaya Software

“Finally!”
— Boris Taratine, Cyber Security Programme Chief Architect @Lloyds Bank Group

“Looking forward to read the book when it is finished”
— Nuno Leiria, Senior Software Engineer @Polystream,

formerly Core Tech Programmer @Lionhead Studios

“Looking forward to read the final book. The promise is great. Finally a book on the subject
that isn’t outdated or vague.”

— Özkan Can, formerly Backend Technical Director @Blue Byte, A Ubisoft Studio

“TCP is a complex beast and you know much more about it than I do. Thank God!”
— Glenn Fiedler, GDC speaker,

veteran of AAA multiplayer development, and UDP fanboy for life.

“The colossal book you are writing… looks very promising and exciting”
— Alessandro Alinone, Co-Founder and CEO @Lightstreamer

“The really useful and highly practical book. This book will be a valuable addition to the
library of anyone game developer.”

— Michael Morgovsky, Co-Founder and CTO @Plarium

“I’ve been looking for a book like this for a decade. This will be invaluable for teaching
game devs the ins and outs of multiplayer development.”

— Robert Zubek, GDC speaker, Founder @SomaSim,
formerly Principal Software Engineer @Zynga

“Even unfinished, it already is the most comprehensive reference for networking and mul-
tiplayer game development that I have ever seen, and it is constantly teaching me new
things. An absolute must-have for the serious developer.”

— Matt Pritchard, AAA veteran, author, and CTO @Forgotten Empires
former RTS/FPS/IoT developer @Ensemble Studios/Valve/Disney

‘NO BUGS’ HARE
Sarcastic Developer

Co-Architect of a G20 Stock Exchange
Sole Architect of a Game with 400’000 Simultaneous Players

Author of Articles in CUJ, C++ Report, and Overload

DEVELOPMENT AND DEPLOYMENT OF

MULTIPLAYER ONLINE GAMES
From Social Games to MMOFPS, with Stock Exchanges In Between

PART ARCH.

ARCHITECTURE AND
PRE-DEVELOPMENT

Victorious warriors win first and then go to war,
while defeated warriors go to war first and then seek to win.

— Sun Tzu, The Art of War, circa 500 BC

In Part ARCH, we will discuss activities that need to be performed even before the coding can be
started. It includes many things that need to be done, from formulating business requirements
to setting up your source control and issue-tracking systems, with lots of critical architectural
decisions in between.

VOLUME II.

DIY, (RE)ACTORS,
CLIENT ARCH.,
UNITY/UE4/
LUMBERYARD/URHO3D

Start the reactor. Free Mars...
— Kuato from Total Recall

Development and Deployment of Multiplayer Online Games
Volume II. DIY, (Re)Actors, Client Arch., Unity/UE4/Lumberyard/Urho3D
by ‘No Bugs’ Hare

Copyright © Nerds for Nerds Publishing GmbH, 2015-2018
All Rights Reserved. No part of this book may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without permission in writing from the publisher.

Translated from Lapine by Sergey Ignatchenko (Nerds for Nerds Publishing GmbH, ithare.com)
Illustrations and Cover Design by Sergey Gordeev (Gordeev Animation Graphics, gagltd.eu)
Editing by Erin McKnight (Kevin Anderson & Associates, ka-writing.com)
Interior Design by Alexey Shumov, Alexandra Evseeva

ISBN: 978-3-903213-15-9 (Paperback)
ISBN: 978-3-903213-16-6 (Hardcover)
ISBN: 978-3-903213-17-3 (PDF)
ISBN: 978-3-903213-18-0 (ePub)
ISBN: 978-3-903213-19-7 (Kindle)

Published by Nerds for Nerds Publishing GmbH
Hormayrgasse 7A/19
1170 Wien
Austria

CONTENTS
Introduction ...1

The Hare and the People Behind… ... 1
On Real-World Experiences ... 2
Is This Book for You? .. 3

CD not included ...3
“Nothing About Everything” ...4
Prerequisite: Intermediate+ ...5

How to Read This Book ... 6
Conventions .. 6

Code Samples..7
My Captain-Obvious Hat .. 7
Terminology .. 8

MMO vs MOG ...8
Server ..9
Dedicated Server...9

BYOS (As in, “Bring Your Own Salt”) ...10

Chapter 4. DIY vs. Re-Use: In Search of Balance13

Dependencies and Vendor Lock-Ins ... 14
Impact of Vendor Lock-Ins ... 15
Weakening/Isolating Dependencies ..16

On Platform Lock-Ins and Cross-Platform Code ...16
Non-Working Cross-Platform: Rewriting Low-Level APIs...17
Working Cross-Platform: Isolation Layer ..17

Working Cross-Platform: Isolation Layer/Lowest Common Denominator18
Working Cross-Platform: Isolation Layer/In Terms of App ..19

Working Cross-Platform: Summary ..20
Isolating Arbitrary Libraries. Isolation APIs in terms of App...21

On “Wrapping, Then Wrapping Some More” ..21
Vigilance, and More Vigilance ..22

“Two Platforms” Approach ..23
TL;DR on Vendor Lock-Ins and Isolating Dependencies ...24

Business Perspective: DIY Your Added Value ... 24
Engine-Centric Approach: Game Engine as an Inherent Vendor Lock-In 26

Engine-Centric Approach: Pretty Much Inevitable for Indie RPG/FPS games26
Engine-Centric Approach: You Still Need to Understand How It Works......................28

viii

Engine-Centric Approach: On “Temporary” Dependencies ..29
“Re-Use Everything in Sight” Approach: An Integration Nightmare 30
“DIY Everything”: The Risk of a Never-Ending Story .. 32
“Responsible Re-Use” Approach: In Search of Balance ... 34

“Responsible Re-Use” Examples ..39
“Responsible Re-Use”: on “Temporary” Dependencies ..40

Chapter 4 Summary ... 41
Bibliography ..42

Chapter 5. (Re)Actor-fest Architecture. It Just Works43

To React or Not to React? That is (Almost) No Question ... 44
“Almost” Before “No Question” ...46

Reactors or Not — Stay Away from Thread Sync in your Game Logic ..47

On Terminology. Actor, Reactor, Event-Driven Program, Game Loop, or Ad-Hoc Finite
State Machine? We’ll Name it (Re)Actor. ... 50
Game Loop: Game Programming Classic ... 52
(Re)Actor as a Generalization of Game Loop ... 54

Other Event-Driven Systems: GUI, Erlang, Node.js, and Java Reactor 57
On Separating Infrastructure Code from Logic Code ..58
Advantages of (Re)Actors ...60
(Re)Actors in Game Engines ... 62

Two All-Important Improvements to Classical Event-Driven Programming:
Mostly-Non-Blocking Processing and Determinism ... 64
Non-Blocking Processing .. 64

What NOT to Use — “OO” RPC Frameworks ..66
To Block, or Not to Block, That Is the Question. Mostly-Non-Blocking (Re)Actors 69

Case 1. Processing Input Events While Call Is in Progress Is Required at Logic Level70
Case 2. No Processing at Logic level While Call Is In Progress ...71
Blocking or Non-Blocking? Mostly Non-Blocking ...72

Implementing Non-Blocking Processing for Games ..75
Waits/Timers ...75
Non-Blocking State Publishing and (Kinda-)Broadcast Messages ..75
Point-to-Point Communications and Other Request-Response Stuff ..76

Request-Response ..76
Request-Response Complication: What to Do When the Call is Completed............................77

Handling Returns in Non-Blocking Way in (Re)Actors ..79
Take 1. Naïve Approach: Plain Messages (Will Work, But Is Plain Ugly)82

 Contents · ix

Take 2. Void-Only RPCs (A Tiny Bit Better, Still Really Ugly) ...87
Take 3. OO-Style: Less Error-Prone, But Still Way Too Much Boilerplate91
Exceptions ..94

Cascading Exception Handlers...97
Take 4. Lambda Pyramid ..99

Cascaded Exception Handling, Lambda Style .. 102
Take 5. (Re)Actor Futures .. 103

Similarities and Differences from Existing Futures/Promises .. 106
Take 5 Summary ... 108

Take 6. Code Builder .. 108
Take 6a. Enter C++ Preprocessor .. 110
Offloading ... 111

Offloading Caveat #1: Deep Copy Required .. 112
Offloading Caveat #2: Keeping Portions Large .. 113
Offloading Caveat #3: DON’T Offload Unless Proven Necessary 114
Yet Another Offloading Caveat: Flow Control ... 115
Really Serious Stuff: HPX.. 116
Last But Not Least: Implementing Offloading Is Not in Scope Now 117

Take 7. Fibers/Stackful Coroutines .. 117
C++: boost:: coroutines and boost::context ... 120
On Using goroutines-for-callbacks: BEWARE THREAD SYNC! .. 120

Take 8. async/await (.NET, Node.js, and not-standard-yet C++) ... 121
Across-the-Board Generalizations .. 123

Surprise: All the Different Takes are Functionally Equivalent, and Very Close Performance-Wise Too 123
Similarities to Node.js ... 124
Handling Non-Blocking Returns in Different Programming Languages 125
Serializing (Re)Actor State .. 125

Serializing Lambda Closures and co_await frames in C++ .. 126
Why So Much Discussion of This One Thing? ... 130
TL;DR for Non-Blocking Communications in (Re)Actors ... 131

Determinism .. 132
Distributed Systems: Debugging Nightmare ..132

Non-Deterministic Tests are Pointless ... 134
The Holy Grail of Post-Factum ... 135

Portability: Platform-Independent Logic as “Nothing but Moving Bits Around”136
Stronger than Platform-Independent: Determinism ...137
Deterministic Logic: Benefits ...137
On Replay-Based Regression Testing and Patches ...142
On (Re)Actors and Fuzz Testing ..145
On Determinism and User Replay ..146
Implementing Deterministic Logic ...148

Deterministic System: Modes of Operation .. 148
Implementing Inputs-Log .. 148

x

Going Circular .. 150
Recordable/Replayable (Re)Actor .. 152
Implementing Deterministic Logic: Non-Determinism Due to System Calls 153

Dealing with System Calls: Original Non-Deterministic Code .. 153
Dealing with System Calls: Call Wrapping ... 154
Dealing with System Calls: Pure Logic ... 157
Dealing with System Calls: TLS Compromise .. 158
Dealing with System Calls: Pools of On-Demand Data ... 160
Dealing with System Calls: On-Demand Data via Exceptions ... 161
Dealing with System Calls: RPC-like Handling ... 163
Dealing with System Calls: allocations .. 163
Dealing with System Calls: Which System Functions Are We Talking About and What Do We Do
About Them? ... 165

Implementing Deterministic Logic: Other Sources of Non-Determinism 168
On Undefined Behavior ... 168
No Access to Non-const Globals and TLS ... 169
On Threads .. 170
On Determinism of the Whole Distributed Systems .. 171

Implementing Deterministic Logic: Non-Issues ... 172
PRNG ... 172
Logging/Tracing ... 173
Caching .. 173
On Isolation Perimeters .. 174

Implementing Deterministic Logic: Cross-Platform Determinism .. 175
Achieving Cross-Platform Determinism .. 176

Implementing Deterministic Logic: Summary ... 179
Types of Determinism vs Deterministic Goodies ...180
Relation of Deterministic (Re)Actors to Deterministic Finite Automata182

Deterministic Finite State Machines: Nothing New — Let’s Just Start Using Them 184
TL;DR for Determinism Section ..185

Divide et Impera, or How to Split the Hare the Hair the (Re)Actor 186
On Importance of the DIY IDL Compiler ..187

Big-n-Ugly-Switch ... 189
Generated Switch .. 189
Stream-based Unmarshalling .. 190

Composition: (Re)Actor-within-(Re)Actor ..190
State Pattern ...192

State-Specific Handling .. 192
Common Data Members ... 193
Potentially Expensive Allocations .. 194

Hierarchical States ... 195
Stack-of-States ... 196

VALIDATE-CALCULATE-MODIFY-SIMULATE Pattern ..196
VALIDATE-CALCULATE-MODIFY-SIMULATE and Exceptions .. 198

 Contents · xi

VALIDATE and CALCULATE stages .. 198
MODIFY and SIMULATE stages .. 199
RAII Equivalents in Different Programming Languages .. 200
Posting Messages (calling RPCs, etc.) Within VALIDATE/CALCULATE ... 201

Divide et Impera Summary ..202
(Kinda-)Scaling Individual (Re)Actors ... 203

Splitting and Offloading ..204
(Re)Actor-with-Mirrored-State  —  Limited Relief ..205
(Re)Actor-with-Extractors ...206

(Re)Actor-fest Architecture: Putting It All Together ... 211
Philosophy of (Re)Actor-fest ..211

(Re)Actor-fest and Conway’s Law .. 212
Implementing (Re)Actor-fest ..213

(Re)Actor Factories .. 213
That’s Pretty Much It ... 214

(Re)Actor-fest and Programming Languages ...215
Relation of (Re)Actor-Fest to Other Systems ...215

Relation to Actor Concurrency .. 216
Relation to Erlang Concurrency, Akka Actors, and Node.js ... 216
(Re)Actors and Microservices as Close Cousins .. 218

Physical Server — VM Docker — (Re)Actor as a Spectrum of Tradeoffs Between Isolation
and Flexibility .. 220

Summary of Chapter 5 ... 221
Bibliography ..223

Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 229
Avoiding Expensive Allocations ..250
C++: Enforcing const-ness for VALIDATE and CALCULATE stages in
VALIDATE-CALCULATE-MODIFY-SIMULATE pattern ...252

On Posting messages from VALIDATE/CALCULATE in C++ ... 254

Chapter 6. Client-Side Architecture ...255

Graphics 101 .. 255
On Developers, Game Designers, and Artists ..257
On Using Game Engines and Vendor Lock-In ..257
Types of Graphics ...259

Games with Rudimentary Graphics ... 259
Games with 2D Graphics ... 260
On Pre-rendered 3D... 262
Games with 3D Graphics ... 265

xii

Generic Client Architecture ... 266
Logic-to-Graphics API ...268

Naïve vs Logic-to-Graphics for Cross-Platform Development ... 270
Logic-to-Graphics Benefits ... 272
Logic-to-Graphics Costs ... 272
Dual Graphics, Including 2D+3D Graphics ... 273

Modules and Their Relationships ...274
Game Logic Module ... 275

Game Logic Module & Graphics ... 276
Game Logic Module: Client-Side Prediction and Simulation .. 277
Game Logic Module: Game Loop ... 278
Game Logic Module: Keeping it Cross-Platform ... 279

Animation&Rendering Module ... 279
Communications Module .. 280
Sound Module ... 280

Relation to MVC ...281
Differences from Classical 3D Single-Player Game ..282

Interaction Examples in 3D World: Single-Player vs MOG .. 282
MMOFPS Interaction Example (Shooting) .. 282
MMORPG Interaction Example (Ragdoll) ... 284
UI Interaction Example ... 285

Pre-alloc Everything ... 285
Progressive Downloading .. 287

(Re)Actor-fest Client-Side Architecture .. 288
(Re)Actor-fest Client Architecture ..289
(Re)Actor Specifics ..293

Animation&Rendering (Re)Actor and Game Loop .. 293
Communications (Re)Actor and Blocking/Non-Blocking Sockets ... 295
Other (Re)Actors .. 296

On (Re)Actors and Latencies ..297
(Re)Actor-fest Variations ..298
On Code Bases for Different Platforms ..301
Scaling (Re)Actor-fest Architecture on the Client ..302

Parallelizing Client-Side (Re)Actors .. 304
Summary of (Re)Actor-fest Architecture on the Client-Side......................................307

Programming Language for Game Client ... 308
One Language for Programmers, Another for Game Designers (MMORPG/MMOFPS etc.) ...309
A Word on CUDA and OpenCL ...310
Different Languages Provide Different Protection from Bot Writers.........................311

Resilience to Reverse-Engineering of Different Programming Languages 312
Compiled Languages .. 312
Languages That Compile to Bytecode .. 313

 Contents · xiii

Scripting/Interpreted Languages .. 315
On asm.js, wasm, and Emscripten .. 315
Summary ... 317

Language Availability for Client-Side Platforms ...319
On Garbage Collection ...320

On “Stop-the-World” Problem .. 321
To GC or Not to GC? ... 326

On Consistency Between Client-Side and Server-Side Languages327
Sprinkle with All the Usual Considerations ..328
C++ as a Default Game Programming Language ...330
Big Fat Browser Problem ..331

Client-on-Server Trick .. 334

On UI Dialogs ... 335
Fixed layouts — Way to Disaster ...335
Way Out — HTML-Like Flexible Layouts..336
On Modal Dialogs and MOGs ...336

On Using Browser Window Alongside the Client ... 337
Downloadable Client + Completely Separate Web Site ...338
Downloadable Client with a System-Provided In-App Browser339
Downloadable Client with an Embedded Web Engine ..340

Embedded HTML Engine but Own Communications .. 341
On Embedding and emscripten ... 342

Integrating with 3rd-party Websites. 3rd-party Logins ...342
Bottom Line for Chapter 6 ... 345

Bibliography ..347

Chapter 7. Client-Driven Development: Unity, UE, Lumberyard,
Urho3D, and 3rd-Party Network Libraries ...349

On Client-Driven vs. Server-Driven Development Workflows .. 350
On Server-Driven Development Workflow ..350
Client-Driven Development Flow ...351
Implementing Client-Driven Workflows ...351

Single-player Prototype and “Continuous Conversion” .. 352
Engine-Provided Server vs. Standalone Server ... 353
Important Clarification: Development Workflow vs Data Flow .. 354

Most Popular 3rd-party Game Engines .. 354
Unity 5 ..355

Event-Driven Programming/Reactors .. 356
Built-In Communications: HLAPI (for Engine-Provided Server) ... 357

xiv

State Synchronization .. 358
RPCs (a.k.a. “Remote Actions”) ... 360
HLAPI Summary ... 361

Built-In Communications: LLAPI (Both for Engine-Provided Server and Standalone Server) 362
3rd-party Communications for Unity: Photon Server ... 363

Photon Server SDK .. 365
Photon Cloud (PUN and Realtime).. 366

3rd-party Communications for Unity: SmartFoxServer... 368
3rd-party Communications for Unity: uLink .. 370
3rd-party Communications for Unity: DarkRift ... 371
3rd-party Communications for Unity: Lower-Level Libraries .. 372
Unity 5 Summary ... 373

Engine-Provided Server. HLAPI Now, Probably LLAPI Later .. 375
Standalone Server with Export from Unity ... 377
Engine-Provided vs Standalone: Which One Is Better? .. 378

Unreal Engine 4 ..379
Event-Driven Programming/Reactors .. 379
UE for MOG .. 380
UE Networking: Very Close to Unity 5 HLAPI .. 380
UE Networking: Lower-Level C/C++ Libraries .. 381

Reliable UDP Libraries ... 381
Socket Wrapper Libraries .. 383

UE4 Summary: Engine-Provided and Standalone Servers .. 384
Amazon Lumberyard ..385

A Choice Between Amazon-Only Hosting — and (Hopefully) Co-Location 385
Amazon Lumberyard: General ... 388
Amazon Lumberyard: Platforms, Programming Languages, and Event-Driven Programming 388
Amazon Lumberyard Networking: GridMate .. 388

AWS Integration: Amazon GameLift ... 389
Amazon Lumberyard: Summary and Engine-Provided/Standalone Servers 390

Urho3D ...391
Urho3D: Supported Platforms, Programming Languages, and Event-Driven Programming 392
Urho3D Networking ... 392
Urho3D: Summary and Engine-Provided/Standalone Servers ... 393

The Engine That Didn’t Make It — Source ..393
Comparison Table ...394

Summary for Chapter 7.. 402
Bibliography ..403

Vol. II ..405

What’s Next ... 407
INDEX ... 409
Letter from the Author ...413

 Acknowledgments · xv

ACKNOWLEDGMENTS

Family
It is customary for authors to say thanks to the family members who
have supported them during the endeavor of book writing. However,
while I am infinitely grateful to my family (especially to my wife,
Natalia), I strongly prefer to thank them in person. To the best of my
knowledge, they prefer it this way too.

Comments That Helped Shape the Book
From the beginning, this book was intended as a “crowd publishing”
project. Beta chapters were published on my blog, ithare.com, as soon
as they were ready (and even before they were ready), with the aim of
receiving as many comments as possible. Overall, beta chapters from
Volumes I–III got over 400 comments made by over a hundred differ-
ent people. And while not all these comments were exactly useful, there
were quite a few people who pointed out important not-too-clearly-
explained things, forgotten-at-the-moment-but-good-to-mention
technologies and use cases, and some have also taught me certain
things (yes, I have to admit that if you’re looking for a book written by
a divinely inspired knowing-everything oracle, you’ve got the wrong
one).

Here goes an alphabetical list of people who have made important
comments during beta testing of the book and who were also kind
enough to provide their details to be included:

B
Michael Bartnett from New York, United States
Robert Basler from Vancouver, Canada
Marcos Bracco from La Plata, Argentina

xvi

C
Jean-Michaël Celerier from Bordeaux, France
Oded Coster from London, United Kingdom

D
Przemysław Danieluk from Poland
Bill Dieter from Portland, United States
Matt P. Dziubinski from Warsaw, Poland

F
Nir Friedman from New York, United States
Santiago Fernández Ortiz from Madrid, Spain
Timothy Fries from Spring Hill, United States

I
Dmytro Ivanchykhin from Kiev, Ukraine

J
Nathan Jervis from Hamilton, Canada
Luciano José Firmino Júnior from Recife, Brazil

K
Chris Kingsley, from Longmont, United States
Marat Khalili from Moscow, Russia
Mario Konrad from Zurich, Switzerland

L
Ivan Lapshov from Moscow, Russia
Nuno Leiria from Lisbon, Portugal
Dmitry Ligoum from Toronto, Canada

N
Jesper Nielsen from Gråsten, Denmark

 Acknowledgments · xvii

R
Nathan Robinson from Stuttgart, Germany

S
Bulat Shamsutdinov from Kazan, Russia
David Schroeder from Spokane, United States
Alessandro Stamatto from Porto Alegre, Brazil
Jon Stevens from Seattle, United States

T
Duy Tran from Ho Chi Minh City, Vietnam
David Turner from Leeds, United Kingdom

W
Jon “hplus” Watte

Z
Vadim Zabrodin from Novosibirsk, Russia
Robert Zubek from Chicago, United States

…and everybody else who made important comments but
declined to be included in this list

Thanks a lot, friends: your feedback was really important to make
the book better.

Special Thanks to Kickstarter Backers
This book was Kickstarted and the money raised was used for pro-
fessional editing and design. There aren’t enough bits in the RAM
of my computer to express all my gratitude to each and every one of
you. The book certainly wouldn’t be the same without you (and your
patience has certainly been saintly). You’ve been a wonderful [funding]
crowd — THANKS A LOT!

xviii

Here goes the “Kickstarter Backers’ Hall of Fame”:

0-9
10tons.com

A
ABeardOnFire
Aled
ALEJOLP
Ander Amo
Andrew
AustinK
Dan Avram
David Antúnez

(eipporko)
Guillaume A
Islam Aliev
Jonathan Adams
Jorge Moreno

Aguilera
Kylie Au
Luis Armendariz
Nacho Abril
Rafael “GeekFox”

Araujo
Scott Anderson
Sergey Annenkov
Sharad Cornejo

Altuzar
Tomáš Andrle
Victor da Cruz

Amaro
Wali Akande

B
Alicia Boya García
Asher Baker
Babyjeans

bmac & ingrid
botiq
bryon
Bumek
busho
Christian Bryan
ck @ bsg
Cory Bloor
D Barnard
Dan Brewer
David G. Brewing-

ton II
Emeric Barthélemy
Frank Lyder

Bredland
Georg Begerow
Graham Bishop

Hidden Gorilla
Ltd

Heiko Behrens
Hrvoje Bandov
Jasmine Bulin
Kirill Belov
Leandro Barreto
Luke Beard
Marcos Bracco
Mateus Borges
Maxim Biro
Michael Brüning
Nicholas “LB”

Braden
Patrick B
Patty Beauregard
Richard Baister
Robert Bracken-

ridge
Stephen Bentley

Tomas Bilek
Vincent Bilodeau
Vincent Blansaer
Vladan Bato

C
Ben Carruthers
Bulent Coskun
caj
camfurt
Catprog
Charlie
Chris Cox
Christian Corsano
ChuangTseu
Connor Carter
Dmitry Chuev
Edward Carmack
Ian Compton
Javier Calvo
Laurent CETIN
Liam Costello
Milo Casagrande
Morrison Cole
Neil Coles
Ozkan Can
P. Chaintreuil
Paul Caristino
Sam Coleman
Shawn Cassar
Stuart Cassidy

D
Andreas Drewke
Andy Dunn
Chris Downs

 Acknowledgments · xix

Ciaran Deasy
Cristián Donoso
dajomu
Dan Dudley
Daniel Dimitroff
Daniele Dionisi

(Danguru)
dd33
Digital Confec-

tioners
Dooks Dizzo
Jamie Dexter
Jean-Michel

Deruty
Julien Dumétier
Justin Drury
Ken Drycksback
Kyle Dean
Matthew DeLucas
Matthew Douglass
Michael Dwan
Niclas Darville
Oliver Daff
Pat Duquette
Petar Dobrev
Tim Drury

E
Craig Edwards
David Erosa

Garcia
Egon
empty2fill
Eric Espie
Ethereal World
Geoff Evans
Jon Edwards
Matthew Erickson

Michael Ellwood
Ryan Evans
Sebastian Eggers
Semih Energin
Vlad Engelgardt

Е
Антон

Евангелатов

F
Andrew Fox
Bruno V. Fer-

nandes
Bryce Fite
Eric Faehnrich
Glenn Fiedler
Mad William Flint
Matthew Fritz
Rosco Farrell
Rui Ferreira
Rui Figueira
Steve “Tech-Imp”

Fernandez
Thomas Frase
Zach Fetters

G
Arvid Gerstmann
Bart Grantham
Bernardo A. Gon-

zalez (Jasnis)
Daniel Guilford
David Garcia (le-

dragon-dev)
Dorian George
Evan M. and

Nathan G.

Gerardo
Gero Gerber
giant_teapot
Jason Gassel
Jonathan Gough
Jonathan Grimm
Maxime Guillem
Philip Gurevich
Risnoddlas Gry-

tarbiff
Stu ‘BloodyCactus’

George
Szymon Gatner
Tadej Gregorcic
Tim Goshinski
Tom Guinther

H
Adam Hill
Alex Holzinger
Alun Hickery
Andrew Handley
Andrew Holmes
Carlos Hernando
David Hontecillas
Dermot Hannan
Garry Hornbuckle
Johannes Harten-

stein
Jez Higgins, JezUK

Ltd
Jurie Horneman
Lars Hamre
Martin S. Hehl
Michael Hoyt
P. Halonen
Remko van Haften
Sean Hernandez

xx

Shawn H.
Tom Hawtin
Tom Haygarth
Wolfgang Haupt

I
Christopher Igoe
Dmytro Iv-

anchykhin
Ikrima
Improbable
Martin Ivanov
Ray Ion

J
Corinna Jaschek
Greg Jandl
JackyWongCW
Jaewon Jung
Jerry Jonsson
Jesper Geertsen

Jonsson
Jonathan Johnson
JOS
Karl Jensen
Kenneth Jørgensen
Luciano Jose

Firmino Junior
Rainer Jenning
Rajnesh Jindel
Randolpho de

Santana Juliao
Robert Janeczek
Thomas Sebastian

Jensen
Wilmot-Albertini

Jordan

K
Allan Kelly
Andrew Koenen
Andreas Koenig
Bernhard

Kaufmann
Bronek Kozicki
Chris Kingsley
Daniel Kirchen
DM Klein
Dongseob Kim
Ivan Kravets
Joona-Pekka

Kokko
Kristofer Knoll
Kwaki3
Lars-Göran

Karlstedt
Malte Krüger
Marko Kevac
Matej Kormuth
Mike Kasprzak
Patrick Kulling
Pawel Kurdybacha
Pit Kleyersburg
Roope Kangas
Shay Krainer
Vladimir “ai_en-

abled” Kozlov
Wesley Kerr

L
Andrew Lee
Andrew Lombardi
Antony Lloyd
Callum Lawson
César Laso

Damien Lebreuilly
Daniel Ludwig
David Latham
Evgenii Loikov
Game L10N, local-

izedirect.com
Jamie Law
Jan-Christoph

Lohmann
Javi Lavandeira
Jeffrey Lim
Johan Lohmander
Justin LeFebvre
Justin Liew
KC Lee
LordHog
Mikola Lysenko
Mun Kew Leong
Richard Locsin
Wilhansen Li

M
Adam Mikolaj
Altay Murat
Andrew McVeigh
Angel Leigh

McCoy
Benoit Maillot
Bradley Macomber
Brett Morgan
Brian Marshall
Chris Murphy
Dan “DMac”

MacDonald
Fernando Matar-

rubia
Gordon Moyes
Heather Martin

 Acknowledgments · xxi

Hervé MATYSIAK
Jeroen

Meulemeester
Johan Munkestam
John McDole
Kevin McCabe
Marcus Milne
Martin Moene
Mārtiņš Možeiko
Matthew Ma
Matthew Mckenzie
MaxHouYeah
Maximilian

Mellhage
Michael Mayr
Michal
Michal Mach
Mike
mp3tobi
Oddur Magnusson
Richard Matthias
Richard Maxwell
Robert Masella
Ronald McCor-

mick
Rory Marquis
Seamus Moffat
Seth J. Morabito
Shawn MacFarland
Stefan Moschinski
Thijs Miedema
Tobi Müller
Troy McAnally
Umar Mustafa
Vlad Micu

N
André Pacheco

Neves
Andrey Naumenko
Dan Nolan
Ivan Nikitin
J. Djamahl Nolen
Marek Niepiekło
Nischo
NOM
Simon Nicholass
Tivadar György

Nagy
Tran Dang Nguyen

O
Albert Olivera
Andreas Oehlke
Bradley O’Hearne
Carsten Orthbandt
David Osborne
Jason Olsan
Jonathan

Ogle-Barrington
Lukas Obermann
Magnus Osterlind
OakFusion.pl
Ryan Olds

Ø
Knut Ørland

P
Alex Price
Alexander Popov
Alexandru Pana
Andreas Pfau
Behrouz Poustchi
Ben Perez
David Pong

Donald Plummer
Eric Pederson

(sourcedelica)
James Pelster
Jamie Plenderleith
Jason Pecho
Lloyd Pearson
Matt Pritchard
Maxxx Power
Michael Powers
Pablo Díaz

Pumariño
paste0x78
Patrick Palmer
Penda
Peter Petermann
Phil Peron
Pindwin
PragTob
Rafael Pasquay
Scott Posch
Sylvain P.
Tim Plummer
Tomaso Pye
Tony P
Wayne Pearson
Yevgeniy Pinskiy
Zac Paladino

Q
Andrew Quinn

R
Agata Ratz
Anton Rogov
Chris Rice
Clay Ravin
Darren Ranalli

xxii

Denis Reviakin
Francois Rouaix
Guillermo Gijon

Robas
James Rowbotham
Juan Rufes
Juanma Reyes
La Ruse
Maxime Raoust
Michael A. Ryan
Pasha Riger
Peter Richards
RagManX
Ralph Reichart
Rdslw
Really Good TV
reopucino
Reuben R
Ron Roff
RyanH
Scout Rigney
Valentinas Rimeika
Zeno Rawling

S
Albert Smith II
Alex Sonneveld
Alexander Ziegler

Simonsen
Brian Sheriff
Christian Funder

Sommerlund
Christopher Sierra
Dan Sosnowski
David Salz
David Sena
David Sheldon
Deovandski

Skibinski
Dylan “PoundCat”

Spry
Enrico Speranza
Eric Schwarzkopf
Erik Sixt
Ewan Stanley
Fabian Schaffert
Fredrik Stromberg
Geoff Schemmel
Håkan Ståby
Harvinder Sawh-

ney
http://sava.ninja
Jeff Slutter
Joey “TML” Smith
Jonathan Soryu
Kevin Salvesen
Kishimoto Studios
Kostiantyn Shche-

panovskyi
Kurt “Thunder-

heart” Stangl
Lennart Steinke
Marcin Slezak
Mario Sangiorgio
Michael Savage
Michael Schuler
Michel Simatic
Morgan Shockey
Moriel Schottle-

nder
Nathanael See
Philip Stein
Raphael Salomon
René Schmidt
Richard Searle
Robert Singletary

Rory Starks
Ross Smith
sassembla
SemanticSiv
Sergio Santana

Ceballos
SleepyRabbit-Da-

vid
Spielraum Tirol
Sproing Interactive

Media
Stef
Tania Samsonova
Tengiz Sharafiev
Tero Särkkä
Todd Showalter
Victor Savkov
Wilson Silva
Winston Joseph

Smith
Zsolt Somogyi

Ś
Grzegorz Świt

T
Barrie Tingle
Chris Threlfo
Daniel Espino

Timón
Diogo Teixeira
Garai Tamás,

Gerendás András
James Tatum
Julian Tith
Matt Toegel
Nicolas Tittley
Rajan Tande

 Acknowledgments · xxiii

Rodney J. Thomas
Ryszard Tarajkow-

ski
Steven Turek
Test_nuke
Theo
Tim Tillotson
Tree
Troxbanv
tuntematon
Wei Tchao

U
uonyx
Urs

V
Alex Vaillancourt
Carson V
Felton Vaughn
Ken Voskuil
Sam Velasquez
Silvo Vaisanen
Thomas Viktil
Yoann Le Verger

W
Andre Weissflog
Andres Weber

Ashley Williams
Bradley Weston
Bret Wright
Chris Wine
Christian Weiss
Daniel Wipper-

mann
David Wyand
Dominik Wit
Garrick Joshua

Williams
James Wright
Jate Wittayabundit
Jonathan Watson
Jorik van der Werf
Kevin Waldock
Lee Wasilenko
Mike Watkins
Nicholas Wymy-

czak
Nick Waanders
Peter Wolf
Richard Williams
Simon Withington
Wanderer
wcampos
WeirdBeard

Games
Windbringer

X
Xenide
Xlxla
Xywzel

Y
Jason Young
Kyungho Yun
Rouzbeh Youssefi
Tim Yates
Weikie Yeh

Z
George Zakharov
Maxim Zaks
Mike Zbleka
Z-Software
Zara

…and all those backers who decided
to remain anonymous.

P.S. This is not the last book I’m going to launch on Kickstarter, so...stay
tuned! <smile />

INTRODUCTION
NB: This is a significantly shortened version of the introduction in
Vol. I. In particular, “The Story Behind This Book,” “What is This
Book About?” “On LAN-Based Games and Peer-to-Peer Games,”
and “Recommended Reading” are not repeated here.

THE HARE AND THE PEOPLE BEHIND…
About the Author: The author of this book is a 'No
Bugs' Hare from the warren of Bunnylore. He is known
for being a columnist for Overload Journal (ISSN
1354-3172) and for his significant contributions to the
software development blog ithare.com. As 'No Bugs' is
a rabbit with a mother tongue of Lapine, he needed

somebody to translate the book into human language. And of course, as
the book is highly technical, to translate technical details with the high-
est possible fidelity, he needed a translator with substantial software
development experience.

About the Translator: This book has been translated
from Lapine by Sergey Ignatchenko, a software archi-
tect since 1996. He is known for writing for industry
journals since 1998, with his articles appearing in CUJ,
Overload, C++ Report, and (IN)SECURE Magazine.
His knowledge of Lapine is quite extensive, and he

routinely translates the column 'No Bugs' writes for Overload. During
Sergey’s software architecting career, he has led quite a few projects,
including as a co-architect of a stock exchange for a G20 country (the
same software has been used by the stock exchanges of several other
countries), and as a sole original architect of a major gaming site (with
hundreds of thousands of simultaneous players, billions of database
transactions per year, and that processes hundreds of millions of dollars
per year). As a kind of paid hobby, he also invents things: he’s an author
and co-author of couple dozen patents (unfortunately, owned by his
respective employers).

2 · INTRODUCTION

About the Illustrator: Illustrations for this book are
by Sergey Gordeev, currently from gagltd.eu. He is a
professional animator with a dozen awards from vari-
ous animation festivals, and is best known for directing
a few animated Mr. Bean episodes.

About the Editor: Erin McKnight is an internationally
award-winning independent publisher and the editor of
multiple books of fiction and non-fiction from both
emerging and eminent writers. She was born in Scot-
land, raised in South Africa, and now resides in Dal-
las — though this is her first time working with the
Lapine language.

ON REAL-WORLD EXPERIENCES
All happy families are alike;

each unhappy family is unhappy in its own way.

— Leo Tolstoy, Anna Karenina

The trigger for writing this book was realizing the pitiful state of
MOG-related books. However, there was another experience that
served as additional motivation to write this book.

Quite a few times, when speaking to a senior dev/architect/CTO of
some gamedev company (or more generally, any company that develops
highly interactive distributed systems), I’ve been included in a dialogue
along the following lines:

— How are you guys doing this?
— Psssst! I am ashamed to admit that we’re doing it against each and
every book out there, and doing this, this, and this…
<pause>

— Well, we’re doing it exactly the same way.

 Is This Book for You? · 3

This basically means two things:
♦♦ There are MOG practices out there that do work for more than one

game.
 ▪ Probably, there are even practices that can be seen as “best

practices” for many games out there (stopping short of
saying that all successful projects are alike).

♦♦ OTOH, lots of these practices are not described anywhere (never
mind “described in one single place”), so each team of multiplayer
gamedevs needs to re-invent them themselves. <ouch! />
This is where Development and Deployment of Multiplayer Online

Games tries to come in. Overall,

this book is an attempt to summarize a body of knowledge
that is known in the industry, but is rarely published, let alone

published together.

In other words, this book (taken as a complete nine volumes) intends to
cover most of the issues related to architecting, developing, and deploy-
ing an MOG (with a few exceptions as outlined below).

Of course, given the scale of this (probably overambitious) task, I will
almost certainly forget quite a few things. Still, I will try to do my best.

IS THIS BOOK FOR YOU?

CD not included

First, let’s briefly warn some potential readers who may be otherwise
frustrated.

I have to admit that this book is not one of those “how to get rich!”
books. Moreover, it is not even one of those “how to copy-paste your
game engine to get rich!” books. The road to launching your own
multiplayer online game in a way that scales (and to getting rich in
the process as a nice-to-have side effect <wink />) is anything but easy,
and it is important to realize it well before you undertake the effort of
developing your own MOG.

The road to launching
your own MOG in a
way that scales (and to
getting rich as a nice-
to-have side effect)
is anything but easy,
and it is important to
realize it well before
you undertake the
effort of developing
your own MOG.

4 · INTRODUCTION

As a logical result of not being a book to copy-paste your game
engine from, this book does not include any CD, and neither does it
include any code for a ready-to-use MOG engine. There are, of course,
occasional code snippets here and there, but they’re intended to il-
lustrate the points in the text and have absolutely nothing to do with
a ready-to-use game engine that you can use as a starting point and
modify later.

There are several reasons why I am not trying to make such a ready-
to-use game engine, but the main one is that trying to do so would
restrict discussion to a very limited subset of easy-to-illustrate items,
which in turn would narrow the scope of the book tremendously.1

“Nothing About Everything”

From a certain point of view, all programming books can be divided
into “books that tell everything about nothing” and “books that
tell nothing about everything.” The former are very specific, but this
universally comes at a cost of narrowing the scope to solving one very
specific problem, with anything beyond this narrowly defined problem
going out the window. These books are often useful, but often their use
is limited to beginners for use as a learning project.

The latter type of book, the kind that explains “nothing about every-
thing,” is trying to generalize as much as possible at the cost of not going
into implementation details at each and every corner. Usually, such
books are of little use for learn-by-example, but can help seasoned de-
velopers progress much further by explaining not “how to do low-level
things,” but rather “how to combine those low-level things into a larger
picture, and how to balance them within that larger picture to get the
desired result.” And when trying to balance things, usually the best
(and maybe the only viable) way to do so is to explain it in terms of
relevant real-world experiences.

Of course, in general, the division between these book types is not
that clear, and there are some books in the gray area between these two
types, but this particular book belongs firmly in the “nothing about ev-
erything” camp. It correlates well with not having a CD (as mentioned

1 Or would force me to write MOG-engine-that-covers-everything-out-there, and even I am not that
audacious.

The latter type of
book, the kind that
explains “nothing
about everything,” is
trying to generalize as
much as possible at
the cost of not going
into implementation
details at each and
every corner.

 Is This Book for You? · 5

above), and with being oriented toward intermediate developers and up
(as mentioned below).

Prerequisite: Intermediate+

This book is targeted toward at-least-somewhat-experienced develop-
ers (or, in other words, it is not a “how to develop your first program”
book with IDE screenshots and copy-paste examples). If your game
project is your very first programming project, you’re likely to have
difficulty understanding this book.2

I would even go so far as to say that

The target audience for this book starts from those
intermediate developers who want to progress into senior

ones, and goes all the way up to CTOs and architects.

In particular, there will be no explanation of what event-driven pro-
gramming is about, what the difference is between optimistic locking
and pessimistic locking, why you need a source control system, and so
on. Instead, there will be discussions of how the concept of futures fits
into event-driven programming, when the use of optimistic lock-
ing makes sense for games, and how to use source control in the presence
of unmergeable files.

On the other hand, this book doesn’t rely on in-depth knowledge in
any specific area. To read and understand this book, you don’t need to
be a TCP guru who knows every tiny detail of RFC 793 by heart; neither
do you need to have hands-on experience with shaders and/or CUDA;
even less do I expect you to be a C++ wizard who is capable of writing
an arbitrary Turing-complete program in templates, or a DB/2 expert
who can predict how execution plans will be affected by adding “1=0”
to “WHERE” clauses, or an admin guru able to configure BGP-based
DDoS protection without consulting any documentation (BTW, to be
honest, these things are beyond my own capabilities too).

Of course, 3D graphics experience may be helpful for 3D MOGs,
and knowledge of network basics and sockets won’t hurt for any MOG,

2 Feel free to read the book in this case, but don’t complain if it turns out to be too difficult.

If your game project
is your very first
programming project,
you’re likely to have
difficulty understand-
ing this book

6 · INTRODUCTION

but whenever discussing the issues that go beyond “things that every
intermediate-level developer out there should know anyway,” I will
try to provide pointers “where to read about this specific stuff if you
happen to have no idea about it.”

And last, but certainly not least:

Even if you’re an experienced developer but have worked
on neither single-player 3D games nor multiplayer games,

it would be unwise to start with a multiplayer 3D game.

Both 3D games and multiplayer games are overwhelming subjects even
if taken separately, so trying to learn them within the same development
effort is likely to be catastrophic.

That being said, I am sure that going into multiplayer 3D games is
possible both from the single-player 3D game side and from the non-3D
multiplayer side (the latter includes social games and stock exchanges).

HOW TO READ THIS BOOK

Conventions
This book uses more or less traditional conventions, but there are still a
few things that may require some explanation.

First, there are those pull-quotes in the margins — the ones with my
face inside a circle. These are just repetitions of the same sentences that
are already present in the text, but that reflect my emotional feeling
about them. Whenever I’m describing something, I honestly believe it
to be true; however, whether or not I like it is a completely different
story, and I want to be able to express my feelings about the things I’m
saying (and without cluttering the main text with long descriptions of
these feelings).

Then there are “wiki quotes.” These are intended to introduce cer-
tain terms that are more or less well known in some industries, but
which may be completely new for some readers. I am not able to discuss
these terms in depth myself (the book is already over the top, page-

Both 3D games and
multiplayer games are
overwhelming sub-
jects even if taken sep-
arately, so trying to
learn them within the
same development ef-
fort is likely to be cata-
strophic.

There are those
pull-quotes in the
margins — the ones
with my face inside a
circle.

Wikipedia
Wikipedia is a free on-
line encyclopedia that
aims to allow anyone
to edit articles.

—Wikipedia

 How to Read This Book · 7

but whenever discussing the issues that go beyond “things that every
intermediate-level developer out there should know anyway,” I will
try to provide pointers “where to read about this specific stuff if you
happen to have no idea about it.”

And last, but certainly not least:

Even if you’re an experienced developer but have worked
on neither single-player 3D games nor multiplayer games,

it would be unwise to start with a multiplayer 3D game.

Both 3D games and multiplayer games are overwhelming subjects even
if taken separately, so trying to learn them within the same development
effort is likely to be catastrophic.

That being said, I am sure that going into multiplayer 3D games is
possible both from the single-player 3D game side and from the non-3D
multiplayer side (the latter includes social games and stock exchanges).

HOW TO READ THIS BOOK

Conventions
This book uses more or less traditional conventions, but there are still a
few things that may require some explanation.

First, there are those pull-quotes in the margins — the ones with my
face inside a circle. These are just repetitions of the same sentences that
are already present in the text, but that reflect my emotional feeling
about them. Whenever I’m describing something, I honestly believe it
to be true; however, whether or not I like it is a completely different
story, and I want to be able to express my feelings about the things I’m
saying (and without cluttering the main text with long descriptions of
these feelings).

Then there are “wiki quotes.” These are intended to introduce cer-
tain terms that are more or less well known in some industries, but
which may be completely new for some readers. I am not able to discuss
these terms in depth myself (the book is already over the top, page-

Both 3D games and
multiplayer games are
overwhelming sub-
jects even if taken sep-
arately, so trying to
learn them within the
same development ef-
fort is likely to be cata-
strophic.

There are those
pull-quotes in the
margins — the ones
with my face inside a
circle.

Wikipedia
Wikipedia is a free on-
line encyclopedia that
aims to allow anyone
to edit articles.

—Wikipedia

wise), and am instead suggesting taking a look at them elsewhere (as
always, Wikipedia and Google being the primary candidates).

Code Samples

As is expected from a development book, there will be code samples
included. Most of the samples in the code are in C++, but this certainly
does not mean that the ideas are limited to C++. On the contrary, most
of the examples (except for one C++-specific chapter in Volume V) are
intended to apply to pretty much any programming language, and C++
is used as the most common programming language used for game
development.3

Also, please note that the samples should be treated as just that,
samples, to illustrate the idea. Except when mentioning it explicitly,
I am not trying to teach you C++ or C++ best practices. Therefore,
whenever I am facing the dilemma of “whether to make the big idea
behind it more obvious, or to follow best practices,” I am likely to sac-
rifice some of the best practices in the name of the point-at-hand being
more understandable.

My Captain-Obvious Hat
With the target audience of this book being pretty broad,4 I am

bound to explain things-that-are-considered-obvious by certain groups
of people (but which may still be unclear for another group). Moreover,
for each and every bit in this book, there is somebody out there who
knows it. So, please don’t complain that “most of the stuff in this book
is well known”— it certainly is and, as noted above, the whole point of
the book is to “summarize a body of knowledge that is known in the
industry, but is rarely published.”

As a result, please don’t hit me too hard when I’m saying things that
are obvious specifically to you. I can assure you that there are developers
out there who don’t know that specific thing (and don’t rush to name those
idiots, as they’re likely to know some other stuff that you don’t know yet5).

3 And also the one I know the best.
4 I admit being guilty as charged regarding an attempt to reach as many people as I can.
5 And if you already know everything under the sun, you probably should have written your own

book on MOGs and spared me the effort.

8 · INTRODUCTION

I will try to include notices whenever I know for sure that a certain
section of the book is not interesting for a certain group of people (for
example, my musings on graphics will certainly be way too obvious to
3D professionals). Still, it is unlikely that I’ve managed to mark all such
places, and I apologize for any inconvenience caused by reading stuff-
that-is-obvious-to-you.

Terminology
As for any wide-but-not-so-formalized field, MOG development has
its share of confusing terms (and, even worse, terms that have different
meanings in different sub-fields <ouch! />). I am not going to argue
“which terms are ‘correct’” (it’s all in the eye of the beholder, which
makes all the arguments on terminology silly to start with). Instead
(and taking into account that using the terms without understanding
their meaning is even sillier), I am going to define how-I-am-going-to-
use such terms for the purposes of this book.

MMO vs MOG

The very first term that causes quite a bit of confusion is the definition
of “Massively Multiplayer Online Games” (a.k.a. MMOGs and MMOs).

The point of confusion lies with those games that have tons of
players, but don’t have all of them within one single Game World. As
the games with the most players online (think CS or LoL) tend to fall
in this category, it is quite an important one. In this regard, one school
of logic says, “Hey, it is multiplayer, it is online, and it has a massive
number of players, so it is an MMO.” Another school of thought (the
one that happens to take over Wikipedia’s article on MMOGs6) says
that to qualify as an MMOG, it is necessary to run the whole thing
within one single instance of the Game World.

As promised, I won't argue over terminology, just noting that to
avoid any potential for confusion, I will try to avoid using the term
“MMO” (except for the much better defined MMORPG and maybe
MMOFPS). Which means that —

6 Note that as of 2017, the Wikipedia article on MMOGs violates quite a few fundamental
Wikipedia policies.

I will try to include
notices (like this one)
whenever I know for
sure that a certain
section of the book
is not interesting for
a certain group of
people (for example,
my musings on
graphics will certainly
be way too obvious to
3D professionals).

 How to Read This Book · 9

What we’ll be discussing in this book is referred
to as Multiplayer Online Games, even when they

have massive numbers of players.

In fact, most of the time I’ll assume that we’re talking about the games
able to handle hundreds of thousands of simultaneous players; this is
the only thing that really matters (and whether to name it MMOG or
just MOG is not of much interest).

Server

In MOG world, the term “Server” is badly overloaded, and can be used
to denote several different things.

One such meaning is “server,” as in “physical server box”; another is a
“place where players can connect” (for example, “West-Europe Server”).
However, in spite of the name, the latter is actually almost universally im-
plemented as a bunch of physical Server Boxes (usually residing within one
Datacenter). To make things even more confusing, people often use the term
“servers” for different instances of your Game World (which in turn can be
pretty much anything: from an instance of a battle arena where the play
occurs, to the whole instance of a complicated MMORPGs Game World).

To avoid unnecessary confusion, for the purpose of this book, let’s
name the physical server box a Server, and a bunch of physical servers
residing within a single datacenter a Datacenter. As for “game world
instances,” we’ll name each of the logically separated entities running on
the physical server box a Game Server; when talking about more specific
types of Game Servers, we’ll say Game World Server, or Matchmaking
Server, or Cashier Server, etc. Once again, it is not because “these defini-
tions are ‘right’” in any way — it is just a convention I prefer to use.

Dedicated Server

Another ongoing source of confusion with regard to MOGs is the
definition of the “dedicated server.” In the hosting industry, there is
a very well-established understanding that it is a “server box where
you have root/Administrator access”; usually such “dedicated servers”
are available for rent, and the term is used to differentiate “dedicated
servers” (physical boxes) from “virtual servers” (which is just a part of

Most of the time, I’ll
assume that we’re
talking about the
game able to handle
hundreds of thou-
sands of simultaneous
players; this is the
only thing that really
matters (and whether
to name it MMOG or
just MOG is not of that
much interest).

10 · INTRODUCTION

the physical box, and, in some cases, such as within the cloud, can also
migrate with time from one physical box to another).

On the other hand, for MOG development, there is a very different
common understanding of the term “dedicated server,” which roughly
means something along the lines of “instance of the game that doesn’t
have graphics directly attached to it” (this definition is most popular
among indie gamedevs and comes from P2P architectures, with an
elected Client acting as a Server).

For the purpose of this book, I’ll try to avoid using the term “dedi-
cated server” at all to avoid confusion; however, if there is an occasional
slip of the tongue (or whenever I am talking about renting Servers from
ISPs), I mean the first definition (i.e., a “physical server box, usually
rented from hosting ISP”).

BYOS (As in, “Bring Your Own Salt”)
One last thing I would like to mention before we proceed to more prac-
tical matters. There is not one single sentence in this book (or any other
book for that matter) that is to be taken as an “absolute truth.” In the
practical world (especially in game development), for each and every
“Do THIS_THING this_way” statement, there exists a counterexample
illustrating that sometimes THIS_THING can (or even should) be done
in a different (and often directly opposing) manner.

All advice out there has its own applicability limits, and so does any
advice within this book. When I know of certain game-related scenarios
where these limits are likely to be exceeded (and the advice will become
inapplicable), I will try to mention it. However, it is extremely difficult to
predict all the usage scenarios in a huge industry such as game development,
so you should be prepared that some of the advice in this book (or any other
book for that matter) is inapplicable to your game without warning.

Therefore, take everything you read (here or elsewhere) with a good
pinch of salt. And as salt is not included with the book, you’ll need to
bring your own. In more practical terms —

For each and every decision you make based
on advice in this book, ask yourself:

Does This Advice Really Apply to My Specific Case?

In the practical world
(especially in game de-
velopment), for each
and every “Do THIS_
THING this_way” state-
ment, there exists a
counterexample…

 How to Read This Book · 11

SETTING THE
CONTEXT.
VOL. I SUMMARY
In Volume I, we started at the very beginning — and, for games, the
“very beginning” is the Game Design Document, also known as the
GDD (discussed in Chapter 1); most importantly, we concentrated on
those GDD issues that are specific for multiplayer games (and, evidently,
there are quite a few).

Then, in Chapter 2, we proceeded to the all-important argument of
“should our game be P2P or Server-based, or Deterministic Lockstep-based,”
and found that, considering the risks coming from cheaters (and them
attacking all successful games), our only viable option for a multiplay-
er-game-with-thousands-of-simultaneous-players is Authoritative Servers.

In Chapter 3, we ended preliminaries and got to the real stuff — spe-
cifically, to communications and communication flows. First, we briefly
examined7 different communication flows between the Client and the
Server from the viewpoint of latencies, input lag, and RTTs. We started
from simplistic Server->Client->Server communication (which works
only for slower games), and went all the way to Client-Side Prediction,
Lag Compensation, and Forwarded Inputs (eventually reaching the
state-of-the-art, latency-wise).

Then, we arrived at the all-important question of reducing traffic.
This discussion included varied topics such as having the Client State
different from the Server State and also different from the Publishable
State, and Interest Management (which also has very important impli-
cations in reducing the potential for cheating), and then we tried to
systematize different flavors of Compression.

Afterward, we briefly mentioned Scalability (it was just a small part
of the overall discussion on Scalability; more to follow in Volume III,

7 Yes, thirty pages is a very brief discussion for this kind of thing.

12 · INTRODUCTION

Volume VI, and Volume IX), and examined Server-2-Server communi-
cations (including the all-important Async Inter-DB Transfer protocol;
we’ll desperately need it later to achieve DB scalability). And, last but
not least, we discussed an Interface Definition Language; while it is
possible to develop your MOGs without IDL, it provides so many ad-
vantages that I certainly advise not doing any serious new development
without one.

CHAPTER 4.

DIY VS. RE-USE:
IN SEARCH OF BALANCE

In any sizable development project, there is always the question “What
should we do ourselves, and what should we re-use?” Way too often, this
question is answered as “Let’s re-use whatever we can get our hands on”
without understanding all the implications of re-use (and especially of
the implications of improper re-use; for really bad examples of the latter
see, for example, [Hare]). On the other hand, the opposing approach
of “DIY Everything” can easily lead to projects that cannot possibly be
completed in one person’s lifetime, which is usually “way too long” for
games. In this chapter, we will attempt to discuss the question “What
should we re-use?” in detail.

DIY
Initialism of Do It
Yourself

—Wiktionary

14 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

Within the gamedev realm, the answers to the “DIY vs. Re-Use” ques-
tion reside on a pretty wide spectrum, from “DIY pretty much nothing”
to “DIY pretty much everything.” On one end of the spectrum, there are
games that are nothing more than “skins” of somebody-else’s game (in
such cases, you’re usually able to re-texture and re-brand their game, but
without any changes to gameplay; changes to meshes and/or sounds may
be allowed or disallowed). In this case, you’re essentially counting on
having better marketing and textures/theme than your competition (as ev-
erything else is the same for you and them). This approach may even bring
in some money, but if you’re into it, you’re probably reading the wrong
book (though, if you’re running your own Servers, some information from
Volumes VII and IX might still be useful and may provide some additional
competitive advantage, but don’t expect miracles in this regard).

On the other end of the spectrum, there are game-development
teams out there that try to develop pretty much everything from their
own 3D engine, their own TCP replacement, and their own cryptogra-
phy (using algorithms that are “much better” than TLS), to their own
graphics and sound drivers (fortunately, cases when developers are
trying to develop their own console and their own OS are very much
few and far between8). This approach, while often fun to work on, may
have problems with providing results within a reasonable time, so your
project may easily run out of money (and as the investors understand it,
running out of money will probably happen sooner rather than later).

Therefore, it is necessary to find a reasonable balance between the
parts that you need to re-use, and the parts you need to implement
yourself. However, before we start discussing different aspects of “DIY
vs. Re-use,” let’s first spend some time on the all-important concept of
dependency — and the closely related concept of Vendor Lock-In.

DEPENDENCIES AND VENDOR
LOCK-INS
Whenever we’re re-using a 3rd-party library, we get a dependency on
it. Both in theory and in practice, dependencies vary in strength. If we

8 Even Doom engine by ID software — which I admire, BTW — didn’t go that far.

On one end of the
spectrum, there are
games that are noth-
ing more but “skins”
of somebody-else’s
game. In this case,
you’re essentially
counting on having
better marketing than
your competition.

 Dependencies and Vendor Lock-Ins · 15

can remove dependency, then things are not too bad (and the depen-
dency strength depends on the amount of effort required to remove
it). However, if we cannot remove dependency, it becomes an Absolute
Dependency, also known as Vendor Lock-In. For the purpose of this
book, I’ll use the terms Absolute Dependency and Vendor Lock-In
interchangeably.

Impact of Vendor Lock-Ins
First, let’s note that for “Games with an Undefined Life Span” (as defined
in Volume I’s chapter on GDD), the consequences of having 3rd-party
Absolute Dependency are significantly worse than for “Games with
Limited Life Span.” Having a Vendor Lock-In for a limited-time project
is often fine, even if your choice is imperfect; having the very same
Absolute Dependency “forever and ever, till death do us part” is a much
bigger deal, which can easily lead to disaster if your choice turns out to
be the wrong one.

Moreover, usually for “Games with Undefined Life Span,” you
shouldn’t count on assumptions such as “oh, it is a Big Company, so they
won’t go down”; in particular, while the company might not go down,
they still may drop their game engine or library, or drop support for
those-features or those-platforms you cannot survive without. While
for a limited time, such risks can be estimated and are therefore man-
ageable (in many cases, we can say with a sufficient level of confidence
that “they will support such-and-such a feature three years from now”),
relying on a 3rd party doing something-you-need “forever and ever” is
usually too strong of an assumption.

BTW, speaking about Big Companies dropping technologies: it is
often related to the question of “whether strategic interests of the engine
developer (or actually, of any technology that you’re considering as an
Absolute Dependency) are aligned with games.” Just to give two bad
examples in this regard: Flash wasn’t aligned with Adobe’s strategy, and
was effectively allowed to die; the interests of the browser-development
crowd weren’t (and aren’t) aligned with those of game developers — and
six years after all the big fuzz about HTML5 games, all we have is still a
half-baked implementation (except for emscripten, which is a completely
separate and not-really-HTML-based development). On the other hand,

You shouldn’t count
on assumptions such
as “oh, it is a Big Com-
pany, so they won’t go
down”; in particular,
while the company
might not go down,
they still may drop
their game engine or
library, or drop sup-
port for those-features
or those-platforms
you cannot survive
without.

16 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

game engine development companies (such as Unity or Unreal) have
games as their core business, so they’re not likely to drop games over-
night (however, a wider question of “whether their strategic interests are
aligned with a certain platform you need or with a specific feature you
need” still stands).

Weakening/Isolating Dependencies
Fortunately, there are ways out there to weaken dependencies; however
(and unfortunately)

Measures to weaken dependencies need
to be undertaken starting from the very beginning

of the project.

Otherwise (i.e., if you create a strong dependency and try to weaken it
significantly further down the road), it can easily lead to rewriting of
the whole thing.

To be more specific, let’s first consider one of the most typical (and
generally very strong) classes of dependencies: Platform Lock-Ins; and
as soon as we know how to get it right, we’ll try to generalize it to all
3rd-party dependencies out there.

On Platform Lock-Ins and Cross-Platform Code

When talking about Platform Lock-Ins, it is quite well-known that

If your game is not intended to be single-platform
forever-and-ever, you SHOULDN’T allow any platform-

specific Vendor Lock-Ins.

For example, if you happen to allow calls to Win32 DLLs from your C#
game, you will get an Absolute Vendor Lock-In on Windows much
sooner than you release your first prototype. A slippery road toward
Absolute Vendor Lock-In always starts small, as “hey, we’ll just use this
single very neat feature.” However, in just three months, you’ll get
sooooo many such neat-features-your-code-depends-on (as well as
Win32-specific concepts, constants, and struct-like classes spilled over

If you happen to
allow calls to Win32
DLLs from your C#
game, you will get
an Absolute Vendor
Lock-In on Windows
much sooner than
you release your first
prototype.

 Dependencies and Vendor Lock-Ins · 17

all over your code) that you won’t be able to remove them without
re-writing the whole thing from scratch.

In other words, if you’re considering porting your game sooner or
later, make sure that all your Lock-Ins are cross-platform. Otherwise,
you’ll be facing an extremely unpleasant surprise when it is time to port
your game.

Non-Working Cross-Platform: Rewriting Low-Level APIs

BTW, when aiming for a cross-platform code, you should forget about
the reasoning of “hey, it won’t be a problem; we’ll just re-write those
Win32 functions that we need, later”— it never works in practice.
Once in my career, I’ve seen such an attempt firsthand. There was a
company that wrote a Windows-based business-level server, and it
even worked (and got significant market share too). But the whole
thing had an Absolute Dependency on Win32 API, with literally
hundreds of different Win32 API calls interspersed throughout the
code.

On a beautiful day, a Fortune 500 company decided to buy them, on
the condition that they port their code onto *nix. Four months later, their
porting efforts were still at a stage of “we already wrote <windows.h>,
which compiles on Linux.” Needless to say, the whole port never mate-
rialized (in fact, it never got any further than compiling <windows.h>).

Overall, such “port OS calls to a different OS” efforts are known
to be extremely time-consuming; it took WINE project (aiming to do
pretty much the same thing) fifteen years — and enormous efforts — to
get into version 1.0. BTW, a side note about WINE: if you’re going to
use it to port your Win32 game into Linux, make sure to test your game
under WINE from the very beginning; even after all those years, WINE
is still very far from providing 100% compatibility with Win32, and
if your code will happen to rely on those-Win32-features-that-work-
differently-under-WINE, you’ll have quite a bit of trouble when trying
to port your Win32 game to WINE.

Working Cross-Platform: Isolation Layer

In spite of the “porting-OS-level-APIs later” approach being pretty
much hopeless, there is a way to write cross-platform programs. The

18 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

basic idea is to have a separate isolation layer, as shown in Fig 4.1:

However, just following the diagram on Fig 4.1 is not sufficient to enable
cross-platform programs; for example, if your Isolation Layer is just a
trivial wrapper exposing exactly the same parameters that were present
in underlying OS calls, it won’t do anything to help make your program
cross-platform. I am guilty of once writing such a trivial wrapper (it
was about twenty years ago, so I hope it is already past the statute of
limitations) — and the experience was bad enough to prevent me ever
repeating this meaningless exercise.

In practice, two approaches to make the Isolation Layer really
cross-platform are known to work.

Working Cross-Platform: Isolation Layer/Lowest Common
Denominator

One common approach to making the Isolation Layer work is to make
Isolation API a lowest common denominator of all the underlying
cross-platform APIs. This approach is known to work, however, when
applied to app-level programming, has the following very significant
drawbacks:
♦♦ It requires a priori and intimate knowledge of all the platforms

involved (including those platforms that will be supported later).

I am guilty of once
writing such a trivial
wrapper.

 Dependencies and Vendor Lock-Ins · 19

This alone makes the approach problematic for us (=“poor
defenseless game developers”).

♦♦ It doesn’t allow us to use platform-specific trickery (that is, without
introducing additional abstraction layers). As one example (and in
pretty much any lowest-common-denominator library, there are
tons of similar examples): while both Win32 API and pthreads do
allow the use of mutexes in shared memory, std::mutex (built based
on the “lowest common denominator” paradigm) doesn’t allow it.
As a result, whenever I am wearing my app-level developer hat, I

don’t really like such lowest-common-denominator Isolation APIs;
while they might work, there are usually better options (especially for a
project with 1M+ total lines of code).

Working Cross-Platform: Isolation Layer/In Terms of App

An alternative way for the Isolation Layer in Fig 4.1 to provide real
cross-platform capabilities is to have your Isolation API expressed in
terms of what-your-App-needs (as opposed to being expressed in terms
of what-your-OS-provides).

Just one example: for a Server app, it is usually a pretty bad idea to have
your Isolation Layer mimic even as ubiquitous a function as file open. As
soon as your Isolation Layer exposes intimate details of either *nix open()
or Win32 CreateFile(), you’ll have a difficult time re-implementing your
Isolation Layer later. And, if you don’t expose the fine details of these
functions, you might be okay, but you’ll have to restrict your API to be
“the lowest common denominator” of the platform-specific APIs, which
has its own pretty serious problems, as described above.

However, if you concentrate on what-your-Server-app needs to do,
then, instead of the file open function, you may realize that all you need
is the logging function,9 which has two big advantages:
a) It will make the lives of your developers easier (and will unify their

logging too), and:
b) Rewriting your logging function will be easy for pretty much any

platform (and without an in-depth knowledge of the intimate
platform details in advance).

9 Ideally, providing logging for all your types-used-within-your-app too.

However, if you
concentrate on what-
your-Server-app needs
to do, then, instead of
the file open function,
you will provide the
logging function,
which has two big
advantages.

20 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

And if your Server app happens to use files as persistent storage10, you
should have a separate set of Isolation APIs implementing persistent
storage for your app and, once again, they should work not in terms
of “opening file,” but at least of “storing/retrieving an object with such-
and-such-ID” (among many other things, it will facilitate the switch to
a database later — and without rewriting your whole game).

Working Cross-Platform: Summary

To summarize the reasoning above:

Having your Isolation Layer defined in terms
of Application is the best way to enable cross-platform

ports later down the road.

I’ve seen many attempts to go cross-platform, and can tell you the
following:
♦♦ The only successful cross-platform attempts were those using

Isolation Layer.
 ▪ Moreover, all successful cross-platform systems I’ve seen

used either:
yy Isolation API as a “lowest common denominator” or
yy Isolation API in terms of Application needs

 ▪ And of these two, for app-level development, I clearly prefer
the latter.

BTW, identifying proper Isolation APIs is not an easy task even for
the “Isolation API expressed in terms of Application” approach,11 and
can easily take more than one iteration to get right (especially if you’re
doing it for the first time). However, if remembering two mantras (one
about the Isolation API being expressed “in terms of your Application
needs,” and another about it being “as high-level as possible”), you do
have the chance to achieve it sooner rather than later.

10 Usually, I strongly prefer databases, but in the real world pretty much anything can happen.
11 Though it is still much easier than looking for the “least common denominator.”

 Dependencies and Vendor Lock-Ins · 21

Isolating Arbitrary Libraries. Isolation APIs in terms
of App

By now, we’ve observed two ways to implement your Isolation API
to enable real cross-platform development. As noted above, it MUST be
done via an Isolation Layer, plus the Isolation API MUST either:
♦♦ Be the lowest common denominator among all the platforms, or
♦♦ Be an app-oriented API

While for app-level development I tend to prefer app-oriented APIs,
I have to admit that for cross-platform development both of these ap-
proaches can be made to work.

However, when we try to generalize these (quite well-known)
observations from isolating platform specifics to isolating arbi-
trary 3rd-party engines and libraries, the situation changes. As the
lowest-common-denominator approach (as noted above) requires
intimate knowledge of the API-being-isolated, using it to isolate
arbitrary 3rd-party engines and libraries (and keeping in mind that
they’re — unlike OS APIs — changing all the time) becomes pretty
much a non-starter. In other words, it is next-to-impossible to find
a stable lowest common denominator for entities that may be un-
known at the point of finding the denominator, and which are in a
state of flux.

In other words —

Pretty much the only practical way to deal with abstract
3rd-party dependencies is to have your Isolation

API expressed in terms of your app, and not in terms
of the 3rd-party library/engine.

On “Wrapping, Then Wrapping Some More”

When talking about isolating dependencies, one common approach
is to add more and more isolation layers (which can be described as
“wrap, then wrap some more”) until the desired result is reached.

This multi-wrapping approach might work, but its success ultimately
depends on one of the wrappers being either “lowest common denom-

While for app-level
development I tend to
prefer app-oriented
APIs, I have to admit
that for cross-platform
development, both of
these approaches can
be made to work.

22 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

inator” (which, as noted above, is mostly applicable to cross-platform
development), or being expressed in terms of App layer (which applies
across the board).

And as soon as one of the wrappers complies with either of these
requirements, the whole multi-wrapper system effectively becomes an
incarnation of Fig 4.1 (which works along the lines discussed above).
As a result, I prefer not to consider multiple wrappers a separate isola-
tion technique; from a more practical standpoint, while there are cases
where multiple wrappers might be necessary, in my experience such
cases are few and far between, and one single Isolation Layer is usually
good enough.

Vigilance, and More Vigilance

In practice (and regardless of which of the two ways of making your
Isolation API work you’re using), it is not sufficient just to declare that
you have an Isolation Layer and proclaim that “We’re using only Isola-
tion API to do these kinds of things.”

Any such policy is perfectly useless unless:
♦♦ All12 of your team members understand the policy,
♦♦ They understand why you’re doing it, and
♦♦ Are prepared to spend some additional effort to follow the policy.

Otherwise, it is better to just throw the policy out the window13 and
admit to having Absolute Vendor-Lock In.

The slippery slope toward the mire of platform-specific-spaghetti
code always starts easily and is fairly flat: “oh, we’ll use this neat feature
bypassing Isolation Layer just this once” and then becomes steep and
enormously difficult to stop. To have any chance in an uphill battle
against dependencies, everybody on the team who learns about such a
violation should stop all other tasks and fix it ASAP. In some cases (and
if the app-level feature is really necessary), support for the new feature
may need to be added into the Isolation Layer, but bypassing Isolation
API should be a Big Fat No-No™.

12 Okay, I’ll settle for 96.7%.
13 No relation to MS Windows.

In practice, it is not
sufficient just to
declare that you have
an Isolation Layer and
proclaim that “we’re
using only Isolation
API to do these kinds
of things.”

 Dependencies and Vendor Lock-Ins · 23

Practically, to ensure that your Isolation Layer has a fighting chance,
you should at least:
♦♦ Write in big bold letters in your design documents that all the

access to module X should be via Isolation Layer IsolatedX, and
that all the direct access to module X is outright prohibited.

♦♦ Make sure that everybody on the team knows it.
♦♦ Try to prohibit calling APIs of the module X directly (i.e. without

IsolatedX) when compiling your code on your build machine.
 ▪ For example, in C++, this can be achieved via using so-

called pimpl idiom for your Isolation Layer IsolatedX, and
prohibiting direct inclusion of 3rd-party header files by
anybody-except-for-your-Isolation-Layer.

♦♦ Unless you have managed to prohibit 3rd-party APIs on your build
machine (see above), you should have special periodic reviews to
ensure that nobody uses these prohibited APIs. It is much, much
simpler to avoid these APIs in the early stages than trying to
remove them later (which can easily amount to rewriting really big
chunks of your code).

While these rules may look overly harsh and seem too time-consum-
ing, practice shows that without following them, chances are that you
won’t be able to replace that 3rd-party module X when you need to.
Dependencies are sneaky, and it takes extreme vigilance to avoid them.
On the other hand, if you don’t want to do these things, feel free to
ignore them — just be honest with yourself and realize that Module X is
one of your Absolute Dependencies forever, and with all the resulting
implications too.

“Two Platforms” Approach

One thing that tends to help a lot with keeping your code clean from
bypassing-Isolation-Layer violations is ongoing compiling and testing
of your system using two different platforms (3rd-party libraries/
engines/…) at the same time. If you keep testing your game in two
substantially different environments as you develop, the chance of plat-
form-specific (library/engine/…-specific) code accidentally slipping
in is reduced by orders of magnitude (and, in most cases, becomes
negligible).

pimpl idiom
also known as an
opaque pointer, Bridge
pattern, handle class-
es, Compiler firewall
idiom, d-pointer, or
Cheshire Cat, is a spe-
cial case of an opaque
data type, a datatype
declared to be a
pointer to a record or
data structure of some
unspecified type

—Wikipedia

Dependencies are
sneaky, and it takes
extreme vigilance to
avoid them.

24 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

The only problem with undertaking such two-platform devel-
opment is that often it is unaffordable during the early stages of the
project. Also, you need to make sure that platforms/libraries/engines
are indeed substantially different (and, for example, Linux and Mac OS
might not qualify as such, especially if talking about non-GUI code).

TL;DR on Vendor Lock-Ins and Isolating
Dependencies

A short summary of our discussion of Vendor Lock-Ins and ways
to isolate them:
♦♦ Vendor Lock-Ins are dangerous, especially for Games with Unde-

fined Life Spans.
♦♦ Isolation Layer is The Way To Go™ if you want to limit the impact

of the Vendor Lock-In.
 ▪ For isolation to work, Isolation API should be either:

yy The lowest common denominator between all the
underlying libraries (which has significant draw-
backs, especially if isolating an abstract 3rd-party
library with a not-so-carved-in-stone API), or:

yy Expressed in terms of App needs (opposed to being
expressed in terms of capabilities of the 3rd-party
library).

 ▪ You need to be vigilant in your quest to fight Isolation-by-
passing-code.

yy In this regard, the two-platform/library/engine ap-
proach tends to help a lot, though it is often prohib-
itively expensive in the early stages of development
(and this is exactly when you need it the most).

BUSINESS PERSPECTIVE:
DIY YOUR ADDED VALUE
Now, after discussing Vendor Lock-Ins (and describing ways to mitigate
their negatives too), we can come back to our primary question of “DIY

 Business Perspective: DIY Your Added Value · 25

vs. Re-Use.” First, let’s take a look at this question from the business or
monetization point of view. While business perspective is not exactly
the point of this book, in this case it is intertwined with the rest of our
discussion and we cannot ignore it completely.

From the business point of view, you should always understand
what “added value” your project provides for your customers. In other
words, what is that thing that you add on top of whatever-you’re-re-us-
ing? What is that unique expertise you provide to your players?

When talking about the “DIY vs. 3rd-party re-use” question, it is
safe to say that

At least, you should develop your Added Value yourself.

The motivation behind the above rule is simple: If you’re re-using
everything (including gameplay, world map, and meshes), with only
cosmetic differences (such as textures), then your game won’t really be
different from the other games that are doing the same thing. For your
game to succeed commercially, you need a distinguishing factor (a.k.a.
USP–Unique Selling Point14), and it is your Added Value that normally
becomes your USP.15 In general, pretty much anything can serve as an
USP (including such things as marketing, or the quality of support);
however, within the scope of this book we’ll concentrate only on those
USPs that are software-related.16

The rule of Added Value SHOULD be taken care of at a business or
GDD level. However, even after this rule is taken into consideration, you
still need to make “DIY vs. Re-Use” decisions for those things that don’t
constitute the added-value-for-end-users (or at least are not perceived
as constituting the added value at first glance). In this regard, usually it
more or less boils down to one of the three approaches described below.

14 A.K.A. Unique Selling Proposition, a.k.a. Unique Value Proposition (UVP).
15 While sometimes “pure luck” qualifies as a distinguishing factor, it is not something you can count

on.
16 This, however, includes such things as “CRM system that allows to provide better support,” etc.

You should always
understand what
“added value” your
project provides for
your customers.

26 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

ENGINE-CENTRIC APPROACH:
GAME ENGINE AS AN INHERENT
VENDOR LOCK-IN
Probably the most common approach to indie game development is to
pick a 3rd-party game engine and build your game around that engine.
Such game engines usually don’t implement all the gameplay (instead,
they provide you with a way to implement your own gameplay on top of
the engine), so you’re fine from the Added Value point of view. For the
sake of brevity, let’s refer to this “3rd-party engine will do everything for
us” approach as a much shorter “Engine-Centric” Approach.

The biggest problem with building your game around a 3rd-party
game engine is that, in this case, the game engine becomes your Abso-
lute Dependency, a.k.a. Vendor Lock-In; in other words, it means that
“if the engine is discontinued, we won’t be able to add new features,
which will lead us to close sooner rather than later.”

While by itself Vendor Lock-In is not a showstopper for building
your game around a 3rd-party game engine (and, indeed, there are
many cases when you should do just that), you certainly need to under-
stand the implications of this Absolute Dependency before deciding to
go for it. In particular, make sure to read the Dependencies and Vendor
Lock-Ins section above.

Engine-Centric Approach: Pretty Much
Inevitable for Indie RPG/FPS games

NB: this subsection mostly applies to indie game developers; AAA
guys and gals, feel free to skip it .

In spite of the inherent risks of having such a Vendor Lock-In on your
game engine, it should be noted that there are several MOG genres
where developing a game engine yourself is rarely feasible for an indie
developer. In particular, this applies to Role-Player Games (RPGs) and
First-Person Shooters (FPS); more generally, it applies to most of the
games that implement a 1st-person view in a simulated 3D world. The
engines for these games tend to be extremely complicated, and it will
normally take much-more-time-than-you-have to develop them.

The biggest problem
with building your
game around a
3rd-party game engine
is that, in this case, the
game engine becomes
your Absolute Depen-
dency.

This subsection mostly
applies to indie game
developers; AAA guys
and gals, feel free to
skip it.

 Engine-Centric Approach: Game Engine as an Inherent Vendor Lock-In · 27

Fortunately, in this field there are quite a few very decent engines
with reasonably good APIs separating the engine itself from your game
logic. In particular, in Chapter 7, we’ll discuss Unity 5, Unreal Engine
4, Amazon Lumberyard, and Urho3D — as well as their respective pros
and cons, in the context of MOG development.17

 For Real-Time Strategies (RTS), the situation is much less obvious;
depending on the specifics of your game, you may have more options.
For example,
(a) You may want to use a 3rd-party 3D engine like one of the above

(though this will work only for games with a low-by-RTS-stan-
dards number of units, so you need to study very carefully the
engine’s capabilities in this regard).

(b) You may use 2D graphics (or pre-rendered 3D; see Chapter 6 for
further discussion), with your own engine.

(c) You may want to develop your own 3D engine (optimized for large
crowds but without features that are not necessary for you), or:

(d) You may even make a game that runs as 2D on some devices, and
as 3D on other devices (see Chapter 6 for further discussion of
dual 2D/3D interfaces).

For all the other genres, whether to use a 3rd-party engine for your
indie game is a completely open question, and you will need to decide
what is better for your game; for non-RPG/non-FPS games, and if your
game is intended to have an Undefined Life Span, it is often better to
develop a game engine yourself than to re-use a 3rd-party game engine;
on the other hand, even when you have your own game engine, you
still may use a 3rd-party 3D rendering engine, or even several such
3D engines (see the discussion in Chapter 6 for further details). Note
that I’m still not arguing to DIY everything, but rather to develop your
own game engine (specialized for your own game logic), while re-using
a rendering engine (especially if it is a 3D rendering engine).

And if you’re going to re-use a 3rd-party game engine (for whatever
reason), make sure to read and follow the Engine-Centric Approach: You
Still Need to Understand How It Works section directly below.

17 My apologies to fans of other game engines, but I simply cannot cover all engines in existence.

Even when you have
your own game
engine, you still may
use a 3rd-party 3D
rendering engine

28 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

Engine-Centric Approach: You Still Need to
Understand How It Works
When introducing a 3rd-party game engine as an Absolute Dependen-
cy, a.k.a. Vendor Lock-In, you still need to understand how the engine
works under the hood. Moreover, you need to know a lot about the
engine-you’re-about-to-choose before you make a decision to allow
the engine Vendor to Lock-you-In. Otherwise, six months down the
road, you can easily end up in a situation of “Oh, this engine apparently
cannot implement this feature, and we absolutely need it, so we need to
scrap everything and start from scratch using different game engine.”
<Bummer />

One thing you should never do when developing anything-more-
complicated-than-two-player-tic-tac-toe is blindly believe that the
game-engine-of-your-choice will be a perfect fit to your specific game.
Even when the game engine is used by dozens of highly successful
games, there is no guarantee that it will work for your specific require-
ments (unless, of course, you’re making a 100% clone of an existing
successful game). Instead of assuming “The Engine Will Do Everything
Exactly As We Want It,” you should try to understand all the relevant
implications of the engine-you’re-about-to-choose, and see if its limita-
tions and peculiarities will affect you badly down the road.

Of course, there will be tons of implementation details that you’re
not able to know right now. On the other hand, you should at least
go through this book to see how what-you-will-need maps onto what-
your-engine-can-provide, aiming to:
♦♦ Understand what exactly the features you need are.
♦♦ Make sure that your engine of choice provides these features.
♦♦ Determine if some of the features you need are not provided by

your game engine (which is almost certain for an MOG); you
should at least know that you can implement those “missing”
features yourself on top of your game engine.
While this may look time-consuming, it will certainly save a lot of

time down the road. While introducing Absolute Dependency/Vendor
Lock-In may be the right thing to do for you, this is a very significant
decision and, as such, it MUST NOT be taken lightly.

One thing you should
never do when devel-
oping anything-more-
complicated-than-
two-player-tic-tac-toe
is blindly believe that
the game-engine-of-
your-choice will be
a perfect fit for your
specific game.

 Engine-Centric Approach: Game Engine as an Inherent Vendor Lock-In · 29

Engine-Centric Approach: On “Temporary”
Dependencies

Nothing is so permanent as a temporary government program.
— Milton Friedman

If you want to use a 3rd-party game engine to speed up development,
and count on the approach of “we’ll use this game engine for now, and
when we’re big and rich, we will rewrite it ourselves,” you need to realize
that removing such a big and fat dependency as a game engine is usually
not realistic. Eliminating dependency on a 2D engine, sound engine, even
a 3D graphics/rendering engine may be possible (though will certainly
require extreme vigilance during development; see the Vigilance, and More
Vigilance section above), yet eliminating dependency on your game engine
is usually pretty much hopeless without rewriting the whole thing.

The latter observation is related to the number and nature of
dependencies that arise when we integrate our game with our game
engine. If we consider a lightweight non-game-engine library such as,
say, Berkeley sockets, it introduces only a few dependencies (and very
simple ones at that). A 2D graphics-only engine introduces dozens of
medium-complexity dependencies — which is worse, but can still be
handled. However, for a typical game engine, we’ll have hundreds of
dependencies — including lots of very elaborate ones, making proper
isolation of a game engine pretty much hopeless.

Moreover, for a game engine, these dependencies tend to have very
different natures (ranging from mesh file formats to API callbacks, with
pretty much everything else you can think of in-between). Among oth-
er things, this variety often defeats good ol’ Isolation Layer techniques.
As one example, isolating a mesh file that is accessed directly from the
game engine (and which the game engine internals heavily depend on)
is rarely feasible. And if we’re talking about scripting language or VMs,
which are usually embedded within the game engine, they are usually
next-to-impossible to isolate.18

18 More than that, rewriting scripting language to keep it 100% compatible is very rarely feasible, as
the number of peculiarities of such things is usually enormous, and for each peculiarity you can
count on some of your scripts using this peculiarity somewhere (often without anybody in the
whole team realizing such a dependency-on-peculiarity even exists).

Eliminating depen-
dency on your game
engine is pretty much
hopeless without
rewriting the whole
thing.

30 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

To make things even worse, the better the game engine you’re using,
the more perfectly legitimate uses you have for those dependencies, and
the more Locked-In you become as a result (all while having only Good
Reasons™ for doing it).

Due to these factors, IMNSHO, the task of making your Game Log-
ic game-engine-agnostic is by orders of magnitude more complicated
than making your program cross-platform (which is also quite an effort
to start with), so think more than twice before attempting it.

On the other hand, isolating just your rendering engine (and not
the whole game engine), while still being very cumbersome, has sig-
nificantly better chances of flying; while for 3D rendering engines,
meshes and associated file formats are still going to be a Big Headache™
(and in extreme cases, you may even end up using different 3D models
for different 3D rendering engines), at least scripting and logic won’t
cause you any trouble. As a rule of thumb, if trying to isolate a graphics
engine, implementation should go along the lines of the Isolation Layer,
as discussed in the Isolating Arbitrary Libraries. Isolation APIs in terms
of App section above, which, for a graphics engine, effectively translates
into implementing a Logic-2-Graphics Layer, as discussed in Chapter 6.

“RE-USE EVERYTHING IN SIGHT”
APPROACH: AN INTEGRATION
NIGHTMARE
If you’ve decided not to make a 3rd-party engine your Absolute De-
pendency, then the second approach often comes into play. Roughly,
it can be described as “we need such-and-such a feature, so what is
the 3rd-party component/library/... we want to borrow and re-use to
implement this feature?”

Unfortunately, way too many developers out there think that this is
exactly the way software should be developed. (Mis-)Perception along
the lines of “hey, re-use is good, so there can be nothing wrong with
re-use” is IMO way too popular with developers; for managers, it is the
“re-use saves on the development time” argument which usually hits
home.

However, in practice, it is not that simple. Such “re-use everything in
sight” projects more often than not become an integration nightmare.
As one of the developers of such a project (the one who was responsible
for writing an installer) has put it: “Our product is a load of s**t, and
my job is to carry it in my hands to the end-user PC, without spilling
it around.” As you can see, he wasn’t too fond of the product (and the
product didn’t work too reliably either, so the whole product line was
closed within a year or two).

Even worse, such “re-use everything in sight” projects were observed
to become spaghetti code very quickly; moreover, in my experience,
when your code does nothing beyond dealing with peculiarities and
outright bugs of 3rd-party libraries, it cannot possibly be anything but
spaghetti. Oh, and keep in mind that indiscriminate re-use has been
observed as a source of some of the worst software bugs in development
history; see, for example, [Hare] for details.

The problem with trying to reuse-everything-you-can-get-your-
hands-on can be explained as follows. With such an indiscriminate re-
use, some19 of the modules or components you are using will inevitably
be less-than-ideal for the job; moreover, even if the component is good
enough now, it may become much-less-than-ideal when20 your GDD
changes. And then, given that the number of your not-so-ideal compo-
nents is large enough, you will find yourself in an endless loop of “hey,
trying to do this with Component A has broken something else with
Component B, and fixing it in Component B has had such-and-such an
undesired consequence in Component C,” with “how to avoid robbing
Peter to pay Paul” chases quickly becoming modus operandi for your
developers.

To make sure that managers also understand the perils of indis-
criminate re-use: you (as a manager) need to keep in mind that indis-
criminate re-use very frequently leads to “Oh, we cannot implement
this incoming marketing or monetization requirement because our
3rd-party component doesn’t support such-and-such a feature”; and
if such things happen more than a few times over the lifespan of the
project, it tends to have a rather significant negative impact on the bot-

19 In practice, it will be like “most.”
20 It is indeed ‘when’ and not ‘if’! See Vol. I’s chapter on GDD.

When your code does
nothing beyond deal-
ing with peculiarities
and outright bugs of
3rd-party libraries,
it cannot possibly
be anything but
spaghetti.

modus
operandi

a distinct pattern or
method of operation
esp. that indicates or
suggests the work of a
single criminal in more
than one crime

—Wikipedia

Oh, we cannot imple-
ment this incoming
marketing or mone-
tization requirement
because our 3rd-party
component doesn’t
support such-and-
such a feature.

 “Re-Use Everything in Sight” Approach: An Integration Nightmare · 31

However, in practice, it is not that simple. Such “re-use everything in
sight” projects more often than not become an integration nightmare.
As one of the developers of such a project (the one who was responsible
for writing an installer) has put it: “Our product is a load of s**t, and
my job is to carry it in my hands to the end-user PC, without spilling
it around.” As you can see, he wasn’t too fond of the product (and the
product didn’t work too reliably either, so the whole product line was
closed within a year or two).

Even worse, such “re-use everything in sight” projects were observed
to become spaghetti code very quickly; moreover, in my experience,
when your code does nothing beyond dealing with peculiarities and
outright bugs of 3rd-party libraries, it cannot possibly be anything but
spaghetti. Oh, and keep in mind that indiscriminate re-use has been
observed as a source of some of the worst software bugs in development
history; see, for example, [Hare] for details.

The problem with trying to reuse-everything-you-can-get-your-
hands-on can be explained as follows. With such an indiscriminate re-
use, some19 of the modules or components you are using will inevitably
be less-than-ideal for the job; moreover, even if the component is good
enough now, it may become much-less-than-ideal when20 your GDD
changes. And then, given that the number of your not-so-ideal compo-
nents is large enough, you will find yourself in an endless loop of “hey,
trying to do this with Component A has broken something else with
Component B, and fixing it in Component B has had such-and-such an
undesired consequence in Component C,” with “how to avoid robbing
Peter to pay Paul” chases quickly becoming modus operandi for your
developers.

To make sure that managers also understand the perils of indis-
criminate re-use: you (as a manager) need to keep in mind that indis-
criminate re-use very frequently leads to “Oh, we cannot implement
this incoming marketing or monetization requirement because our
3rd-party component doesn’t support such-and-such a feature”; and
if such things happen more than a few times over the lifespan of the
project, it tends to have a rather significant negative impact on the bot-

19 In practice, it will be like “most.”
20 It is indeed ‘when’ and not ‘if’! See Vol. I’s chapter on GDD.

When your code does
nothing beyond deal-
ing with peculiarities
and outright bugs of
3rd-party libraries,
it cannot possibly
be anything but
spaghetti.

modus
operandi

a distinct pattern or
method of operation
esp. that indicates or
suggests the work of a
single criminal in more
than one crime

—Wikipedia

Oh, we cannot imple-
ment this incoming
marketing or mone-
tization requirement
because our 3rd-party
component doesn’t
support such-and-
such a feature.

32 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

tom line of the company. Or describing the same thing from a slightly
different perspective: <ceo-only information: to be kept secret from
developers>If your developers are implementing their own component,
it is they who are responsible for this “we cannot implement marketing/
monetization requirement” scenario never happening; at the moment
when you force (or allow) them to “use such-and-such library,” you give
them this excuse on a plate</ceo-only information: to be kept secret
from developers>.

One additional Bad Thing™ that usually arises from indiscriminate
re-use is an increase in ongoing maintenance costs (which is especially
bad for those Games with Undefined Life Spans). Complicated and
not-too-well-defined dependencies, such as game engines, are known
for changing things that break backward compatibility (especially if
you got overly creative in the ways you’re using them, which is usually
exactly what happens in real-world development). As soon as you’ve
found yourself in such a position, you basically have two options: (a)
try to keep up with the changes, or (b) freeze everything (as freezing
“just this one thing” is rarely a viable option due to interdependencies).
If you have too many dependencies, neither of these options will really
work: with (a), you’ll spend most of your time just trying to keep up
with changes of all those libraries you’re re-using, instead of developing
yourself, and with (b), you’ll start to lag behind all those new features,
which were the reason to use a 3rd-party library/engine in the first
place (and while “freeze” may be fine for a single-player game released
and sold once, for an MOG with an Undefined Life Span, it is rarely
acceptable).

BTW, to make it perfectly clear: I’m not arguing that any re-use is
evil; it is only indiscriminate re-use that should be avoided. What I am
arguing for is the “Responsible Re-use” approach described shortly.

“DIY EVERYTHING”: THE RISK OF A
NEVER-ENDING STORY
Another approach (the one that I am admittedly prone to using <sad-
face />) is to write everything yourself. Okay, very few developers will

 “DIY Everything”: The Risk of a Never-Ending Story · 33

write the OS themselves,21 but for most of the other things, you can
usually find somebody who will argue that “this is the most important
thing in the universe, and you simply MUST do it exactly this way,
and, as there is nothing that does it exactly this way, we MUST do it
ourselves.”

There are people out there who argue for rewriting TCP over
UDP22,23; there are people out there arguing that TLS is not good enough,
so you need to use your own security protocol; there are people out
there arguing for writing crypto-quality RNG based on their own algo-
rithm24; there are also quite a few people out there writing their own
in-memory databases for your game; and there are even more people
out there arguing for writing your own 3D engine.

Moreover, depending on your circumstances, writing some of these
things yourself may even make sense;

however, writing all of these things together yourself will lead
to a product that will almost inevitably never be released.

As a result, with all of my dislike of 3rd-party dependencies, I will admit
that we do need to re-use something. So, an obvious next question is:
“What exactly should we re-use, and what should we write ourselves?”

21 Not even me.
22 I will admit that I was guilty of such a suggestion myself for one project, though it happened

at a later stage of game development, which I’m humbly asking for you to consider a mitigating
circumstance.

23 BTW, writing your own protocol on top of UDP (though usually not attempting to make “better
TCP”) is often necessary for fast-paced games; this will be discussed in Volume IV.

24 Once it took me several months of trying to convince an external auditor that implementing RNG
“his way” was not the only “right” way to implement crypto-RNG, with the conflict eventually
elevated to The Top Authority on Cryptography (specifically, to Bruce Schneier); it is probably
worth noting that the auditor guy remained unconvinced (though he was overridden by his own
management. <Phew! />).

There are people
out there arguing for
writing crypto-quality
RNG using their own
algorithm.

34 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

“RESPONSIBLE RE-USE” APPROACH:
IN SEARCH OF BALANCE

As discussed above (convincingly enough, I hope), there are things
that you should re-use, and there are things you shouldn’t. The key, of
course, is related to the question of “What to Re-use and What to DIY?”
While the answer enters the realm of art (or black magic, if you prefer),
and largely follows from the experience, there are still a few hints that
may help you in making such a decision:
♦♦ Most importantly, decisions about re-use MUST NOT be taken

lightly; it means that no clandestine re-use should be allowed, and
that all re-use decisions MUST be approved by the project archi-
tect (or by consensus of senior-enough developers).

♦♦ Discussion of “to re-use or not to re-use” MUST be made on a
case-by-case basis, and MUST include both issues related to licens-
ing and to reuse-being-a-good-thing-in-the-long-run (you can be
pretty sure that arguments related to short-run benefits are already
brought forward by the developer-pushing-re-use-of-this-specif-
ic-library).

Decisions about re-use
MUST NOT be taken
lightly.

 “Responsible Re-Use” Approach: In Search of Balance · 35

♦♦ To decide whether a specific re-use will be a good-thing-in-the-
long-run, the following hints may help:

 ▪ “Glue” code almost universally SHOULD be DIY code;
while it is unlikely that you will have any doubts about it,
for the sake of completeness I’m still mentioning it here.

 ▪ If writing your own code will provide some Added Value
(which is visible in the player terms), it is a really good
candidate for DIY. And even if it doesn’t touch gameplay, it
can still provide Added Value.

yy One example: if your own communication library
will provide properties that lead to better user-ob-
servable connectivity (better=“better than the one
currently used by competition”), it does provide
Added Value (or a competitive advantage, if you
prefer), and therefore may easily qualify for DIY. Of
course, development costs still need to be taken into
account, but at least the idea shouldn’t be thrown
away without consideration.

yy In another practical example, if you’re considering
re-using Windows dialogs (or MFC) and, as a DIY
alternative, your own library provides a way to im-
plement i18n without the need for translators to edit
graphics (!) for each-and-every dialog in existence,
it normally qualifies as an “Added Value” (at least
compared to MFC).

 ▪ If you’re about to re-use something with a very well defined
interface (API/messages/etc.), and where the interface does
whatever-you-want and is not likely to change significantly
in the future, it is a really good candidate for re-use. Exam-
ples include TLS, JPEG/PNG libraries, TCP, and so on.

 ▪ If you’re about to re-use something that has much more
non-trivial logic inside than it exposes APIs outside, it
might be a good candidate for re-use.

yy One such example is 3D engines (unless you’re
sure you can make them significantly better than
existing ones; see the item on Added Value above).

36 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

However, when re-using 3D engines, it is usually a
good idea to have your own Isolation Layer around
them in order to avoid them becoming an Absolute
Dependency. Such an Isolation Layer should usually
be written in a manner described in the Weakening/
Isolating Dependencies section above (and as de-
scribed there, dependencies are sneaky, so you need
to be vigilant to avoid them).

 ▪ If you’re about to re-use something for the Client-Side
(or for the non-controlled environment in general), and
it uses a DLL-residing-in-system-folder (i.e., even if it is a
part of your installer, or is installed in a place that is well-
known and can be overwritten by some other installer),
double-check that you cannot make this DLL/component
private25 — otherwise, seriously consider DIY. This also
applies to re-use of components, including Windows-pro-
vided components.

yy The reason for this rather unusual (but still very
important in practice) recommendation is the
following: it has been observed for real-world-apps-
with-an-install-base-in-the-millions that reliance on
something-that-you-don’t-really-control introduces
a pretty nasty dependency, with such dependencies
failing for some (though usually small) percentage
of your players. If you have 10 such dependencies,
each of which fails for a mere 1% of your users,
you’re losing about 1–(0.9910)~=9% of your player
base (plus, people will complain about your game
not working, increasing your actual losses n-fold).
Real-world horror stories in this regard include such
things as:

♦x The program that used IE to render not-re-
ally-necessary animation, failing with one
specific version of IE on player’s computer.

♦x Some Win32 function (the one that isn’t real-
ly necessary and is therefore rarely used) was

25 Roughly equivalent to “moving it to your own folder.”

Don’t think that such
failures “are not your
problem”— from the
end-user perspective,
it is your program that
crashes, so it is you
they will blame for the
crash.

 “Responsible Re-Use” Approach: In Search of Balance · 37

However, when re-using 3D engines, it is usually a
good idea to have your own Isolation Layer around
them in order to avoid them becoming an Absolute
Dependency. Such an Isolation Layer should usually
be written in a manner described in the Weakening/
Isolating Dependencies section above (and as de-
scribed there, dependencies are sneaky, so you need
to be vigilant to avoid them).

 ▪ If you’re about to re-use something for the Client-Side
(or for the non-controlled environment in general), and
it uses a DLL-residing-in-system-folder (i.e., even if it is a
part of your installer, or is installed in a place that is well-
known and can be overwritten by some other installer),
double-check that you cannot make this DLL/component
private25 — otherwise, seriously consider DIY. This also
applies to re-use of components, including Windows-pro-
vided components.

yy The reason for this rather unusual (but still very
important in practice) recommendation is the
following: it has been observed for real-world-apps-
with-an-install-base-in-the-millions that reliance on
something-that-you-don’t-really-control introduces
a pretty nasty dependency, with such dependencies
failing for some (though usually small) percentage
of your players. If you have 10 such dependencies,
each of which fails for a mere 1% of your users,
you’re losing about 1–(0.9910)~=9% of your player
base (plus, people will complain about your game
not working, increasing your actual losses n-fold).
Real-world horror stories in this regard include such
things as:

♦x The program that used IE to render not-re-
ally-necessary animation, failing with one
specific version of IE on player’s computer.

♦x Some Win32 function (the one that isn’t real-
ly necessary and is therefore rarely used) was

25 Roughly equivalent to “moving it to your own folder.”

Don’t think that such
failures “are not your
problem”— from the
end-user perspective,
it is your program that
crashes, so it is you
they will blame for the
crash.

used just to avoid parsing .BMP file, only to
be found failing on a certain brand of laptops
due to faulty video drivers.26

♦x Some [censored] developer of a 4th-party
app replaced stock mfc42.dll with their own
“improved” version, causing quite a few ap-
plications to fail (okay, doing this has become
more difficult starting with Vista or so, but it
is still possible if they’re persistent enough).

yy BTW, don’t think that such failures “are not your
problem”— from the end-user perspective, it is your
program that crashes, so it is you they will blame for
the crash. In general, the less dependencies-on-spe-
cific-PC-configuration your Client has, the better
experience you will be able to provide for your
players, and all the theoretical considerations of “oh,
having a separate DLL of 1M in size will eat as much
as 1M on HDD and about the same size of RAM
while our app is running” are really insignificant
compared to your players a having better experience,
especially for modern PCs with ~1T of HDD and
1G+ of RAM.

yy Keep in mind that “re-use via DLLs” on the
Client-Side introduces well-defined points that are
widely (ab)used by cheaters (such as bot writers);
this is one more reason to avoid re-using DLLs and
COM components (even if they’re private). This also
applies to using standard Windows controls (which
are very easy to extract information from, which
in turn enables at least grinding bots). See Volume
VIII’s chapter on Bot Fighting for further discussion
of these issues. BTW, re-use via statically linked
libraries is usually not affected by this problem.27

26 Why such a purely-format-parsing function has had anything to do with drivers is anybody’s guess.
27 Strictly speaking, statically linked well-known libraries can also make the life of a cheater a bit

easier (in particular, via F.L.I.R.T. engine of IDA debugger), but this effect is usually relatively mild
compared to that big hole you’re punching in your own code when using DLLs.

38 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

 ▪ If nothing of the above applies, and you’re about to write
yourself something that is central and critical to your game,
it may be a good candidate for DIY. The more critical and
central the part of your code is, the more likely related
changes will be required, leading to more and more integra-
tion work, which can easily lead to the cost of integration
exceeding the value provided by the borrowed code. About
the same thing can be observed from a different angle: for
the central and critical code, you generally want to have as
much control as you possibly can.

 ▪ If nothing of the above applies, and you’re about to re-use
something that is of limited value (or is barely connected)
to your game, it may be a good candidate for re-use. The
more peripheral the part of the code is, the less likely it is
that related changes will have a drastic effect on the rest of
your code, so costs of the re-integration with the rest of
your code in the case of changes will hopefully be relatively
small.

 ▪ Personally, when in doubt, I usually prefer to DIY, and it
happens to work pretty well with the developers I usually
have on my team. However, I realize that I usually work
with developers who qualify as “really, really good ones”
(I’m sure that most of them are at least within top-1%),
so once again, your mileage may vary. On the other hand,
if for some functionality all the considerations above are
already taken into account and you’re still in doubt (while
being able to keep a straight face) on the “DIY vs. re-use”
question, this specific decision on this specific functionality
probably doesn’t really matter that much.

Note that as with most of the other generic advice, all the above advice
should be taken with a good pinch of salt. Your specific case and line
of argument may be very different; what is most important is to avoid
making decisions without thinking, and to at least take the consider-
ations listed above into account; if after thoroughly thinking it over, you
decide that all the above is irrelevant to your game, so be it.

Personally, when in
doubt, I usually prefer
to DIY.

 “Responsible Re-Use” Approach: In Search of Balance · 39

“Responsible Re-Use” Examples
Here are some examples of what-to-reuse and what-not-to-reuse
(though YMMV really significantly) under the “Responsible Re-Use”
guidelines:
♦♦ OS/Console: usually don’t really have a choice about it. Re-use

(and isolate your platform-specific code if cross-platform might be
necessary in the future).

♦♦ Game Engine: depends on genre, but for RPG/FPS re-use is pretty
much inevitable for indie development (see the Engine-Centric Ap-
proach: Pretty Much Inevitable for Indie RPG/FPS section above).
If re-using the whole Game Engine, most likely you won’t be able
to avoid it becoming your Absolute Dependency, so unfortunately
isolation isn’t likely to help.

♦♦ TCP/TLS/JPEG/PNG/etc.: these libraries are very well-defined,
very small, and easy to integrate. Usually it is a Really Good
Idea™ to re-use them. Note that on the Client-Side it is much bet-
ter to re-use them (and pretty much everything else) using static
libraries rather than using DLLs, due to the reasons outlined
above.

♦♦ 3D Engine: 3D engines are good candidates for re-use (mostly
because DIY is beyond the capabilities of most indie teams out
there), but they will try really hard to lock you in. However, given
enough effort and vigilance, you MIGHT be able to avoid being
Locked-In; to keep your chances in this regard, you’ll almost
certainly need to isolate your 3D engine (for the specifics of
implementing an Isolation Layer for graphics, see discussion on
Logic-to-Graphics layer in Chapter 6).

♦♦ 2D Engine: usually 2D engines are not that difficult to implement
even for indie teams (see also Volume V’s chapter on Graphics
101), which often means that depending on your specifics, there
might be a realistic choice between DIY your own 2D engine and
re-using (again, make sure to isolate it if re-using).

♦♦ HTML rendering: you will likely need something along these lines
for i18n dialogs, and you will in turn likely need them for moneti-
zation etc. See the discussion on it in Chapter 6; examples include
embedded WebKit or wxHTML. As a rule of thumb, these are very

If re-using Game
Engine, most likely you
won’t be able to avoid
it becoming your Ab-
solute Dependency, so
unfortunately isolation
isn’t likely to help.

40 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

bulky for DIY, and it is a Good Idea™ to re-use them (once again,
make sure to isolate them via an app-oriented Isolation API).

 ▪ While you’re at it — let’s note that as a rule of thumb it is bet-
ter to stay away from system-specific HTML controls (such
as Windows/IE HTML Control). These are changing way too
often, have been observed to depend heavily on the specific
version which happens to be installed on the Client box, by
design behave differently on different platforms, and so on.

 ▪ Keep in mind that at a certain point, you MAY need to re-
write certain game-critical elements from standard UI into
DIY to deal with bots. More on this in Volume VIII’s chap-
ter on Bot Fighting, but the overall logic goes as follows: in
the realm of bot-fighting, we often need to obfuscate things,
and using standard stuff rarely allows for necessary obfus-
cation. On the other hand, usually this can be changed later
without rewriting the whole thing, so you may be able to
ignore this issue for the time being (replacing standard stuff
with DIY when bots start to become a problem).

♦♦ Core logic of your game. This is where your Added Value is. As a
Big Fat Rule of Thumb™, DIY.

♦♦ Something that is very peripheral to your game. This is what is
not likely to cause too much havoc to replace. As a rule-of-thumb,
re-use (as long as you can be sure what exactly you’re re-using on
the Client-Side; see above about DLLs, etc.). And, as another rule-
of-thumb, isolate these peripheral pieces too.

“Responsible Re-Use”: on “Temporary”
Dependencies
If you’re planning to use some module/library only temporarily (to speed
up the first release), and re-write it later “when we’re big and rich,” it might
work, but you need to be aware of several major caveats along the way.
First, you need to realize that this “use temporary, rewrite later” approach,
as a rule of thumb, won’t work for replacing the whole game engine (see the
Engine-Centric Approach: On “Temporary” Dependencies section above).

Second, for those-modules-you-want-to-remove-later, you certain-
ly need to use the Isolation Layer from the very beginning — and with a

At a certain point, you
MAY need to rewrite
certain game-critical
elements from
standard UI into DIY to
deal with bots.

 Chapter 4 Summary · 41

proper Isolation API too (see the discussion in the Working Cross-Plat-
form: Isolation Layer section above).

And, last but not least, you need to be extremely vigilant when writ-
ing your code, to avoid bypassing your Isolation Layer. Otherwise, when
the “we’re big and rich” part comes, the 3rd-party module/library/en-
gine will become that much intertwined with the rest of your code that
separating it will amount to rewriting everything from scratch (which
is rarely an option for an up-and-running MOG). See the Vigilance, and
More Vigilance section above for further discussion.

CHAPTER 4 SUMMARY
Our takeouts from Chapter 4:
♦♦ DON’T take the “DIY vs. Re-Use” question lightly; if you make

Really Bad decisions in this regard, it can easily kill your game
down the road.

♦♦ If you’re an indie shop, DO consider using an Engine-Centric
approach, but keep in mind that Absolute Dependency (a.k.a. Ven-
dor Lock-In) that you’re introducing. Be especially cautious when
using this way for Games with Undefined Life Spans (as defined
in Vol. I’s chapter on GDD). On the other hand, Engine-Centric
approach is pretty much inevitable for indie FPS/RPG games. If
going Engine-Centric, make sure that you understand how the
engine of your choosing implements those things you need.

♦♦ If Engine-Centric doesn’t work for you (for example, because
there is no engine available that allows you to satisfy all your GDD
Requirements), you generally should use “Responsible Re-use”
as described above. If going this way, make sure to read the list
of hints listed in the “Responsible Re-Use” Approach: In Search of
Balance section above.

 ▪ In particular, make sure to implement an Isolation Layer
(with an Isolation API expressed in terms of app layer)
wherever applicable. And make sure to be vigilant when en-
forcing your isolation (see the Vigilance, and More Vigilance
section for discussion).

42 · CHAPTER 4. DIY vs. Re-Use: In Search of Balance

Bibliography
Hare, ‘No Bugs’. 2011. “Overused Code Reuse.” Overload.

http://ithare.com/overused-code-reuse/.

CHAPTER 5.

(RE)ACTOR-FEST
ARCHITECTURE.
IT JUST WORKS.

We have this handy fusion reactor in the sky called the sun,
you don’t have to do anything, it just works. It shows up every day.

— Elon Musk

44 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Now, after we discussed DIY-vs.-re-use, we can proceed to the very
heart of the discussion on architecture for multiplayer games.

Of course, there is more than one way to shoe this architectural
horse. However, there is one way of architecting your system that I
strongly prefer to all others;28 moreover, it can be made very reliable
(=“it just works”), it works very well for games, and is very familiar
to gamedevs too. I’m talking about Game Loop, a.k.a. Event-Driven
Program, a.k.a. (Re)Actor.

TO REACT OR NOT TO REACT?
THAT IS (ALMOST) NO QUESTION
I have to admit that I am a big fan of Reactors. During my career, I’ve
seen (and built) quite a few Reactor-based systems — and all of them29
worked like a charm. One such system was a game competing on a pret-
ty crowded market and serving hundreds of thousands of simultaneous
players, and there were two relevant stories about it:
♦♦ Once upon a time, a pre-IPO auditor said about it: “Hey guys, your

system has downtimes that are several times lower than the rest of
the industry!”30

♦♦ At one point, I got the chance to look at the system built by the
competitor. While the systems had pretty much identical function-
ality, the Reactor-based one was using fifty Server Boxes to handle
400K simultaneous players, while the competition was using 400
Server Boxes to handle around 100K simultaneous players. It
means that the Reactor-based system was able to handle up to 32x
more players per Server Box than the competition.
Of course, these stories count only as anecdotal evidence, and,

of course, Reactors weren’t the only cause for these properties, but
IMNSHO they still illustrate two all-important properties of Reactor-based
systems: (a) they’re very reliable; and (b) they perform very well.

28 At least for stateful interactive systems, and the vast majority of games out there qualify as such.
29 Well, at least those that are worth mentioning.
30 For the full story, see Volume III’s chapter on Server-Side Architecture, but for the time being,

even the first part of it will do.

Reactor
Pattern

The reactor design
pattern is an event
handling pattern
for handling service
requests delivered
concurrently to a
service handler by
one or more inputs.
The service handler
then demultiplexes
the incoming requests
and dispatches them
synchronously to the
associated request
handlers.

—Wikipedia

 To React or Not to React? That is (Almost) No Question · 45

More generally, I see Reactor-based systems (more specifically,
systems based on non-blocking deterministic Reactors) as a very good
tool for implementing stateful interactive systems (games included)
from the following points of view:
♦♦ Very clean separation between different parts of the system.

As Reactors are not allowed to interact with one another, besides
exchanging messages (and these messages/RPC-calls cannot also
contain messy stuff such as pointers to other-Reactor-space, etc.),
clean separation is pretty much enforced. In turn, such a clean
separation helps a damn lot as your system grows larger.

♦♦ Very reliable programs (=“It Just Works”). As Reactors are
inherently protected from impossible-to-debug and inherently
untestable inter-thread races, it helps a lot to make the system
more reliable.

 ▪ In addition, an ability to find and fix problems in
production (and ideally, after one single failure) is a very
important part of making such distributed systems reliable.
Deterministic Reactors tend to fare extremely well from
this point of view too.

♦♦ Very good performance in production too. Besides the story
above, there is a reason why nginx tends to perform better than
Apache — and this is pretty much the same reason why share-pret-
ty-much-nothing Reactors also perform very well. In short, thread
context switches are expensive, and moving data between CPUs
(which is often caused by such context switches) is even more ex-
pensive; if we account for cache invalidation, the cost of the thread
context switch can easily reach 100K to 1M CPU clock cycles; see
[Li, Ding, and Shen]. As a result, non-blocking Reactors, which
tend to avoid most of such unnecessary jerking around, have an
obvious edge. And with modern x64 CPUs spending up to 300
CPU cycles on an uncached “remote” memory read compared to
3 CPU cycles on an L1 memory read, this 100x difference means
that the edge of Reactor-based programs can be quite substantial.31

♦♦ Very good scalability. Contrary to popular (mis)belief, Reac-
tor-based systems do scale, and scale well. Of course, we will need

31 NB: 300 CPU cycles and 100x numbers are for “remote NUMA node” accesses; without NUMA in
the picture, the difference is more like 30–50x, which is also not too shabby.

As Reactors are not al-
lowed to interact with
one another besides
exchanging messages,
clean separation is
pretty much enforced.

Contrary to popular
(mis)belief, Reac-
tor-based systems DO
scale, and scale well.

46 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

multiple Reactors to build a scalable Reactor-based system — but
this is exactly what (Re)Actor-fest architecture (the one we’re
discussing in this chapter) is about. Very shortly:

 ▪ For the Server-Side, as soon as we can split our Server-Side
into Reactors-fitting-onto-one-single-core, we’ll be perfect-
ly fine; and as soon as splitting our Game Logic is on the
agenda, it usually doesn’t matter too much if we’re splitting
into Server-size chunks or core-size chunks (see also the
discussion on splitting of seamless Game Worlds in Volume
I’s chapter on Communications).

 ▪ Scaling the Reactor-based Client-Side can be somewhat
more complicated (in particular because of the large
monolithic Client-Side State, which needs to be processed).
However, certain variations (discussed in the (Kinda-)Scal-
ing Individual (Re)Actors section) are known to be used by
AAA gamedevs with great success (see also directly below).

BTW, Reactors are also actively used by major game development com-
panies; from what can be said based on publicly available information,
Bungie, in particular, seems to be a big fan of deterministic Reactors
(see, for example, [Aldridge] and [Tatarchuk]), and very successfully
so. Also, Riot Games rely on determinism too (and while they do use
threads — from their description in [Hoskinson] it seems that they’re
using a relatively minor variation of the Reactors/Game Loops, with
inter-thread interactions being very limited and well-defined).

“Almost” Before “No Question”
In spite of my love for Reactors, I have to admit that

If you’re very averse to the very idea of Reactors, you can build
distributed interactive system without them.

Or, in other words:

Strictly speaking, Reactors are optional — 
Though, IMNSHO, they are extremely nice to use.

 To React or Not to React? That is (Almost) No Question · 47

Most likely, if dropping Reactors, you’ll still want to keep canonical
Game Loop/Simulation Loop for your game (and, most likely, it will
apply both to your Client and to your Server), but other than that, you
can do pretty much whatever-you-want (see the Reactors or Not — Stay
Away from Thread Sync in your Game Logic section below, though). I
am still saying that you SHOULD use Reactors, but am stopping short
of saying that you MUST use them.

As a result, for the rest of this book beyond this chapter, I will try to
describe each of the Reactor-related topics from two different points of
view. First, I will try to explain things in a generic way, without referring
to Reactors, and then I will often discuss more specific Reactor-based
implementation of the same thing. If you really hate Reactors, feel free
to ignore the Reactor-based stuff; still, the generic discussion will usu-
ally stand, regardless of Reactors.

Reactors or Not — Stay Away from Thread Sync in
your Game Logic

The last but not least observation in this regard. Whether you’re using
Reactors or not, I strongly insist that —

Using thread synchronization such as mutexes and atomics
directly within your app-level code is a recipe for disaster.

There are several reasons why it is a Really Bad Idea™. I don’t want to go
into a lengthy discussion here, but will just note that using thread sync
within your app-level (Game Logic) code will almost-inevitably result in:
♦♦ Having way too many things to care about at the same time,

essentially pushing developers well beyond the “magic number”
of 7±2, which is the cognitive limit of the human brain (and is
therefore extremely difficult to bypass). For more discussion of
this phenomenon, see, for example, [Hare, Multi-Threading at the
Business-Logic Level is Considered Harmful].

♦♦ Introducing lots of potential for inter-thread race conditions. And
the worst thing about race conditions is that they’re perfectly
untestable, which means that they can sit silently for years. Just to
illustrate how sneaky these bugs can be: one multi-threaded race

I am still saying that
you SHOULD use Reac-
tors, but am stopping
short of saying that
you MUST use them.

The Magical
Number

Seven, Plus
or Minus

Two
is one of the most
highly cited papers in
psychology. It is often
interpreted to argue
that the number of
objects an average
human can hold in
working memory is
7 ± 2. This is
frequently referred to
as Miller’s Law.

—Wikipedia

48 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

was found sitting for years in no less than STL implementation
provided by a major C++ compiler [Ignatchenko, STL Implemen-
tations and Thread Safety].

 ▪ Moreover, such sleeping races tend to manifest themselves
only under serious load (with the chance of them manifest-
ing growing in a highly non-linear manner compared to the
load), which means that they will hit you exactly at the very
worst possible moment (for example, during Tournament
of the Year or something).

 ▪ To make things even worse, whenever you’re facing the race
in production, there is no reliable way of handling it (except
for reviewing all the relevant code, which is usually way too
overwhelming). You cannot even reproduce the race, which
makes all the traditional debugging techniques perfectly
useless (in contrast, with deterministic Reactors, all the
bugs are reproducible by definition).

♦♦ Mutexes (critical sections, etc.) mean the potential for blocks,
which in turn means the potential for degradations both of perfor-
mance and scalability.

 ▪ And just as with races, these degradations will sit quietly for
a while, starting to manifest themselves only at the worst
possible moment. Very shortly, as contention on mutex
grows, performance and scalability quickly go out the
window (and in a highly-non-linear manner).

 ▪ Also, as noted in [Henney], let’s keep in mind that contrary
to popular misconception, mutex is not really a concurren-
cy mechanism; instead, the whole point of mutex is actually
to prevent concurrency.

A few further things to note here:
♦♦ Even “one single mutex” visible from app-level is a Very Bad

Thing™
 ▪ A real-world story in this regard. Once upon a time, I wrote

a framework that managed to avoid thread sync, except for
one small callback that was called from a different thread
and required access to the object state (it was effectively im-
plementing what-was-later-named-a-Proactor-pattern, and

I wrote a framework
that was avoiding
thread sync, except
for one small callback
that was called from
a different thread and
required access to the
object state.

 To React or Not to React? That is (Almost) No Question · 49

in my back-then implementation the callback was called
from an arbitrary thread). The rules governing thread sync
from this small callback were very obvious to me, but were
apparently very difficult to grasp for all the app-level pro-
grammers; overall, this small callback was responsible for
that many bugs that it became the prime suspect whenever
a bug was noticed. <ouch! /> As a mitigating factor for my
sentencing, I want to say that I learned my lesson, and have
avoided such callbacks-from-a-different-thread ever since.

♦♦ Avoiding explicit thread sync within your stateful Game Logic
doesn’t necessarily mean that you MUST always access the state
from only one single thread (though accessing from one single
thread will certainly do the trick). In general, you MAY access
the state of your Game Logic from different threads,32 but then
it MUST be the job of the Infrastructure Code to perform locks
before the control is passed to Game Logic. For more discussion on
the separation between Infrastructure Code and Logic code, see the
On Separating Infrastructure Code from Logic Code section below.

♦♦ Reactors are not the only way to avoid thread sync. In particular, oth-
er-than-Reactors message passing mechanisms normally do it too.

♦♦ The firm “no thread sync” rule above applies only to Game and
Business Logic; you still can write infrastructure-level code
using mutexes.33 While I still often argue for avoiding thread-
sync-beyond-queues and for using Reactors for Infrastructure
Code too, I admit that using mutexes for Infrastructure Code is
not too bad (and sometimes can be justified). In other words: if
your primary concern with avoiding explicit thread sync is about
infrastructure-level code, go ahead and use mutexes for your
infrastructure — as long as you avoid them for app-level code, such
as Game Logic. In quite a few cases (and especially if your game
is successful), you’ll migrate your infrastructure-level code into
Reactors a bit later (I’ve done that myself); and BTW, it is Game
Logic being clean from thread-sync that makes such later migra-
tion feasible.

32 At the cost of the potential for performance and scalability problems hitting you, but at least
reliability and maintainability won’t be affected.

33 Moreover, for some primitives such as Queues, you will almost certainly need explicit thread sync
(such as mutexes, critical sections, condition variables, etc.).

Message
passing

Message passing
sends a message to a
process (which may be
an actor or object) and
relies on the process
and the supporting
infrastructure to select
and invoke the actual
code to run.

—Wikipedia

50 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

♦♦ There MIGHT be cases when you DO need to use thread-sync at
app level due to performance requirements; one particular example
of it is so-called high-frequency trading (HFT). Still, keep in mind
that (a) it is a very rare scenario, so for your usual gamedev you
won’t need it; (b) as it is all about nanosecond-level performance,
and each context switch caused by contention on the mutex can
cost you up to a millisecond(!) – you still shouldn’t be using mutex-
es for HFT-like tasks. When talking about nanoseconds, we should
at least be using non-blocking algorithms and atomics, but it is
often necessary to go beyond that and exploit even-more-asynchro-
nous-methods such as memory barriers and Read-Copy-Updates.

 ▪ BTW, if you happen to need heavy calculations – make
sure to take a look at an asynchronous-and-mutex-free
HPX. Not only that HPX usually outperforms synchronous
stuff coming from dark ages of OpenMP, but in addition
it can also be integrated nicely with Reactors (see also the
Offloading section below).

ON TERMINOLOGY. ACTOR,
REACTOR, EVENT-DRIVEN
PROGRAM, GAME LOOP, OR AD-HOC
FINITE STATE MACHINE?
WE’LL NAME IT (RE)ACTOR.

There are only two hard things in Computer Science:
cache invalidation and naming things.

— Phil Karlton

With event-driven programming being known for so many years,
related techniques have many different names — and with very similar
(though sometimes not-exactly-identical) meanings.

Let’s note that the model-we’ll-be-talking-about is very close to a
classical Reactor pattern (and to event-processing too); on the other

 On Terminology. Actor, Reactor, Event-Driven Program, Game Loop, or Ad-Hoc Finite State Machine? We’ll Name it (Re)Actor. · 51

hand, it exhibits certain properties of a more generic Actor model. In
some sense, our Reactors are quite an “active” kind, and can initiate
some actions that are not always expected from purely reactive process-
ing; in particular, just like more generic Actors, our Reactors can send
messages to other Reactors, can post timer events to themselves, can
initiate non-blocking calls,34 and can request creation of other Reactors.

I like to think of these things as “Actors,” but the term “Actor” is
usually used in a very different sense among gamedevs,35 and I certain-
ly don’t want to introduce this kind of confusion. As a result — after
spending long sleepless nights meditating on this “how to name this
event-driven thing” question — I came up with a term (Re)Actor, and
this is what I’ll be using in this chapter (and over the course of the
remaining volumes).

Let’s keep in mind that pretty much all of the following concepts are
closely related to our (Re)Actors:
♦♦ Reactor (as in “Reactor pattern”)

 ▪ Note that both “Reactive programming” and “Functional
Reactive Proogramming” are substantially different from
“Reactor programming pattern.”

 ▪ On the other hand, our (Re)Actor-fest Architecture is very
close to the “Reactive Systems” as defined in The Reactive
Manifesto ([Bonér, et al.]).36

♦♦ Actor (as in “Actor concurrency model”)
♦♦ Event-driven program
♦♦ Game loop (or event loop)
♦♦ Finite State Machines (FSMs)

 ▪ Note, however, that when talking about FSMs, usually it
is table-driven Finite State Machines that are implied, and
these are quite different. What we’re effectively doing with
our (Re)Actors is defining a finite state machine in terms of

34 Which makes them somewhat similar to Proactors, though for our Reactors all app-level callbacks
are guaranteed to be sync-free (and for generic Proactors, it depends).

35 See, for example, UE4 AActor.
36 Note that for the purpose of this book, I don’t want to get into a terminological discussion of

whether “event-driven” is different from “message-driven”; we’ll be using these two terms
interchangeably, with an understanding that both of them are concentrated on addressable
recipients rather than addressable sources.

52 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

code rather than in terms of transition tables (such FSMs
are known as ad-hoc FSMs). However, while these two
representations are mathematically equivalent, they’re quite
different in practice. In particular, while table-driven FSMs
work very well for embedded development (and other
scenarios with only very few states involved), they start to
fall apart very quickly as the number of states grows (due to
so-called “state explosion”). For more discussion on FSMs
and (Re)Actors, see the Relation of Deterministic (Re)Actors
to Deterministic Finite Automata section below.

GAME LOOP: GAME PROGRAMMING
CLASSIC

Game loops are the quintessential example
of a “game programming pattern”

— Robert Nystrom in Game Programming Patterns

After giving our (Re)Actors a nice name, let’s define how-they-are-sup-
posed-to-work. As we’re talking about games, we’ll start from the good old
Game Loop, and will observe how just a few additional brush strokes will
make it a (Re)Actor — usable for distributed programming and MOGs.

Traditionally, most of the single-player games out there are based
on a so-called Game Loop. Classical Game Loop looks more or less as
follows (see, for example, [Nystrom, Game Loop]):

//Listing 5.GameLoop
while(true) {
 read_and_process_inputs();
 update();
 render();
}37

37 For the listings in this chapter, we’ll use pseudo-code; this emphasizes an observation that most
of the reasoning here will also apply to pretty much any modern programming language (with an
obvious notion that continuation-style implementations will need support for lambdas, and some
C++/C# specific trickery clearly labeled as such). In addition, some of the corresponding and not-
so-trivial C++ listings can be found in Appendix 5.A.

We’ll start from the
good old Game Loop,
and will observe how
just a few additional
brush strokes will
make it a (Re)
Actor — usable for dis-
tributed programming
and MOGs.

 Game Loop: Game Programming Classic · 53

This kind of Game Loop doesn’t wait for input, but rather polls input
devices and goes ahead regardless of the input being present38; let’s
name this a “simple tight Game Loop.”

As discussed in detail in [Nystrom, Game Loop] and [Fiedler, Fix
Your Timestep!]), in addition to the simple tight Game Loop above,
quite a few different timestep schemas can be used:
♦♦ Fixed-timestep, with delay at the end if there is time left until the

next tick (where “tick” can be either “network tick” or “monitor
refresh tick”). This is the most popular timestep used on the
Server-Side, and is widely used for V-Synced systems on the
Client-Side.

♦♦ Variable-timestep tight loop. Basically, we’re measuring how long
the previous frame took, and using this measured time as a next
timestep. However, as noted in both [Nystrom, Game Loop] and
[Fiedler, Fix Your Timestep!], this kind of timestep can be quite
fragile; in particular, updates being too long can easily make your
simulation unstable (in terms of numerical analysis, it is a manifes-
tation of a well-known effect that steps being too large can easily
cause the numerical method to start diverging).

 ▪ To deal with this instability and divergence, multiple phys-
ics updates (with smaller — and usually fixed — timesteps
for each) per one render can be made.

yy This effectively leads to updates and renders each
running with its own rate; on the other hand, such
independence, if the rates are not multiples of one
another, can easily lead to the movements looking
visually uneven. To deal with it, some kind of inter-
polation/extrapolation is often used (please refer to
[Fiedler, Fix Your Timestep!] and/or [Nystrom,
Game Loop] for further details).

Overall, a detailed discussion of timesteps is not what we’re looking at
now; however, for our current purposes, it is important that:
♦♦ For the Server-Side, any kind of “tight loop” is usually not

necessary — and is usually not desirable either. Unlike on the
Client, on the Server-Side there is no argument of “hey, we need

38 BTW, this is pretty close to what is often done in real-time industrial control systems.

Tight Loop
Such a loop which
heavily uses I/O or
processing resources,
failing to adequately
share them with other
programs running in
the operating system.

—Wikipedia

Unlike on the Client,
on the Server-Side
there is no argument
of “hey, we need
to use all available
resources to have
the game look as
good and smooth as
possible.”

54 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

to use all available resources to have the game look as good and
smooth as possible”; it means that running “tight loop” is not
really necessary on the Server-Side. On the other hand, “tight
loop” tends to use more CPU cycles, and as for the Server-Side,
it is us who pay for those CPU cycles — well, it is not exactly
desirable.

 ▪ This makes fixed-timestep by far the most preferable option
for the Server-Side.

♦♦ For the Client-Side, however, all the logic in [Fiedler, Fix Your
Timestep!] and [Nystrom, Game Loop] still applies — and “tight
loops” can be a Good Thing™. When designing your timestep for
the Client-Side, make sure to read at least one of these sources
carefully (and we’ll briefly discuss issues related to the Client-Side
timestep in Chapter 6).

♦♦ As we want our (Re)Actors to apply both to the Client- and Serv-
er-Side, we need to make sure that they can handle all the different
variations of the Game Loop, including “tight loop” ones. We’ll
discuss “how to do it” in a jiff.

(RE)ACTOR AS A GENERALIZATION
OF GAME LOOP

Let’s start our discussion of (Re)Actors from the fixed-timestep
Game Loop: the one that is usually used on the Server-Side (and on
V-Synced Clients too). It usually looks along the following lines:

//Listing 5.GameLoop2
while(true) {
 read_and_process_inputs();
 update();
 post_updates_to_clients();
 sleep(time_left_until_end_of_network_tick);
}

This Listing 5.GameLoop2 above can easily be rewritten (and very often
is rewritten) into an exactly equivalent form of:

 (Re)Actor as a Generalization of Game Loop · 55

//Listing 5.GameLoop3
while(true) {
 wait_for_event();
 read_and_process_inputs();
 update();
 post_updates_to_clients();
 post_timer_event(
 time_left_until_end_of_network_tick);
}

Here, instead of sleeping right within our loop, we’re saying “hey, please
send us an ‘event’ that will arrive in time_left_until_end_of_network_tick
microseconds, and will wake us up.” And at this point, we’re already
halfway to the event-driven (Re)Actor (while staying exactly equivalent
to the original fixed-timestep Game Loop).

Listing 5.GameLoop3 can be further rewritten into another strictly
equivalent form, going along the lines of:39

//Listing 5.Reactor
//PSEUDO-CODE
class Infrastructure {
 GenericReactor r;//MUST have react() function
 constructor() {
 //initialize r
 }
 function run_loop() {
 while(true) {
 ev = wait_for_event();
 ev.inputs = read_inputs();
 r.react(ev);
 }
 }
}
class ConcreteReactor extends GenericReactor {
 //implements some concrete logic – for example, Game Logic
 function react(ev) {
 assert ev.type == TIMER_EVENT;
 process_inputs(ev.inputs);
 update();
 post_updates_to_clients();
 post_timer_event(time_left_until_end_of_network_tick);
 }
}

39 Note that Listing 5.Reactor uses (Re)Actor terminology; however, save for names, it is
indistinguishable from good old event-driven programming.

At this point, we’re
already halfway to the
event-driven (Re)Actor
(while staying exactly
equivalent to the
original fixed-timestep
Game Loop).

56 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

The code in Listing 5.Reactor above is once again strictly equivalent to
the code in Listing 5.GameLoop2 and Listing 5.GameLoop3, but, on the
other hand, already represents quite an obvious example of good ol’
event-driven programming(!).40 Let’s also note that for the time being,
we intentionally do not discuss “how to implement delivering those
timer messages” (this is system-dependent, and there are multiple ways
to do it; we’ll discuss some of them in Volume IV’s chapter on Network
Programming and Volume V’s chapter on C++).

If we look at our Listing 5.Reactor a bit closer, we’ll realize that such
a (Re)Actor-based form of the classical event loop is extremely generic.
First, let’s note that

The (Re)Actor can be used to express any kind of Game Loop
(including all forms of tight loops).

For tight loops, we can easily say that whenever we finish rendering of
the current frame, we’ll ask the framework to issue the next event “right
now” (see process.nextTick() from Node.js as one example of an API
implementing this concept, but obviously the idea is not restricted to
Javascript or Node.js).

Moreover, our (Re)Actor is not restricted to describing simulations
and game loops: in addition to expressing all kinds of game loops and
timesteps, our Listing 5.Reactor can also be used to implement those
games that are not based on the concept of ticks (such games include at
least social games, casino-like games, and stock exchanges). In such
cases, the Server-Side Re(Actor) will just receive Events such as “a mes-
sage has arrived from the Client,” and the Client-Side Re(Actor) will
receive the usual “key pressed” (“mouse clicked,” etc.) UI Events.

Going even further, this event-driven/Re(Actor) form can (and
IMNSHO SHOULD) be used to implement different entities that are
not exactly mapped into Game World simulation logic. These enti-
ties include everything you need to run your multiplayer game (and
which are shown on an Entities & Relationships Diagram, discussed

40 Strictly speaking, there is still a subtle difference from “classical” event-driven programming; for
“classical” event-driven programming, we usually have one event per each user input; in the Listing
5.EventProcessor, we’re assuming that it is the job of the framework to provide the current state
of all the inputs and make them a part of Event ev

Moreover, our (Re)Ac-
tor is not restricted to
describing simulations
and game loops.

 (Re)Actor as a Generalization of Game Loop · 57

in Vol. I’s chapter on GDD), from matchmaking and tournaments to
payment and social gateways.

To summarize:

(Re)Actors (a.k.a. Event-Driven Programs) can be used to
implement pretty much everything41 from Game World simula-

tions to Event-Driven Cashiers and Matchmaking Servers.

This is Good News™ for us — in particular because, as we’ll see in
the Advantages of (Re)Actors section below, (Re)Actors provide very
significant real-world benefits exactly for interactive distributed
systems.

Other Event-Driven Systems: GUI, Erlang,
Node.js, and Java Reactor
The concept of event-driven programs (which we name (Re)Actors) is
not something new (and is neither restricted to games); in fact, these
things have existed for a very long time. In particular, pretty much any
GUI system out there is some kind of (Re)Actor.

In addition, existing event-driven Re(Actor)-like programs are not
restricted to the Client-Side. Examples of Server-Side event-driven
processing go back at least to Erlang (1986), with a much more recent
wave of Node.js, JVM-based Project Reactor, and (to a certain extent)
Python’s Twisted and Akka Actors. More on the relationship of our
(Re)Actor-fest architecture with these event-driven systems will be
discussed in the Relation to Erlang Concurrency, Akka Actors, and
Node.js section below.

It should be noted that goroutines from Go programming language,
while having certain similarities with (Re)Actors, are not equivalent
to them (due to thread sync issues — and, as I said above, I am strongly
opposing thread sync at app-level); for more discussion, see the On
Using goroutines-for-callbacks: BEWARE THREAD SYNC! section
below.

41 Within the realm of interactive systems, that is; applicability of (Re)Actors to HPC, etc. is a very
different story, which we fortunately don’t need to discuss now.

Erlang
Erlang is a general-
purpose, concurrent,
garbage-collected pro-
gramming language
and runtime system.

—Wikipedia

58 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

On Separating Infrastructure Code
from Logic Code
In my experience, it is a universally Good Idea™ to separate your infra-
structure-level code from your application-level code. There are several
reasons to have this separation, including different abstraction levels,
different style guidelines, and often different people developing these
parts of code.

In the case of our Listing 5.Reactor, we’ll say that it is only class
ConcreteReactor that implements app-level Game Logic, and class
Infrastructure (and all its internals) belongs to “Infrastructure Code.”
These two layers should have a very clean separation along the lines of
class GenericReactor (and GenericReactor.react() function). Moreover,
they will have very different requirements; in particular:
♦♦ App-level logic (class ConcreteReactor) SHOULD be perfectly

cross-platform.
♦♦ Infrastructure code (class Infrastructure) MAY (and most of the

time will) be platform-specific.
For (Re)Actor programs, such a clean separation will enable two

all-important properties of properly built (Re)Actors. It is that

1. The very same Re(Actor) can be deployed on any platform.
2. The very same Re(Actor) can be deployed in very different

execution environments depending on your current needs.

As the cross-platform property is rather obvious, let’s concentrate on
the second one. It means if you keep this very clean interface along the
lines of class GenericReactor and GenericReactor.react() functions, you
will be able to rewrite your infrastructure-level code (class Infrastruc-
ture in the Listing 5.Reactor) to deploy your class ConcreteReactor in any
of the following configurations:
♦♦ One instance of class ConcreteReactor per process.
♦♦ One instance of class ConcreteReactor per thread.
♦♦ Several instances of class ConcreteReactor per thread. Some restric-

tions apply, and the offer is void where prohibited; in short, such
configurations essentially require fully non-blocking (Re)Actors

it is a universally Good
Idea™ to separate
your infrastruc-
ture-level code from
your application-level
code.

 (Re)Actor as a Generalization of Game Loop · 59

(opposed to “mostly-non-blocking (Re)Actors” that we’re normally
okay with, as discussed below).

♦♦ Completion-port-based event handling (i.e., the event is handled
by any of the threads that got the event from the completion
queue); note that we’ll need to ensure thread sync within our
Infrastructure Code.

♦♦ Your own hardware-aware (Re)Actor execution scheduler. The
most obvious hardware-related configuration would take NUMA
into account, effectively ensuring that your (Re)Actors have some
affinity to NUMA nodes, both with regards to CPU and RAM.
However, in some (admittedly extreme) cases, you may want to
go even further; for example, I’ve heard of people playing with the
NIC receive queue IRQ/CPU (somewhat along the lines of Receive
Side Scaling/Receive Packet Steering), though this admittedly
belongs in the realm of Black Magic.

♦♦ Web-driven event handling (see Vol. III’s chapter on Server-Side
Architecture for further discussion)

♦♦ And so on…
Most importantly, all these configurations can (and SHOULD) be
achievable without any changes to your class ConcreteReactor whatsoev-
er(!). In other words, (Re)Actor is (Re)Actor is (Re)Actor, regardless of
how it is deployed.

This, in particular, allows us to defer decisions about deployment
architecture until, well, deployment. In practice, I’ve observed this abil-
ity to be very useful: during development, it is very difficult to predict
exact deployment configurations (and trying to account for all possible
configurations leads to overengineering); however, as the number of
players increases, new deployment configurations tend to emerge, and
the only practical way to enable them at a later stage is to have all ap-
plication-level code agnostic to deployment architecture — exactly the
thing that is provided by clean separation of the (Re)Actor along the
lines of GenericReactor and GenericReactor.react() function.

One real-world example in this regard. For quite a few games out
there, it makes sense to run many of your (Re)Actors within a single
thread (or using one completion queue), and there was quite a large
game doing exactly this. On the other hand, the same game happened

(Re)Actor is (Re)Actor
is (Re)Actor, regardless
of how it is deployed.

60 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

to run weekly Quite-Important Tournaments — and ran Game Worlds
of such tournaments as “single-Game-World-per-thread” (still having
multiple Game Worlds per process); among other things, it allowed to
raise thread priority for those-Important-Tournaments. And for the
Tournament of the Year, it was run with its Game Worlds as separate
processes to ensure near-perfect separation of Game Worlds of this
all-important tournament. As the Game Worlds of that game were writ-
ten as (Re)Actors that were completely isolated along the lines above, it
allowed that large game to deploy them in these different configurations
without any changes to the Game World itself.

Other examples of changing deployment architectures include such
things as spreading your Game Server (Re)Actors over several Data-
centers across the globe, support for migration of your Game Worlds
to balance your Servers better, switching from optimistic-locking to
a pessimistic one for Web-based deployment architectures, and even
switching from a Web-based deployment architecture to a Classical one
(all these topics will be discussed in Vol. III’s chapter on Server-Side
Architecture). Once again, having class ConcreteReactor tightly coupled
with your class Infrastructure would make implementing such features
next-to-impossible (that is, unless you thought of all of them from the
very beginning), but with a clean separation between infrastructure
code and application-level code, it becomes perfectly feasible.

Bottom line:

Clean separation of (Re)Actors along the lines of class
GenericReactor and GenericReactor.react() is a Good Thing™.

Advantages of (Re)Actors
Just in case you haven’t already noticed</tongue-in-cheek>, I have to
confess that I am a Big Fan™ of (Re)Actors. Compared to other models
(and especially to the massively-multithreaded model with mutex-based
thread synchronization), they provide the following advantages:
♦♦ (Re)Actors tend to enforce very clean interfaces between different

parts of your system. In particular, these interfaces tend to be
much cleaner than those interfaces that tend to arise in “compo-
nent programming.”

I have to confess that I
am a Big Fan™ of (Re)
Actors.

 (Re)Actor as a Generalization of Game Loop · 61

 ▪ Due to its message-passing nature, testing of (Re)Actors
is also simplified; in particular, risks of finger-pointing
between different-teams-developing-different-(Re)Actors
are inherently lower with (Re)Actors than with other types
of APIs.

♦♦ If properly implemented,42 (Re)Actors also allow us to isolate
“logic” from cross-platform stuff in a very strong manner.

 ▪ This allows for the re-use of exactly the same Game and
Business Logic on different platforms (and in different
deployment scenarios) without rewriting it. And benefits
from having one single code base for frequently changing
Game Logic cannot be overestimated (in fact, having two
frequently changing code bases is pretty much guaranteed
to doom one of them43).

 ▪ This is closely related to the above-discussed ability to
deploy (Re)Actors in very different deployment scenarios,
moving many decisions about threads, platform-specific
APIs, etc. to deployment-time (which has been observed to
be a Really Good Thing™ in the long run).

♦♦ (Re)Actors do not require thinking about inter-thread synchro-
nization while writing game/business logic. IMNSHO, this alone
qualifies as a sufficient reason to use them.

 ▪ As discussed above in the Reactors or Not — Stay Away from
Thread Sync in your Game Logic section, trying to think
about both inter-thread synchronization and Game and
Business logic is an almost-surefire way to a mortgage-cri-
sis-size disaster.

♦♦ Performance-wise, (Re)Actors tend to perform very well:
 ▪ By their very nature, (Re)Actors tend to exhibit very good

spatial locality (and spatial locality is very important for
performance on modern CPUs; see further discussion in
Vol. V’s chapter on C++).

 ▪ The non-blocking variety of (Re)Actors avoids unnecessary
thread context switches, which tends to improve perfor-

42 Obviously, “properly” = “along the lines discussed in this chapter.” <wink />
43 At least, I can say that I’ve seen it more than once, and didn’t see any counterexamples.

62 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

mance greatly (see further discussion on the cost of context
switches in Vol. V’s chapter on C++).

♦♦ (Re)Actors can be made deterministic at a small cost (see the Im-
plementing Deterministic Logic section below). And deterministic
(Re)Actors provide their own set of goodies (for a more detailed
discussion of these, see the Deterministic Logic: Benefits section
below):

 ▪ Deterministic testing, including (but not limited to):
yy Production post-factum analysis (including visual

analysis of Client-Side handling of packet loss/de-
lays).

yy Replay-based regression testing
yy Better overall quality of testing compared to non-de-

terministic tests. More on it in the Non-Deterministic
Tests are Pointless section below.

 ▪ Server-Side features such as low-latency fault tolerance,
(Re)Actor migration, and almost-zero-downtime upgrades
(the latter with some reservations).

 ▪ And quite a few other things.
Phew! I probably forgot to include something important, but I hope
that even with the limited list above, I’ve managed to convince you
that (Re)Actors (a.k.a. Game Loops, Event-Driven Programs, Ad-Hoc
Finite State Machines, etc., etc.) are a Good Thing™.

(Re)Actors in Game Engines
Actually, (Re)Actors and Reactor-like systems are well known in games
(albeit under various names). In addition to the ubiquitous Game
Loop, which, as we’ve discussed, is a special case of a bit-more-generic
(Re)Actor, there is also class Process from Chapter 7 of [McShaffry
and Graham] — which has obvious resemblances to our class Gener-
icReactor. And then, of course, there is Bungie and its heavy use of
(Re)Actor-like logic (as described in [Tatarchuk] and [Aldridge]).

Some existing systems (such as Game Loop and class Process) have
a limited spectrum of events compared to our (Re)Actor; however, the
Big Idea™ of processing local state without thread sync and without

I REALLY hope
that even with the
limited list above,
I’ve managed to
convince you that (Re)
Actors (a.k.a. Game
Loops, Event-Driven
Programs, Ad-Hoc
Finite State Machines,
etc., etc.) are a Good
Thing™.

 (Re)Actor as a Generalization of Game Loop · 63

unnecessary thread context switches is still exactly the same. Moreover,
quite a few of these (Re)Actor-like systems (in particular, class Process
from [McShaffry and Graham]) are intended to be used with coopera-
tive multitasking, and our non-blocking (Re)Actors described below are
essentially working in exactly the same manner.

Bottom line: (Re)Actor-based architectures are very far from being
something new for games; rather, (Re)Actor is merely a mild general-
ization of tried-and-tested practices that are successfully used in the
gamedev world for generations. Two very important generalizations of
(Re)Actors in the context of MOGs are that:
♦♦ Our (Re)Actors can be used on the Server-Side, and
♦♦ They can be used for non-simulation tasks (such as classical

event-driven tasks).
Overall, I am arguing to

Use (Re)Actors as a building block for your Game Architecture.

I’ve seen a very successful game that had its whole architecture revolve
around (Re)Actors; while there were deviations from (Re)Actors at the
level of Infrastructure Code, 100% of the app-level/game-level code44
was within (Re)Actors. This was the very same game that surprised
the pre-IPO auditor with its reliability, and which supported 32x more
players per Server than the competition; in addition, it has survived
over fifteen years on the same (Re)Actor-based architecture without
a complete rewrite of its Game Logic (though updates were released
every two to three weeks, and its Infrastructure Code was rewritten
more than once during those fifteen years).

While it may happen that at certain places (especially when or if you
need to integrate with existing code) you MAY need to deviate from
(Re)Actors, I insist that by default it is a Really Good Idea™ to use
(Re)Actors in all the places of your Game Architecture where it is possi-
ble (deviating only when there is no other way around it, which should
be very rare45).

44 That is, if we don’t count DB reports, which are a very separate beast.
45 As in, “a few instances per million lines of code.”

64 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

TWO ALL-IMPORTANT
IMPROVEMENTS TO CLASSICAL
EVENT-DRIVEN PROGRAMMING:
MOSTLY-NON-BLOCKING
PROCESSING AND DETERMINISM
Compared to the usual event-driven programming (such as the one
commonly used for Windows/Android/JavaScript/… UI program-
ming), for our online game purposes46 there are two all-important
changes that we ought to make. While not strictly required, these
changes will certainly make our life down the road easier; I’m talking
about (a) (mostly-)non-blocking processing and (b) determinism.

Both of these things are really important for quite a few reasons,
which we’ll see below.

NON-BLOCKING PROCESSING

46 Or, more generally, distributed computing purposes.

For our online game
purposes, there are
two all-important
changes that are
necessary to make
our life down the road
easier.

 Non-Blocking Processing · 65

The first issue that we need to take into account when using event-driv-
en programming for MOG development is the sad fact that networks
can be slow, often damn slow. Have you ever seen a GUI that hangs for
a long while (like “1-2 minutes”47), just to spring back to life later?48
Chances are that the code tried to make a blocking connection attempt
to a Server, and there happened to be some kind of temporary Internet
“black hole” on the path between your laptop and the server;49 with the
connect() or recv() call being blocking, the whole GUI is blocked while
waiting for the response <ouch! />.

While merely “very annoying” for the UI client, for the Server-Side,
such blocking processing of network communications is just plain un-
acceptable. If there is a “black hole” on the path from the Server to one
of the Clients, then blocking all the Server-Side processing until it is
back (or until we realize that it has disconnected) would slow things
down beyond belief. Moreover, even if connectivity for all the Clients is
good, usual round-trip times (which are normally in the 100ms+ range,
and that’s waiting for just one Client) will exceed the length of our “net-
work tick” (usually around 20–50ms).

Therefore,

We need to have non-blocking processing
at the very least for network-related operations.

In addition, the less blocking our (Re)Actor has, the less thread context
switches we’ll get. As mentioned above, the cost of a thread context switch
can easily reach into hundreds of thousands of CPU cycles, which means
that going non-blocking is a big incentive, performance-wise. Real-world
stories supporting this observation range from the aforementioned ng-
inx-outperforming-Apache to once-saying-blocking-calls-and-threads-
is-all-we’ll-ever-need Java50 introducing non-blocking APIs.

47 This BTW happens to coincide with more-or-less typical “BGP convergence time”, or
“modem retrain time”; more on it in Vol. IV’s chapter on Network Programming.

48 That is, if you didn’t kill the process by this point.
49 If it is not a “black hole,” usually (though far from “universally”) there is some indication of

connection failure coming from the Server, which SHOULD cause the Client to react earlier than in
two minutes.

50 It is difficult to believe now, but there was such a point of view among Java developers that lasted
up to 2000 or so.

For the Server-Side,
such blocking
processing of network
communications is just
plain unacceptable.

66 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

BTW, in addition to having worse performance as such, blocking
systems often tend to exhibit performance degradation as the load on
them increases (this can be observed as a graph showing dependency
of CPU-cycles-spent as a function of what-is-done, being worse-than-
linear); in particular, it happens due to increased resource contention,
which increases the number of those dreaded context switches even
further. Non-blocking Shared-Nothing systems, to the contrary, tend
to exhibit constant or even somewhat-improving(!) performance under
the load (i.e., they may scale better-than-linearly under the load51); the
latter happens because for a non-blocking queue-based system under
the load, different portions of the work happen to be performed without
a context switch, which in turn reduces overheads.

What NOT to Use — “OO” RPC Frameworks
Before getting into a discussion of “what kind of approaches or frame-
works you SHOULD use,” let’s discuss “what you SHOULDN’T use”;
I’m talking about OO-like RPC frameworks such as CORBA, DCOM,
and ICE.

In the Seventies, a new concept arose in the world of distributed
computing: after request-response protocols became popular, it seemed
logical and neat to say “let’s consider a request-response a “function
call”— which led to Remote Procedure Calls (RPCs). With time, it has
evolved into an “Object-Oriented” style of RPC, with Clients creating
remote objects on the Server-Side and manipulating them there. All of
CORBA/DCOM/ICE fall into this latter category.

Unfortunately, there is one big problem with this concept, and it is
that while it might work for LAN (with some reservations), I have never
seen this concept work reasonably well in any real-world project over
WAN.

The most egregious example of “OO” RPC-based technologies
and WAN that I’ve seen in the real world unfolded as follows. While
working for a Really Big Company™, I was assigned to a project that
was about to ship their CORBA-based software to customers. And the
software was working (rather slow but not too slow) while tested within
the LAN, but as soon as they started to deploy it over a trans-Atlantic

51 Yes, I’ve seen it for a real-world system.

Unfortunately, there
is one big problem
with this concept, and
it is that the concept
doesn’t work over
WAN.

 Non-Blocking Processing · 67

link (which was the way it had to be eventually deployed per Business
Requirements), user-initiated operations started to take as long as
twenty minutes to complete. When tasked with solving this little prob-
lem of the project being utterly unusable in its intended environment
(and the task was aggravated by a firm Business Requirement to keep
CORBA as a transport52), the best we could do was relegate CORBA to
a simple byte-message transport (via creating a CORBA-level API with
one single function postMessage() function, taking character array as a
parameter, with this array containing a message that was composed and
parsed at app level).53 Doing this reduced user waiting times by a factor
of 400x(!), which decreased delays from twenty minutes to single-digit
seconds; i.e., made it more or less usable for the app in question.

Problems with using “OO” RPC-based techniques for WAN-based
games are twofold:
♦♦ By default, RPC in such frameworks is blocking. And blocking

RPC is to be avoided at all costs when dealing with WAN (in
particular, due to ‘hanged’ connections and due to latencies; see
a real-world example above to see what latencies can do to your
WAN app if you’re using blocking calls).

 ▪ In particular, in the real-world CORBA-based system
described above, that 20-minute delay was caused by
several thousands of blocking RPC calls (made in the true
CORBA spirit of making an object and then calling remote
methods of this object to populate its fields one by one),
and with each blocking call taking at least 100–120ms over
the Atlantic, each thousand of such blocking RPC calls was
taking at least two minutes.

 ▪ On the other hand, non-blocking RPC is possible with both
ICE and DCOM (it is just not really popular, and not really
convenient to use).

♦♦ Generally, the RPC-based OO paradigm as it is implemented by
these frameworks doesn’t support the concept of a pre-existing

52 Having Business Requirements like these is a fallacy (as pretty much anything that is not about
interactions with users or 3rd parties qualifies as an implementation detail), but, well, it does
happen.

53 NB: another way to skin this cat would be to use parameters-by-value, but it wasn’t available in
CORBA at that time; also, it would still be pretty much the same paradigm as the one with byte
messages, merely moving marshaling from app-level to within-CORBA.

68 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Server-Side stateful object.54 Instead, usually Server-Side creates
Server-Side objects on behalf of the Client — and then uses refer-
ences by Client-Side to Server-Side objects.

 ▪ This creates severe mismatches with typical game and
simulation programming models such as classical Game
Loops (see, for example, Chapter 6 for a brief discussion of
Game Loops on the Client-Side).

yy On the other hand, it is possible to use this mod-
el to emulate Game Loops (and, more generally,
(Re)Actors); however, as it goes pretty much
against established RPC-based OO paradigms,
doing so is rather cumbersome.

 ▪ In addition, the very concept of remote references (i.e.,
Client-Side references to Server-Side objects) doesn’t
work over WAN — not at all (at the very least because
WAN connections are inherently unreliable, which in
turn causes so-called “server-side garbage”). While some
workarounds are possible (see, for example, [Spruiell]),
they tend to be ugly, unreliable, and vulnerable to all kinds
of DoS attacks.

yy As a Big Fat Rule of Thumb™, a much better alterna-
tive is to have each request correspond to one single
transaction (either over in-memory state or over
DB); in addition to being free from the problems
above, it tends to provide a much cleaner API be-
tween the layers (in particular, with messages being
transactions, it has much fewer unwritten and poorly
enforceable limitations on the allowed sequences of
requests).

54 Moreover, a lack of long-living stateful objects is often touted as an advantage of this paradigm,
based on the misunderstanding that having objects stateless is The Only Way™ to make systems
scalable. I won’t go into a lengthy discussion about it here, rather noting the big difference
between making middleware trivially scalable (which “OO” RPC-based stuff is actually all about),
and making a whole real-world system — including database(!) — scalable. The former is easy, but
it essentially does nothing except push the scalability problem from middleware to the database.
The latter is never trivial, so some kind of non-trivial thinking needs to be involved anyway (and
my preferred way of such thinking is via (Re)Actors and non-blocking eventually-consistent
exchanges along the lines of Inter-DB Async Transfer Protocol as described in Vol. I’s chapter on
Communications). More on it in Vol. III’s chapter on Scalability.

As a Big Fat Rule of
Thumb™, a much
better alternative is
to have each request
correspond to one
single transaction.

 Non-Blocking Processing · 69

As a result,

I STRONGLY advise against using “OO” RPC-based frameworks
(those with blocking RPC calls and/or remote references) for

over-the-WAN game-like/interactive processing.

Sure, it is possible to emulate pretty much everything over these frame-
works (for example, as described for a real-world case with CORBA
above), but, if doing it this way, all the added value of these frameworks
is reduced to zero (and probably even below), so I don’t see why I
should bother with using any of them for building a distributed system
over WAN.

On the other hand, let’s note that RPCs as such are not necessarily
evil; if RPCs (a) are non-blocking and (b) don’t rely on55 remote refer-
ences, RPC can be perfectly fine. Examples of such RPCs-that-are-fine-
for-gamedev include (not really surprisingly) RPCs provided by Unity
and UE4 engines.

To Block, or Not to Block, That Is the
Question. Mostly-Non-Blocking (Re)Actors
Non-blocking code has a pretty bad reputation among developers as
being difficult to grasp and difficult to maintain. I’ve even seen people
arguing that it is a premature optimization. On the other hand, from
my experience, non-blocking code (well, mostly-non-blocking; see be-
low) works very well from the exact perspective of readability and
maintainability — though it heavily depends on what-the-task-is-we’re-
trying-to-solve. Let’s take a closer look at the blocking vs non-blocking
code in different contexts.

In any case, we’ll be talking about the situation when we have a
request that takes some time; and the question we’ll try to answer is
whether we want to implement this request using blocking call, or a
non-blocking one.

55 Even better: “don’t allow to create.”

Non-blocking code
has a pretty bad
reputation among
developers as difficult
to grasp and difficult
to maintain.

70 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

From the point of view of performance, most of the time everything
SHOULD be non-blocking, plain and simple.56 But if we take a look at
it from the development complexity side of things, we’ll see that things
are not that obvious.

In practice, there are two different cases when we make a potentially
blocking call, and the subtle difference between these two cases is where
the whole secret of the balance between blocking and non-blocking
calls can be found.

Case 1. Processing Input Events While Call Is in
Progress Is Required at Logic Level

The first case for a potentially-non-blocking call arises when, according
to our Business/Game Logic, we need to handle events occurring while
the potentially-blocking call is in progress — and these events may
affect what our Logic is doing.

For example, if we want to send our player some information, we
certainly want to process inputs (from him and other players) while
the information is en route; if on the Client we want to display a simple
box asking “Yes”/“No,” we still want to process updates-to-our-Game-
World coming from the Server, and so on and so forth.

In such a case, if we’ll implement our Game Logic via non-blocking
calls, it will be relatively ugly (depending on the specifics of your im-
plementation; see Take 1–Take 8 below), but TBH, it won’t be too bad.

On the other hand, if we try to implement the same thing via block-
ing calls, it would mean that we’ll need to have a second thread to handle
these concurrently incoming events, we’ll need to have some “current
state” data to share between threads, we’ll need to make sure to access
this “shared data” only under mutex locks; then we’ll need to make sure
to release this mutex while the blocking call is in progress (so that the
incoming-events-thread can access it) — and remember that we MUST
NOT access (from incoming-events-thread) that data that can be mod-

56 Strictly speaking, if a thread context switch is inevitable anyway, blocking code will perform pretty
much the same performance-wise as a non-blocking one. OTOH, such behavior is usually platform-
specific (and undocumented too), so from purely a performance perspective, you almost-never
cannot lose (and are likely to gain something, at least on some of the platforms) from going non-
blocking.

The first case for a
potentially-non-block-
ing call arises when,
according to our
Business/Game Logic,
we need to handle
events occurring
while the potential-
ly-blocking call is in
progress — and these
events may affect
what our Logic is
doing.

 Non-Blocking Processing · 71

ified by the call itself. Then, we’ll realize that queueing our incoming
requests becomes tricky (or we need to give up ordering completely),
and so on and so forth. This whole shared-data-based handling will
become an unmanageable never-ending race-ridden non-deterministic
nightmare very quickly.

Sure, non-blocking calls isn’t exactly a picnic even in Case 1, but
blocking calls, when applied to Case 1 (with the need to process other
incoming events while the call is in progress), are much, much worse.

As a result,

For scenarios when we do need to process other input
events while the call is in progress, non-blocking calls

are much better than blocking-code-with-thread-synced-
concurrent-processing, at least from code reliability,

testability, and maintainability points of view.

Case 2. No Processing at Logic level While Call Is In
Progress

On the other hand, there is a rather different set of scenarios, when
we MAY (or even MUST) delay processing other inputs while the
outstanding call is in progress. “MAY” happens, in particular, when we
can be 100% sure that during normal operation the call cannot possibly
take a long time; “MUST” is more rare, but I’ve observed it a few times
in the real world (it was necessary to avoid certain classes of races where
strict syncing guarantees between different (Re)Actors were necessary).

And as soon as we can say that we don’t want to process anything
during the call duration — great! Indeed, linear blocking code will be
simpler, better readable, etc., etc. (and, as a side benefit, we can still stay
within (Re)Actors too).

The only potential drawback of blocking code in such scenarios is ex-
tra thread context switches (leading to a loss in performance). However:
♦♦ Even in the worst case, this is only a performance issue. In other

words: we’re not talking about crashes, corrupted data, wrong
results, etc. <phew />

72 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

♦♦ If you’re using blocking calls sparingly, the performance hit is not
too likely to be observable.

♦♦ If your threads have nothing to do anyway while you’re processing
your call, it is not a problem at all (if there is nothing to do for cur-
rent thread, we will have the context switch anyway).

♦♦ If your Infrastructure Code can use fibers (or coroutines),
then to reduce thread switching, Infrastructure Code can run
several (Re)Actors within the same thread, and can implement
kinda-“green threads” itself; i.e., whenever a blocking call is
made by one of the (Re)Actors, your Infrastructure Code can
take over control, and if there is an input event for another
(Re)Actor, let this second (Re)Actor process its input while the
first one is waiting for the blocking call. Note that all this can
usually be implemented completely within the Infrastructure
Code, and without affecting the code of any (Re)Actors involved.
As a result,

When we don’t need to process other events while the
blocking call is in progress, I tend to start implementation with
more straightforward blocking calls (changing to non-blocking

if performance is demonstrated to become an issue).

From the point of view of reliability, this approach is bulletproof — and
is also very straightforward and readable (that is, as long as we’re staying
within our Case #2 which doesn’t require processing events while waiting).
As for the performance issues that might result from the calls being block-
ing, they rarely cause trouble at the application level. Still, keep in mind
that they might become a problem, and be prepared to go non-blocking;
that is if you can see that a specific blocking call causes trouble. On the
other hand, going into non-blocking calls for those calls-that-don’t-need-
processing-of-concurrent-inputs, and without any performance problems
in sight IMO usually qualifies as a “premature optimization.”

Blocking or Non-Blocking? Mostly Non-Blocking

Based on the above reasoning, I suggest splitting all your calls into two
broad categories: “long” ones (which are likely to last long enough to

Green
Threads

green threads are
threads that are
scheduled by a
runtime library or
virtual machine (VM)
instead of natively
by the underlying
operating system

—Wikipedia

Based on the
reasoning above, I
suggest splitting all
your calls into two
broad categories:
“long” ones (which
are likely to last long
enough to require
competing events to
be processed while
waiting), and “short”
ones, which you can
afford to wait for.

 Non-Blocking Processing · 73

require competing events to be processed while waiting), and “short”
ones, which you can afford to wait for. Let’s note that as soon as you
have the framework for handling non-blocking calls (which you should
anyway), mistakes in separating “long” calls from “short” calls are not
that expensive (as it is possible to rewrite one call from one category to
another without affecting too much of the overall code).

This is different both from traditional processing with its “everything
is blocking just because so happened” and from “everything MUST be
non-blocking” paradigm (which is how Node.js is often (mis)interpret-
ed). What I’m suggesting is doing things in the easiest possible way,
which is non-blocking for those “long” calls that may be interleaved
with incoming events, and blocking for “short” calls.

This is all good — but still, it would be even better to have more
specific guidelines to know where to start; to provide these guidelines,
let’s take a look at those interactions that can require potentially block-
ing calls, and see whether they’re likely to qualify as “long calls” (which
MUST be handled in a non-blocking manner) or “short ones” (which
MAY be handled via blocking calls).

My personal experience with choosing blocking vs non-blocking
processing is summarised in the following table:

Client-Side
User Input Non-blocking only
File Access Depends
Communications with Server Non-blocking only
Server-Side
Communications with Client Non-blocking only
Communications with other Servers in the same Datacenter Mostly non-blocking
Communications with Servers in other Datacenters Non-blocking only (see exception below)
Database/Disk Depends

As we can see, all operations with potentially very large waiting times
(this includes at least user input and all operations over the WAN)
MUST handle inputs while they’re in progress — and therefore MUST
be non-blocking.

74 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

One possible exception to this rule applies when we have so-called
“Gateway Servers,” discussed in Vol. III’s chapter on Server-Side Archi-
tecture; they tend to have lots of substantially independent requests go-
ing over WAN to a third-party provider (such as a payment processor or
social network), and as long as all the requests are perfectly independent,
it is okay to process these requests via several (Re)Actors, with each of
the (Re)Actors making blocking calls to reach the third-party provider.
Performance-wise, this approach represents a tradeoff between code
simplicity and performance — but, as integration code with third-party
providers tends to change rather frequently, and as performance/scal-
ability is rarely an issue with Gateway Servers, it is often a reasonable
tradeoff.

As for operations which are 100% limited to LAN, sometimes we
MAY rely on LAN operations being fast enough, though I still strongly
prefer non-blocking handling for them. On the other hand, I am much
more lenient with handling local disk/DB I/O in a blocking manner;
as a rule of thumb, if you’re reading one single DB record or a single
up-to-10K file, you can easily fit into below-1-ms range,57 which may
easily happen to be acceptable for you while keeping your calls blocking
(OTOH, a dozen of such records/files at the same time can easily cause
unacceptable delays).

Overall, at Game Logic level, it is all about delays:

If delays are large enough,58 we need to process
concurrent events and go non-blocking. Otherwise,

blocking calls may be okay.

As we can see from the above table, for our purposes most of the calls
will need to be non-blocking; hence, for the purposes of this book, let’s
name this approach of “handling long delays as non-blocking but short
delays as blocking” as “mostly-non-blocking processing.”

57 That is, if you can be reasonably sure that the file is cached, or if you’re using SSD.
58 Even if it happens once-in-a-blue-moon.

As a rule of thumb,
if you’re reading one
single DB record or a
single up-to-10K file,
you can easily fit into
the below-1-ms range,
which may easily hap-
pen to be acceptable
for you while keeping
your calls blocking.

 Non-Blocking Processing · 75

Implementing Non-Blocking Processing
for Games
Traditionally, for games there are three substantially different types of
non-blocking operations:
♦♦ Waits
♦♦ Publishing of non-blocking state updates (and other kinda-broad-

cast messages; see Vol. I’s chapter on Communications for
discussion).

♦♦ All kinds of request-response point-to-point communications
(these cover both communications between different (Re)Actors,
and things such as non-blocking I/O etc.).
“Offloading” of the calculations to a different thread/core/Server

is not necessarily typical for games, but still MAY be implemented on
top of request-response communications (though, as we’ll see below,
special considerations for simplifying offloading, may still apply).

Waits/Timers

For a non-blocking event-driven system, whenever we want our system
to “sleep,” we’re not calling a blocking sleep() function; instead, we’re
actually scheduling a timer event at a certain time, and completing our
processing for the time being (pretty much as we did it to simulate
Game Loop over (Re)Actor). Whenever the scheduled time comes (give
or take), our Infrastructure Code (such as class Infrastructure from
Listing 5.Reactor) delivers the special timer event to the object of our
class ConcreteReactor.

It is worth noting that timers, to specify actions-that-need-to-be-
performed-after-the-timer-event-fires may use techniques that are very
similar to Take 1–Take 8 processing discussed in the Handling Returns
in Non-Blocking Way in (Re)Actors section below.

Non-Blocking State Publishing and (Kinda-)
Broadcast Messages

To have an API to perform state publishing (and kinda-Broadcast
Messages as discussed in Vol. I’s chapter on Communications) on the

For a non-blocking
event-driven system,
whenever we want
our system to “sleep,”
we’re not calling a
blocking sleep() func-
tion; instead, we’re
actually scheduling
a timer event at a
certain time, and com-
pleting our processing
for the time being.

76 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Server-Side, one option is to have some kind of non-blocking publish()
function (with a corresponding update and an optional callback on a
Client side), effectively implementing so-called Observer Design Pat-
tern (though in a remote manner).

An alternative API to publish Game World State is related to in-
creasingly popular “synchronized variables” such as [SyncVar] in Unity
5 HLAPI and UPROPERTY(Replicated) in UE4. We’ll discuss more
of them in Chapter 7, but for now we need to point out one related
observation: while there is nothing wrong with the concept of synchro-
nized states and variables, currently available variable synchronization
mechanisms are often too simplistic for real-world deployments with
hundreds of thousands of simultaneous players (for more detailed
discussion, see Chapter 7).

What applies regardless of the API chosen is that both for state pub-
lishing and (kinda-)Broadcast Messages, all the communications look
like “fire-and-forget” from the point of view of the publisher/sender. It
means that there is no possible reply to them and so a pretty annoying
question of “what to do when reply comes back?” doesn’t arise at all.

Point-to-Point Communications and Other Request-
Response Stuff

Point-to-point communications can be separated into two subcategories:
♦♦ “Fire-and-forget” communications, and
♦♦ “Request-response” communications

 “Fire-and-forget” is the simple one; as long we don’t need any response
back, we don’t need to wait for it and, more importantly, we don’t need
to specify what-to-do-when-the-call-is-completed. In particular, Uni-
ty- and UE4-style void RPC calls without an option to throw an excep-
tion fit into this “fire-and-forget” pattern.

Request-Response

However, there are lots of real-world scenarios when “fire-and-forget”
point-to-point communications are not sufficient, and we need “re-
quest-response” type interactions. These are generally quite different
from state updates, and also from “fire-and-forget” communications.

As long we don’t
need any response
back, we don’t need
to wait for it and,
more importantly, we
don’t need to specify
what-to-do-when-the-
call-is-completed.

 Non-Blocking Processing · 77

In particular, a very typical pattern is that one (Re)Actor needs to
request some value from another (Re)Actor, which effectively corresponds
to a non-void RPC call (and to stay within our non-blocking paradigm, we
need to make this non-void RPC call non-blocking). One very common
example of it is requesting something from your database (Re)Actor (again,
in a non-blocking manner). Moreover, any kind of non-blocking re-
quest-response can be handled in exactly the same manner as a non-block-
ing RPC call — which covers pretty much all kinds of request-response
communications (including “long” I/O requests to read disk, etc.).

Even the task of offloading some heavy calculations into a separate
thread (i.e., achieving not only concurrency, but also parallelism) can
be implemented “as if ” it is an RPC call to a (Re)Actor sitting in that
separate thread. As one example, we can be requesting other (Re)Actors
(deployed to different threads) to perform SHA-256 calculations to solve
a proof-of-work “puzzle” (proof-of-work puzzles as a way to mitigate
certain DDoS attacks will be discussed in Volume IV); in other words,
to solve the “puzzle” using multiple threads, the (Re)Actor may simply
call non-blocking RPC-like function SHA256(…) multiple times.59

All these cases are indeed very similar from the caller’s point of
view. In particular, all are following the exact same RPC-like pattern:
♦♦ Do something to initiate the request. While implementation-wise

it can be sending a network packet, or issuing a DB request, or
starting a non-blocking file read, or posting a message into an
inter-thread queue, from the caller’s point of view all these things
look exactly the same.

♦♦ Wait until the request is completed and the reply is obtained.
♦♦ Perform pre-defined action to process the reply.

Request-Response Complication: What to Do When the Call is
Completed

In such an RPC-like request-response pattern, the first two steps are
rather obvious to implement, but the third is unfortunately not. What

59 In fact, to achieve reasonable efficiency, it will be more complicated than that, but all the
additional complexity beyond keeping offloaded chunks “large enough” SHOULD be kept within
Infrastructure Code. In other words, from the point of view of the application-level code, it is still
sufficient to code it as a kinda-RPC call (just keeping granularity coarse enough to avoid thrashing
the system with too many RPC calls and thread context switches).

78 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

exactly should we do when the data from our request comes back?
Should we call a callback (if yes, from which thread? And where
should the variables-used-by-callback be stored?)? Should we change
a state of some “future” (a.k.a. “promise”) so that somebody who waits
for this “future” gets notified, unblocked, or the callback-associat-
ed-with-the-future called? Should we just wait for a message/event with
a reply, handling everything manually at app level?

In general, there are many different ways of handling this “what-to-
do-on-receiving-reply” problem, but within our (Re)Actor pattern, one
thing is for certain:

Whatever happens when the asynchronous request
(such as RPC call) is completed MUST be performed
in such a manner that there is no need to perform

any thread sync with the rest of the (Re)Actor,
even if access to the (Re)Actor state is needed.60

In other words, you should be able to write your app-level code (the
one that calls that non-blocking non-void RPC) pretty much “as if ”
all-your-code-for-the-same-(Re)Actor is always executed within the
same thread (and whether it will be actually the same thread or not is
not that important). And, I contend that this is the Really Good Thing™.
Actually, as I’ve already mentioned, once in my career61 I’ve deviated
from this “reply-is-processed-within-the-same-thread-as-everything-
else” approach; while theoretically it was okay (and there were IMHO
clear guidelines how to deal with it thread-wise), it has caused many
more problems for fellow developers than it was worth. The lesson I
learned at that point was as follows: “Never ever force app-level devel-
opers to perform thread-sync”;62 since then, I’ve kept all my threading

60 Strictly speaking, there are two ways this can be achieved: either by ensuring that all-the-
access to the (Re)Actor state always goes from one single thread, or by explicit thread sync at
infrastructure level. I usually strongly prefer the former (and it performs better too), but the latter
can also work.

61 As a mitigating circumstance, I should tell that it was about twenty years ago, when I was young
and inexperienced, and that I submit myself to the mercy of the court.

62 As argued in [Hare, Multi-threading at Business-logic Level is Considered Harmful], combining
app-logic with threading tends to raise the number of entities that the developer needs to
consider at the same time, well above the magic number of 7±2; this, in turn, often causes
cognitive overload as a result.

In other words, you
can write your code
pretty much “as if”
all-your-code-for-the-
same-Reactor is al-
ways executed within
the same thread.

 Non-Blocking Processing · 79

completely out of sight of app-level development, and found that this
way it works much better both for infrastructure-level and app-level
developers.

Another thing to understand about non-void non-blocking calls in
the context of (Re)Actors is that due to the non-blocking nature of the
call,

Other things can happen within the same event-driven object
while the non-blocking call is being executed

(also see discussion in the To Block, or Not to Block, That Is the Question.
Mostly-Non-Blocking (Re)Actors section above).

This can be seen as either a blessing (as it allows for essentially par-
allel execution while staying away from any thread synchronization), or
a curse (as it complicates understanding), but needs to be kept in mind
at all times while you are dealing with non-blocking calls. BTW, as we
discussed above in the Case 1. Processing Input Events While Call Is in
Progress Is Required at Logic Level section, this additional complexity
arises not because we decided to write our code in a non-blocking man-
ner; instead, it follows from the objective need to perform processing
while we’re waiting for results of the outstanding-call-that-may-take-
a-long-while.

Regardless of our motivation, handling returns from non-void
non-blocking calls is quite a complicated task; moreover, there is no
consensus on “what is the best way of doing it” (though recently, there
is a trend towards await-style coroutines). As a result, instead of sug-
gesting one way of handling non-void non-blocking calls, we’ll discuss
several different approaches, so you can choose the one that is more
applicable to your specific situation (and TBH, this decision is not
black-and-white, so personal preferences can play a significant role).

Handling Returns in Non-Blocking Way in (Re)Actors

Historically, in games, handling of non-void RPC calls is usually imple-
mented either via plain messages or via simulating them on top of void
RPC calls (see Take 1 and Take 2 below for details). However, while
both messages and void-only RPC calls DO work correctly (and most

Historically, in games,
handling of non-void
RPC calls is usually
implemented either
via plain messages or
via simulating them on
top of void RPC calls.

80 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

importantly, without any need for app-level developers to deal with
thread sync), they tend to become rather cumbersome as the complex-
ity of your system increases. Fortunately, there are ways out there to
avoid it, and this is exactly what we’re about to discuss.

On the other hand, it is necessary to mention that all the different ways
of handling returns from non-blocking calls, which we’ll discuss below,
are pretty much equivalent (save for different syntax). In other words, in a
certain sense, all the different takes below are only about “syntactic sugar”
around plain messages, so if I am saying that some of the Takes are ugly
but you happen to think that they are okay, it will be more or less about
personal preferences (and not about “you’re doing it deadly wrong”).

For the purpose of our examples, we assume that we have some kind
of IDL compiler (along the lines discussed in Vol. I’s chapter on Com-
munications), with this IDL compiler taking function definitions and
producing necessary pseudo-code stubs for them (in practice, it will be
stubs in whatever-your-programming-language-of-choice). To very
briefly reiterate discussion from the chapter on Communications, the
idea behind the IDL is to have all the inter-object communications de-
fined in a special Interface Definition Language (see examples below),
with an IDL compiler taking these IDL definitions and producing stubs
(which in turn include relevant marshalling/unmarshalling code) for
our (Re)Actors. We also assume that our IDL compiler (being written
by us for our own purposes) can generate any stub/skeleton code we
need.

To compare different ways of handling of non-blocking returns, let’s
consider the following example of a “simple item purchase”; we’ll use
this example to see how the code for handling this same task differs,
depending on the approach.

The “simple item purchase” example scenario goes as follows. Let’s
assume that we have a special (Re)Actor (named Cashier) to handle
all the money-related processing, including in-game purchases. Now,
a request from the Client comes in to the Cashier (Re)Actor, saying
that the player wants to purchase a certain item (taking tokens from his
in-game account) and place it in his inventory.63

63 For the purpose of this example, we set aside the question “how has the player selected an item
to purchase?” and assume that it was the result of a previous sequence of messages between the
Client and the Server.

IDL
Interface definition
language (IDL) is a
specification language
used to describe a
software component’s
application program-
ming interface (API).

—Wikipedia

 Non-Blocking Processing · 81

From this point on, the processing goes as shown in Fig 5.1:

As shown in Fig 5.1, first the Cashier (Re)Actor gets the request
from the Client and forwards it to the DB (Re)Actor. Then, the DB
(Re)Actor performs the transaction over the database (checking if there
are enough tokens in his in-game account, then subtracting tokens from
his in-game account and adding an item and probably also adding an
audit record — all within the same DB ACID transaction), and sends
the result (success/failure) back to the Cashier (Re)Actor. The Cashier
(Re)Actor gets this result and, if it is “failure,” sends the reply to the
Client. However, if the result was “success,” the Cashier needs to send
a request to the Game World (Re)Actor to add the item to the player’s
inventory, and only on a reply from the Game World (Re)Actor may it
report to the Client that the item has been successfully added.

For the purpose of our analysis, let’s concentrate on the part of the
“simple item purchase” flow that is handled by the Cashier (Re)Actor. If
we’d be allowed to write it in a blocking manner (and with help from the
IDL compiler), the corresponding code of the Cashier (Re)Actor would
look along the following lines:

//Listing 5.Blocking.noexcept
//PSEUDO-CODE
function purchaseItem(item_id, connection_id) {
 user_id = get_user_id(connection_id);
 //blocking RPC call to DB (Re)Actor:
 db_ok = dbPurchaseItem(db_reactor_id,
 user_id, item_id);

82 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 if(!db_ok)
 return false;
 gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 //blocking RPC call to Game World (Re)Actor:
 gameworld_ok = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 return gameworld_ok;
}

Unfortunately, in practice, we won’t be able to use this kind of blocking
syntax for our non-blocking (Re)Actor (as we shouldn’t block our Ca-
shier while our requests to the DB are processed); however, we are able
to use this Listing 5.Blocking.noexcept as a kind of “baseline” to judge
readability and maintainability of our non-blocking solutions. All the
essential logic we need to implement is described above within seven or
so lines of code of Listing 5.Blocking.noexcept; anything else that we’ll be
adding to achieve non-blocking operation is boiler-plate code, and we
need to avoid it to the fullest extent possible.

One additional observation that implicitly follows from our code be-
ing non-blocking is that there can be multiple outstanding requests to DB
and Game World(s): if another request comes in while the first is being
processed by a third-party (Re)Actor, we need to start processing the
second request before the reply to the first one arrives.64 As we’ll see below,
this observation has serious implications on the code (as we need to store
those multiple outstanding requests somewhere, search them, etc.).

Take 1. Naїv e Approach: Plain Messages (Will Work, But Is
Plain Ugly)

IMPORTANT: Don’t worry if you think that the code in Take
1 is ugly. It is. Please skip to OO-based, lambda-based, and fu-
tures-based versions if the code in Take 1 offends your sensibilities.

Both in theory and in practice, inter-(Re)Actor communications (as
well as all the other non-blocking stuff) can be dealt with merely via

64 Sometimes processing of the second request can be delayed until processing of the first is
completed, but this is a scalability killer, so it SHOULD be avoided as a Big Fat Rule of Thumb™.

Unfortunately, in
practice, we won’t be
able to use this kind
of blocking syntax
for our non-blocking
(Re)Actor (as we
shouldn’t block our
Cashier while our
requests to DB are
processed).

Both in theory and
in practice, all the
non-blocking calls can
be dealt with merely
via introducing yet
another bunch of
input events.

 Non-Blocking Processing · 83

 if(!db_ok)
 return false;
 gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 //blocking RPC call to Game World (Re)Actor:
 gameworld_ok = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 return gameworld_ok;
}

Unfortunately, in practice, we won’t be able to use this kind of blocking
syntax for our non-blocking (Re)Actor (as we shouldn’t block our Ca-
shier while our requests to the DB are processed); however, we are able
to use this Listing 5.Blocking.noexcept as a kind of “baseline” to judge
readability and maintainability of our non-blocking solutions. All the
essential logic we need to implement is described above within seven or
so lines of code of Listing 5.Blocking.noexcept; anything else that we’ll be
adding to achieve non-blocking operation is boiler-plate code, and we
need to avoid it to the fullest extent possible.

One additional observation that implicitly follows from our code be-
ing non-blocking is that there can be multiple outstanding requests to DB
and Game World(s): if another request comes in while the first is being
processed by a third-party (Re)Actor, we need to start processing the
second request before the reply to the first one arrives.64 As we’ll see below,
this observation has serious implications on the code (as we need to store
those multiple outstanding requests somewhere, search them, etc.).

Take 1. Naїv e Approach: Plain Messages (Will Work, But Is
Plain Ugly)

IMPORTANT: Don’t worry if you think that the code in Take
1 is ugly. It is. Please skip to OO-based, lambda-based, and fu-
tures-based versions if the code in Take 1 offends your sensibilities.

Both in theory and in practice, inter-(Re)Actor communications (as
well as all the other non-blocking stuff) can be dealt with merely via

64 Sometimes processing of the second request can be delayed until processing of the first is
completed, but this is a scalability killer, so it SHOULD be avoided as a Big Fat Rule of Thumb™.

Unfortunately, in
practice, we won’t be
able to use this kind
of blocking syntax
for our non-blocking
(Re)Actor (as we
shouldn’t block our
Cashier while our
requests to DB are
processed).

Both in theory and
in practice, all the
non-blocking calls can
be dealt with merely
via introducing yet
another bunch of
input events.

introducing yet another bunch of input events. Let’s say that (Re)Actor
A needs to request some data from (Re)Actor B. Within our mes-
sage-based “Take 1,” it will be implemented as:
♦♦ (Re)Actor A sending a request message to (Re)Actor B (how it is

delivered is a different story, which will be discussed in Volume IV).
♦♦ (Re)Actor B gets this request message as an input event, processes

it, and sends a reply message back to (Re)Actor A.
♦♦ (Re)Actor A gets this reply message as an input event, and per-

forms some (Re)Actor-specific actions.
As we can see, the logic is very simple and straightforward. However,
let’s see what happens when we try to implement Cashier processing
of our “simple item purchase” example in this manner. To do so, our
imaginary IDL may look as follows:

//Listing 5.Take1.IDL
//NB: we do need to specify types in IDL
// even if our programming language is purely dynamic
//Client-to-Cashier:
bool cashierPurchaseItem(int item_id);
//CASHIER-to-DB:
bool dbPurchaseItem(int user_id, int item_id);
//CASHIER-to-GameWorld
bool gameworldAddItem(int user_id, int item_id);

After this IDL is compiled, we may get something like:

//Listing 5.Take1.IDLGen
//PSEUDO-CODE
//GENERATED FROM IDL, DO NOT MODIFY!
const CASHIER_PURCHASEITEM_REQUEST = 123;
const CASHIER_PURCHASEITEM_RESPONSE = 124;
const DB_PURCHASEITEM_REQUEST = 125;
const DB_PURCHASEITEM_RESPONSE = 126;
const GAMEWORLD_ADDITEM_REQUEST = 127;
const GAMEWORLD_ADDITEM_RESPONSE = 128;
//returns Msg
function cashierPurchaseItem_request_compose(
 request_id, item_id) { /* IDL-generated code */ }
//returns (request_id, item_id)
function cashierPurchaseItem_request_parse(msg)

84 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 { /* IDL-generated code */ }
//returns Msg
function cashierPurchaseItem_response_compose(
 request_id, ret) { /* IDL-generated code */ }
//returns (request_id,returned_value)
function cashierPurchaseItem_response_parse(msg)
 { /* IDL-generated code */ }
//returns Msg
function dbPurchaseItem_request_compose(
 request_id, user_id, item_id)
 { /* IDL-generated code */ }
//returns (request_id, int user_id, int item_id)
function dbPurchaseItem_request_parse(msg)
 { /* IDL-generated code */ }
//returns Msg
function dbPurchaseItem_response_compose(
 request_id, ret) { /* IDL-generated code */ }
//returns (request_id,returned_value)
function dbPurchaseItem_response_parse(msg)
 { /* IDL-generated code */ }
//returns Msg
function gameworldAddItem_request_compose(
 request_id, user_id, item_id)
 { /* IDL-generated code */ }
//returns (request_id, user_id, item_id)
function gameworldAddItem_request_parse(msg)
 { /* IDL-generated code */ }
//returns Msg
function gameworldAddItem_response_compose(
 request_id, ret) { /* IDL-generated code */ }
//returns (request_id,returned_value)
function gameworldAddItem_response_parse(msg)
 { /* IDL-generated code */ }

Note that the above IDL-compiler-generated code implies that
we’re using request_ids to match incoming replies to previously issued
requests; in many cases, it is not strictly required. Strictly speaking,
in some usage scenarios we are able to get away with replying to, say,
dbPurchaseItem() not with a tuple (request_id,returned_value) as in
the example above, but with a tuple (user_id,item_id,bool). However,
the overall code won’t get that much simpler, and it will become much
less straightforward (without request_id, handling of scenarios such
as “what if there are two outstanding requests with the same user_id,”

As a result, our
code in our Cashier
(Re)Actor will look
like the following
(and this is where
things start getting
really ugly).

 Non-Blocking Processing · 85

 { /* IDL-generated code */ }
//returns Msg
function cashierPurchaseItem_response_compose(
 request_id, ret) { /* IDL-generated code */ }
//returns (request_id,returned_value)
function cashierPurchaseItem_response_parse(msg)
 { /* IDL-generated code */ }
//returns Msg
function dbPurchaseItem_request_compose(
 request_id, user_id, item_id)
 { /* IDL-generated code */ }
//returns (request_id, int user_id, int item_id)
function dbPurchaseItem_request_parse(msg)
 { /* IDL-generated code */ }
//returns Msg
function dbPurchaseItem_response_compose(
 request_id, ret) { /* IDL-generated code */ }
//returns (request_id,returned_value)
function dbPurchaseItem_response_parse(msg)
 { /* IDL-generated code */ }
//returns Msg
function gameworldAddItem_request_compose(
 request_id, user_id, item_id)
 { /* IDL-generated code */ }
//returns (request_id, user_id, item_id)
function gameworldAddItem_request_parse(msg)
 { /* IDL-generated code */ }
//returns Msg
function gameworldAddItem_response_compose(
 request_id, ret) { /* IDL-generated code */ }
//returns (request_id,returned_value)
function gameworldAddItem_response_parse(msg)
 { /* IDL-generated code */ }

Note that the above IDL-compiler-generated code implies that
we’re using request_ids to match incoming replies to previously issued
requests; in many cases, it is not strictly required. Strictly speaking,
in some usage scenarios we are able to get away with replying to, say,
dbPurchaseItem() not with a tuple (request_id,returned_value) as in
the example above, but with a tuple (user_id,item_id,bool). However,
the overall code won’t get that much simpler, and it will become much
less straightforward (without request_id, handling of scenarios such
as “what if there are two outstanding requests with the same user_id,”

As a result, our
code in our Cashier
(Re)Actor will look
like the following
(and this is where
things start getting
really ugly).

while possible, tends to be extremely tedious and error-prone). That’s
why I usually strongly prefer relying on request_ids consistently across
the code instead of inventing ad-hoc solutions for each RPC call. As
we’ll use the same model (with request_ids) for all our Takes, this choice
shouldn’t affect our analysis too much.

Back to our Listing 5.Take1.IDLGen. As we can see, generated
code actually has nothing to do with RPCs; rather, it is merely a set of
functions composing and parsing messages with the format defined in
IDL. As a result, our code in our Cashier (Re)Actor will look like the
following (and this is where things start getting really ugly):

//Listing 5.Take1.noexcept
//PSEUDO-CODE
//CAUTION: SEVERELY UGLY CODE AHEAD!!
const DBRequested = 0;
const GameWorldRequested = 1;
class PurchaseRqData {
 constructor(user_request_id_,
 user_id_, item_id) {
 status = DBRequested;
 user_request_id = user_request_id_;
 user_id = user_id_;
 item_id = item_id_;
 }
}
class CashierReactor {
 purchase_item_requests = new map();
 //map of request_ids into PurchaseRqData
 // we need it to account for multiple players
 // requesting purchases at the same time
};
function CashierReactor.react(Event ev) {
 switch(ev.type) {
 case CASHIER_PURCHASEITEM_REQUEST:
 {
 msg = ev.msg;
 (user_request_id, item_id) =
 cashierPurchaseItem_request_parse(msg);
 user_id = get_user_id(ev);
 request_id = new_request_id();
 msg2 = dbPurchaseItem_request_compose(
 request_id, user_id, item_id);
 send_msg_to(db_reactor_id, msg2);

86 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 purchase_item_requests.insert(
 request_id,
 PurchaseRqData(user_request_id,
 user_id, item_id));
 break;
 }

 case DB_PURCHASEITEM_RESPONSE:
 {
 msg = ev.msg;
 (request_id, db_ok) = dbPurchaseItem_parse(msg);
 found = purchase_item_requests.extract(request_id);
 assert found != null;
 assert found.status == DBRequested;
 if(!db_ok) {
 msg3 = cashierPurchaseItem_response_compose(
 found.user_request_id, false);
 send_msg_back_to(user_id, msg3);
 break;

 }

 gameworld_reactor_id =
 find_gameworld_for_user(found.user_id);
 msg4 = gameworldAddItem_request_compose(request_id,
 found.user_id, found.item_id);
 send_msg_to(gameworld_reactor_id, msg4);
 found.status = GameWorldRequested;
 break;
 }
 case GAMEWORLD_ADDITEM_RESPONSE:
 {
 msg = ev.msg;
 (request_id, gw_ok) =
 gameworldAddItem_response_parse(msg);
 found = purchase_item_requests.extract(request_id);
 assert found != null;
 assert found.status == GameWorldRequested;
 msg2 = cashierPurchaseItem_response_compose(
 found.user_request_id, gw_ok);
 send_msg_back_to(user_id, msg2);
 break;
 }
 }
}

If you feel that this
code was beaten with
an ugly stick, well,
that’s because it was.

 Non-Blocking Processing · 87

 purchase_item_requests.insert(
 request_id,
 PurchaseRqData(user_request_id,
 user_id, item_id));
 break;
 }

 case DB_PURCHASEITEM_RESPONSE:
 {
 msg = ev.msg;
 (request_id, db_ok) = dbPurchaseItem_parse(msg);
 found = purchase_item_requests.extract(request_id);
 assert found != null;
 assert found.status == DBRequested;
 if(!db_ok) {
 msg3 = cashierPurchaseItem_response_compose(
 found.user_request_id, false);
 send_msg_back_to(user_id, msg3);
 break;

 }

 gameworld_reactor_id =
 find_gameworld_for_user(found.user_id);
 msg4 = gameworldAddItem_request_compose(request_id,
 found.user_id, found.item_id);
 send_msg_to(gameworld_reactor_id, msg4);
 found.status = GameWorldRequested;
 break;
 }
 case GAMEWORLD_ADDITEM_RESPONSE:
 {
 msg = ev.msg;
 (request_id, gw_ok) =
 gameworldAddItem_response_parse(msg);
 found = purchase_item_requests.extract(request_id);
 assert found != null;
 assert found.status == GameWorldRequested;
 msg2 = cashierPurchaseItem_response_compose(
 found.user_request_id, gw_ok);
 send_msg_back_to(user_id, msg2);
 break;
 }
 }
}

If you feel that this
code was beaten with
an ugly stick, well,
that’s because it was.

If you feel that this code was beaten with an ugly stick, well, that’s
because it was (and if you take a look at Appendix 5.A, you’ll see that
the C++ version is even worse).

In Listing 5.Take1.noexcept, we have over 40 lines of code (over 50
for C++) with only 7 of them being really meaningful (and the rest be-
ing boilerplate stuff); this is pretty bad. Not only does it take a lot of
keystrokes to write, but, much more importantly, it is even worse to
read (the substance of what-we-want-to-do being completely hidden
within that mass of boilerplate code). Moreover, the code is very fragile,
making maintenance very difficult and error-prone. If such a piece of
code happens once for your million-LOC game that’s okay, but for a
real-world game, chances are that you will need these things much more
than once (and they will be much more complicated), and then it will
become a quite an unpleasant problem.

In other words, for a pretty much any non-trivial case, the code style
shown above will be very difficult to maintain. Yes, it is doable, but it
takes much more effort than is really necessary. Let’s see what we can
do to improve it.

Take 2. Void-Only RPCs (A Tiny Bit Better, Still Really Ugly)

Void-only non-blocking RPCs are probably the most popular way of
message passing in modern commercially-available game engines such
as Unity 5 or UE4 (see also discussion on them in Chapter 7). If relying
on void-only RPCs, the code on the receiving side will look less ugly
than for plain messages, but the code on the sending side will still be
pretty bad. Let’s see how our “simple item purchase” example will look
if we’re using void-only RPCs to implement it.

For void-only RPCs, our “simple item purchase” IDL may look
along the following lines:

//Listing 5.Take2.IDL
//Client-to-Cashier:
void cashierPurchaseItemRequest(int request_id, int item_id);
void cashierPurchaseItemResponse(int request_id, bool ret);
//CASHIER-to-DB:
void dbPurchaseItemRequest(int request_id,
 int user_id, int item_id);

LOC
Lines of Code is a
software metric used
to measure the size of
a computer program
by counting the
number of lines in the
text of the program’s
source code

—Wikipedia

88 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

void dbPurchaseItemResponse(int request_id, bool ret);
//CASHIER-to-GameWorld
void gameworldAddItemRequest(int request_id,
 int user_id, int item_id);
void gameworldAddItemResponse(int request_id, bool ret);

Let’s note that pretty often, void-RPC IDL is part of your regular pro-
gramming language (such as C# or C++), with functions designated
to become RPC functions being marked with something like [RPC],
[Command], or UFUNCTION(Client). In this case, those marked
functions effectively form an “intra-language” IDL; we’ll discuss a
bit more about such intra-language IDLs in popular game engines in
Chapter 7.

On the other hand, for our current purposes of handling non-block-
ing calls, it is not important whether IDL is external or intra-language.
Whatever our IDL, after it is compiled, we may get something along the
lines of:65

//Listing 5.Take2.IDLGen
//PSEUDO-CODE
//GENERATED FROM IDL, DO NOT MODIFY!
function cashierPurchaseItemRequest(
 r, //CashierReactor object
 peer_reactor, request_id, item_id) {
 //for Cashier, this is an RPC function
 // to be implemented
}
function cashierPurchaseItemResponse(
 peer_reactor, request_id, ret) {
 //for Cashier, this is an RPC stub
 // to be called
}
function dbPurchaseItemRequest(
 peer_reactor, request_id,
 user_id, item_id) {
 //for Cashier, this is an RPC stub
 // to be called
}

65 NB: this piece of code usually stays hidden from a developer’s view; I still list it here to
demonstrate how the whole thing works together for those not really familiar with IDL mechanics.

 Non-Blocking Processing · 89

function dbPurchaseItemResponse(r,
 peer_reactor, request_id, ret) {
 //for Cashier, this is an RPC function
 // to be implemented
}
function gameworldAddItemRequest(
 peer_reactor, request_id, user_id, item_id) {
 //for Cashier, this is an RPC stub
 // to be called
}
function gameworldAddItemResponse(r,
 peer_reactor, request_id, ret) {
 //for Cashier, this is an RPC function
 // to be implemented
}

With this in mind, the code within our Cashier (Re)Actor will look
more or less as follows:

//Listing 5.Take2.noexcept
//PSEUDO-CODE
//CAUTION: RATHER UGLY CODE AHEAD!!
const DBRequested = 0;
const GameWorldRequested = 1;
class PurchaseRqData {//same as for Take 1
 constructor(user_request_id_,
 user_id_, item_id) {
 status = DBRequested;
 user_request_id = user_request_id_;
 user_id = user_id_;
 item_id = item_id_;
 }
}
class CashierReactor {//same as for Take 1
 purchase_item_requests = new map();
 //map of request_ids into PurchaseRqData
 // we need it to account for multiple players
 // requesting purchases at the same time
};
//implementing RPC functions (for prototypes from IDL):
function cashierPurchaseItemRequest(r,
 peer_reactor, request_id, item_id) {
 user_id = get_user_id(peer_reactor);
 request_id = new_request_id();
 dbPurchaseItemRequest(db_reactor_id, request_id,

90 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 user_id, item_id);
 r.purchase_item_requests.insert(
 request_id,
 PurchaseRqData(user_request_id,
 user_id, item_id));
}
function dbPurchaseItemResponse(r,
 peer_reactor, request_id, db_ok) {
 found = r.purchase_item_requests.extract(request_id);
 assert found != null;
 assert found.status == DBRequested;
 if(!db_ok) {
 user_reactor =
 find_user_reactor_id(found.user_id);
 cashierPurchaseItemResponse(user_reactor,
 found.user_request_id, false);
 return;
 }

 gameworld_reactor_id =
 find_gameworld_for_user(found.user_id);
 gameworldAddItemRequest(gameworld_reactor_id,
 request_id,
 found.user_id, found.item_id);
 found.status = GameWorldRequested;
}
function gameworldAddItemResponse(
 peer_reactor, request_id, gw_ok) {
 found = r.purchase_item_requests.find(request_id);
 assert found != null;
 assert found.status == GameWorldRequested;
 user_reactor =
 find_user_reactor_id(found.user_id);
 cashierPurchaseItemResponse(user_reactor,
 found.user_request_id, gw_ok);
}

I see the code in our Take 2 as a relatively slight improvement over Take
1. From 40+ lines of code we’re down to 30 or so (for C++ in Appendix
5.A, it is down from 50+ to 35); it is indeed an improvement, but with
only 7 lines being meaningful, it is still about 4x overhead. Even worse,
we’re still managing outstanding requests in purchase_item_requests
manually and at application-level, which is very error-prone.

I see the code in our
Take 2 as a relatively
slight improvement
over Take 1.

 Non-Blocking Processing · 91

Take 3. OO-Style: Less Error-Prone, But Still Way Too Much
Boilerplate

Our third attempt at the “how to handle return values from remote
procedure call” problem will be in an Object-Oriented (OO) style. We
will create a callback class, register it with our (Re)Actor, and then it
will be our Infrastructure Code dealing with most of the mechanics
within. Rewriting our “simple item purchase” example in OO-style will
significantly change the whole thing. While IDL will be the same as
in Listing 5.Take1.IDL, both generated code and calling code will look
very different.

//Listing 5.Take3.IDL, same as 5.Take1.IDL
//Client-to-Cashier:
bool cashierPurchaseItem(int item_id);
//CASHIER-to-DB:
bool dbPurchaseItem(int user_id, int item_id);
//CASHIER-to-GameWorld
bool gameworldAddItem(int user_id, int item_id);

For OO-style asynchronous calls, stub code generated from IDL by IDL
compiler may look as follows:

//Listing 5.Take3.IDLGen
//PSEUDO-CODE
//GENERATED FROM IDL, DO NOT MODIFY!
function cashierPurchaseItem(r,
 reply_handle,
 //reply_handle is an object which allows
 // calling reply() function on it to send reply
 // back to requestor
 //reply_handle MAY be copied,
 // if it is necessary to postpone replying
 // until later
 item_id) {
 //for Cashier, this is an RPC function
 // to be implemented
}
function dbPurchaseItem(r,
 dbPurchaseItemCb,
 //dbPurchaseItemCb.react() will be called when the
 // reply is obtained

92 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 reactor_to, user_id, item_id) {
 //sends a message, calls dbPurchaseItemCb.react() on
 // receving reply;
 // react() will receive result of the RPC call
 // on the other side as parameter
 //for Cashier, this is an RPC stub
 // to be called
}
function gameworldAddItem(r,
 gwAddItemCb,
 reactor_to, user_id, item_id) {
 //sends a message, calls gwAddItemCb.react()
 // on receiving reply;
 // react() will receive result of the RPC call
 //for Cashier, this is an RPC stub
 // to be called
}

Then, our (Re)Actor code will look as follows:
//Listing 5.Take3.noexcept
//PSEUDO-CODE
//CAUTION: VERBOSE CODE AHEAD!
//TAKE 3 IS LESS ERROR-PRONE THAN TAKES 1-2,
// BUT STILL HAS LOTS OF BOILERPLATE CODE
class DbPurchaseItemCallbackA {
 constructor(r_, reply_handle_,
 user_id_, item_id_) {
 r = r_;
 reply_handle = reply_handle_;
 user_id = user_id_;
 item_id = item_id_;
 }

 function react(db_ok) {
 if(!db_ok) {
 reply_handle.reply(false);
 return;
 }
 gameworld_reactor_id =
 r.find_gameworld_for_user(user_id);
 cb = new GameworldAddItemCallbackA(
 r, reply_handle,
 user_id, item_id);
 gameworldAddItem(cb, gameworld_reactor_id,
 user_id, item_id);
 }

 Non-Blocking Processing · 93

}
class GameworldAddItemCallbackA {
 constructor(r_, reply_handle_,
 user_id_, item_id_) {
 r = r_;
 reply_handle = reply_handle_;
 user_id = user_id_;
 item_id = item_id_;
 }
 function react(gw_ok) {
 reply_handle.reply(gw_ok);
 }
}
function cashierPurchaseItem(r,
 reply_handle, item_id) {
 user_id = get_user_id(reply_handle);
 cb = new DbPurchaseItemCallbackA(
 r, reply_handle,
 user_id, item_id);
 dbPurchaseItem(cb, db_reactor_id,
 user_id, item_id);
}

As we can see, Take 3 is less error-prone than the code in Takes 1-2
(keeping purchase_item_requests out of application level certainly
qualifies as a Good Thing™ in this regard), but…Take 3 is still verbose,
and still relatively poorly readable as a result. For each meaningful line
of code, there are still about 2 lines of boilerplate stuff (make it 4 for
C++); on the other hand, it is IMO easier to parse this boilerplate code
out while reading than for Takes 1-2. On the third hand, and probably
most importantly, if we compare the code in Listing 5.Take3.noexcept
to our original blocking code in Listing 5.Blocking.noexcept, we’ll notice
that while parts of the code are more or less the same, these parts are
reordered in Listing 5.Take3.noexcept; this tends to create quite a bit of
confusion, and significantly reduce readability and maintainability of
the code. In some programming languages (see, for example, Listing
5.A.Take3.noexcept in Appendix A for a C++ example) it might be
possible to have the same ordering as in our original blocking code, but
it often comes at the cost of the additional few lines of code.

In [Fugal], such approaches are named “callback hell.” Well, I
wouldn’t be that categorical (after all, there was life before lambdas
and coroutines), but, yes, it is indeed rather annoying (and has limited

As we can see, Take
3 is less error-prone
than the code in
Takes 1-2, but it is still
verbose, and still rela-
tively poorly readable
as a result.

94 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

manageability). If your programming language doesn’t support any-
thing better than OO-style callbacks, you might need to use this kind
of stuff, but if your language supports lambdas, the very same thing can
be written in a significantly more manageable manner (see Take 4 and
subsequent takes below).

Exceptions

BTW, now, as we got rid of those really ugly Takes 1 and 2 (most impor-
tantly, any additional complexity would make them absolutely incom-
prehensible), we can start thinking about adding exception handling to
our non-blocking RPC calls.

The very first problem we’re about to discuss in this regard is “how
to handle exceptions that happened between our callbacks.” As one ex-
ample, any of our RPC calls can run into an unreachable server or some
other communication problem; in such cases, the problem needs to be
reported to the caller. From a programming point of view, in blocking
code such situations are usually handled via throwing an exception,
and we’d like to use the same familiar concept for our non-blocking
RPC calls. On the other hand, most of the time we want to have uniform
handling of the exceptions, with an option to use the same exception
handler regardless of whether the exception happened between our
callbacks or within one of them.

To start comparing non-blocking-solutions-supporting-exceptions,
let’s make another baseline code (once again, it will be the blocking one,
which we can compare against all our non-blocking takes). Let’s con-
sider the same blocking example from our Listing 5.Blocking.noexcept,
but with added exception handling:

//Listing 5.Blocking.except
//PSEUDO-CODE
function purchaseItem(item_id, connection_id) {
 try {
 user_id = get_user_id(connection_id);
 db_ok = dbPurchaseItem(db_reactor_id,
 user_id, item_id);
 if(!db_ok)
 return false;
 gameworld_reactor_id =
 find_gameworld_for_user(user_id);

How to handle excep-
tions that happened
between our callbacks.

 Non-Blocking Processing · 95

 gameworld_ok = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 return gameworld_ok;
 }
 catch(x) {
 LogException(x);
 return false;
 }
}

When trying to implement the same thing in a non-blocking manner,
and on top of our Take 3, we can add another member function to all
the callback objects; this except() function would take an exception
object as a parameter. Then, if the exception has happened during the
RPC call, we’d get a call to except() instead of the usual call to react().

This leads to the following Take 3a (implementing the same thing as
in Listing 5.Blocking.except, but in a non-blocking manner):

//Listing 5.Take3a.except
//PSEUDO-CODE
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
//CAUTION: VERBOSE CODE AHEAD!
class DbPurchaseItemCallbackA {
 constructor(
 r_, reply_handle_,
 user_id_, item_id_) {
 r = r_;
 reply_handle = reply_handle_;
 user_id = user_id_;
 item_id = item_id_;
 }

 function react(db_ok) {
 try {
 if(!db_ok) {
 reply_handle.reply(false);
 return;
 }
 gameworld_reactor_id =
 r.find_gameworld_for_user(user_id);
 cb = new GameworldAddItemCallbackA(
 r, reply_handle,

96 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 user_id, item_id);
 gameworldAddItem(cb, gameworld_reactor_id,
 user_id, item_id);
 }
 catch(x) {
 handleCashierPurchaseError(reply_handle, x);
 }
 }
 function except(x) {
 handleCashierPurchaseError(reply_handle, x);
 }
}
class GameworldAddItemCallbackA {
 constructor(r_, reply_handle_,
 user_id_, item_id_) {
 r = r_;
 reply_handle = reply_handle_;
 user_id = user_id_;
 item_id = item_id_;
 }
 function react(gw_ok) {
 reply_handle.reply(gw_ok);
 }
 function except(x) {
 handleCashierPurchaseError(reply_handle, x);
 }
}
function cashierPurchaseItem(r, reply_handle,
 item_id) {
 try {
 user_id = get_user_id(reply_handle);
 cb = new DbPurchaseItemCallbackA(
 r, reply_handle,
 user_id, item_id);
 dbPurchaseItem(cb, db_reactor_id,
 user_id, item_id);
 }
 catch(x) {
 handleCashierPurchaseError(x);
 }
}
function handleCashierPurchaseError(
 reply_handle, x) {
 LogException(x);
 reply_handle.reply(false);
}

 Non-Blocking Processing · 97

As we can see, our code from Take 3 became significantly uglier (and
more verbose) after we added exception handling. While adding ex-
ceptions to our blocking code has taken only 4 extra LOC, our Take 3a
version added 15 LOC to express the same exception-handling logic.
Not fatal, but we can still do better.

BTW, there is an alternative approach for adding exception support
to Take 3; namely, instead of adding except() function, we could add an
exception parameter to all react() functions (this parameter being null
if the exception didn’t happen, and being a pointer to the exception
otherwise). This alternative approach, while looking more similar to
that of Node.js (see also the discussion of Take 4 below), won’t change
much “how ugly or verbose our Take 3a is”; in particular, repeated calls
to handleCashierPurchaseError() will stay.

Cascading Exception Handlers
To allow for less-boilerplate and more-to-the-point exception han-
dling, we need to “cascade” exception handlers one way or another. For
example, we could say that:
♦♦ Infrastructure Code, in addition to calling except() when exception

occurs in a remote call, also calls except() when an exception
occurs within react().

♦♦ There is an alternative form of constructor for *Callback objects,
taking another *Callback as an input parameter.66

 ▪ Then, for *Callback objects created with such an alternative
constructor, “parent” except() will be called.

This leads us to the following Take 3b:

//Listing 5.Take3b.except
//PSEUDO-CODE
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
//CAUTION: VERBOSE CODE AHEAD!
class DbPurchaseItemCallbackA {
 constructor(r_, reply_handle_,
 user_id_, item_id_) {
 r = r_;
 reply_handle = reply_handle_;
 user_id = user_id_;

66 To do so, we’ll need to derive all *Callback classes from common base.

Our code from Take 3
became significantly
uglier (and more ver-
bose) after we added
exception handling.

98 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 item_id = item_id_;
 }

 function react(db_ok) {
 try {
 if(!db_ok) {
 reply_handle.reply(false);
 return;
 }
 gameworld_reactor_id =
 r.find_gameworld_for_user(user_id);
 cb = new GameworldAddItemCallbackA(
 this, /* ‘inherits’ exception
 handler from
 previous callback */
 reply_handle,
 user_id, item_id);
 gameworldAddItem(cb, gameworld_reactor_id,
 user_id, item_id);
 }
 catch(x) {
 handleCashierPurchaseError(reply_handle, x);
 }
 }
 function except(x) {
 handleCashierPurchaseError(reply_handle, x);
 }
}
class GameworldAddItemCallbackA {
 constructor(r_, reply_handle_,
 user_id_, item_id_) {
 r = r_;
 reply_handle = reply_handle_;
 user_id = user_id_;
 item_id = item_id_;
 }
 function react(gw_ok) {
 reply_handle.reply(gw_ok);
 }
 //no ‘except()’ here means that it is ‘inherited’
 // from the previous callback
}
function cashierPurchaseItem(r, reply_handle,
 item_id) {
 try {
 user_id = get_user_id(reply_handle);

 Non-Blocking Processing · 99

 cb = new DbPurchaseItemCallbackA(
 r, reply_handle,
 user_id, item_id);
 dbPurchaseItem(cb, db_reactor_id,
 user_id, item_id);
 }
 catch(x) {
 handleCashierPurchaseError(x);
 }
}
function handleCashierPurchaseError(
 reply_handle, x) {
 LogException(x);
 reply_handle.reply(false);
}

As we can see, with Take 3b, we’re able to reduce the number of extra
LOC necessary to implement exception handling (the one that took
only 4 lines in original blocking code), from 15 to a somewhat more
bearable 10 or so. However, this reduction comes at the cost of the loss
of some flexibility and quite a bit of difficult-to-spot-magic. In particu-
lar, under this model, GameworldAddItemCallbackA being constructed
from this or from r has different semantics, and the difference can be
difficult to notice, leaving the potential for difficult-to-spot errors.

Bottom line about exceptions and Take3a/3b:
♦♦ Based on Take 3 (which is significantly better than Take 1/Take 2),

we were able to introduce exceptions.
♦♦ It is even bearable (personally, if forced to choose between Take 3a

and Take 3b, I’d prefer Take 3a as a more straightforward one, but
the difference is not too great).

♦♦ However, it is still a long shot from the original blocking code on
Listing 5.Blocking.except.

Take 4. Lambda Pyramid

For a long while, Take 3 was more or less the best we could use. However,
as soon as we got lambda functions with closures (for C++, more or less
since C++11), the whole non-blocking thing became significantly easier
to write down. First, we could simply replace our OO-style classes with
lambda functions. In this case, code generated from the very same IDL…

As soon as we got
lambda functions with
closures, the whole
non-blocking thing
became significantly
easier to write down.

100 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

//Listing 5.Take4.IDL, same as 5.Take1.IDL and 5.Take3.IDL
//Client-to-Cashier:
bool cashierPurchaseItem(int item_id);
//CASHIER-to-DB:
bool dbPurchaseItem(int user_id, int item_id);
//CASHIER-to-GameWorld
bool gameworldAddItem(int user_id, int item_id);

…may look as follows:
//LISTING 5.Take4.IDLGen
//PSEUDO-CODE
//GENERATED FROM IDL, DO NOT MODIFY!
function cashierPurchaseItem(r,
 reply_handle,
 item_id) {
 //for Cashier, this is an RPC function
 // to be implemented
}
function dbPurchaseItem(
 reactor_peer,
 user_id, item_id, cb) {
 //for Cashier, this is an RPC stub
 // to be called
}
function gameworldAddItem(reactor_peer,
 user_id, item_id, cb) {
 //for Cashier, this is an RPC stub
 // to be called
}

Then, the relevant part of our CashierReactor’s code may be written
along the lines of:

//LISTING 5.Take4.except
//PSEUDO-CODE
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
//BEWARE: “LAMBDA PYRAMID” ROLLER COASTER AHEAD!
// NOT FOR THE FAINT OF HEART!
function ifCashierPurchaseError(x) {
 if(x) {
 LogException(x);
 return true;
 }
 return false;
}
function cashierPurchaseItem(r,
 reply_handle, item_id) {
 user_id = get_user_id(reply_handle);

 Non-Blocking Processing · 101

 dbPurchaseItem(
 db_reactor_id,
 user_id, item_id,
 λ(x, db_ok) {
 if(ifCashierPurchaseError(x))
 return;
 if(!db_ok) {
 reply_handle.reply(false);
 return;//returns from current
 // lambda function
 }
 gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id,
 λ(x, gw_ok){
 if(ifCashierPurchaseError(x))
 return;
 reply_handle.reply(gw_ok);
 }//end of 2nd lambda
);//end of call to gameworldAddItem()
 }//end of 1st lambda
);//end of call to dbPurchaseItem
}

Compared to our previous attempts, such a “lambda pyramid” is sig-
nificantly less verbose. Instead of Take 3, which has about 35 lines of
code for a meaningful 11 or so, here we have just about 20 LOC total
(or just about 2x the overhead instead of the previous 3x). And I’d say it
is more readable, too; sure, when reading Take 4 it is necessary to skip
those lambdas, but as soon as we learn to ignore them, the code in Take
4 becomes significantly closer to our Holy Grail of Listing 5.Blocking.
noexcept. Still, there are two significant differences between Take 4 and
the original Listing 5.Blocking.noexcept. First, with “lambda pyramid”
in Take 4, there are additional indents not present in the original
(which tends to cause quite a bit of confusion).67 Probably even more
importantly, these indents outline a more generic issue with lambda
pyramids – the code which is linear in our originally blocking code,
becomes nested with lambda pyramids; while not fatal, it doesn’t help
readability of the code, especially for larger code bases.

67 And removing the indents is not a really good option, either — without them, finding those end-
of-lambdas will become significantly more difficult, which doesn’t help in sizeable projects.

Compared to our pre-
vious attempts, such
a “lambda pyramid”
is significantly less
verbose. And I’d say it
is more readable, too.

102 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

In fact, Take 4 is very close to the way Node.js programs typically
handle asynchronous calls. Actually, as we’ll discuss below in the
Similarities to Node.js section, the whole task we’re facing with our
non-blocking (Re)Actors (which can be described as “event-driven
programming with support for non-blocking calls”) is almost exactly
the same as the one for Node.js, so there is no wonder that the methods
we’re using are similar. On the other hand, it doesn’t mean that we can’t
do better than Node.js, and we’ll discuss such options in Takes 5 and up.

Cascaded Exception Handling, Lambda Style

As we discussed above, Takes 3a/3b can handle exceptions. Semanti-
cally similar (though syntactically very different) exception handling
can be added to Take 4 (with cascading achieved at the cost of passing
exception-handling lambda down the stack):

//LISTING 5.Take4a.except
//PSEUDO-CODE
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
//BEWARE: “LAMBDA PYRAMID” ROLLER COASTER AHEAD!
// NOT FOR THE FAINT OF HEART!
function cashierPurchaseItem(r,
 reply_handle, item_id) {
 user_id = get_user_id(reply_handle);
 catc =
 λ(x) {
 LogException(x);
 };
 dbPurchaseItem(
 db_reactor_id, user_id, item_id,
 λ(db_ok){
 if(!db_ok) {
 reply_handle.reply(false);
 return;//returns from current lambda
 }
 gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gameworldAddItem(
 gameworld_reactor_id, user_id, item_id,
 λ(x, gw_ok) {
 reply_handle.reply(gw_ok);
 }, catc);
 }, catc);
}

With lambda
pyramids, it is still
difficult to express
the concept of “wait
for more than one
thing to complete.”
In practice, it usually
leads to unnecessary
sequencing, adding to
latencies.

 Non-Blocking Processing · 103

In fact, Take 4 is very close to the way Node.js programs typically
handle asynchronous calls. Actually, as we’ll discuss below in the
Similarities to Node.js section, the whole task we’re facing with our
non-blocking (Re)Actors (which can be described as “event-driven
programming with support for non-blocking calls”) is almost exactly
the same as the one for Node.js, so there is no wonder that the methods
we’re using are similar. On the other hand, it doesn’t mean that we can’t
do better than Node.js, and we’ll discuss such options in Takes 5 and up.

Cascaded Exception Handling, Lambda Style

As we discussed above, Takes 3a/3b can handle exceptions. Semanti-
cally similar (though syntactically very different) exception handling
can be added to Take 4 (with cascading achieved at the cost of passing
exception-handling lambda down the stack):

//LISTING 5.Take4a.except
//PSEUDO-CODE
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
//BEWARE: “LAMBDA PYRAMID” ROLLER COASTER AHEAD!
// NOT FOR THE FAINT OF HEART!
function cashierPurchaseItem(r,
 reply_handle, item_id) {
 user_id = get_user_id(reply_handle);
 catc =
 λ(x) {
 LogException(x);
 };
 dbPurchaseItem(
 db_reactor_id, user_id, item_id,
 λ(db_ok){
 if(!db_ok) {
 reply_handle.reply(false);
 return;//returns from current lambda
 }
 gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gameworldAddItem(
 gameworld_reactor_id, user_id, item_id,
 λ(x, gw_ok) {
 reply_handle.reply(gw_ok);
 }, catc);
 }, catc);
}

With lambda
pyramids, it is still
difficult to express
the concept of “wait
for more than one
thing to complete.”
In practice, it usually
leads to unnecessary
sequencing, adding to
latencies.

Arguably, Take 4a is the best one so far, but while it does make the code
certainly less verbose than, say, Take 3a/3b, it does not exactly qualify
as “easily readable,” especially compared to our Holy Grail of Listing
5.Blocking.except.

It should also be noted that with lambda pyramids such as those in
Take 4/4a, it is still difficult to express the concept of “wait for more than
one thing to complete.”68 In practice, it usually leads to unnecessary
sequencing, adding to latencies (which may or may not be a problem
for your purposes, but is still a thing to keep in mind).

On the other hand, as soon as we have lambdas in our programming
toolbox, we can make another attempt to write our asynchronous code, and
to obtain the code that is free from these limitations of “lambda pyramids.”

Take 5. (Re)Actor Futures

While the ‘lambda pyramid’ version from Take 4 is indeed a significant
improvement (especially over Take 1–Take 2), it is still miles away
from the obviousness of blocking code, so let’s see how we can improve

68 In fact, this problem is not specific to lambdas; for all the Takes 1 to 4a, expressing “wait for more
than one thing to complete,” while possible, is a Rather Big Headache™ (and quite error-prone,
too).

104 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

it further. For our Take 5, we will use a concept known as “futures.”
Essentially, “future” (a.k.a. “promise”) is a placeholder for the result of
a certain operation (in our case, it can be any non-blocking operation).
Originally, “future” is in “initial” state (also known as “non-computed”),
and doesn’t have any valid data; then, after the result is known, it is in a
“computed” state (and can return a valid result).

For our purposes, we’ll use a special type of future: the one intended
to work with (Re)Actors.69 With our ReactorFutures, IDL-generated
code for the very same “item purchase” example may look as follows:

//LISTING 5.Take5.IDLGen
//PSEUDO-CODE
//GENERATED FROM IDL, DO NOT MODIFY!
function cashierPurchaseItem(r,
 reply_handle, item_id) {
 //for Cashier, this is an RPC function
 // to be implemented
}
function dbPurchaseItem(r, reactor_peer,
 user_id, item_id) {
 //for Cashier, this is an RPC stub
 // to be called
}//returns ReactorFuture object

function gameworldAddItem(r, reactor_peer,
 user_id, item_id) {
 //for Cashier, this is an RPC stub
 // to be called
}//returns ReactorFuture object

And then the calling code will look along the lines of:70

//LISTING 5.Take5.except
//PSEUDO-CODE
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
function cashierPurchaseItem(r,
 reply_handle, item_id) {

69 As we’ll see below, while our ReactorFutures are conceptually similar to thread-oriented futures
such as std::future<>, they’re still quite different in the way they can be used.

70 Note that it is also possible to write future-based code in Take 4/Take 4a style without declaring
gw_ok in advance and creating a “pyramid” instead. However, most of the time, such a style will
be too similar to Take 4/Take 4a to obtain any significant benefits from using futures.

 Non-Blocking Processing · 105

 user_id = get_user_id(reply_handle);
 catc =
 λ(x) {
 LogException(x);
 };
 //here db_ok is a ReactorFuture object
 db_ok = dbPurchaseItem(
 r, db_reactor_id,
 user_id, item_id);
 //NB: infrastructure code
 // should effectively postpone
 // all the exceptions within
 // until except() handler is provided
 gw_ok = new ReactorFuture(this);
 //we need to create/declare it here
 // to have something to refer to
 // within lambdas
 db_ok.then(λ(){
 if(!db_ok.value()) {
 reply_handle.reply(false);
 return;//returns from current lambda function
 }
 gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gw_ok = gameworldAddItem(
 r, gameworld_reactor_id,
 user_id, item_id);
 }).except(catc);
 gw_ok.then(λ(){
 reply_handle.reply(gw_ok.value());
 }).except(catc);
}

IMO, Take 5, while technically having a few more lines than Take 4/
Take 4a, is significantly more straightforward and easier readable. Most
importantly, there is no more “pyramid,” and the code-that-was-linear-
in-blocking-code once again looks linear in Take 5. Out of all the takes
so far, I’d argue that Take 5 is the closest to the Listing 5.Blocking.except
so far.

Also, with some support from infrastructure code, it is reasonably
easy to express a “wait for several things to complete” with ReactorFu-
tures; for example:

IMO, Take 5, while
technically having a
few more lines than
Take 4/Take 4a, is
significantly more
straightforward and
easier readable.

106 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

//LISTING 5.Take5.parallel
a = rpcA(r);//’a’ is a ReactorFuture object
b = rpcB(r);//’b’ is also a ReactorFuture object
both = new ReactorFutureBoth(r,a,b);
 //’both’ is a special kind of ReactorFuture, which
 // has then() function waiting for
 // both ‘a’ and ‘b’ futures to complete before invoking
 // its own continuation
both.then(λ(){
 //...
});

On the other hand, Take 5 is still not ideal. In particular, handling of
exceptions is still not obvious, especially when compared to Listing
5.Blocking.noexcept. Which means <drum roll /> that there will be even
more takes down the road.

Similarities and Differences from Existing Futures/Promises

Up to now, when talking about “futures,” we referred to an abstract
ReactorFuture; now we’ll try to compare it to existing implementations
of futures (also referred to as “promises”) in various programming
languages.

Traditionally, all the functionality provided by existing futures/
promises can be divided into two large families:
♦♦ Futures allowing to register a callback to be called when the value

in the future becomes available. For such futures, a callback-reg-
istering function such as then(), or when(), is necessary. Such
futures, in turn, can be further subdivided into two subcategories:

 ▪ Callback is always called within the same thread as the-
thread-that-has-registered it.

 ▪ Callback can be called from any thread.
♦♦ Futures allowing to wait for a future value to become available, and

then proceed. This is usually handled by an inherently blocking
wait() function (or by get() function implicitly blocking until the
value becomes available).

Out of these significantly different types of processing, for our
non-blocking (Re)Actors, only the callback-called-from-the-same-
thread will do. And existing implementations of futures/promises

Existing implemen-
tations of futures/
promises exhibit a
rather wide spectrum
of behavior.

 Non-Blocking Processing · 107

//LISTING 5.Take5.parallel
a = rpcA(r);//’a’ is a ReactorFuture object
b = rpcB(r);//’b’ is also a ReactorFuture object
both = new ReactorFutureBoth(r,a,b);
 //’both’ is a special kind of ReactorFuture, which
 // has then() function waiting for
 // both ‘a’ and ‘b’ futures to complete before invoking
 // its own continuation
both.then(λ(){
 //...
});

On the other hand, Take 5 is still not ideal. In particular, handling of
exceptions is still not obvious, especially when compared to Listing
5.Blocking.noexcept. Which means <drum roll /> that there will be even
more takes down the road.

Similarities and Differences from Existing Futures/Promises

Up to now, when talking about “futures,” we referred to an abstract
ReactorFuture; now we’ll try to compare it to existing implementations
of futures (also referred to as “promises”) in various programming
languages.

Traditionally, all the functionality provided by existing futures/
promises can be divided into two large families:
♦♦ Futures allowing to register a callback to be called when the value

in the future becomes available. For such futures, a callback-reg-
istering function such as then(), or when(), is necessary. Such
futures, in turn, can be further subdivided into two subcategories:

 ▪ Callback is always called within the same thread as the-
thread-that-has-registered it.

 ▪ Callback can be called from any thread.
♦♦ Futures allowing to wait for a future value to become available, and

then proceed. This is usually handled by an inherently blocking
wait() function (or by get() function implicitly blocking until the
value becomes available).

Out of these significantly different types of processing, for our
non-blocking (Re)Actors, only the callback-called-from-the-same-
thread will do. And existing implementations of futures/promises

Existing implemen-
tations of futures/
promises exhibit a
rather wide spectrum
of behavior.

exhibit a rather wide spectrum of behavior:
♦♦ Futures providing only wait()/get() functionality (which is useless

for our non-blocking (Re)Actors). C++ is particularly guilty of
implementing futures this way; in particular, both std::future<>
and boost:future<> provide only blocking functionality.

♦♦ Futures providing only then()/when() functionality, and providing
guarantees that the callback will be called from the same thread.
These are exactly the futures we want. Such behavior is typical for
JavaScript and Node.js futures/promises.

♦♦ Dual-use futures providing both wait() and then()/when(). They
can be used within our (Re)Actors, but care should be taken not to
use blocking behavior (among other things, in distributed systems,
blocking wait() or potentially-blocking get() can easily lead to
rarely happening deadlocks <ouch and double-ouch! />).

 ▪ One example of dual-use futures includes C++ folly::fu-
ture<> (NB: when using folly:future<>, be extra careful to
provide right Executor to ensure that callback is executed
within the same thread, or at least to provide infrastruc-
ture-level thread sync).

 ▪ Another example of dual-use futures is Java 8’s Completa-
bleFuture<>.

 ▪ Overall, I do not recommend using dual-use futures in your
app-level code directly; on the other hand, using dual-use
futures to implement 99% of your own infrastructure-code
ReactorFuture is a very different story altogether, and
is perfectly fine — as long as you don’t expose blocking
functionality to the users of your ReactorFuture.

Of course, in addition to those-libraries-explicitly-mentioned-above,
there are dozens of others; still, they will fall into one of the categories
above — and, in general, will need to be handled pretty much along the
same lines as the respective examples.

Overall, whatever you're using within your (Re)Actors:

•♦ (Re)Actor futures MUST provide callbacks.
•♦ Moreover, (Re)Actor futures MUST guarantee
that accessing members of our (Re)Actor from all the
callbacks is fine without any thread synchronization.

108 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Take 5 Summary

Our Take 5 IMO represents yet another significant improvement over
the previous Takes (in particular, it is closer to the original Blocking
code than our other attempts, and also allows for easy handling of con-
current execution). And, just like our other Takes, it manages to avoid
blocking, and doesn’t require dreaded thread sync to access the state of
our (Re)Actor.

On the other hand, certain constructs (like loops and try-catch
blocks) are still quite confusing under Take 5. Let’s see whether we can
improve it further.

Take 6. Code Builder

When trying to improve readability of the try/catch code in Take 5, an
interesting thought has crossed my mind: what if we allow “construct-
ing” the whole code tree (with all the control operators, and not just
simple then()) using lambda callbacks as a basic building block? Let’s
see where this approach has led us71 so far. However, before looking at
the code, let’s note that:
♦♦ The pseudo-code below was reconstructed from C++ code (which

can be found in Appendix 5.A); for different programming
languages, YMMV.

♦♦ This is still a very experimental field; in other words: we can easily
run into bugs that can render the whole Take 6 unusable at some
point a bit later.

//LISTING 5.Take6.except
//PSEUDO-CODE
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
function cashierPurchaseItem(r,
 reply_handle, item_id) {
 user_id = get_user_id(reply_handle);
 db_ok = Future(r);
 gw_ok = Future(r);
 CCode code(
 ttry(
 λ(){

71 More specifically, Dmitri Ligoum and myself as part of the unfortunately-currently-frozen Autom
project [Ligoum and Ignatchenko].

What if we allow “con-
structing” the whole
code tree (with all the
control operators, and
not just simple then())
using lambda callbacks
as a basic building
block.

 Non-Blocking Processing · 109

 db_ok = dbPurchaseItem(
 db_reactor_id,
 user_id, item_id);
 },
 waitFor(db_ok),
 λ(){
 if(!db_ok.value()) {
 reply_handle.reply(false);
 return eexit();
 //returns from the whole CCode block
 }
 gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gw_ok = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 },
 waitFor(gw_ok),
 λ() {
 reply_handle.reply(gw_ok.value());
 }
)//ttry
 .ccatch(λ(x) {
 LogException(x);
 }
);//CCode
}

Here, ttry is analogous to conventional try, and can contain a list of
items — with each of the items being either a lambda function or a spe-
cial waitFor() call; the latter (not surprisingly) will wait for a specified
Future to be calculated. The whole thing within ttry above can be read
as “execute lambda function, wait for db_ok to be calculated, execute
another lambda function, wait for gw_ok to be calculated, execute an-
other lambda”; it is very close to the natural flow of blocking code, and,
well, this is exactly the whole point of our Take 6. As this sequence sits
within ttry, it means that if there is an exception anywhere within, we’ll
catch it within a corresponding ccatch.

Bingo! We’ve got original linear flow of the blocking code, and made
it work within a non-blocking environment. Let’s note though that
there is a big difference between blocking and non-blocking code to be
kept in mind: with a non-blocking code, in each of the points marked

Bingo! We’ve got
original linear flow
of the blocking code,
and made it work
within a non-blocking
environment.

110 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

with waitFor(), our seemingly blocking sequence can be interrupted
by a new incoming event. This, however, as discussed in the To Block,
or Not to Block, That Is the Question. Mostly-Non-Blocking (Re)Actors
section above, is exactly what we want from non-blocking processing:
to be able to react to incoming events (with an ability to access the state
of our (Re)Actor) while our request is being processed.

On implementing all those ttry, etc. functions above, I won’t go into
a lengthy discussion on “how this thing can possibly work” (as noted
above, it is all about building functors out of functors, and for more
implementation details, please refer to [Ligoum and Ignatchenko]). The
only thing that really matters is that Take 6 is IMNSHO more readable
than all the previous takes. The code, which was linear in blocking code,
is still linear, and exceptions are handled in a more convenient manner
than in our previous Takes (with exception handling being closer to
blocking code, too).

Take 6a. Enter C++ Preprocessor

Now, let’s see what we can do to reduce this verbosity, while keeping the
code straightforward. And apparently it is possible — at least in C++,
with its preprocessor. As we notice in the code above, there are quite a
few repeating patterns that clutter the code, but, on the other hand, as
these patterns are repeated over and over again, it makes them an ideal
target for macros:

//LISTING 5.Take6a.except
//C++
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id) {
 int user_id = get_user_id(reply_handle);
 ReactorFuture<bool> db_ok(this);
 ReactorFuture<bool> gw_ok(this);
 CCODE {
 TTRY {
 db_ok = dbPurchaseItem(
 db_reactor_id,
 user_id, item_id);
 WAITFOR(db_ok)
 if(!db_ok.value()) {

 Non-Blocking Processing · 111

 reply_handle.reply(false);
 EEXIT;//exits from whole CCode,
 // not just from current lambda(!)
 }
 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gw_ok = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 WAITFOR(gw_ok)
 reply_handle.reply(gw_ok.value());
 }
 CCATCH(x) /* implies const std::exception& */ {
 LogException(x);
 }
 ENDTTRY
 }
 ENDCCODE
}

Who said that we cannot have our cake and eat it too? With Take 6a,
we’ve got a perfectly non-blocking code,72 which looks very much like
our original Listing 5.Blocking.except (and syntactic differences such as
ENDTTRY and ENDCCODE don’t look too unreadable). While getting
used to working with it will require some practice (as diagnostics in case
of syntax errors will look rather weird, though not that much weirder
than in the case of the missing ‘}’ in the usual code), it IMNSHO is the
best representation of our original blocking code so far. At the very
least, it is easily and obviously readable, and

Code is read much more often than it is written.
— Raymond Chen

Offloading

In addition, as a very nice side effect, things such as offloading some
calculations to a different (Re)Actor running on a different thread also
look quite natural with Take 6/Take 6a:

72 Just like with all other our Takes.

With Take 6a, we’ve
got a perfectly
non-blocking code,
which looks very much
like our original Listing
5.Blocking.except.

112 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

//LISTING 5.Take6a.simple.offload
//C++
ReactorFuture<A> a;
CCODE {
 OFFLOAD {
 //calculating a which takes a while...
 a = something;
 }
 ENDOFFLOAD
 b = calc_b_here();//takes another while...
 //a and b are calculated in parallel,
 // usually on different CPU cores
 WAITFOR(a)
 do_something_else();
}
ENDCCODE

Offloading Caveat #1: Deep Copy Required

One significant issue that arises in the context of offloading in general73
is that (unlike our other callbacks and lambdas), whatever we’re passing
to and from the OFFLOAD-ed portion of the code is supposed to be
executed in a different thread. It implies that all the parameters that
we’re using within the OFFLOAD portion MUST have copy construc-
tors that are essentially “deep copy” constructors (i.e., they MUST NOT
leave references to original objects, copying all of the referenced objects
instead).

While such “deep copy” constructors are fairly easy to implement,
unfortunately, as of the moment of this writing, I can’t provide any
advice on enforcing this rule at compile time. On the positive side,
while testing, those invalid references to the context of the original
thread can be spotted. For example, it can be done by: (a) running
the OFFLOAD-ed portion of the code (i.e., (Re)Actor implementing
OFFLOAD) not only on a different thread, but within a different
process, and (b) ensuring that all the objects on the heap (and ideally
also on the stack) have different non-overlapping addresses within
the “original” process and “offloading” process; in particular, ASLR
might help with it for 64-bit processes, albeit only statistically. If done
this way, then at the very moment of dereferencing of any invalid ref-

73 =“regardless of the exact way we’re implementing it.”

Unfortunately, as
of the moment of
this writing, I can’t
provide any advice on
enforcing this rule at
compile time.

 Non-Blocking Processing · 113

erence, we’ll get a good old access-violation CPU exception, allowing
us at least to spot these bugs before they corrupt the data or generate
invalid results.

Let’s note that, in theory, it might be possible to guarantee that
some objects are not modified at all74 while offloading is in progress;
if it is so, pointers to such really-unmodifiable objects can be kept
without making deep copies. Still, unless you know how to provide
this guarantee in a systematic manner for your whole project, and you
cannot live without it, I have strong objections against this approach.
Unless you have a very-consistent framework that provides the nec-
essary unmodifiability guarantees (for example of such a consistent
framework, see (Re)Actor-with-Extractors discussed below), you are
bound to provide these guarantees on an ad-hoc basis, and ad-hoc
multithreading at logic level is so much error-prone that it is going to
become a disaster very soon.

Offloading Caveat #2: Keeping Portions Large

Another really important thing to remember when offloading, is that

Not Everything Is Worth Being Offloaded.

If you try to offload something that is small (in an extreme case, adding
two integers), you’ll easily get your CPU cores loaded; however, it is
important not to start jumping with joy (yet) and take a look at the
speedup of your original thread. The point here is that with offloading,
you’ll likely be creating a thread context switch,75 and context switches
are Damn Expensive™. As a result,

When pieces you’re offloading are too small, you MAY
be creating load on the CPU cores without any speedup
(and in extreme cases, you can even cause slowdown).

74 Not even their mutable fields in C++.
75 Though infrastructure code MAY be able to save you the context switch, in particular, if offloading

is implemented via “work stealing,” but even in this case you’re likely to get CPU cache population
penalty — and it is CPU cache population that is usually more expensive than the context switch
itself <sad-face />.

114 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

To avoid it, it is necessary to keep the pieces to be offloaded large enough.
This is a well-known phenomenon in multithreading in general (i.e.,
even with no (Re)Actors in sight).

It should be noted that for (Re)Actor-style offloads (regardless of
Take), this effect can be mitigated (by teaching infrastructure code to
perform offloads within the same thread as long as it is possible), so
(Re)Actor-based OFFLOADs tend to be more forgiving if you make
a mistake, but offloading really small (time-wise) pieces of processing
will still cause significant waste.

As a very rough rule of thumb for x64 platforms: for (Re)Actors,
anything smaller than a few thousand CPU cycles is not worth OFF-
LOAD-ing;76 on the other hand, if you have 100 pieces each worth 100
clocks, you may combine them into one 10000-clock piece, which does
have a chance to be more or less efficient.

For other platforms I don’t have reliable data, though my educated
guess is that for ARM it will have the same order of magnitude, though
for GPGPU the whole picture is very, very different (with much smaller
pieces making sense for GPGPU).

Offloading Caveat #3: DON’T Offload Unless Proven Necessary

This observation about the cost of offloads leads us to an interesting
result, which many will consider counterintuitive:

DON’T Offload Unless Proven Necessary.

As noted above, each and every offload has an associated CPU cost. It
means that to get efficient calculations (=“without burning too much
power” on Client devices, and “leaving Server cores free for other tasks”
on Servers), the best way to calculate is within one single thread, avoid-
ing those expensive thread context switches.

The only reason to perform offload is if you’re hitting the wall with
single-core performance; in particular, if you cannot complete all the
stuff you need by the end of the frame/network tick, well, you may need
to offload some calculations (and in extreme cases, you may even have

76 NB: for non-Reactor systems that always cause a context switch, the number will be significantly
higher (at 10K–100K CPU clock cycles and beyond).

The only reason to
perform offload is
if you’re hitting the
wall with single-core
performance.

 Non-Blocking Processing · 115

to use (Re)Actor-with-Extractors; see the (Re)Actor-with-Extractors
section below). However, unless it is the case

Keeping your processing single-threaded will improve overall
throughput (though not latency).

It will be especially obvious on Servers, where the Server running
many (Re)Actors-without-offloads will certainly outperform77 the same
Server, but with (Re)Actors using lots of offloads.

Yet Another Offloading Caveat: Flow Control

Going a bit further into practicalities of offloads, we’ll see that offload can
take several different forms. A simple offload such as the one above is cer-
tainly the simplest one (and it works pretty well, as long as the number of
outstanding OFFLOADs is limited). BTW, in a certain sense, such simple
offload is quite similar to “data-driven jobs” as described in [Tatarchuk]:
each of our callbacks (such as piece-of-code-after-WAITFOR() in the
example above) is data-driven in a sense that the callback won’t start until
the data is available.

On the other hand, such simple offloading is not always the best
idea. Let’s consider, for example, implementing some calculation that is
repeated a million times; with million being quite a large number (and
each such request using at least a hundred bytes of RAM) - creating
that many outstanding OFFLOAD requests is rarely a good thing to
do. In these cases, I suggest using some kind of flow control to keep the
number of requests in check (while keeping enough work for all the
cores). Within our Take 6a, such a flow-controlled offload might look
along the following lines:

//LISTING 5.Take6a.flow-controlled.offload
//C++
OutstandingOffloads offloads;
CCODE {
 i = 0;
 WWHILE(i.value() < 1000000) {
 WAIT_FOR_OFFLOAD(offloads,
 recommended_number_of_offloads());

77 Throughput-wise.

116 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 //WAIT_FOR_OFFLOAD waits until number of offloads
 // within its 1st parameter
 // drops below its 2nd parameter
 //recommended_number_of_offloads() is a number
 // which may depend on various parameters, including
 // latencies. For single-machine interactions,
 // a number such as 2*number_of_available_cores ‘
 // is usually not a bad starting point
 OFFLOAD(offloads) {
 //OFFLOAD(offloads) adds currently offloaded code
 // to the list of offloads – and starts offload too
 calculate_one_round(i.value());
 }
 }
 ENDWWHILE
 do_something_else();
}
ENDCCODE

The idea here is to make sure that at any point in time, there are no
more than recommended_number_of_offloads() outstanding offloads.
This effectively provides a form of flow control with regard to offloads,
and addresses the problem of having a potentially unlimited set of
outstanding offloads; instead, we’re creating offloads on-demand when
they become necessary (while keeping enough offloads in the system to
make sure that all the available cores are busy).

Note that even in this case, you still need to make sure that piec-
es-of-processing-you’re-offloading are large enough to be efficient.

Really Serious Stuff: HPX
Above, we discussed rather simple cases when you merely needed to get some
stuff offloaded. However, if you happen to find yourself in a position that you
need to perform really serious computations – you’ll need somebody better-
familiar-with-HPC-than-me to advise you. Still, there is one thing which
even I-with-my-very-limited-experience-with-calculations can tell: make
sure to stay away from C++17 STL parallel algorithms; instead – concentrate
on the HPX-style futures-based data-driven style of calculations.

For more information on the futures-based computations style –
make sure to watch [Kaiser], and for the library supporting it right now
– see [STEIIAR-GROUP].

 Non-Blocking Processing · 117

Very very briefly – C++17 STL parallel algos (which are essentially
built along the same lines as 20-years-old OpenMP) are effectively
restricted to parallelizing certain parts of the calculation (with man-
datory re-sync in between these parts, and each such re-sync implies
a likely thread context switch). In contrast, HPX-style futures-based
calculations include describing data dependencies at app-level explicitly
(via futures), and letting your Infrastructure Code to do the rest. In
turn, my somewhat-educated guess is that for most of the loads (and
especially for the loads in highly interactive contexts such as games),
HPX-style calculations will be able to save lots of thread context switch-
es compared to C++17 parallel algos, and with thread context switch
cost being in the range of 10K-1M CPU cycles – it is going to make a
significant difference for most of use cases.

BTW, there are rumours that in-some-future-C++, STL parallel
algos will provide future-based functionality similar to that of HPX
(and then, they might become viable too), but as of now – we’re not
there yet, so if you have to do massive computations – IMVHO HPX
is your best bet.

Last But Not Least: Implementing Offloading Is Not in Scope Now

One last note about offloading: at this point, we do not discuss how in-
frastructure code can/should implement offloading. What is important
for us now is to provide a way to describe offloading at game-logic level.

Implementing offloading is a different story, which we’ll discuss in
Vol. V’s Chapter on C++ (and which will include discussion on Sin-
gle-Producer-Single-Consumer vs. Multiple-Producer-Multiple-Con-
sumer Queues vs. “work stealing,” etc.).

For the time being, we should be able to describe what we want
to offload without specifying how infrastructure can/should do it. It is
consistent with the whole (Re)Actor approach of the same (Re)Actor
being usable in very different threading configurations (and which
allows for us to choose these configurations at the time of deployment).

Take 7. Fibers/Stackful Coroutines

Our Takes 4-6 discussed above use lambdas and even more lambdas
to get the non-blocking code more readable. However, it is interesting

118 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

to note that it is also possible to achieve pretty much the same result
without any lambdas via the use of fibers/stackful coroutines.78

From a practical point of view, fibers/stackful coroutines can be seen
pretty much as cooperative (i.e., non-preemptive, a.k.a. “green”) threads.
Technically, fibers do not require support from the OS kernel (and can
be implemented completely in userland), but, nevertheless, at least
Windows provides its own implementation of fibers (see CreateFiber()/
ConvertThreadToFiber() functions). On Linux/*nix, you MAY either
use setcontext()/getcontext() functions to obtain the same effect (see, for
example, [Vyukov]),79 or a library such as libtask [Cox] or protothreads
[Dunkels].

Using fibers/coroutines (more or less along the lines of protothreads,
but glazed with C++, sprinkled with the support of IDL compiler, and
garnished with futures), our fiber-based examples can be made to look
EXACTLY like Listing 5.Take6a. Yes,

While the mechanics of Take 6a and Take 7 are completely
different (the former is based on lambdas and the latter

on fibers), app-level code can look exactly the same.

This interesting observation goes perfectly in line with the notion that
good code tends to express “what we want to say” while hiding “how
to do it” as an implementation detail. IMO, it can pass as yet another
indication that our code in Take 6a and Take 7 is rather good.

On the other hand, Take 7 can be further improved, compared to
Take 6a (eliminating futures and replacing non-standard TTRY with
traditional try, etc.):

//LISTING 5.Take7.except
//C++
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except

78 I won’t spend much time debating the differences between fibers and stackful coroutines,
just quoting Wikipedia on the subject: “The distinction, if there is any, is that coroutines are
a language-level construct, a form of control flow, while fibers are a systems-level construct,
viewed as threads that happen not to run in parallel… fibers may be viewed as an implementation
of coroutines, or as a substrate on which to implement coroutines.” Well, in my books (pun
intended), it translates into: “Fibers and coroutines are pretty much the same thing.”

79 While setcontext()/getcontext() are technically made obsolete by POSIX.1-2008, they are still
present, at least on Linux.

From a practical
point of view, fibers/
coroutines can be
seen pretty much
as cooperative (i.e.,
non-preemptive)
threads.

 Non-Blocking Processing · 119

void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id) {
 int user_id = get_user_id(reply_handle);
 ReactorFuture<bool> db_ok(this);
 ReactorFuture<bool> gw_ok(this);
 try {
 db_ok = dbPurchaseItem(
 db_reactor_id,
 user_id, item_id);
 WAITFOR(db_ok);
 //inside WAITFOR, we’ll
 // (a) include (db_ok, current_fiber)
 // to the list of items we’re waiting for
 // (b) make a fiber switch to one of the items
 // which are ready
 if(!db_ok.value()) {
 reply_handle.reply(false);
 return;
 }
 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gw_ok = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 WAITFOR(gw_ok);
 reply_handle.reply(gw_ok.value());
 }
 catch(std::exception& x) {
 LogException(x);
 }
}

BTW, let’s note that for Take 7, we could eliminate WAITFOR entirely
(for example, via making db_ok.value() implicitly block until the result
is known). Strictly speaking (and unlike using std::future<> directly)
it will fly; however, when I mentioned this possibility to develop-
ers-who’re-maintaining a multi-million-LOC (Re)Actor-based system,
they were very skeptical about removing WAITFOR. The reason they
gave (and thinking about it, I have to agree with them) is that when
writing non-blocking code with callbacks being able to modify the
state of our (Re)Actor, it is very important to know all the points
where such otherwise-unexpected modification of the state is possible;

120 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

without such information, understanding the implications of some-
callback-jumping-in-and-modifying-our-state while-we’re-expecting-
it-to-stay-the-same becomes extremely difficult and error-prone. As a
result, WAITFORs (or equivalent markers of the state being potentially
changed) are a Good Thing™. For more discussion on it, see [Ignatch-
enko, Eight Ways to Handle Non-blocking Returns in Message-passing
Programs] .

C++: boost:: coroutines and boost::context

In C++-land, it is boost:: library which provides support for stackful
coroutines. While boost:: coroutines can be used as a “substrate” to
implement Take 7,80 using them directly would be too cumbersome in
the context of (Re)Actors (the need to think which coroutine to switch
to is not something I’d like to deal with at the application level).

With this in mind, and taking into account that boost::coroutine
depends on boost::context anyway, I’d probably suggest81 trying to use
boost::context rather than boost::coroutines to implement your own
Take 7.

Note that at least in recent versions of boost::, boost::context is not
implemented on top of setcontext() etc., and is a standalone library with
support of quite a few platforms (both x86/x64 under (Linux or Win-
dows) and ARM under (iOS or Linux/Android), with a few things on
the side; see [Kowalke] for details), and with quite a bit of platform-spe-
cific asm within (among other things, it means quite a bit of time has to
be spent on compiling it for the first time).

On Using goroutines-for-callbacks: BEWARE THREAD SYNC!

One other interesting beast that is closely related to coroutines comes
from a very different programming language: Go. However, despite all
the similarities between coroutines and goroutines, there is One Big
Fat Difference™: goroutines are not guaranteed to be run from the same
thread (not even “as if ” they run from the same thread), and therefore,
unlike our (Re)Actors, they DO require thread sync for the data shared
between them.

80 Well, I didn’t do it myself, but it seems viable.
81 Assuming that you want to use boost:: to implement an engine for Take7-style code.

 Non-Blocking Processing · 121

It is still possible to mimic most of the behavior of our (Re)Actors
on top of goroutines, by having a mutex in our (Re)Actors and locking
it for each access to (Re)Actor, including both accesses from the original
event handler and accesses from goroutine; this will effectively ensure
that our (Re)Actor’s react() function works “as if ” it is called from one
single thread. However, such an approach has significant drawbacks
too: manual locking is cumbersome and error-prone, plus it will cause
contention on the mutexes (which, depending on specifics, MAY be-
come a major bottleneck). As a result, if you have any other options,
I do not recommend using goroutines to implement asynchronous
callbacks; as for these “other options,” I don’t know much of Go, but Go
closures (without goroutines(!)) look awfully similar to usual lambdas,
so Takes 4–6 look rather viable.

BTW, I am certainly not against goroutines in general: the reasoning
above applies only to using-goroutines-to-handle-asynchronous-call-
backs. Using goroutines as a substrate for (Re)Actors (using channels
to communicate and Go’s mantra of “don’t communicate by sharing
memory; share memory by communicating”) is very much in line with
the concepts discussed within this chapter, and is perfectly fine.

Take 8. async/await (.NET, Node.js, and not-standard-yet
C++)

Yet another (and the last we’re about to discuss) nice way of handling
non-blocking calls requires support from the programming lan-
guage — and, as of now, to the best of my knowledge, this support is
provided at least by .NET programming languages, by Node.js [Har-
rington], and is steadily making its way into C++ too.

About C++ await (known in C++-land as “stackless coroutines”, or
co_await): as of mid-2017 it seems to be pretty well-positioned within
the C++ standard committee (a.k.a. WG21), and seems to be likely to
make it into C++20 standard; implementation-wise, it already seems
to work in both MSVC and Clang, so if you’re really adventurous (or if
you’re really desperate to use await), you may want to try it even though
it is not 100% mature. For more information on C++ co_await in the
context of processing non-blocking returns – see [Springfield] and, of
course, [Nishanov].

Don’t communicate
by sharing memory;
share memory by
communicating.

122 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

On the other hand, as C++ co_await is not standard yet, certain de-
tails can easily change, so for our current purposes, we’ll concentrate on
.NET’s interpretation of async/await. From my current understanding,
.NET’s async/await is almost-exactly82 equivalent to our later Takes.
Let’s take a look at how our original Listing 5.blocking.except can be
rewritten into a non-blocking version under C#:

//LISTING 5.Take8.except
//C#
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
async void cashierPurchaseItem(object sender,
 CashierPurchaseItemArgs e) {
 try {
 int user_id = get_user_id(sender);
 Task<bool> db_ok_task = dbPurchaseItem(
 db_reactor_id,
 user_id, e.item_id);
 //Task<> in C# has semantics
 // which is Very Similar to our ReactorFuture<>
 bool db_ok = await db_ok_task;
 if(!db_ok) {
 send_cashierPurchaseItemReply(sender, false);
 return;
 }
 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 Task<bool> gw_ok_task = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 bool gw_ok = await gw_ok_task;
 send_cashierPurchaseItemReply(sender, gw_ok);
 }
 catch(Exception x) {
 LogException(x);
 }
}

As we can see, Take 8 looks very similar to our Take 6a and Take 7. Ex-
actly as with Take 6a/Take 7, the flow is linear, and we’re merely mark-
ing those points where the program flow can be interrupted to process
intervening events (in Take 6a/Take 7, it was WAITFOR; in Take 8, it is
await operator — but the idea remains pretty much the same).

82 We’ll get to this “almost” in just half a page.

Under the hood,
there is one subtle
difference.

 Non-Blocking Processing · 123

On the other hand, as C++ co_await is not standard yet, certain de-
tails can easily change, so for our current purposes, we’ll concentrate on
.NET’s interpretation of async/await. From my current understanding,
.NET’s async/await is almost-exactly82 equivalent to our later Takes.
Let’s take a look at how our original Listing 5.blocking.except can be
rewritten into a non-blocking version under C#:

//LISTING 5.Take8.except
//C#
//NON-BLOCKING VERSION OF LISTING 5.Blocking.except
async void cashierPurchaseItem(object sender,
 CashierPurchaseItemArgs e) {
 try {
 int user_id = get_user_id(sender);
 Task<bool> db_ok_task = dbPurchaseItem(
 db_reactor_id,
 user_id, e.item_id);
 //Task<> in C# has semantics
 // which is Very Similar to our ReactorFuture<>
 bool db_ok = await db_ok_task;
 if(!db_ok) {
 send_cashierPurchaseItemReply(sender, false);
 return;
 }
 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 Task<bool> gw_ok_task = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 bool gw_ok = await gw_ok_task;
 send_cashierPurchaseItemReply(sender, gw_ok);
 }
 catch(Exception x) {
 LogException(x);
 }
}

As we can see, Take 8 looks very similar to our Take 6a and Take 7. Ex-
actly as with Take 6a/Take 7, the flow is linear, and we’re merely mark-
ing those points where the program flow can be interrupted to process
intervening events (in Take 6a/Take 7, it was WAITFOR; in Take 8, it is
await operator — but the idea remains pretty much the same).

82 We’ll get to this “almost” in just half a page.

Under the hood,
there is one subtle
difference.

However, under the hood there is one subtle difference (going
beyond purely syntactic ones). Specifically, in our Take 6a and Take 7,
whenever our code runs into WAITFOR, we’re stopping execution of
this branch until the result becomes available (though we do not stop
the thread, and MAY process new incoming events). For Take 8/C#,
behavior is slightly different: at the point of await, .NET tries to jump to
the caller and run the caller’s code until the caller itself reaches await,
and so on; only at the point of the very topmost caller (i.e., when this
process reaches the event handler itself) will .NET start processing
other incoming events.

Most of the time, this difference is not important, but there can be
cases when the seemingly similar code will behave differently under the
original Take 6a/Take 7 semantics and under await (Take 8) semantics.
On the other hand, such cases are very, very few and far between (espe-
cially for a really non-blocking code).

Across-the-Board Generalizations

Phew! We discussed eight(!) different ways to do the same thing: handle
a return from a non-void function in a non-blocking manner. Now we
can try to make some generalizations.

Surprise: All the Different Takes are Functionally Equivalent, and
Very Close Performance-Wise Too

124 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

One not-so-obvious observation about all our Takes is that while they
look strikingly different, they will exhibit exactly the same run-time
behavior83 (that is, saving for potential differences in performance,
but even those performance differences will be negligible in the vast
majority of use cases; see also below).

 On the other hand, in spite of that functional equivalence, there is
a big practical difference between different Takes; this difference comes
in the form of significantly different code maintenance costs. For ex-
ample, if having the choice between modifying 100 different pieces of
code written in Take 1-style, or Take 8-style, I will choose the latter any
day of the week.

Performance-wise, the differences between the different Takes
discussed above will be negligible for pretty much any conceivable sce-
nario. Not that they will perform exactly the same, but the differences
are small enough to be outweighed by pretty much everything else.

Similarities to Node.js

As I have already noted, our Take 4 looks very much like Node.js. How-
ever, the similarities of our (Re)Actors with Node.js are not limited to
Take 4. The most important property shared with Node.js is that all our
callbacks/continuations (and more generally, all the code in our Takes)
are performed from the same thread84 as the main (Re)Actor code. In
other words: whatever is going on, we do not need to use any kind of
thread sync to access our (Re)Actor from our callbacks.

This is an extremely important property of Node.js (and of all our
Takes). Not only does it save us from thread context switches when our
code runs into an already-owned mutex, but it also simplifies debugging
greatly (from my experience by orders of magnitude), and improves
code reliability too.

These similarities between (Re)Actors and Node.js actually have
very deep roots: the whole premise of our (Re)Actor and Node.js is very
similar. Very generally, both our (Re)Actor and Node.js are trying to do
exactly the same thing: process events, plain and simple (and to process

83 However, see the discussion on the subtle differences with Take 8 in the Take 8. async/await (.NET,
Node.js, and not-standard-yet C++) section.

84 at the very least — “as if” they’re called from the same thread

Performance-wise, the
differences between
the different takes
discussed above will
be negligible for pretty
much any conceivable
scenario.

 Non-Blocking Processing · 125

them one by one, without the need to care about interaction between
our event handlers).

With classical Node.js (and our Take 4), the benefits of such an
approach come at the cost of switching to an unusual-and-less-straight-
forward coding style. However, with Take 5, and especially Take 8 (the
one with async/await), IMNSHO there are no more significant reasons
to delay switching to the non-blocking event-processing code — at least
for those scenarios when we do need to process intervening messages
while waiting for the result of the “long” operation. In other words:

No more excuses: go mostly-non-blocking today!85

Handling Non-Blocking Returns in Different Programming
Languages

As you have probably noticed <wink />, most of our Takes discussed
above were in pseudo-code. One of the reasons for doing it this way is
because many of them can be used in quite a few programming lan-
guages. In particular:
♦♦ Takes 1 to 3b will work in pretty much any OO-oriented program-

ming language.
♦♦ Takes 4 to 6 require support for lambdas and closures. Restrictions

apply; batteries not included. For example, Python lambdas won’t
realistically do, due to Python’s one-line lambda limitation.

♦♦ Take 6a requires C++ with preprocessor.
♦♦ Take 7 requires support for fibers/stackful coroutines.
♦♦ Take 8 requires very special support from language/runtime, so

at the moment it can be used only with .NET, with MSVC/Clang
C++, and with Node.js.

Serializing (Re)Actor State

As we’ll see in the Going Circular section below, to exploit certain
features resulting from determinism (such as production post-factum
analysis and fault tolerance), we need to be able to serialize not only all
the inputs of our (Re)Actor, but also its current state.

85 Yes, I know I sound like a commercial.

We need to be able
to serialize not only
all the inputs of our
(Re)Actor, but also its
current state.

126 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Depending on the Take we’re using, and/or programming language,
it might be trivial, or not too trivial:
♦♦ For Takes 1-3, serialization is easy regardless of the programming

language (okay, in C++ you’ll need to write it manually, but it
is still very straightforward). The point here is that in between
processing events, the only thing that needs to be serialized is
(Re)Actor state (its members, all its members, and nothing but its
members).

For Takes 4-6a, lambda closures become a part of the (Re)Actor state,
so we need to serialize them too. While it is not a problem for most of
the programming languages with built-in reflection, it is a big problem
for C++. More on serializing C++ lambda closures in the Serializing
Lambda Closures and co_await frames in C++ section below.

For Take 7, serializing state is not trivial at all (up to the point of
being pretty much infeasible <ouch! />). With fibers/stackful corou-
tines, we’re effectively creating new stacks and jumping between
them; moreover, these stacks may remain active at the point we need
to serialize our (Re)Actor(!). In turn, it means that these stacks also
need to be serialized. While there is no theoretical prohibition against
doing such serialization, and I even know of one approach that seems to
work for Take 7, it relies heavily on system specifics, introduces a lot of
assumptions, and is way too elaborate to discuss here.

For Take 8, the situation is not as bad as with Take 7 (in particular,
because at least C++ co_await frames are stored within the heap <phew
/>), but is still somewhat worse than with Takes 4-6. More on it in the
Serializing Lambda Closures and co_await frames in C++ section below.

NB: to reiterate, serializing (Re)Actor state is NOT a 100% require-
ment; however, it IS necessary to obtain certain very important
goodies arising from determinism, as will be discussed in detail
below.

Serializing Lambda Closures and co_await frames in C++

As noted above, to have all the deterministic (Re)Actor-related goodies,
we need to be able to serialize those captured values within lambda
closures (and for Take 8 – within co_await frames). For most of the pro-

For C++, serializing
lambda captured
values becomes a
serious challenge.

 Non-Blocking Processing · 127

Depending on the Take we’re using, and/or programming language,
it might be trivial, or not too trivial:
♦♦ For Takes 1-3, serialization is easy regardless of the programming

language (okay, in C++ you’ll need to write it manually, but it
is still very straightforward). The point here is that in between
processing events, the only thing that needs to be serialized is
(Re)Actor state (its members, all its members, and nothing but its
members).

For Takes 4-6a, lambda closures become a part of the (Re)Actor state,
so we need to serialize them too. While it is not a problem for most of
the programming languages with built-in reflection, it is a big problem
for C++. More on serializing C++ lambda closures in the Serializing
Lambda Closures and co_await frames in C++ section below.

For Take 7, serializing state is not trivial at all (up to the point of
being pretty much infeasible <ouch! />). With fibers/stackful corou-
tines, we’re effectively creating new stacks and jumping between
them; moreover, these stacks may remain active at the point we need
to serialize our (Re)Actor(!). In turn, it means that these stacks also
need to be serialized. While there is no theoretical prohibition against
doing such serialization, and I even know of one approach that seems to
work for Take 7, it relies heavily on system specifics, introduces a lot of
assumptions, and is way too elaborate to discuss here.

For Take 8, the situation is not as bad as with Take 7 (in particular,
because at least C++ co_await frames are stored within the heap <phew
/>), but is still somewhat worse than with Takes 4-6. More on it in the
Serializing Lambda Closures and co_await frames in C++ section below.

NB: to reiterate, serializing (Re)Actor state is NOT a 100% require-
ment; however, it IS necessary to obtain certain very important
goodies arising from determinism, as will be discussed in detail
below.

Serializing Lambda Closures and co_await frames in C++

As noted above, to have all the deterministic (Re)Actor-related goodies,
we need to be able to serialize those captured values within lambda
closures (and for Take 8 – within co_await frames). For most of the pro-

For C++, serializing
lambda captured
values becomes a
serious challenge.

gramming languages out there, pretty much everything is serializable,
including lambda closures, but for C++, serializing lambda captured
values becomes a serious challenge.

I know of two different ways of serializing C++ lambda closures
and/or co_await frames for Takes 4-Take 6; let’s name them app-level
method and allocator-based method. Both are ugly, but both seem
to work (disclaimer: in this case, there are even less warranties than
usual86).

The app-level method applies only to lambda closures, and goes as
follows:
♦♦ Write and debug the code written as in the examples above. It

won’t give you things such as production post-factum analysis
or low-latency fault tolerance, but they’re rarely needed at this
point in development (and if necessary, you can always go via the
production route described below to get them)

♦♦ Add a macro such as SERIALIZABLELAMBDA before each such
lambda function; #define this macro to an empty string (alterna-
tively, you may use a specially formatted comment, but I prefer
empty define as more explicit).

 ▪ NB: if using Take 6a, SERIALIZABLELAMBDA can be
made implicit for all those TTRY, IIF, and EELSE macros.

♦♦ Have your own pre-processor that takes all these SERIALIZ-
ABLELAMBDAs and generates code similar to that in Take 3,
with all the generated classes implementing whatever-serializa-
tion-you-prefer (and all the generated classes derived from some
base class SerializableLambda or something). Complexity of this
pre-processor will depend on the amount of information you
provide in your SERIALIZABLELAMBDA macro:

 ▪ If you write it as SERIALIZABLELAMBDA(int i, string s),
specifying all the captured variables with their types once
again, then your pre-processor becomes trivial.

 ▪ If you want to write it as SERIALIZABLELAMBDA w/o
parameters, it is still possible, but deriving those captured
parameters and their types can be severely non-trivial; on

86 Side note. Usually, there are exactly zero warranties, so “even less warranties than usual”
inevitably gets us into the “negative warranties” range <wink />.

128 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

the other hand, I know of a custom Clang plugin that was
successfully used for this purpose.

 ▪ Which way to go is up to you; both will work. The latter
means saving quite a bit of work for app-level developers at
the cost of significant work for the preprocessor writer, so
(as always) it is all about tradeoffs.

♦♦ In production mode, run this pre-processor before compiling,
generating those SerializableLambda classes, and replacing all the
regular lambdas with SerializableLambdas.

 ▪ While we’re at it: make sure that your RPC functions don’t
accept std::function (accepting class SerializableLambda
instead), so that if you forget to specify SERIALIZABLE-
LAMBDA, your code won’t compile (which is better than if
it compiles and fails only in runtime)

The allocator-based method of serializing lambdas (and also
co_await frames) is based on an observation that pretty much what-
ever-our-compiler-and-library-will-do-to-implement-lambdas-and/
or-co_await – they will still store lambda closures (as well as co_await
frames) within the heap (and nowhere else). Very briefly, it means that

If we find a way to direct all the allocations within our
(Re)Actor, including lambda closures and/or co_await
frames into our own custom allocator – and then to

serialize/restore our own allocator as a whole – from
the point of view of Same-Executable Determinism

(discussed in the Types of Determinism vs Deterministic
Goodies section below) we’ll be fine.

On this way, there are two main obstacles:
•♦ Making sure that all the allocations within our (Re)Actor – that is,

including std::function<> allocations and co_await frame alloca-
tions, go into our custom allocator. This can be achieved either by:

 ▪ providing our own allocator object to all the std::func-
tion<> objects+coroutine objects (which is IMO way too
cumbersome at least for all std::function<> objects), or

 ▪ redefining global ::operator new()/::operator delete(), with
all the allocations going into our own allocator.

 Non-Blocking Processing · 129

yy Our own global ::operator new()/::operator delete()
can further use:

♦x thread_local to restrict each of our custom
allocators to one single thread

♦x and within one single thread – we can
use a thread_local current_allocator
pointer (and our Infrastructure Code will
always set it to the correct “allocator for
the (Re)Actor-about-to-be-called” value
before calling react(), calling lambda
continuation, or resuming execution of a
stackless coroutine), so that we effectively
have a separate custom allocator effectively
for each of our (Re)Actors. More on this
technique in [Hare, Allocator for
(Re)Actors. Part III].

♦♦ Making sure that whenever we’re deserializing our custom
allocator, we’re restoring exact values for all the memory addresses
within (otherwise we’ll have problems, in particular, with function
pointers or equivalent stuff). This implies that:

 ▪ We DO need to implement our allocator directly on top of
OS virtual pages (such as VirtualAllocEx() or mmap()).

 ▪ Even in this case, it is not strictly guaranteed that on
deserialization, we’ll be able to get the same virtual pages
that were available during original run – but usually, if
we’re restoring our (Re)Actor into a standalone executable
(i.e. with no other (Re)Actors in it), this does work (or at
least can be made to work by restricting ranges of virtual
addresses used by our allocator).

 ▪ Moreover, with ASLR in use (and we SHOULD use ASLR
in production at least on the Server-Side), we’ll be running
into a problem that in another instance of the executable,
all the addresses of the functions will be shuffled, so our
deserialization (more specifically – deserializing pointers to
functions) won’t work. To deal with it, two approaches are
possible:

ASLR
Address space layout
randomization
(ASLR) is a computer
security technique
involved in preventing
exploitation of
memory corruption
vulnerabilities… ASLR
randomly arranges
the address space
positions of key data
areas of a process.

—Wikipedia

130 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

yy Disabling ASLR (usually NOT recommended
because of security implications)

yy When serializing – we can find all the ASLR off-
sets for all the code/text segments, and serialize
these offsets. Then, before launching our exe-
cutable-where-we-want-to-deserialize-our-(Re)
Actor – we can run a tool over our executable,
with the tool relocates all the ASLR-able segments
to their-exact-positions-according-to-serializa-
tion-image – and then delete relocation tables
from the executable. This will ensure that on the
second run, all the ASLR-able segments reside at
exactly the same places as before. Disclaimer: I
didn’t use this technique myself, but I heard that it
does work.

Overall, which of the methods is better for lambdas - is still unclear to
me, but for co_await frames only allocator-based one will work, so I am
going to concentrate my own efforts on it.

Also let’s note that when we have static reflection87 – we can hope
to get a more regular way for serializing lambdas/co_await frames,
but even then it is unclear whether static reflection will cover lamb-
das and co_await. If you’re interested in it (and IMO you should be
<wink />) - please make sure to push WG21 to (a) get support for
“static reflection” into C++20 (it is already planned, but internal
debates about details can easily get it delayed for a while – just like
already happened with lots of C++ features <sad-face />); and (b)
push support for serialization of lambdas/co_await frames into the
standard.

Why So Much Discussion of This One Thing?

By now, we’ve spent quite a bit of time discussing this how-to-handle-
non-blocking-RPC-returns matter, and you might wonder: is this
discussion worth the paper it was printed on (and, more importantly,
the time you’ve spent reading it)?

87 currently scheduled for C++20, but it is still very far from being carved in stone

Is this discussion
worth the paper it was
printed on (and, more
importantly, the time
you’ve spent reading
it)?

 Non-Blocking Processing · 131

I certainly hope so. There are two Good Reasons™ why you need to
know the intricate details for this kind of stuff:
♦♦ Handling non-blocking returns is one thing that is desperately

needed for non-blocking processing. It covers not only RPCs, but
the same logic is needed for any kind of non-blocking processing.

♦♦ For systems such as Node.js, it is IMO exactly this lack of support
for non-blocking returns that used to impede adoption of an oth-
erwise-perfectly-good idea of (mostly-)non-blocking processing.
Recently, async/await (in Take 8 style) were incorporated into
version 7.6 of Node.js, and the community already seems to be
jumping for joy about this addition. Now, it is time to provide
comparable mechanisms for the other programming languages.

In other words,

Handling non-blocking returns in a usable manner
is a prerequisite for any serious non-blocking system.

TL;DR for Non-Blocking Communications in (Re)Actors

♦♦ We’ve discussed asynchronous RPC calls in detail, and handling
of timer-related messages and any non-blocking calls can be
implemented in exactly the same manner.

♦♦ As our (Re)Actors are mostly-non-blocking, being (mostly-)
asynchronous becomes pretty much the law (somewhat similar
to the dominant non-blocking ideology in Node.js; see also the To
Block, or Not to Block, That Is the Question. Mostly-Non-Blocking
(Re)Actors section above for further discussion).

♦♦ You will probably need an IDL (and IDL compiler) one way or
another (see the discussion on IDL in Vol. I’s chapter on Commu-
nications); on the other hand, some game engines use what I call
an “In-Language IDL” (see the discussion in Chapter 7).

♦♦ Ways of handling asynchronous stuff in (Re)Actors have been
known for a long while, but ancient ones range from “beaten with
an ugly stick” to “quite ugly” (see Take 1-Take 3b).

♦♦ With the introduction of lambdas and futures, non-blocking code
became significantly simpler to write and understand (see Take
4-Take 5).

Ancient ways of
handling asynchronous
stuff range from
“beaten with an ugly
stick” to “quite ugly.”

132 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

♦♦ However, lambda pyramids and futures is not the limit from
a usability standpoint: we’ve managed to improve it (reaching
significantly better resemblance to the Holy Grail of the original
blocking code) in Take 6, and especially Take 6a. Moreover, Take 8
(which is “almost-ideal” for our purposes) is becoming a de-facto
standard pretty quickly; currently, it is available for .NET, for
MSVC/Clang C++, and for Node.js.

♦♦ As a nice side effect of quite a few of our later Takes, we can also
easily support things such as “wait for multiple operations to
complete,” and explicitly parallel operations (as described in the
Offloading section).

♦♦ Most of the techniques we’ve discussed are applicable across quite
a few programming languages, notably including C++ (see also
Appendix 5.A), as well as JavaScript and Node.js.

♦♦ All our Takes are functionally the same (except for a subtle dif-
ference with Take 8); it is only the syntax and expressiveness that
we’re fighting for.

 ▪ In particular, ALL our takes (including Take 8) allow access
to (Re)Actor members from callbacks/lambdas without any
inter-thread synchronization.

♦♦ To get all the (Re)Actor goodies in C++ (including production
post-factum analysis and low-latency fault tolerance), you’ll need
to implement serializing lambdas, and it can get rather ugly; in
other programming languages, this is rarely a problem.

DETERMINISM
Now, after we’ve discussed the benefits of non-blocking processing
and the ways to implement it, let’s take a closer look at the second very
important property of the easy-to-debug (Re)Actors: determinism.

Distributed Systems: Debugging Nightmare
Any MOG is a distributed system by design (hey, we do need to have
a Server and at least a few Clients). While distributed systems tend
to differ from non-distributed ones in quite a few ways, one aspect of
distributed systems is especially annoying. It is related to debugging.

 Determinism · 133

The problem with debugging of distributed systems is that it is usu-
ally impossible to predict all the scenarios that can happen in the real
world. With distributed systems, the most elusive (and therefore most
dangerous) bug is the one observed only when otherwise-perfectly-val-
id packets (events, etc.) arrive in an unusual sequence — the sequence
that never occurred to you as possible, so you didn’t account for it (and
didn’t write a test for it either).

While it is usually possible to answer the question “what will happen
if such a packet/event arrives at exactly such and such moment,” making
an exhaustive list of such questions is unfeasible for any distributed sys-
tem that is more complicated than a stateless HTTP request-response
“Hello, Network!” If you haven’t tried creating such an exhaustive list
for a non-trivial system yourself, feel free to try, but it will be much
cheaper to believe my experience in this field; for any non-trivial state-
ful system, you will inevitably miss something (and won’t notice it until
you run your system in the real world).

This automatically means that even the best possible unit testing
(while still being useful) inevitably fails to provide any guarantees for a
distributed system. Which, in turn, means that in many cases you won’t
be able to see the problem until it happens in simulation testing, or even
in the real world. To make things even worse, in simulation testing it
will happen every time at a different point. And when it happens in the
real world, you usually won’t be able to reproduce it in-house. Sounds
grim, right? It certainly does, and for a reason.

As a result, I am going to make the following quite bold statement:

If you don’t design your distributed system for debugging and
post-factum analysis,88 you will find yourself in lots of trouble.

In a certain sense, we’re talking about kinda-race conditions; however,
as usual, I am not going to get into a lengthy discussion on terminology.
For the purpose of writing a working MOG, we don’t really care whether
it is “right” to call the wrong-order-of-events a “race condition” (which
is in line with Wikipedia), or if the term “race condition” is reserved to
inter-thread operations (per Stack Overflow, which is currently shown
by Google as the preferred definition when looking for “race condition”).

88 A.K.A. “post-mortem analysis,” but to avoid confusion with “game post-mortem,” we’ll stick to the
term “post-factum.”

In many cases, you
won’t be able to see
the problem until it
happens in simulation
testing, or even in the
real world.

Race
condition

A race condition
or race hazard is
the behavior of an
electronic, software
or other system
where the output is
dependent on the
sequence or timing of
other uncontrollable
events. It becomes
a bug when events
do not happen in the
order the programmer
intended.

—Wikipedia

134 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

What really matters is that while debugging inter-thread races is
next-to-impossible,89 (Re)Actors — due to inherent serialization — are
debuggable. Even better, it is possible to design your (Re)Actor-based
distributed system for debugging, and it is not that difficult (though
it requires certain discipline and is better being done from the very
beginning). Let’s discuss how we can do it.

Non-Deterministic Tests are Pointless

Non-deterministic tests have two problems,
firstly they are useless…

— Martin Fowler

The observation above has a strong relation to a subtly different, and
rather well known phenomenon that has been discussed quite a few
times (see, for example, [Fowler, Eradicating Non-Determinism in
Tests] and [Hare, Deterministic Components for Distributed Systems]):

Non-Deterministic Tests Are Useless

I won’t go into too many details here, but will just note what is quite ob-
vious: if each time our program produces different results, what are we
really testing? Yes, we can try to isolate some not-exactly-determinstic
results and ignore them, but as soon as our output becomes essentially
dependent on something beyond our control, the tests become essen-
tially irreproducible. Moreover, while it is theoretically possible to have
some kind of statistical testing (like “how many times our program
fails out of 100 runs?”), such statistical testing is usually unusable for
practical purposes (in particular because the failure rate of a non-de-
terministic system very often depends on the specific environment,
which makes any results of testing-on-the-testing-machine have an
unknown relevance to production-machine-under-production-load
<ouch! />).

89 In a general case, you cannot debug a multithreaded system; you need to prove that it will be
working. For multi(Re)Actor systems using multiple threads, we’re effectively satisfying this
requirement by proving that the system will be working, provided each of the threads is working
(and the latter can be debugged).

How many times our
program fails out of
100 runs?

 Determinism · 135

The Holy Grail of Post-Factum

As discussed above, for any MOG, whatever amount of testing you do,
test cases produced by real life and by your inventive players will inevi-
tably go far beyond everything you were able to envision in advance. It
means that from time to time your program will fail. while increasing
time between failures is very important, another thing is (arguably)
even more important: the time it takes you to fix the bug after the bug
was reported for the first time (preventing future crashes/malfunctions
for the same reason). And for reducing the number of times the pro-
gram needs to fail before you can fix the bug, post-factum analysis is of
paramount importance.

The Holy Grail of post-factum, of course, is when you can fix any
bug using the data from one single crash, so it doesn’t affect anybody
anymore. This Holy Grail (as well as any other Holy Grail) is not really
achievable in practice. However,

I’ve seen systems that, using techniques similar to those
described in this chapter, were able to fix around 80-90%

of all the bugs after a single crash.

136 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Note that traditional post-factum analysis using core dumps is usu-
ally significantly less efficient than the techniques we’ll be discussing
below. This happens mostly because core dump is merely a snapshot of
the program that has already failed (and by that point, its state is usually
already damaged beyond any repair), and the techniques described
below usually allow us to reconstruct a sequence of events that have led
to the failure (and starting from a correct initial state too), which is by
orders of magnitude more useful.

Portability: Platform-Independent Logic as
“Nothing but Moving Bits Around”
Now let’s set aside all the debugging for a moment and talk a little bit
about platform-independent stuff. I know I am jumping to a seemingly
different subject, but we do need it; you will see how portability is relat-
ed to debugging in just half a page.

In most cases, graphics, input, and network APIs on different plat-
forms will be different. Even if all your current platforms happen to
have the same API for one of the purposes, chances are that your next
platform will be different in this regard.

As a result, it is almost-universally a Really Good Idea™ to separate
your code into two very-well-defined parts: platform-dependent and
platform-independent. Further, let’s observe that your platform-de-
pendent code will usually happen to be very-rarely-changing, and it
is your frequently changing Game Logic that needs to be platform-in-
dependent. In other words, your program 99% of the time can be
cleanly divided into two parts: (a) rarely changing platform-dependent
infrastructure-level code, and (b) frequently changing platform-inde-
pendent app-level code.

When talking about platform-independent app-level logic, a friend
and colleague, Dmytro Ivanchykhin, likes to describe it as “nothing
more than moving bits around.” Actually, this is a very precise descrip-
tion. If you can isolate a portion of your program in such a way that
it can be described as mere “taking some bunches of bits, processing
them, and giving some other bunches of bits back,” all of this while
making only those external calls that are 100% cross-platform,90 you’ve
got your logic platform-independent.

90 More strictly, “100% cross-platform for all the platforms you will ever need.”

It is almost-universally
a Really Good Idea™
to separate your code
into two very-well-
defined parts: plat-
form-dependent and
platform-independent.

 Determinism · 137

Having your Game Logic at least on the Client-Side as platform-in-
dependent is absolutely necessary for any kind of cross-platform de-
velopment. There is no way around it, period; any attempt to have your
Game Logic interspersed with the platform-dependent calls will inevitably
doom your cross-platform efforts sooner rather than later. We’ll discuss a
bit more of it in Vol. IV’s chapter on Things to Keep in Mind.

Stronger than Platform-Independent:
Determinism
The approach described right above is very well known and is widely
accepted as The Right Way™ to achieve platform independence. How-
ever, having spent quite a bit of time with the debugging of distributed
systems, I’ve become a strong advocate of making your app-level code
not only platform-independent, but also deterministic. While strictly
speaking one is not a superset of the other, in practice these two con-
cepts are very closely interrelated.

The idea here is to have outputs of your cross-platform Game Log-
ic91 100% defined by input-data plus by internal-Game-Logic-state (or,
in terms of (Re)Actors, “by input events plus by state of the (Re)Actor”).

Moreover, for most of the well-written code out there, a large part of
your Game Logic will already be written more or less along these lines,
and there will only be a few relatively minor modifications to be made.
In fact, modifications can be that minor that if your code is reasonably
well written and platform-independent, you may even be able to in-
troduce determinism as an afterthought. I’ve done such things myself,
and it is not that much rocket science; however, honestly, it is still much
better to go for determinism from the very beginning, especially as the
cost of doing so is quite limited.

Deterministic Logic: Benefits
At this point, you should have two very reasonable questions. The first
is “what's in this determinism stuff for me?” and the second is “how to
implement it?”

91 Where “outputs” can usually be understood along the lines of “new state + whatever-messages-
sent.”

The idea here is to
have outputs of your
Game Logic 100%
defined by input-data
plus by internal-Game-
Logic-state.

138 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

To answer the first question, and to explain why you should under-
take this effort, let’s discuss some of the advantages of a deterministic
system.

First, let’s define determinism as we need it for our purposes:

If you record all the inputs of a deterministic system,
and re-apply these inputs to another instance of the same

deterministic system in the same initial state, you will
obtain exactly the same results.

For practical purposes, let’s assume that we have the mechanics to write
an inputs-log, which will be recording all the inputs to our deterministic
logic (see the Implementing Inputs-Log section below for some imple-
mentation hints).

With inputs-log available, and armed with the definition above, we
can list at least the following benefits of your code being deterministic:
♦♦ Your testing becomes deterministic and reproducible.

 ▪ It means that as soon as you’ve got a failure, you can replay
the whole sequence of the events from inputs-log and get
the failure at exactly the same place in code. If you have
ever debugged a distributed program with a bug-that-
manifests-itself-only-on-every-twentieth-run-and-in-a-
different-place, you will understand that this single item is
worth all kinds of trouble.

yy As a side effect, such 100% reproducibility, in partic-
ular, allows things such as “let’s stop our execution at
five iterations before the failure.”92

 ▪ In addition, your testing becomes more meaningful;
without 100% determinism, any testing has a chance to fail
depending on certain conditions, and having your tests
fail randomly from time to time is the best way I know to
start ignoring such sporadic failures (which often indicate
race-related and next-to-impossible-to-figure-out bugs).

92 To be fair, similar things in non-production environments are possible with GDB’s reverse
debugging; however, it is platform-dependent and is out of the question for production, as running
production code in reverse-enabled debug mode is tantamount to suicide for performance reasons.

You can “replay”
inputs-log on your
functionally identical
in-house system,
and the bug will be
reproduced at the
very same point where
it originally happened.

 Determinism · 139

On the other hand, with 100% determinism, each and
every test failure means that there is a bug in your code that
cannot be ignored and needs to be fixed (and also can be
fixed). For a more detailed discussion of the relationship
between testing and determinism, see also [Fowler, Eradi-
cating Non-Determinism in Tests].

♦♦ Production post-factum analysis and debugging, both on the
Client-Side and on the Server-Side:

 ▪ If you can log all the inputs to your deterministic logic in
production (and quite often you can, at least on a circular
basis; see the Going Circular section below for details), then
after your logic has failed in production, you can “replay”
this inputs-log on your functionally identical in-house
system, and the bug will be reproduced at the very same
point where it originally happened.

 ▪ Your in-house system needs to be only functionally identi-
cal to the production one (i.e., performance is a non-issue,
and any compatible device will do).

 ▪ You are not required to replay the whole system; you can
replay only a failed (Re)Actor instead.

 ▪ During such replay of inputs-log, it is not necessary to run it
using the same time scale as it was run in production; it can
either run faster (for example, if there were many delays,
and delays can be ignored during replay), or slower (if your
test rig is slower than the production one).

 ▪ BTW, post-factum doesn’t necessarily mean that we’re
talking about analysis only after the crash or assert. For
example, in [Aldridge], it is described how Bungie provided
play-testers with an “it is lagging now” button, and used
deterministic post-factum analysis to improve handling
of network-related (and not only network-related) issues
within their engine. Such an ability to “analyze network
performance after the fact” is a Really Big Thing™ for
providing the best-possible player experience in impossi-
ble-to-simulate environments; as [Aldridge] notes, using
this technique, they were able to reduce network traffic by
80%(!) compared to their previous game.

140 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

♦♦ Replay-based regression testing using production data:
 ▪ If you’ve got your inputs-log just once, you can “replay”

it to make sure that your code is still working after
whatever-changes-you-recently-made. In practice, it comes
in handy in at least two all-important cases (see more on
replay-based regression testing in the On Replay-Based
Regression Testing section below):

yy When your new code just adds new functionality,
and unless this new functionality is activated, the
system should behave exactly as before.

yy When your new code is a pure optimization (or
pure refactoring) of the previous one. When we’re
dealing with hundreds or thousands of simultaneous
users, such optimizations/rewrites can be really
complicated (including major rewrites of certain
pieces), and having the ability to make sure that the
new code works exactly as the old one (just faster),
is extremely important. Moreover, when it comes
to major refactoring of large and critical portions
of production code, such equivalence testing is
the only way I know that allows us to push such
refactored code in production without taking too
many risks (and without making management jump
too high).

♦♦ Low-latency fault tolerance, (Re)Actor migration (facilitating
better Load Balancing), and upgrades on-the-fly with almost-zero
downtime. We’ll discuss these primarily Server-Side features in
Vol. III’s chapter on Server-Side Architecture.

♦♦ Keeping code bases in sync across different platforms:
 ▪ If you’re unlucky enough to have two code bases (or even

“1.5 code bases”; see Vol. IV’s chapter on Things to Keep in
Mind for a discussion of this technique), then running the
same inputs-log taken from production over the two code
bases provides an easy way to test whether the code bases
are equivalent. Keep in mind that it requires cross-platform
determinism, which has some additional issues, as dis-
cussed in the Achieving Cross-Platform Determinism section

Better fuzzing.

 Determinism · 141

♦♦ Replay-based regression testing using production data:
 ▪ If you’ve got your inputs-log just once, you can “replay”

it to make sure that your code is still working after
whatever-changes-you-recently-made. In practice, it comes
in handy in at least two all-important cases (see more on
replay-based regression testing in the On Replay-Based
Regression Testing section below):

yy When your new code just adds new functionality,
and unless this new functionality is activated, the
system should behave exactly as before.

yy When your new code is a pure optimization (or
pure refactoring) of the previous one. When we’re
dealing with hundreds or thousands of simultaneous
users, such optimizations/rewrites can be really
complicated (including major rewrites of certain
pieces), and having the ability to make sure that the
new code works exactly as the old one (just faster),
is extremely important. Moreover, when it comes
to major refactoring of large and critical portions
of production code, such equivalence testing is
the only way I know that allows us to push such
refactored code in production without taking too
many risks (and without making management jump
too high).

♦♦ Low-latency fault tolerance, (Re)Actor migration (facilitating
better Load Balancing), and upgrades on-the-fly with almost-zero
downtime. We’ll discuss these primarily Server-Side features in
Vol. III’s chapter on Server-Side Architecture.

♦♦ Keeping code bases in sync across different platforms:
 ▪ If you’re unlucky enough to have two code bases (or even

“1.5 code bases”; see Vol. IV’s chapter on Things to Keep in
Mind for a discussion of this technique), then running the
same inputs-log taken from production over the two code
bases provides an easy way to test whether the code bases
are equivalent. Keep in mind that it requires cross-platform
determinism, which has some additional issues, as dis-
cussed in the Achieving Cross-Platform Determinism section

Better fuzzing.

below. Fortunately, however, for keeping code bases in sync,
discrepancies between platforms, while being a headache,
can be fixed relatively easily during the testing.

♦♦ Better fuzz testing, a.k.a. fuzzing (see the On (Re)Actors and Fuzz
Testing section below).

♦♦ User Replay, though see discussion in the On Determinism and
User Replay subsection below (in short, for cross-platform replays,
User Replay is very difficult — or even impossible — to implement,
at least in C/C++, mostly due to floating-point issues).

♦♦ Last but not least, (almost-)determinism may allow you to
run exactly the same Game Logic on both the Client and the
Server, feeding them the same data and obtaining (almost) the
same results. As discussed in Vol. I’s chapter on Communi-
cations, almost-determinism is usually fine for implementing
things such as Client-Side Prediction (i.e., full-scale cross-plat-
form determinism is not necessary) and as we'll see below, is
perfectly feasible.

 ▪ As discussed in Vol. I’s chapter on Communications,
Client-Side Prediction is one of the very common ways to
reduce perceivable latencies, and implementing it based
on (almost)-deterministic building blocks (which are the
same for the Client and the Server) can save quite a bit of
development time.

♦♦ In addition, there are also other benefits of being deterministic,93
but these are relatively exotic and beyond the scope of this book.

Coming back to the question of the importance of determinism,
specifically for the debugging of distributed systems, we can make the
following observations:
a) If you have a good development team, any reproducible bug is a

dead bug.
b) The most elusive and by-far time-consuming bugs in distributed

systems tend to be race-related.

93 Examples include an ability to perform incremental backup just by recording all the inputs (will
work if you’re careful enough), and an additional ability to apply an existing inputs-log to a recently
fixed code base to see “how the system would perform if not for that nasty bug there”; the latter,
while being quite esoteric, may even save your bacon in some cases, though admittedly rather
exotic ones.

If you have a good
development team,
any reproducible bug
is a dead bug.

142 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

c) These race-related bugs are very difficult to reproduce and debug;
that is, without determinism (and associated replays).

From these (and at least from my own experience, too), we can easily
conclude that

Having deterministic components makes a Really Big
Difference™ when it comes to distributed systems.

In other words,

With deterministic systems (and an appropriate testing
framework), all those elusive and next-to-impossible-to-locate

race-related bugs are brought to you on a plate.94

On Replay-Based Regression Testing and
Patches
As we’ve seen above, one of the most significant benefits of being de-
terministic is an ability to record the events in production, and then
run them against your updated code to look for any regressions. And if
your updated code behaves exactly like the original one, well, we’ve just
kinda-proven (and if you can replay a day’s worth of your Server load, it
usually qualifies as “damn good kinda-proof ”) that the behavior of the
updated code indeed didn’t change.

However, there is a caveat:

Replay-based regression testing does NOT work in practice if
there are any legitimate changes to the (Re)Actor’s behavior.

Indeed, as soon as the very first input event is handled by your updated
code differently (and this change is intentional), that’s it — all the fur-
ther regression replay becomes impossible. Moreover, as within each
build there are usually quite a few changes, well, it seems to mean that
pretty much any replay-based regression testing won’t work.

94 Not in a sense of bugs-on-a-plate for Pumba or Timon from the Lion King series.

 Determinism · 143

This is a pretty well known observation, and actually the reason
why lots of developers give up completely on replay-based regression
testing. However, with the following trick it still might work.

First, let’s note that regardless of determinism (and more generally
– regardless of pretty much everything) we MUST use both a source
control system, and an issue tracking system. Second, let’s note that
modern source control systems tend to support a concept of “cherry
picking” changesets for a merge. Third, if we’re using a modern source
control system, we MAY use it to organize changes to our code as a
bunch of independent changesets or patches (hey, if Linus can do it for
kernel, we can — and actually SHOULD, regardless of replays — also
do it for most of our code); moreover, we can ensure that these chang-
esets/patches are properly attributed to the issues in our issue tracking
system.

And starting from the point where we said, “hey, let’s develop our
changes as a bunch of independent changesets/patches” (with patches
being sufficiently small), we can use replay for regression testing.

Let’s elaborate a bit. As soon as we’re developing our MOG in this
manner (i.e., with certain bunches of changes/patches being indepen-
dent), and clearly attributing respective commits in our source control
system too, we can split all the code changes/patches into three broad
categories:
♦♦ Adding new functionality, with changes not activated by default.

 ▪ For example, if we’re adding a new item to the game, no-
body will use it until we place the item in the Game World.
But it also means that (as there were no such items in the
recorded game) the code with this change is supposed to
replay perfectly (effectively proving that indeed the code
change did not change anything that it wasn’t supposed to
change).

♦♦ Pure optimizations/refactorings: the code is supposed to work in
exactly the same manner as before.

♦♦ Changing existing functionality. This includes all the changes not
listed above.

The two first categories of changes can (and IMO SHOULD) be re-
play-regression-tested. To do so, we can always use the procedure going

Starting from the
point when we said,
“hey, let’s develop our
changes as a bunch of
independent patches,”
we can use replay for
regression testing.

144 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

along the following lines:
♦♦ Within our source control system, we take the snapshot of the

build-that-was-used-for-recording
♦♦ To this snapshot, we apply all the code changes/patches that are

targeted for the next release, but only those that are not supposed
to change any existing behavior (this is known as “cherry picking”
and is certainly possible if you’re using git or SVN, though I’ve
heard that Mercurial Queues allow for similar functionality).

 ▪ To identify which commits to apply – we have a script
which looks at commits comments (which have to map
them into issues). Identifying which issues are supposed to
change behavior and which are not – is rarely a problem.

♦♦ After applying all such changes, we get an interim test-only build.
Such an interim build is supposed to replay everything we were
able to record in production; if the interim build cannot replay
recording properly, it indicates one of two things:

 ▪ either that some changes were mislabeled,
 ▪ or that there is an outright bug within the interim build.

BTW, with deterministic replay available, fixing bugs is
usually trivial.

♦♦ If a bug (or a mislabeled commit) is found– it should be fixed in
one of mainstream branches (i.e. outside of our interim build) –
and then the interim build has to be re-built from scratch along
the lines described above.

♦♦ After fixing all the bugs in interim build – we should simply discard
it (thus avoiding all the strange problems which tend to happen if
we’re trying to use cherry-picking in mainstream source control).

Of course, with this approach, other code changes (those really
changing existing functionality) will still need to be dealt with using
other methods, but apparently such code changes are usually relatively
small — and, as a result, are relatively easily reviewed and tested. In
a typical monthly game release, 80-90% of the code changes will be
about new functionality (with regressions being replay-testable using
the method above), and only 10-20% will be the changes which aren’t
covered by replay-based testing; IMNSHO, reducing potential for a
regression by 4x-5x is well-worth jumping through the hoops to enable

Other code changes
(those really changing
existing functionality)
will still need to be
dealt with using other
methods.

 Determinism · 145

replay-based testing (especially as most of it is going to be done by QA
folks <wink />; from developer’s side we just need to make sure that all
the commits are properly attributed to issues in issue tracker– which
has to be done anyway).

Apparently, if your development process is rather strict about
separating different commits and associating them with issues, the
procedure described above has a reasonably good chance of working
for you at least most of the time (and that’s sufficient to catch quite a few
bugs before they reach production).

On (Re)Actors and Fuzz Testing
One of the goodies that is facilitated by our (Re)Actors is so-called
Fuzz Testing. The idea behind fuzz testing is simple: throw anything
you can think of at the program and see whether it fails. In fact, fuzz
testing can be used to find very severe and almost-invisible bugs such
as Heartbleed [Karjalainen][Böck].

We need to note, however, that inputs (and states) of real-world
systems are usually quite large, so real brute-force analysis is not
feasible. That’s why there are tools out there such as afl-fuzz (can be
found at [Zalewski]), which use genetic algorithms to find well-hidden
bugs. Okay, with our inputs-log we can run afl-fuzz quite easily in the
following manner:
♦♦ Run our (Re)Actor while recording all the inputs into the

inputs-log under both normal conditions and using test cases
generated by IDL (see Vol. I’s chapter on Communications for a
discussion of IDL-based test case generation).

♦♦ Make a standalone program that just takes some inputs-log and
feeds it to our (Re)Actor.

♦♦ Instrument this program (including our (Re)Actor) with afl-fuzz
(or whatever other fuzzer).

 ▪ In addition, DON’T forget to instrument your program
with Address Sanitizer [Serebryany and Potapenko] (and/or
other error detection tools)

♦♦ Feed those inputs-logs, recorded in the very beginning, to afl-fuzz
as initial test cases.

Fuzz Testing
Fuzz testing or
fuzzing is a software
testing technique,
often automated or
semi-automated, that
involves providing
invalid, unexpected,
or random data to the
inputs of a computer
program. The program
is then monitored
for exceptions
such as crashes, or
failing built-in code
assertions or for
finding potential
memory leaks.

—Wikipedia

146 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

♦♦ Have afl-fuzz run its genetic algorithm magic, mutating the inputs-logs
and feeding them to our standalone-program-with-(Re)Actor.

♦♦ When afl-fuzz finds a bug, given the deterministic nature of our
(Re)Actors, the bug is trivially reproducible. Fix it.

♦♦ Rinse and repeat.
It should be noted that, strictly speaking, fuzz testing MIGHT work
even if your program is not 100% deterministic;95 however, the more
non-deterministic the program, the lower the chances for fuzz testing
to produce any meaningful results.

On Determinism and User Replay
When your Game Logic is fully deterministic, it should be possible for
the Client to record inputs of the game as it was played (here, inputs
to include both player inputs and network packets coming from the
Server), get a small(!) file with the record (well, both player inputs and
network packets are rather small), and then share this file with other
players. This, in turn, may help to build your community, etc., etc. Due
to the ease of video capturing and sharing, such User Replay is not as
attractive these days as it was 10 years ago, but you still might want to
consider it (which seems to be coming more or less “for free,” as you
need determinism for other reasons too). And if you add some inter-
active features during replay (such as changing the viewing angle and
commenting features such as labels attached to some important units,
etc.), it might start to make business sense.

However, unfortunately, in practice using determinism for User Replay
has two very significant caveats:
♦♦ User Replay will normally require you to adhere to the most

stringent version of determinism, which includes cross-platform
determinism

 ▪ And, as described in the Achieving Cross-Platform
Determinism section below, achieving it in the presence of
floating-point calculations is currently seen as next-to-im-
possible, at least for C++.

95 There are no guarantees that it will work for not-strictly-deterministic programs, but it has been
seen in practice.

Unfortunately, in
practice, using
determinism for User
Replay has two very
significant caveats.

 Determinism · 147

yy On the other hand, at least for some games, it is
possible to have “snapshots” of the Server state at
certain intervals, and to use (almost-)deterministic
replay only to simulate things between the “snap-
shots.” It reduces requirements for determinism
(making it a cross-platform almost-determinism), and
might be achievable.

♦♦ When implementing User Replay as deterministic replay, you’ll
need to deal with the “version curse.” The problem here is that the
replay-made-on-one-(Re)Actor won’t run correctly on a different
version of (Re)Actor. As a result, you will need to:

 ▪ Add a (Re)Actor version number to all of these files, and
 ▪ Keep all the different publicly-released versions of the

(Re)Actor within the Client, so all of them are available
for replay. This might fly, because (a) you need to record
only one (Re)Actor (such as Game Logic (Re)Actor or An-
imation&Rendering (Re)Actor; more on them in Chapter
6) – so you’ll need to keep versions for only one (Re)Actor,
and (b) the code size for each version is usually fairly small
(in the order of hundreds of kilobytes).

yy Even in this case, your Animation&Rendering
(Re)Actor will have external dependencies (such as
DirectX/OpenGL), which can be updated and cause
problems. However, as long as external dependen-
cies are 100% backward-compatible, you should be
fine (at least in theory).

yy While adding meshes/textures isn’t a problem for
replay, replacing them is. For most of the purely cos-
metic texture updates, you may be fine with using
newer versions of textures on older replays, but for
meshes/animations, probably not, so you may need
to make them versioned too <ouch! />.

The versioning problems, while being a really big headache, are solvable,
but achieving cross-platform determinism at the very best qualifies as
a “pretty tough uphill battle.” Personally, I probably wouldn’t even dare
try reaching full-scale cross-platform determinism for a floating-point
based game; OTOH, reaching cross-platform almost-determinism, or

148 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

cross-platform determinism w/o a floating point — while still being
extremely daring — might be doable.

In any case, regardless of the problems with deterministic User
Replay, all the other benefits of making your (Re)Actors deterministic
still stand firmly — and are very important in practice, too.

Implementing Deterministic Logic
I hope that I’ve managed to convince you that deterministic (Re)Actors
are a Good Thing™, and that now we can proceed to our second ques-
tion: how to implement such deterministic (Re)Actors?

Deterministic System: Modes of Operation

First, let’s define what we want from our deterministic system. Practi-
cally (and to get all the benefits above), we want to be able to run our
(Re)Actor in one of three modes:
♦♦ Normal Mode. The system is just running, not actively using any

of its deterministic properties.
♦♦ Recording Mode. The system is running exactly as in Normal

Mode, but is additionally producing inputs-log.
♦♦ Replay Mode. The system is running using only information from

inputs-log (and no other information), reproducing exact states
and processing sequences that have occurred during Recording
Mode.

Note that Replay Mode doesn’t require us to replay the whole system;
in fact, we can replay only one (Re)Actor out of the whole thing (usu-
ally the one that we suspect is guilty). If after debugging this suspect
module we find that it was behaving correctly and that we have another
suspect, we can replay that other suspect from its own inputs-log (which
hopefully was written during the same session that caused failure).

Implementing Inputs-Log

As discussed above, most (if not all) benefits coming from determinism
are based on inputs-log. Moreover, to be used in production, inputs-log
MUST be extremely fast (=“so fast that the performance penalty is
negligible”).

I REALLY hope I’ve
managed to convince
you that deterministic
systems are a Good
Thing™.

As discussed above,
most (if not all)
benefits coming from
determinism are based
on inputs-log.

 Determinism · 149

Implementation-wise, inputs-log is usually organized as a sequence
of “frames,” with each “frame” depending on the type of data being
written. Each of the “frames” usually consists of a type, and some seri-
alized data depending on type.

That pretty much describes implementation of our inputs-log
from 50,000-feet, but let’s discuss a few hints related to implementing
required serialization in C++ (other languages are usually simpler, or
MUCH simpler), and which caveats need to be avoided. Below are a
few hints in this regard:
♦♦ Usually, we’ll need to serialize both the input events and the cur-

rent state of our (Re)Actor (see the Going Circular section below
for an explanation of why the latter is necessary).

 ▪ For serializing the current state, usually, you will find that
your data is still simple enough to be described by solutions
#1-#3 from [Standard C++ Foundation]. And while we’re
at it, if serializing complex structures, make sure to use
suggestions described there (BTW, while it is written in
C++ terms and is not easy to understand without a C++
background, the principles behind it — including the
discussion of different types of graphs — apply pretty much
regardless of the programming language).

♦♦ As inputs-log is a very special type of serialization (which is usually
guaranteed to be deserialized on exactly the same executable), it
means that you MAY serialize your data as plain C structures; for
“how to extend similar serialization techniques to C++”, see, for
example, [Ignatchenko and Ivanchykhin].

 ▪ Warning: don’t even think of using such techniques for
network marshalling; they may work ONLY in extremely
narrowly defined scenarios where deserialization is 100%
guaranteed to happen on exactly the same executable as
serialization.

 ▪ If using a serialization library: given that performance is
usually very important, it is usually better to use a binary
serialization format. In particular, FlatBuffers is not a bad
candidate for this purpose (though the dirty techniques
mentioned above tend to beat even FlatBuffers at the cost of
the serialization format being completely non-portable).

150 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Going Circular

One all-important variation of our inputs-log arises when we want to have
a “post-factum log” (sufficient to identify the problem after the program
crashed), but at the same time we don’t want to write all the inputs of
our (Re)Actor “forever and ever,” as it will eat up too much resources
(actually, any “forever and ever” in production is usually waaay too long).

One idea of how we can avoid recording inputs forever-and-ever
is to use circular implementation of the inputs-log (either on disk, or,
even more likely, in-memory). Then we can store only last-N-seconds
(or last-N-megabytes) of inputs to our (Re)Actor, and use them to
reproduce the last-N-seconds of the life of our (Re)Actor (right before
the crash).

However, for this to work, we will additionally need to:
♦♦ Make sure that our (Re)Actor has an additional function such as

serializeStateToLog(InputsLogForWriting ol), and a counterpart
function deserializeStateFromLog(InputsLogForReading il).

 ▪ State serialization MAY be implemented in a manner that is
consistent with serialization used for inputs-log in general.

 ▪ On the other hand, as serializing state is a very special case
(in particular, it is going to be deserialized to exactly the
same executable) – at least for C++ we MAY try to:

yy make sure that all the parts of our (Re)Actor use the
same allocator

yy serialize the whole allocator for our (Re)Actor.
As a side benefit, this approach tends to help with serializing stuff such
as lambda closures or co _await frames (more on it in the Serializing
Lambda Closures and co_await frames in C++ section above).
♦♦ Call this serializeStateToLog() function often enough to ensure that

the in-memory circular buffer always has at least one instance of
the serialized state.

♦♦ Make sure that there is always a way to find the serialized state,
even after a circular buffer wraparound (this can be done by
designing the format of your inputs-log carefully; for example, a
256-bit random-looking “signature” before the state frame should
do the trick).

One idea of how
we can avoid
recording inputs
forever-and-ever
is to use circular
implementation of
the inputs-log.

 Determinism · 151

♦♦ On program failure, just dump the whole in-memory inputs-log to
disk.

 ▪ BTW, on Linux (which is commonly used on the Server-Side)
our in-memory inputs-log will become a part of the core
dump pretty much for free.

♦♦ On start of “Replay,” find the serialized state in inputs-log, call
deserializeStateFromLog() from that serialized state, and proceed
with log replay as usual.

Above, we describe only one of multiple possible implementations of
not-so-performance-intrusive inputs-log; it has an advantage that all the
logging can be kept in-memory and therefore is very cheap, but in case
of trouble this in-memory log can be dumped, usually providing suf-
ficient information about those all-important “last seconds before the
crash.” Further implementation details (such as “whether implement
buffer as a memory-mapped file” and/or “whether the buffer should be
kept in a separate process to make the buffer corruption less likely in
case of memory corruption in the process of being logged”) are entirely
up to you (=“they’re too game-specific to discuss here”).

One very important usage of circular inputs-log is that in many cases
it allows us to keep the logging running all the time in production, both
on the Client-Side and the Server-Side. It means near-perfect post-fac-
tum analysis in case of problems.

Let’s make some very rough guesstimates. The typical game Client
receives around a few kilobytes per second from the Server, and user in-
put is usually negligible in comparison. Which means that we’re talking
about, at most, 10kBytes/second.96 10MByte RAM buffer is nothing for
the Client-side these days, and at a rate of 10kBytes/second, we’ll be
able to store about fifteen minutes of “last breath data” for our Game
Logic Client-Side (Re)Actor in such a RAM buffer; this fifteen minutes
of data is usually by orders of magnitude more than enough to find a
logical bug. For a (Re)Actor implementing your animation/rendering
engine, calculations will be different, but taking into account that all
the game resources are well-known and don’t need to be recorded, we
can again keep the data recorded to the minimum, still enabling a very
good post-factum analysis.

96 Okay, there are games out there with 20Kbytes/sec, but the analysis won’t change much anyway.

At a rate of 10kBytes/
second, we’ll be able
to store about fifteen
minutes of “last breath
data” in a 10Mbyte
RAM buffer.

152 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

For the Server-Side, there are many (Re)Actors to be run per Server
box, so you will probably need much more memory to keep all those
multiple inputs-logs. As a result, you might not be able to keep circular
buffers running all the time, but at the very least you should be able to
run them on selected (Re)Actors (those that are currently under sus-
picion, or those that are not-so-time-critical, or according to whatever
other criteria you want to use at the moment).

Recordable/Replayable (Re)Actor

Now, after defining our requirements to inputs-log, we’re in a position
to rewrite class Infrastructure from our former Listing 5.Reactor to sup-
port recording and replay (and note that neither GenericReactor nor
any ConcreteReactors are affected):

//Listing 5.RecordingReplay
//PSEUDO-CODE
class Infrastructure {
 GenericReactor r;//MUST have react() function

 constructor() {
 //initialize r
 }
 function run_loop(log4w) {
 //log4w is null if no recording is necessary
 while(true) {
 ev = wait_for_event();
 ev.inputs = read_inputs();
 if(log4w) {
 if(log4w.needsReactorState())
 r.serialize(log4w);
 ev.serializeToLog(log4w);
 }
 r.react(ev);
 }
 }
 function replay_loop(log4r) {
 while(true) {
 ev = Event.deserializeFromLog(log4r);
 r.react(ev);
 }
 }
};

 Determinism · 153

If we want to run our (Re)Actor r while writing inputs-log, we’re simply
calling run_loop() with parameter log4w not equal to null. And if we
feed previously logged inputs-log to replay_loop() function, we will get
exactly the same processing as during the recording (that is, provided
that our r.react() is deterministic(!)).

Implementing Deterministic Logic: Non-Determinism
Due to System Calls

As now we have our class Infrastructure, which enables recording/
replay (and noticing that it will work as expected only as long as our
game-specific class ConcreteReactor is deterministic), the next obvious
question is: what do we need to do within the (Re)Actor itself to ensure
determinism? The answer is not too difficult: to make our (Re)Actor
deterministic, we merely need to eliminate all the sources of non-de-
terminism within our (Re)Actor. Fortunately, the list of such sources is
pretty short; we’ll look at them one by one.

The first very big and very common source of non-determinism
originates from system calls. Even innocent looking calls such as
time() (GetTickCount(), etc.) are inherently non-deterministic. In
fact, pretty much any system call can easily lead to non-determinis-
tic results.97

Dealing with System Calls: Original Non-Deterministic
Code

Let’s start with a simple example: a class, which implements a “dou-
ble-hit” logic. The idea is that if the same NPC gets hit twice within
a certain pre-defined time, something nasty happens to him. Usually,
such a class would be implemented along the following lines:

//Listing 5.DoubleHit.nondeterministic
//PSEUDO-CODE
class DoubleHit {
 const THRESHOLD = 5;

97 Note that some C library calls MAY be deterministic (for example, memcpy() is deterministic, as
long as you’re reading your own initialized memory); however, most (if not all) kernel calls are
inherently non-deterministic.

What do we need
to do within the
(Re)Actor itself to
ensure determinism?

154 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 constructor() {
 last_hit = MYTIMESTAMP_MINUS_INFINITY;
 }

 function hit() {
 now = system_get_current_time();
 if(now – last_hit < THRESHOLD)
 on_double_hit();

 last_hit = now;
 }

 function on_double_hit() {
 //do something nasty to the NPC
 }
}

While this example is intentionally trivial, it does illustrate the key
point. Namely, while being trivial, function DoubleHit.hit() is NOT
deterministic. When we’re calling hit(), the result depends not only
on input parameters of hit() and on members of class DoubleHit, but
also on the time when it was called (such time being obtained by
system_get_current_time()).

Dealing with System Calls: Call Wrapping

Let’s see what we can do to make our DoubleHit.hit() deterministic. In
general, there is more than one way to achieve such determinism.

The first way to make our class DoubleHit deterministic is to “wrap”
all the invocations of the function system_get_current_time(). “Wrap-
ping invocations” here is meant as making your own wrapper around
system_get_current_time(), changing the behavior of the function de-
pending on the mode in which the code is running; more specifically,
you will be adding/changing some functionality in “Recording” or
“Replay” modes. Such Call Wrapping of system_get_current_time() can
be implemented, for example, as follows:
♦♦ Whenever the (Re)Actor is running in “recording” mode,

wrapped_get_current_time() function would invoke
system_get_current_time() (and would return value-returned-by-
system_get_current_time() too); however, it would additionally

While being trivial,
function DoubleHit.hit()
is NOT deterministic.

The first way is to
“wrap” all the invoca-
tions of the function
system_get_current_time().

 Determinism · 155

store each value-returned-by system_get_current_time() into
the inputs-log (as a separate frame).

♦♦ And whenever the (Re)Actor is running in “replay” mode,
wrapped_get_current_time() would read the next frame from the
inputs-log, get a value out of it, and return that value regardless of
the actual time (without making any system calls).

This is possible exactly because of 100% determinism: as all sequences
of calls during Replay are exactly the same as they were during Record-
ing, it means that whenever we’re calling wrapped_get_current_time(),
then at the “current position” within our inputs-log, we will always
have the “frame” that was made by wrapped_get_current_time() during
Recording.

Translating the talk above into the code, Call Wrapping of the func-
tion system_get_current_time() may be implemented, for example, as
follows:

//Listing 5.call_wrapping
//PSEUDO-CODE
class Infrastructure {
 const ModeNONE = 0;
 const ModeRECORDING = 1;
 const ModeREPLAY = 2;
 constructor() {
 //initialize log4r, log4w, mode
 }
 function wrapped_get_current_time() {
 if(mode == ModeREPLAY) {
 assert log4r != null;
 return log4r.read_timestamp();
 }

 ret = system_get_current_time();

 if(mode == ModeRECORDING) {
 assert log4w != null;
 log4w.write_timestamp(ret);
 }

 return ret;
 }
}

156 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Bingo! If we call this wrapped_get_current_time() instead of usual
system_get_current_time() in all the places of our Reactor.react() (in-
cluding all the functions that are called from Reactor.react() indirectly),
it would make our implementation deterministic with regards to
system_get_current_time(), and without any substantial code changes
(besides renaming all app-level calls from system_get_current_time()
into wrapped_get_current_time()98)! Actually, this is pretty much what
replay tool liblog99 does (see [Geels, et al.] for details).

Essentially, what we’re doing here is merely saying that the return
value of wrapped_get_current_time(), while being an output from the
point of view of this function, is actually an input from the point of
view of our deterministic (Re)Actor. And as soon as we record this
return value to inputs-log, we’re fine from a determinism point of view;
a little bit of a different perspective on the same thing can be described
in terms of “isolation perimeters” (as discussed in the On Isolation
Perimeters section below), with Call Wrapping effectively moving
system_get_current_time() outside of the deterministic Isolation Perim-
eter (with the inputs-log frame created by wrapped_get_current_time()
ensuring correctness of the isolation).

So far, so good — and this Call Wrapping technique does work;
moreover, Call Wrapping can be used to make any system call deter-
ministic.

On the other hand, for very-frequently-called functions such as
system_get_current_time(), Call-Wrapping them has a significant cave-
at. If we add (or remove) any calls to wrapped_get_current_time() (or
more generally, to any of the functions-that-record-to-inputs-log), the
replay will fall apart. While replay will still work for exactly the same
code base, things such as replay-based regression testing will start fail-
ing much-more-often-than-necessary in practice (and in extreme cases,
replay-based regression testing can become pretty much unusable); also,
existing real-world inputs-logs (which are an important asset of the QA
team) will be invalidated much more frequently than is really necessary.

98 If you prefer, it is certainly possible to avoid making any changes to your app-level logic (at least
in C/C++), though such changing-function-without-renaming-it belongs more to the “dirty tricks”
department.

99 Not to be confused with other tools with the same name; as of now, I wasn’t able to find an
available implementation of liblog as discussed in [Geels, et. al] <sad-face />.

For very-frequently-
called functions
such as system_
get_current_time(),
Call-Wrapping them
has a significant
caveat.

 Determinism · 157

As a result, while such Call Wrapping is a perfectly valid technique
for those-calls-that-are-not-too-likely-to-be-added-or-removed (like
“a call to a DB,” or a pretty much any system call that is expected to
modify the system in any way), frequently-called read-only functions
such as system_get_current_time() are not exactly the best fit for Call
Wrapping.

Dealing with System Calls: Pure Logic

An alternative way of making our (Re)Actor deterministic is to
change the class DoubleHit itself so that it becomes deterministic
without any Call Wrapping trickery. For example, we could change our
DoubleHit.hit() function to the following:
function hit(now) {
 if(now – last_hit < THRESHOLD)
 on_double_hit();
 last_hit = now;
}

If we change our class DoubleHit in this manner, it becomes determin-
istic without any need to “wrap” any calls. Moreover, DoubleHit.hit()
becomes a close cousin to “pure functions,” as they’re known in com-
puter science: at least as long as we consider the current object (*this in
C++, this in Java, self in Python, etc.) as both input and return value for
DoubleHit.hit(), it no longer has any side effects.

For time-like system calls, I like this “Pure Logic” approach better
than Call Wrapping, at least because it has better resilience to modifi-
cations. However, the Pure Logic approach has some implications to
keep in mind:
♦♦ With Pure Logic, it becomes the responsibility of the caller to

provide information such as timestamps to callees.
 ▪ These now parameters will often go through multiple levels

of calls, causing lots of typing, which quite a few developers
will consider unnecessary and too bulky (and it is indeed
boilerplate code, so I wouldn’t blame them too much).

♦♦ Within the Pure Logic model, it becomes the responsibility of class
Infrastructure to call system_get_current_time() and pass obtained
value as now parameter to GenericReactor.react().

Pure
Function

A function may be
considered a pure
function if both of the
following statements
about the function
hold: (1) the function
always evaluates the
same result value
given the same
argument value(s)…
(2) Evaluation of the
result does not cause
any semantically
observable side
effect or output.

—Wikipedia

158 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 ▪ It also becomes the responsibility of class Infrastructure to
record current time to inputs-log (and to handle replay too).

♦♦ The whole chunk of processing within one ConcreteReactor.react()
is deemed as happening at the same point in time. While this is
exactly what is desired for 99.9% of Game Logic, you still need to
be careful not to miss the remaining 0.1%. In particular, most of
the performance-related timestamps won’t fly with Pure Logic.

A variation of Pure Logic puts now timestamp as a data member into
our Event (and populates this field at the same time as described above),
reading it from Event when necessary (via member function such as
Event.now()). Note that I am usually firmly against making now a data
member of class Reactor (as it is not an attribute of (Re)Actor); however,
putting now into Event is very different and is perfectly fine. Moreover,
usually now-as-Event-parameter is less verbose and less cumbersome
than passing-parameters-Pure-Logic as described above.

Dealing with System Calls: TLS Compromise

As an alternative to passing parameters around, you might opt to pass
parameters via TLS instead of stack. The idea is to store now timestamp
(alongside any other parameters of a similar nature) into the TLS, and
then whenever my_get_current_time() is called, merely read the value
from TLS.

In practice, it means doing the following:
♦♦ You can keep your original non-deterministic logic code from

Listing 5.DoubleHit.nondeterministic (almost) intact, just replacing
system_get_current_time() calls with my_get_current_time() calls.

♦♦ At exactly the same points where you’d call system_get_current_time()
(for passing result as a parameter) in the Pure Logic model,
still call system_get_current_time() but instead of passing the
value around as a parameter, write the value-returned-by-
system_get_current_time() to TLS100.

♦♦ Implement my_get_current_time() as a simple read of the value
from TLS.

100 For C++, see C++11’s thread_local storage duration specifier, but there are usually other platform-
dependent alternatives. For Java, look for ThreadLocal<T>.

The whole chunk of
processing within
one ConcreteReactor.
react() is deemed
as happening at the
same point in time.

TLS
Thread Local Storage
(TLS)… is used in some
places where ordinary,
single-threaded pro-
grams would use glob-
al variables but
where this would
be inappropriate in
multithreaded cases.

—Wikipedia

 Determinism · 159

With such a TLS Compromise, our class Infrastructure would look
along the following lines:

//Listing 5.TLS_compromise
//PSEUDO-CODE
current_tls_time = new TLS_object();
class Infrastructure {
 GenericReactor r;//MUST have react() function

 constructor() {
 //initialize r
 }
 function run_loop(log4w) {
 //log4w is null if no recording is necessary
 while(true) {
 ev = wait_for_event();
 ev.inputs = read_inputs();
 current_tls_time = system_get_current_time();
 if(log4w) {
 ev.serializeToLog(log4w);
 log4w.write_timestamp(current_tls_time);
 }
 r.react(ev);
 }
 }
 function replay_loop(log4r) {
 while(true) {
 ev = Event.deserializeFromLog(log4r);
 current_tls_time = log4r.read_timestamp();
 r.react(ev);
 }
 }
 function my_get_current_time() {
 return current_tls_time;
 }
};

Let’s note that such TLS-based implementations may have Big Prob-
lems™ when used outside of (Re)Actors; however, for (Re)Actors, they’re
perfectly safe because of (Re)Actors’ inherently single-threaded nature
and well-defined Event semantics. We DO know that between setting
current_time and returning from react(), nobody except (Re)Actor
will be able to read current_time (and nobody at all will be able to write
it) — for the simple reason that there is nobody else in the picture.

160 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

This TLS-based model is a kind of compromise between the Call
Wrapping and Pure Logic discussed above; while the call in TLS
Compromise looks exactly like a Wrapped function call (and, more
importantly, it doesn’t need to change the original non-determin-
istic code), it is functionally equivalent to the Pure Logic model.
As a result, TLS Compromise (unlike Call Wrapping) doesn’t cause
problems with inputs-logs becoming incompatible when somebody
inserts yet another call to my_get_current_time() into your app
code.

At the time (and due to developers circumstances with the Big
Clenched Fists™ surrounding me on my everyday job), I tend to suggest
TLS Compromise for achieving determinism for time-like functions
(though if your team is okay with passing parameters or Events around
using Pure Logic, it is IMO even better).

Dealing with System Calls: Pools of On-Demand Data

TLS Compromise and Pure Logic approaches work well with
(Re)Actors, as long as obtaining whatever-(Re)Actor-might-possibly-
need is ultra-cheap; however, obtaining all the potentially necessary
stuff is often not feasible (or, in the case of non-idempotent calls, is not
even allowed).

In some cases, however, we may be able to prepare the data
in advance, store it within the class Infrastructure, and feed to the
(Re)Actor whenever it needs the data. I’ve seen this model work very
well for a deterministic (Re)Actor that needed real (hardware) RNG
data, but we knew in advance the maximum amount of random data
(let’s name it MAX_RANDOM) that might be needed to process one
single Event.

Implementation went along the following lines:

♦♦ Infrastructure maintained a “pool” of random data of
MAX_RANDOM size. If before calling react(), the “pool” didn’t
have that MAX_RANDOM bytes of data, the missing data was
replenished (in that specific case, from a system call reading from
/dev/urandom), so the “pool” always had at least MAX_RANDOM
random data before each call to react().

At the time (and
due to developers
circumstances with
the Big Clenched
Fists™ surrounding me
on my everyday job),
I tend to suggest TLS
Compromise for mak-
ing existing projects
deterministic.

 Determinism · 161

♦♦ Whenever (Re)Actor requested hardware RNG data, infrastructure
code just extracted whatever-number-of-bytes-is-necessary from
the “pool” (making the amount of data within the pool smaller, so
that before the next call to react(), infrastructure had to replenish
the “pool”).

In practice, IMO such On-Demand Pools are not strictly necessary (the
same results can be achieved by more generic Call Wrappers without
too many downsides) but I don’t see any harm in using them.

Dealing with System Calls: On-Demand Data via Exceptions

Those techniques of dealing with system calls discussed above cover
pretty much all practical needs (especially as there is always a silver-bul-
let handling-everything Call Wrapping solution). However, there is
another way of dealing with non-determinism, so at least for the sake
of completeness, let’s discuss it too.

Let’s consider the following scenario: your (Re)Actor might need
some non-determinstic data, but chances of it happening are fairly
slim, and requesting it before each call to react() would be a waste;
on the other hand, the logic to determine whether the call needs the
data belongs to the application level, and burdening the infrastruc-
ture-layer code with this logic does not look like a good idea. One
example of such data is the same random data from a physical RNG,
which we discussed above, when only a few messages will need this
real-RNG data. To make things worse, we might not be able to use
“pools” as described above (for example because MAX_RANDOM
upper-bound is not known in advance). In this case, instead of resort-
ing to Call Wrapping, it is apparently possible to deal with it in the
following manner:

♦♦ Add RNG_data, an array with random data; it can be passed as
one of the parameters to react() (or can be stored in TLS, or can
become a data member of class Infrastructure), but is normally
empty.

♦♦ Implement the function get_random_bytes(), which provides
app-level code with random data. get_random_bytes() checks
whether the RNG_data has sufficient data to satisfy the current

Those techniques of
dealing with system
calls discussed above
cover pretty much all
practical needs (espe-
cially as there is always
a silver-bullet Call
Wrapping solution).

162 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

call – and if not, it throws a special exception NeedRNGData
(specifying the exact size of the data needed).

 ▪ This call MUST happen before any modification
to your (Re)Actor’s state has happened. This is an
all-important requirement, and violating it has very
severe implications. On the other hand, in certain cases,
it is not that difficult to achieve; in particular, see the
VALIDATE-CALCULATE-MODIFY-SIMULATE Pattern
section below.

♦♦ Ensure that class Infrastructure, on catching NeedRNGData
exception within react(), fills RNG_data from RNG source, and
repeats the same call to react(), but using populated RNG_data
this time; on this second attempt, the react() call goes exactly
along the same lines as the previous one, but succeeds because
get_random_bytes(), when called, can get necessary random data
from RNG_data.

This model strongly relies on the VALIDATE-CALCULATE-MOD-
IFY-SIMULATE pattern described in the VALIDATE-CALCU-
LATE-MODIFY-SIMULATE Pattern section below, and on universal
use of RAII throughout your (Re)Actors; however, as you generally
should do both of these things anyway, this model has been seen work-
ing in practice.

On the other hand, the semantics of this exception-based model
is not really obvious with OO-based Take 3 and lambda-based Takes
4-5. Worse than that, such processing requires strict self-discipline and
is rather error-prone (plus the effects of making a mistake – such as
throwing an exception after some modification already happened – can
be devastating). Based on these issues, I generally do not recommend
exception-based processing. Still, there is one case when it might come
in handy: when choosing between exception-based handling and Call
Wrapping on the Client-Side, I might prefer the exception-based ap-
proach (that’s because Call Wrapping happens to reveal a thing or three
to the bot writers <sad-face />; more on it in Vol. VIII’s chapter on Bot
Fighting).

RAII
Resource Acquisition
Is Initialization is a
programming idiom
used in several object-
oriented languages,
most prominently C++,
but also D, Ada, Vala,
and Rust.

—Wikipedia

 Determinism · 163

Dealing with System Calls: RPC-like Handling

Another pretty special class of cases with regards to ensuring deter-
minism is related to those “long” calls, which we have already decided
to make non-blocking (for the relevant discussion, see the Blocking or
Non-Blocking? Mostly-Non-Blocking section above).

The good news are that such non-blocking calls are already deter-
ministic without us doing anything special to ensure it: as these calls
are non-blocking, it implies that replies to them arrive as an input
event — and as we already decided to log all the input events, it means
that we already made our system deterministic with respect to such
non-blocking calls.

This approach is very practical too: I’ve even heard of games that
ensured determinism of all the system calls via converting them into
RPC-like ones, and it did work for them. Still, I think that Call Wrap-
ping makes app-level code simpler (both to write and to read), so in
cases when the system call is guaranteed to be short enough so that
we don’t want to deal with intervening events while we’re waiting for
the reply (see the discussion on the two different cases in the To Block,
or Not to Block, That Is the Question. Mostly-Non-Blocking (Re)Actors
section above), I tend to prefer Call Wrapping to RPC-like Calls. On
the other hand, if we do need to handle events while waiting for the
result of an outstanding system call, then, as discussed above, we do
need to make our call non-blocking, even without taking determinism
into account — and deterministic behavior will come as a really nice
side effect of this effort <smile />.

Dealing with System Calls: allocations

When talking about memory allocations (including, but not limited
to, malloc(), VirtualAllocEx(), and mmap()), we need to keep in
mind that return values of these calls are not guaranteed to be the
same on each program run (even less so if Address Space Layout
Randomization, a.k.a. ASLR, is involved101). BTW, while most of
these problems are specific to C/C++, there are cases when such

101 BTW, ASLR tends to help not only against hackers, but also against bot writers(!); so, as a rule of
thumb, we do want to have ASLR enabled.

ASLR
Address space layout
randomization (ASLR)
is a computer security
technique involved
in preventing ex-
ploitation of memory
corruption vulnerabil-
ities… ASLR randomly
arranges the address
space positions of
key data areas of a
process, including the
base of the executable
and the positions of
the stack, heap and
libraries.

—Wikipedia

164 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

non-determinism rears its ugly head in programming languages
which don’t normally expose pointers to the program (more on it
below).

To make allocations deterministic, strictly speaking, as with any
other system call, it is possible to Call-Wrap all the calls to memory
allocation functions.102 On the other hand, Call-Wrapping all the
calls to allocations is going to be a huge effort (let’s keep in mind
that we’ll also need to Call-Wrap operator new, and this is not going
to be a picnic, and also restoring exact pointer values during replay
is not always easy); plus, it is going to cause quite a performance hit
in production. Moreover, Call-Wrapping allocations, while possible
in C/C++, is not really feasible in many other programming lan-
guages.103

Fortunately, Call-Wrapping allocations is not really necessary.

As long as

we’re using pointers/references only for dereferencing
(and not for any other purpose104)

our code is deterministic with respect to allocations, even without
Call-Wrapping.

With respect to allocations, let’s note that relying on specific pointer
values, while not too frequent in real-world programs, still does happen.
The two most common legitimate cases I know of are the following:
♦♦ Scenarios when we want to have just some kind of sorting. In such

cases, it is tempting to use pointers as sorting keys, but while it
will lead to a valid program, the program won’t be deterministic
(unless we Call-Wrap allocations).

♦♦ Using pointer as an object ID. BTW, this is quite common for sev-
eral non-C/C++ programming languages such as Java or Python;
in particular, the last time I checked, Java’s Object.hashCode() was
effectively relying on the memory location of the object and, as a
result, wasn’t deterministic.

102 In C/C++, that is.
103 At least without hacking into the respective VM.
104 Retrieving array element by index also counts as “dereferencing” in this case.

 Determinism · 165

Overall, when it comes to pointers, below is a list of things that should
be avoided when writing for determinism:
♦♦ Using non-trivial pointer arithmetic (and “non-trivial” here means

“anything beyond simple array indexing”). Seriously, these things
belong in Obfuscated C contest, and should never be used for
app-level development.105

♦♦ Sending pointers over the network (and writing them to
inputs-log), regardless of marshalling used. Again, this one should
also be avoided regardless of determinism.

♦♦ Using pointers as identifiers (this includes implicit uses of pointers,
including common implementations of Object.hashCode() in Java).

♦♦ Using pointers for ordering purposes (for example, as a key in a
std::map<>); as noted above, even using pointers to get “just some
kind of temporary ordering” is not good for determinism.
While this looks like quite a few items to remember, it turns out to

be not that bad in practice.

Dealing with System Calls: Which System Functions Are We
Talking About and What Do We Do About Them?

In general,

Each and every system call (including system calls made
indirectly), creates the danger of your code deviating

from being deterministic.

As a result, it might seem that we will end up with millions of function
calls that we need to Call-Wrap (or with millions of parameters to pro-
vide via TLS/event members/…). Fortunately, in practice, it is not that
bad. Let’s take a closer look at the question “what exactly do we usually
need to wrap/provide?”

Here goes the list of the system (and alike) calls that we routinely
need to use in our programs, and some of which will make your pro-
gram non-deterministic (and often also non-blocking):

105 As with anything else, there are exceptions, but in this case they’re extremely few and far
between. And while we’re at it: if you’re using stuff such as XOR-linked lists, make sure to
encapsulate and hide them from app-level, for the Kernighan’s sake.

Let’s take a closer look
at the question “what
exactly do we need to
wrap/provide?”

166 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Is a “long” call?106 IMO the Best Implementation for
Deterministic (Re)Actors107

Current ticks (such as GetTickCount()
or clock_gettime(CLOCK_MONO-
TONIC, …))

No TLS-based (or placing current ticks into
each Event)

Memory allocations (such as mal-
loc(), VirtualAllocEx(), mmap())

No Avoiding relying on pointer values;
instead, we should use pointers only for
dereferencing

Current calendar time (such as
time())

No TLS-based (or placing current time into
each Event)

Time within event processing108 No Call Wrapping

Implicitly-locale-dependent or
implicitly-time-zone-dependent
time conversion functions (such as
localtime[_s]() and strftime())

No Server-Side: better to avoid if possible,109
otherwise — Call Wrapping

Client-Side: Call Wrapping, or excep-
tion-based processing

Both locale- and time-zone-indepen-
dent time conversions (such as sn-
printf(…, “%d:%d:%d”, tm.tm_hour,
tm.tm_minute, tm.tm_second))

No N/A (already deterministic)

File/DB access It depends110 Call Wrapping or non-blocking RPC-like
(the latter if you need to make the call
non-blocking). Note that if reads are from
well-known files (such as resources), you
MAY inputs-log only position and size of
the data read, skipping the data itself111

Real RNG (such as /dev/urandom or
CryptGenRandom())

It depends Call Wrapping or RPC-like (the latter if
RNG call is blocking)

Pseudo-RNG No N/A. Usually it is better to compile it into
your app (rather than rely on system-de-
pendent library) to be 100% sure it is
deterministic

C library functions implicitly using
globals (such as strtok(), etc.)

No Avoid (these functions tend to cause
enough problems to justify writing your
own replacements)

Math No N/A112

 Determinism · 167

Graphic APIs (Client-Side only) It depends Mostly N/A113

Player Input N/A N/A, normally should be processed as
input events

Network — UDP sockets Usually no, but YMMV.
As a rule of thumb,
you SHOULD make
even your UDP sockets
non-blocking

N/A114

Network — TCP sockets You MUST make your
TCP sockets non-blocking

N/A

Network — getaddrinfo() Blocking RPC-like (see Take 1–Take 8 above)

RPC calls Blocking Non-blocking RPC

Thread APIs SHOULD NOT appear
within your (Re)Actor
app-level code

N/A

Mutexes and other thread-sync
primitives

SHOULD NOT appear
within your (Re)Actor
app-level code

N/A

Parallelizing onto multiple cores Not really Non-blocking RPC-like; for serious
calculations - HPX (see also the Offloading
section above)

106 Note that whether to consider certain functions as blocking is sometimes not that obvious, so, in some cases, YMMV. For a discussion
of which calls need to be made non-blocking within our mostly-non-blocking (Re)Actor model, see the Blocking or Non-Blocking?
Mostly-Non-Blocking section above.

107 My personal opinion, YMMV; batteries not included
108 A rare occurrence, but it might be necessary for latency-critical calculations to see “how much time still left until whatever-deadline

we have.”
109 At least in those cases when Clients of the same server MAY be spread over multiple time zones, formatting according to one single

server time MAY be confusing.
110 Depending on the specifics of your app, you MAY or MAY NOT consider file I/O or DB access as blocking. However, you generally

SHOULD consider any such access which happens over the network blocking; this usually SHOULD apply to over-the-LAN access too(!)
111 If you want to be 100% sure that nobody hacked/modded your resources on the Client-Side, you MAY additionally calculate SHA-1 of

the whole file on the Client start and log it (once per file), or alternatively MAY calculate-and-log SHA-1 of each chunk you’re reading.
112 Though also see the discussion about cross-platform determinism in the Achieving Cross-Platform Determinism section below.
113 Unless you’re reading something from the graphics layer, it stays output-only and doesn’t need to be written to inputs-log.
114 Generally, outgoing packets do not need to be written to inputs-log, and incoming ones should be presented as input events (and

logged to inputs-log by framework at that point).

168 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

And that’s about it. As we can see, the list of the system (and alike)
function calls that may occur within our (Re)Actors is relatively lim-
ited (in particular because everything we’re doing, especially on the
Server-Side, is indeed pretty much “moving bits around,” as discussed
above).

Implementing Deterministic Logic: Other Sources of
Non-Determinism

In addition to system calls, there are several other sources of non-deter-
minism in programs. Let’s take a closer look at them.

On Undefined Behavior

Some programming languages such as C++ may allow us to write a
syntactically valid program, but this program, when run, can exhibit
so-called Undefined Behavior (UB). Here, Undefined Behavior can
mean anything (up to and including formatting the hard drive of your
unfortunate user, see, for example, [Walfridsson]115).

In general, Undefined Behavior SHOULD be avoided even in the
absence of determinism. With determinism, you’ll just need to be even
more vigilant in this regard. One simple example: while with your
usual program, reading uninitialized memory (which is an Undefined
Behaviour) may not cause visible-enough troubles (for example, if you
don’t really care much about the initial state of your object), it will kill
determinism by about nine orders of order of magnitude faster than
you can say “Jack Robinson.”

115 I won’t go as far as saying that “it can make demons fly out of your nose”; while this behavior
is indeed allowed by C/C++ standards, I am a firm supporter of the point of view that proper
hardware controls should be in place to prevent misbehaving software from causing that much
trouble (and to avoid disasters such as Therac-25).

 Determinism · 169

No Access to Non-const Globals and TLS

This might go without saying, but let’s make it explicit:

For your (Re)Actor to be deterministic, you
MUST NOT use any non-const global variables within.116

Yes, that means “No Singletons” too.

And while we’re at it, the same goes for using TLS within your (Re)
Actor.117

Actually, “no-globals” is not just a requirement for being determin-
istic, but is a well-known “best practice” for your code to be reasonably
reliable and readable, so please don’t take it as an additional burden that
you’re doing just for the purpose of becoming deterministic. Following

116 Technically, globals MAY be okay, as long as each is accessed from exactly one (Re)Actor. Enforcing
this rule, however, is much more complicated than simple prohibition on all the non-const globals.

117 Note that “TLS Compromise,” as we’ve discussed above, is not within (Re)Actor app-level code;
using TLS in infrastructure-level code might be fine in certain very narrow and very-well-defined
scenarios (such as the TLS Compromise discussed above).

Actually, “no-glo-
bals” is not just a
requirement to be
deterministic, but is
a well-known “best
practice,” so please
don’t take it as an
additional burden.

170 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

this practice will make your code better in the medium and long run,
even if you’re not using any of the benefits provided by determinism.

The only exception to this rule is that accessing global constants is
allowed without restrictions (well, as long as you don’t try to modify
them <wink />).

As a consequence of the rule above,

You SHOULD NOT use any function that implicitly
uses non-const globals.

Identifying such functions can be not too trivial, but if you need to stay
deterministic, there is a requirement to avoid them. Alternatively, you
may decide to Call-Wrap these calls (and write whatever-they-return
into inputs-log) to keep your logic deterministic, but usually such artifi-
cial “wrapping” of the non-system-level code is best avoided whenever
feasible.

C standard library is particularly guilty of providing functions
that implicitly access globals (this includes rand()). Most of these
functions (such as strtok()) should be avoided anyway due to the logic
becoming non-obvious and potentially thread-unsafe on some of the
platforms. One list of such functions can be found in [ARM]; note
that our problem here is not limited to thread-safety, and rand() and
strtok() are still non-deterministic — even on those platforms (notably
Windows) — which makes them thread-safe by replacing globals with
TLS-based stuff.

In general, it is better to replace rand() with a PRNG that resides
entirely within your (Re)Actor (see the discussion in the PRNG section
below). As for strtok(), etc., it is better to avoid them altogether.

On Threads

Threads (at least when they’re running on different CPU cores) repre-
sent a really bad source of non-determinism.118 If we have two threads
running in parallel, their relative times are not guaranteed. For example,

118 I don’t want to get into a discussion of which of the current hardware allows for deterministic
scheduling, but from the point of view of the application level that runs on top of modern
desktop/mobile/server OS, threads are as non-deterministic as they get.

Threads (at least when
they’re running on
different CPU cores)
represent a really bad
source of non-deter-
minism.

 Determinism · 171

if on one run of the program it was thread A that grabbed the mutex
first, on the second run it may be thread B doing so, with the differenc-
es between the runs starting to pile up from that point on.

Fortunately, we’ve already thrown away thread APIs from our
(Re)Actors, so that each of our (Re)Actors is essentially single-thread-
ed.119 <phew />

On Determinism of the Whole Distributed Systems

BTW, the reasoning about the threads above leads to an interesting
observation. While we can have each of our (Re)Actors deterministic
(and quite easily too), it is not an easy task to make a system of more-
than-one (Re)Actor fully deterministic as a whole.

When talking about whole-system determinism in the context of
this book (for example, as we discussed it in Vol. I’s chapter on Commu-
nications), we’re actually talking about finding some plausible sequence
of events that would make our whole system self-consistent, though
without guarantees that it is exactly the sequence of events as they hap-
pened in the real world.120 Even achieving such a kinda-determinism is
not easy, and would amount to establishing one common time among
all our (Re)Actors; this is doable, though quite cumbersome (for details,
see the discussion on eliminating Server-Side uncertainty in Vol. I’s
chapter on Communications).

On the other hand, a lack of system-wide determinism is usually not
a problem in practice, as long as we can make each of the system compo-
nents deterministic, so the whole not-necessarily-deterministic system
consists only of deterministic components. As soon as we achieve such
per-component determinism, we can reap all the deterministic benefits
discussed in this chapter.

119 Or at least “as if” it is single-threaded.
120 BTW, strictly speaking, the Special Theory of Relativity says that for distant objects, the whole

concept of “simultaneity” is inherently relative <ouch! />. While physical relativity as such is
not directly related to our problems here, the concepts behind STR and non-determinism of
distributed systems are surprisingly similar (in a sense, we can consider our distributed system
as a system which has finite and non-uniform communication speeds, which can easily happen
for a physical system where the space between nodes is filled with a material with a non-uniform
refractive index).

172 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Implementing Deterministic Logic: Non-Issues

There are three hundred and sixty-four days
when you might get un-birthday presents,

and only one for birthday presents, you know.
— Lewis Carroll

In addition to the non-deterministic issues described above, there are
also three non-issues. These things are frequently seen as potential
problems for determinism at first glance, but are not really dangerous
when we take a closer look. The most popular non-issues that are (er-
roneously) seen to prevent determinism are pseudo-random numbers,
logging, and caching.

PRNG

Pseudo-random numbers as such are perfectly deterministic; that is,
as long as you’re storing the whole PRNG state as one of the members
of your (Re)Actor. Instead of using non-deterministic rand() (which
implicitly uses a global, and this global will cause quite a few problems),
in theory you can implement your own linear congruential PRNG
(which is literally a one-liner, but is not really good when it comes to
randomicity), or use one of those Mersenne Twister classes that are
dime a dozen these days (just make sure that those PRNG classes have
PRNG state as a class member, not as a global).

However, as will be discussed in Vol. VI’s chapter on Random Num-
ber Generators, as a rule of thumb I do not recommend using non-cryp-
to RNGs for games (in short, because it may create difficult-to-spot
attacks), so for not-so-RNG-critical games I suggest running your own
AES-CTR PRNG; see Vol. VI for details. Note that to get your PRNG
(such as AES-CTR PRNG) seeded, you still need to provide some seed
that is external to your deterministic logic, but this is rarely a problem;
for example, /dev/urandom or CryptGenRandom() can be used for this
purpose (NB: keep in mind that seed taken from /dev/urandom or
CryptGenRandom() needs to be saved to the inputs-log, using any of the
methods discussed above for making system calls deterministic).

In addition to the
non-deterministic
issues described
above, there are also
three non-issues.

 Determinism · 173

For those games that are really RNG-critical,121 you will want to
run several hardware-based RNGs and use something (such as XOR)
to combine their outputs (once again, see Vol. VI for further details).
From our current perspective of (Re)Actors, this combined output will
be an input to our (Re)Actor, and as such will need to be inputs-logged.

Logging/Tracing
Logging/tracing (as in “log something to an application-level log file”),
while it does interact with an outside world, is deterministic (that is,
from the point of view of whoever-writes-the-log — i.e., from the point
of view of our (Re)Actor). Moreover, even if your logging procedure
prints current time itself (and to do so, calls system_get_current_time()
or something else of the sort), and technically becomes non-determin-
istic from the “all the world outside of our (Re)Actor” point of view
(this happens because its output starts to depend on the current time),
it stays deterministic from the point of view of our (Re)Actor itself (as
long as the (Re)Actor does not read from the log).122

Practical consequence: feel free to write all kinds of times to the
log (such as in Node.js time()/timeend() pair), even if these times as
such are not deterministic; however, make sure that the result of calling
system_get_current_time() is not used other than to write data to the
log (in particular, you MUST NOT return current time/ticks from the
logging function, otherwise determinism will be broken).

Caching
Last but not least deterministic non-issue is related to caching. Caching
(whether file-based or memory-based), when it comes to determinism,
is quite an interesting beast.

Let’s consider a database that has some data, and our own cache
over this database. Now, as long as our cache works correctly, we have
two choices to ensure determinism:
a) To consider the cache as part of our (Re)Actor, and to log (to

inputs-log) all the data going from the database to the cache, but
not inputs-logging the calls between our (Re)Actor and cache.

121 Think “stock exchanges” or “casinos.”
122 I know that this explanation reads as quite ugly, but I can’t find better wording; regardless of the

quality of the wording, the statements in this paragraph stand.

Last but not least de-
terministic non-issue
is related to caching.

174 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

b) To consider the cache as something external to our (Re)Actor, and
to inputs-log all the calls between our (Re)Actor and cache, but not
inputs-logging the calls between the cache and the database.

As long as the cache is working properly, both approaches are equiva-
lent from a determinism point of view (though they may easily be very
different, performance-wise). Moreover, even if option (a) is used, it is
generally okay to drop the cache at any time. In other words, for both
option (a) and option (b), it is generally acceptable not to serialize cache
as part of the serialized (Re)Actor state123 — and this can provide a very
important performance improvement.

On Isolation Perimeters

After discussing two different ways to ensure determinism of caches,
we can make one interesting observation about any wannabe-deter-
ministic system:

to take advantage of determinism of a certain object
(~=”code±data”), we need to isolate it and make sure that we
can control (and log to inputs-log) all the inputs of this object.

In other words, we need to make an “Isolation Perimeter” where we
control and log all the inputs.

Actually, the idea is well-known, though our (Re)Actors are doing
it in a not-so-orthodox manner. There are quite a few systems out there
(such as, for example, [Geels, et al.]) that are trying to build this Isola-
tion Perimeter around the whole app — or even around the whole VM
(as was done in the “virtual lockstep” algorithms). Actually, without
access to the internals of the code, it is next to impossible for them to
do anything else.

On the other hand, as we DO have access to the internals of our
own code, we can build our Isolation Perimeter pretty much anywhere
we want. As we can see in the example of caches discussed above, such
flexibility can easily become our big advantage, performance-wise.

123 As discussed above in the Going Circular section, serializing the (Re)Actor state is necessary to get
such goodies as Post-Factum Debugging and Replay-Based Regression Testing.

To take advantage of
determinism, we need
to make an “isolation
perimeter,” where we
control and log all the
inputs.

 Determinism · 175

Implementing Deterministic Logic: Cross-Platform
Determinism

Up until now, we were concentrating on the implementation of a pro-
gram that exhibits exactly the same behavior when exactly the same
program is run multiple times; [Hare, Determinism: Requirements vs
Features] defines this as “same-executable determinism.” However,
there is also a stricter version of determinism: to have a source code,
which (after it is compiled) runs exactly in the same way on different
platforms; consistently with [Hare, Determinism: Requirements vs
Features], we’ll name it “cross-platform determinism.”

Such cross-platform determinism has its own uses in games;
during not-so-ancient times, there were numerous attempts to use it
for multiplayer games using protocols such as deterministic lockstep.
Unfortunately, these experiments have shown that achieving true
cross-platform determinism is extremely difficult. The most annoying
scenario occurs when you have a program that is almost cross-plat-
form-deterministic, but very occasionally produces a slightly different
numeric result; for example, due to slightly different rounding (see the
discussion on rounding-related issues below). If we’re relying on ex-
actly deterministic behavior (such as in Deterministic Lockstep, etc.),
this “slightly different” result will start an avalanche of results being
more and more different, eventually causing a macroscopic difference
between two systems, which means that determinism-based protocol
has fallen apart.

On the other hand, if we’re talking about cross-platform re-
play-based testing of your app (such as equivalence testing), or about
cross-platform almost-determinism, things are not that bad. If we’re
trying to replay-test two systems on different platforms, and run into
non-determinism, we can usually fix the issue rather easily and resume
testing. Also, if we’re okay with almost-determinism (such as in running
Server-Side logic and Client-Side Prediction from the same source
code), we’re generally fine with the results being slightly different (and
for Client-Side Prediction, this difference will be fixed very soon, before
macroscopic effects are allowed to accumulate).

176 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Achieving Cross-Platform Determinism

As it was already noted above, achieving cross-platform determin-
ism is significantly more complicated than achieving just a simple
same-executable kind of determinism. An in-depth discussion of those
cross-platform issues that can cause slightly different behavior on dif-
ferent platforms is beyond our current scope, so I will merely list them.

The first batch of potential problems is necessary to keep in mind,
even if cross-platform almost-determinism is sufficient:
♦♦ The same functions on different platforms may exhibit subtly

different behavior; moreover, both behaviors can be fully stan-
dard-compliant but different.

 ▪ In particular, non-ordered and partially-ordered collections
may produce different results on different platforms while
staying compliant. For C++, examples include iterating over
hash-table-based unordered_map<>/unordered_set<> con-
tainers, and over tree-based partially ordered multiset<>/
multimap<> containers.

yy One funny thing about these algorithms is that they
are indeed nothing more than “moving bits around”
(which, in turn, means that they can easily be im-
plemented in a deterministic manner); it is just that
bits are moved in a slightly different (but compliant)
manner for different implementations.

yy It means that one way to deal with them is to write
your own version (or just to compile any existing
ones to all the platforms); as long as the code for
all the platforms is (substantially) the same, it will
compile into the code that behaves exactly the same.

yy For tree-based partially ordered sets/maps, you
can often make them fully ordered by adding an
artificial ID (for example, incremented for each
insert to the container) and using it as a tie-breaker
if the original comparison returns that objects are
equal. It is quite a dirty hack, but if you can ignore
ID wraparounds (and this is almost universally the
case if you’re using 64-bit IDs), and you don’t care

Achieving cross-plat-
form determinism
is significantly more
complicated than
achieving a simple
same-executable kind
of determinism.

 Determinism · 177

about storing an extra ID for each item in collection,
it works pretty well.

The second batch of issues plaguing cross-platform determinism, is
related to floating-point arithmetic producing subtly different results
on different platforms. Fortunately enough, quite often we can live with
these differences when all we need is almost-determinism, as defined
above.

In short: while floating-point operations/functions/… will return
almost the same results on different platforms,124 making them exactly
the same across different hardware/compilers/... is very challenging at
the very least; for further details, refer to [Dawson] and [Fiedler, Float-
ing Point Determinism]. A few minor but important points in addition
to the discussion in those references:
♦♦ There are several different sources of non-deterministic floating

point behavior, including but not limited to:
 ▪ Subtly different behavior of libraries on different platforms.
 ▪ Differences in floating point implementations on different

CPUs(!).
 ▪ And, last but not least, as order of calculating a+b+c

can be compiler-dependent,125 and as each addition
implicitly includes rounding, a+b+c can result either in
round(round(a+b)+c), or in round(round(b+c)+a), and
these are not guaranteed to be equal at all.126 This, in turn,
means that compilers (as well as compiler options) can
easily break cross-platform determinism.

♦♦ As floating-point arithmetic is once again all about “moving bits
around” (it just takes some bunches of bits and returns other
bunches of bits), it can be made perfectly deterministic. In prac-
tice, you can achieve it by using a software floating-point library
that simulates floating-point via integer arithmetic (after all, all the
floating-point stuff can be expressed in terms of integer math; see,
for example, [Knuth]).

124 After all, sin(π/4) is equal to 1/√2 everywhere; it is last-bit rounding that causes all the trouble.
125 At least in C/C++, it is compiler-dependent.
126 Yes, it also means that addition in floating-point space is not associative; see, for example,

[Wikipedia, Associative property].

While floating-point
operations/func-
tions/… will return
almost the same
results on different
platforms, making
them exactly the
same across different
hardware/compilers/...
is very challenging at
the very least.

178 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 ▪ Note that such a library (if used consistently for all your
platforms) does not need to be IEEE compliant; all you
need is merely to get some reasonable results, and the last
bit of mantissa/significand rarely matters in practice (as
long as it is the same for all the platforms).

 ▪ Such libraries are slooooow compared to using CPU-sup-
ported floating-point; for a reasonably good floating-point
emulation library (such as [Hauser, Berkeley SoftFloat]),
you can expect slowdown in the order of 20–50x compared
to hardware floating point.

yy OTOH, certain speedup can be expected if the
library is rewritten to avoid packing/unpacking
floats (i.e., that class MyFloat is actually a two-field
struct separating significand and exponent), and
replacing IEEE-compliant rounding with some-rea-
sonable-and-convenient-to-implement rounding; a
very wild guesstimate for such an improvement is in
the order of 2x [Hauser], which is not bad, but will
still leave us with at least a 10x slow-down compared
to a hardware floating point.

 ▪ However, if you’re fine with this 20x-50x-slower float-
ing-point arithmetic (for example, because your logic
performs relatively few floating-point operations), such
libraries will provide you with perfect cross-platform
determinism.

♦♦ Another deterministic alternative to floating points is to use fixed-
point arithmetic; in particular, currently there is a very interesting
work-in-progress within SG14 of the ISO C++ Standard Body.
Among other things, it supports the so-called elastic fixed-point
numbers, which allow to bypass quite a few limitations of
traditional fixed-point. For more information – see [McFarlane,
Composition of Arithmetic Types], and for current implementa-
tion – see [McFarlane, CNL: A Compositional Numeric Library
for C++].

 ▪ As long as the CNL-style fixed point numbers are imple-
mented on top of integers – they are perfectly deterministic.
Moreover – they’re generally faster than floating-point

 Determinism · 179

ones (speed was the main reason to develop them in the
first place); of course, this comes at the cost of needing to
handle fixed-point positions manually – but it is still a very
viable option.

Let’s also note that the difficulty of achieving cross-platform determin-
ism significantly depends on the programming language we’re using.
In particular, as noted in [Ignatchenko, Deterministic Components
for Interactive Distributed Systems: Benefits and Implementation],
Java tends to be significantly more determinism-friendly than C/C++
(in particular, due to strict requirements on order calculations in Java
specification, and to strictfp modifier); as for the other programming
languages, it depends greatly on both the programming language as
such and on a specific implementation.

Implementing Deterministic Logic: Summary

From the analysis above, we’ve found that while there are tons of places
where your logic can potentially call system and system-like functions
(and get something from them, making the logic potentially non-de-
terministic), in practice all of them can be dealt with relatively easily as
described in the Implementing Deterministic Logic: Non-Determinism
Due to System Calls section.

As for other issues (those not related to system and system-like
function calls), they are also of only a very limited nature (that is,
unless we’re talking about cross-platform determinism). Neither a
requirement to avoid globals (which is good practice anyway), nor a
requirement to avoid pointer-related trickery tends to cause too many
practical problems.

However, if you’re going into the realm of cross-platform determin-
ism, things may get significantly nastier (and likely will cause lots of
trouble); while collection differences can be handled if you’re careful
enough, achieving fully cross-platform floating point calculations
across different CPUs/libraries/etc. can easily become next-to-impossi-
ble. Fortunately, in quite a few cases, almost-determinism will be enough,
and this one is much easier to achieve.

If you’re going into the
realm of cross-platform
determinism, things
may get significantly
nastier.

180 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Types of Determinism vs Deterministic Goodies
As mentioned above, there are at least two different types of determin-
ism: “same-executable” determinism and “cross-platform” determin-
ism. In addition, as mentioned in [Hare, Determinism: Requirements
vs Features], there is in fact a third type of determinism, “same-plat-
form-determinism — which stands against minor code changes.” Let’s
give a stricter definition for each of them (and respective versions of
almost-determinism too):
♦♦ Same-Executable Almost Determinism. Different runs of the

same executable, given the same inputs, produce almost the same
results. The “almost” in the name means that while the overall
result is almost the same, some minor rounding differences (such as
the difference in the last bit of the floating point output value) may
be allowed. It should be noted that even this last-bit difference in
floating-point value can (and most of the time will) lead to macro-
scopic differences further down the road, so all uses for almost-de-
terminism SHOULD be very limited in time and SHOULD be
self-healing. BTW, Same-Executable Almost Determinism happens
quite a bit with parallelized floating-point calculations, which are
very common in GPGPU, and recently there has been quite a bit
of talk related to the use of GPGPU on the Server-Side (for more
details, see Vol. III’s chapter on Server-Side Architecture).

♦♦ Same-Executable Determinism. Different runs of the same
executable produce exactly the same results given the same inputs.
Quite realistic to achieve.

♦♦ Same-Platform-Determinism Resilient to Minor Code Changes.
A quite special variation of Same-Executable Determinism, which
is related to making our code deterministic in the face of minor
code changes, and on the same platform. Such scenarios arise
while using Replay-based Regression Testing, and are quite a
headache (which may be made bearable though).

♦♦ Cross-Platform Almost-Determinism. The same source code,
when compiled to different platforms, produces almost the same
results on all the platforms of interest. Unlike with full-scale
cross-platform determinism, achieving cross-platform almost-de-
terminism — while being an even bigger headache than determin-
ism-resilient-to-minor-code-changes — is still possible.

Same-Executable
Determinism. Differ-
ent runs of the same
executable produce
exactly the same
results given the same
inputs.

 Determinism · 181

♦♦ Cross-Platform Determinism. The same source code, when
compiled to different platforms, behaves exactly the same on all the
platforms of interest. As discussed above in the Implementing Deter-
ministic Logic: Cross-Platform Determinism section, Cross-Platform
Determinism is extremely difficult to achieve, at least in C/C++. In
particular, because of floating-point issues, achieving Cross-Plat-
form Determinism becomes so difficult that it is unclear whether it
is truly realistic to get a serious C/C++-based heavily-floating-point
system to be perfectly deterministic over several really different
platforms (though a recently-developed fixed-point CNL library
might provide a workaround, at least for some of the use cases).
As discussed in [Hare, Determinism: Requirements vs Features]

(and applying similar analysis to the other deterministic goodies not
mentioned there), relations between types of determinism, and the
goodies they provide, can be summarized in the following table:

Same-Exe-
cutable Al-
most-De-
terminism

Same-Ex-
ecutable
Determin-
ism

Same-Platform
Determinism
Resilient
to Minor
Changes

Cross-Plat-
form
Almost-De-
termin-
ism127

Cross-Plat-
form
Determin-
ism — most
complicated

Deterministic Lockstep Yes

Client-Side Replay Yes

Keeping cross-platform code
equivalence

Yes Yes

Using same code for Client-Side
Prediction, etc.

Yes Yes

Replay-Based Regression Testing Yes Yes Yes

Production Post-Factum Analysis Yes Yes Yes Yes

Low-Latency Fault Tolerance Maybe128 Yes Yes Yes Yes

(Re)Actor Migration (Better
Balancing)

Maybe Yes Yes Yes Yes

127 For the purpose of this table, we assume that Cross-Platform Almost-Determinism implies Same-Platform Determinism Resilient to
Minor Changes.

128 Strictly speaking, low-latency fault-tolerance and moving (Re)Actors around, when almost-determinism is involved, will work correctly
if and only if all the almost-deterministic results emitted by our (Re)Actor are considered transient (i.e., subject to further revisions
that will completely override all the previous results); more discussion on the effects of almost-determinism on implementations of
the fault-tolerance and moving (Re)Actors around will be discussed in Vol. III’s chapter on Server-Side Architecture.

182 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Relation of Deterministic (Re)Actors to
Deterministic Finite Automata

Have it compose a poem — a poem about a haircut!
But lofty, noble, tragic, timeless, full of love, treachery,
retribution, quiet heroism in the face of certain doom!

Six lines, cleverly rhymed, and every word
beginning with the letter s!!

— And why not throw in a full exposition of the
general theory of nonlinear automata while you’re at it?

— Dialogue between Klapaucius and Trurl from
The Cyberiad by Stanislaw Lem

NB: if you’re not interested in theory, you can safely skip this
subsection; for practical purposes, suffice it to say that whatever
deterministic event-driven program you’ve-already-written is a
deterministic finite automaton, so there is absolutely no need to
be scared. On the other hand, if you are interested in theory, you’ll
certainly need much more than this subsection. The idea of this
subsection is just to provide some kind of “bridge” between your uni
courses and the practical use of finite automata in programming
(which unfortunately differ significantly from quite a few courses out
there).

First, we need to note that our class ConcreteReactor (a deterministic
one) falls strictly under the definition of Finite Automaton (or, more
precisely, Deterministic Finite Automaton) provided in Wikipedia
(and in quite a few uni courses). Namely, a deterministic Finite State
Machine (a.k.a. Deterministic Finite Automaton) is usually defined as
follows (see, for example, [Wikipedia, Deterministic Finite Automa-
ton]):
♦♦ Σ is the input alphabet (a finite, non-empty set of symbols).

 ▪ For our (Re)Actor, Σ is a set of values that a pair (now,ev)
can take; while this set is exponentially huge, it is still
obviously finite.

♦♦ S is a finite, non-empty set of states.

If you’re not interested
in theory, you can
safely skip this
subsection.

 Determinism · 183

 ▪ In our case, it is represented by all valid combinations of
all the bits forming data members of the (Re)Actor. Again,
it is exponentially huge, but certainly still finite (with
an upper bound for the number of different states being
2number_of_bits_in_all_data_members).

♦♦ s0 is an initial state, an element of S.
 ▪ Whatever state results from a constructor of our (Re)Actor.

♦♦ δ is the state-transition function. δ: S × Σ -> S.
 ▪ In our (Re)Actors, this function is implemented as react().

♦♦ F is the set of final states, a (possibly empty) subset of S.
 ▪ For our (Re)Actor, F is always empty.

As we can see, our class ConcreteReactor complies with this definition,
and therefore is a Deterministic Finite Automaton.

Quite often129 in university courses, state-transition function δ is
replaced with a “set of transitions.” From a formal point of view, these
two definitions are strictly equivalent because:
♦♦ For any state-transition function δ with a finite number of possible

inputs, we can run this function through all the possible inputs
and obtain the equivalent set of transitions.130

♦♦ Having a set of transitions, we can easily define our state-transition
function δ via this set.

On the other hand, if you start to define your state machine via a set of
transitions in practice (and not just in theory), most likely you’re starting
the journey along the path which will eventually lead you to shooting
yourself in the foot. When used in practice, this “set of transitions” is
usually implemented as some kind of a state transition table (see [Wiki-
pedia, State Transition Table]). It all looks very neat, and is fairly obvious.
There is only one problem with table-driven finite state machines, and the
problem is that they don’t work for real-world app-level programming.131

129 See, for example, [Nelson].
130 Never mind that such enumeration may easily take much longer than it does for the universe to

end from something such as Heat Death or the Big Rip — in math world, we don’t need to restrict
ourselves to such silly notions.

131 While table-driven FSMs can be fine for embedded programs with inherently-small-number-of-
states, for app-level programming the number of states very rarely stops at the number that is
“small enough” for table-driven FSMs.

184 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

The problem that actually kills this neat idea is known as “state
explosion,” and is all about exponential growth of the number of your
states as you increase the complexity of your program. I won’t delve
into too many details about the “state explosion,” but will note that it
becomes really, really bad as soon as you start to develop something
realistic; even having 5 different 1-bit fields within your state leads to
a state transition table of size 32, and adding anything else is already
difficult; make it 8 1-bit fields (corresponding to 256 already-existing
transitions), and adding any further logic has already became un-
manageable.132 In fact, while I’ve seen several attempts to define state
machines via state transition tables at the app-level, none were able to
come even somewhat-close to succeeding.

What is normally used in practice is essentially an automaton that is
defined via state-transition function δ (which function δ is implement-
ed as a deterministic function written in an imperative programming
language; see, for example, our react() function above). Actually, such
automatons are used much more frequently than developers realize
that they’re writing a finite automaton <wink />. To distinguish these
real-world code-driven state machines from table-driven finite state
machines (which are usually impractical for app-level programming), I
like the term “ad-hoc state machines” (to the best of my knowledge, the
term was coined in [Calderone]).

And from our perspective, we can say that our class ConcreteReactor
clearly qualifies as such an ad-hoc state machine.

Deterministic Finite State Machines: Nothing
New — Let’s Just Start Using Them
While there is nothing new with event-driven programming (and
ad-hoc finite state machines used for this purpose), our finite state ma-
chines have one significant advantage compared to those usually used in
the industry. Our (Re)Actors a.k.a. ad hoc state machines are determin-
istic (at least when it comes to one single platform), and that allows for
lots of improvements for debugging of distributed systems (mostly due
to Replay Testing/Debugging and Production Post-Factum Analysis).

132 While hierarchical state machines may mitigate this problem a bit, in practice they become too
intertwined if you’re trying to keep your state machines small enough to be table-driven. In other
words: while hierarchical state machines are a good idea in general, even they won’t be able to
allow you to use table-driven stuff at the app-level.

The problem that kills
this neat idea is known
as “state explosion”
and is all about the
exponential growth of
number of your states
as you increase the
complexity of your
machine.

 Determinism · 185

On the other hand, in academic circles, Deterministic Finite
Automata are well known, but usually relevant academic discussions
are limited to table-driven FSMs, and these don’t scale well to a large
number of states (due to the “state explosion” phenomenon discussed
above).

On the third hand, determinism for games has been a popular topic
for a while (see, for example, [Dickinson]), and in recent years has got-
ten a new life with MOGs and synchronous physics simulation on the
Client and the Server (see, for example, [Fiedler, Deterministic Lock-
step]). Oh, and BTW, at least some of the AAA companies are using
deterministic automata all the way — and with Post-Factum Analysis,
too (see, for example, [Aldridge]).

On the fourth hand (yes, I’m exactly halfway to becoming an oc-
topus), if you want your game crashing 10x less frequently than the
competition, do yourself and your players a favor and record produc-
tion inputs-logs for Post-Factum Analysis purposes, as well as perform
Replay-Based Regression Testing. I know I sound like a commercial, but
as a gamer myself I do have a very legitimate interest in making games
crash much more rarely than they do now; and I also know that for most
good game developers out there, deterministic testing and post-factum
analysis will help to produce more reliable programs, and will help a lot.

TL;DR for Determinism Section
Phew! It was quite a long section on Determinism. Let’s summarize it
here:
♦♦ Deterministic logic is a Good Thing™, providing game-chang-

ing133 benefits for debugging of distributed systems, including
Replay-Based Regression Testing and production Post-Factum
Analysis.

♦♦ Implementing deterministic logic requires relatively few changes
in addition to the existing best practices, as long as cross-platform
determinism is not required.

 ▪ Dealing with system and system-like calls in an optimal
manner requires several different approaches, depending

133 Pun intended.

If you want your game
crashing 10x less
frequently than the
competition, do your-
self and your players
a favor and record
production inputs-logs
for post-factum
purposes, as well as
perform replay-based
testing.

186 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

on the nature of the function we’re dealing with; see the
Dealing with System Calls: Which System Functions Are We
Talking About and What Do We Do About Them? section for
a quick summary of these approaches.

•♦ Achieving full-scale cross-platform determinism can be tricky,
especially because of floating-point issues.

DIVIDE ET IMPERA, OR HOW TO
SPLIT THE HARE THE HAIR
THE (RE)ACTOR

Divide et Impera
(Divide and Conquer)

— Philip II of Macedon, 4th Century BC

Now, as we’ve discussed all the goodies coming from (Re)Actors, and
described the basics of their implementation, we need to consider yet
another problem that comes into play as soon as our (Re)Actors become
really large (and for a large game, at least some of them will).

 Divide et Impera, or How to Split the Hare the Hair the (Re)Actor · 187

As one all-important example, chances are that our Game World
(Re)Actor is going to be huge. While all the things we wrote about
still apply, a Big Fat Question™ arises: “How to write it so that the code
remains manageable?” Or an equivalent “How to keep code complexity
in check as the size of the (Re)Actor grows?”

BTW, in this regard I strongly recommend reading Chapter 7 of
[Nystrom, Game Programming Patterns]. Several subsections of this
book that follow are significantly influenced by that work (and by UML
state machines), though (I hope) I still provide a bit of useful informa-
tion beyond them.

On Importance of the DIY IDL Compiler

First, let’s note that

whatever-we’re-doing, 100% of the
marshalling/unmarshalling MUST be done by

IDL-compiler-generated code.

While strictly speaking, doing marshalling/unmarshalling manually
might work (and I even know of a multi-million-LoC system which
does just this) – such a manual approach is known to be a source of
many easily-preventable time-consuming bugs. In addition, using
an IDL compiler instead of manual marshalling/unmarshalling
allows for certain very-important-in-practice goodies such as
automated testing, and automated obfuscation (the latter being very
important to deal with bots, more on it in Vol. VIII’s chapter on Bot
Fighting).

Moreover – while there are lots of readily available IDL compilers
out there (including protobuf, FlatBuffers, and so on) – at least for
gamedev I am arguing for

Writing your own game-tailored IDL compiler.

Sure, it is nice to use something-which-has-already-been-developed-
for-us – but unfortunately, no currently-existing IDL is IMO good

How to keep code
complexity in check
as the size of the (Re)
Actor grows?

188 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

enough for game development. In particular:
♦♦ At least for Client-2-Server communications, we need encodings

which are much more sophisticated than those provided by
existing IDL compilers; this includes support for delta encodings
(with a reference to a previous already-acknowledged packet),
fixed-point representations (without the need to convert from/to
floating-point at app-level), and so on; for more discussion – see
Vol. I’s chapter on Communications.

♦♦ We DO want to specify classes/structs where the data-on-the-wire
should be mapped. In particular, often we want to map marshalled
data to an existing class, without the need to move the data
manually between IDL-generated-plain-struct, and our class; for
more discussion on mappings – see Vol. I. Unfortunately, current-
ly-existing IDL compilers don’t provide this capability.

♦♦ Built-in versioning support. As we DO expect our game to evolve,
protocols are going to change; as a result - versioning (with
guaranteed backward-compatibility) is all-important for practical
purposes (even more so if we take into account obfuscation). More
discussion on it is once again available in Vol. I. Unfortunately,
very few of the existing IDL compilers have even rudimentary
support for versioning (and we need much more than that).

♦♦ We DO want our IDL compiler to support whatever-mod-
el-of-non-blocking-processing we prefer to use. In our Takes
1- 8 discussed above, we did assume that our IDL compiler will
generate whatever-stubs-and-skeletons-we-want; in practice, hav-
ing customized IDL compiler able to do it, does simplify writing
non-blocking code greatly.

♦♦ We DO want our IDL compiler to generate obfuscators for our
communications; it is a very important part of the Bot Fighting
strategy discussed in Vol. VIII – and can be implemented quite
easily as soon as we have our own IDL compiler.

The next question is how exactly your IDL will work for your game. At
this point, I have to note that there is no one single “right” answer for this
question; however - there are several common patterns which I’ll briefly
mention (NB: below, we’ll discuss only handling of incoming events;
for handling of non-blocking returns – see extensive discussion in the
Handling Returns in a Non-Blocking Way in (Re)Actors section above).

As we DO expect
our game to evolve,
protocols are going to
change

 Divide et Impera, or How to Split the Hare the Hair the (Re)Actor · 189

Big-n-Ugly-Switch

//Listing 5.BigUglySwitch
//PSEUDO-CODE
function react(r, ev) {
 switch(ev.type) {
 case NETWORK_PACKET_EVENT:
 switch(ev.packet.type) {//(*)
 case MSG_ABC:
 abc = unmarshal_abc(ev.packet.body);
 //unmarshal_abc() is generated by IDL compiler
 OnMsgAbc(abc);
 //real processing,
 // hand-written member of our (Re)Actor
 break;
 case MSG_DEF:
 //pretty much the same thing,
 // replacing “abc” with “def”...
 break;
 }
 break;
 case SOME_OTHER_EVENT:
 //...
 break;
 }
}

This approach does work, but boy – it is ugly; more importantly – it is
barely readable and is cumbersome to maintain.

Generated Switch

On the other hand – while the code above is indeed ugly, realistically it
matters only if we have to maintain this code manually. If our IDL will
generate at least the-switch-on-ev.packet.type (the one marked with
(*)) for us – we’ll have much fewer things to care about.

To have our IDL compiler generate this switch-on-ev.packet.type
– the only thing we need to do is to specify “which messages we want
to handle within this generated function”, that’s pretty much it. Having
this information, it will be trivial for our IDL compiler to generate a
function implementing the inner switch.

190 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Stream-based Unmarshalling

In the example above – we have silently assumed that all the un-
marshalling happens before the actual OnMsg*() handler is called. This
approach, while being certainly viable – has a potential run-time cost
of (a) allocating-space-for and (b) copying the data within the network
packet. If this is undesirable – a kind of “stream-based” unmarshal-
ling can be used. In this case – some of the parameters of OnMsg*()
function become very rudimentary “streams”, with an ability to extract
‘next value’ out of such “stream”. If present, each of these “streams” often
corresponds to a collection-transferred-within-the-message.

This approach, while being sometimes useful (especially for
rather-large-messages-with-variable-length-collections in a really-
time-critical code) – should be used very sparingly and only when it is
really necessary; otherwise – there are risks of making the code fragile
without a real reason.

Composition: (Re)Actor-within-(Re)Actor
As we’ll be moving towards more and more complicated (Re)Actors,
we’ll notice that in many cases our (Re)Actor can (and SHOULD) be
split into several ones. For example, in our Game World we’ll likely have
a bunch of Characters (PCs/NPCs). As a rule of thumb, each of these
Characters will have its own logic and its own data, and will be self-con-
tained enough to be represented by a (Re)Actor-within-(Re)Actor. In
other words, we can implement a significant part of the logic of our
class GameWorldReactor via a bunch of instances of class PlayerReactor,
with each of these PlayerReactors handling its own messages coming
from players / AI Servers.134

These PlayerReactors will have all the attributes of the (Re)Actor:
they will have their own state, and will have their own react() function
(or equivalent). On the other hand, with PlayerReactors being a part of
the GameWorldReactor, class GameWorldReactor will be able to access
PlayerReactors beyond react(). In other words, it is perfectly possible (and
usually necessary) to provide class PlayerReactor with extra read-only
functions beyond react() (such as, for example, getCoordinates()).

134 As discussed in Vol. I’s chapter on Communications, to reduce the load on our Game World Server,
it is usually desirable to run AI in separate Servers.

As we’ll be moving
towards more and
more complicated (Re)
Actors, we’ll notice
that in many cases our
(Re)Actor can (and
SHOULD) be split into
several ones

 Divide et Impera, or How to Split the Hare the Hair the (Re)Actor · 191

On the third hand (hares have at least three hands, you know
<wink/>), modifying interactions between GameWorldReactor and
PlayerReactor are IMO better handled via new events (such as Play-
erGotHitByArrow event) sent by GameWorldReactor to PlayerReactor.
This leads us to the rule of thumb that

all the modifications to the ChildReactor are done via
events (either coming from other entities and forwarded by
ParentReactor, or coming from the ParentReactor directly),

though reading public attributes of ChildReactor MAY be
done directly via functions.

IMO, this approach often provides the best balance between encapsu-
lation and convenience. On the other hand, even more so than usual,
your mileage may vary, so feel free to disregard this rule of thumb if the
specifics of your own system dictate otherwise.

Under the (Re)Actor-within-(Re)Actor model, ParentReactor
(GameWorldReactor in our example) routes the incoming event to a
ChildReactor (PlayerReactor in our example) based on some infor-
mation contained within the incoming event itself; for example, for
PlayerReactors, it can be done by source IP of the incoming packet (or,
even better, by channel ID to facilitate changing IPs on the fly; see Vol
IV’s chapter on Network Programming for a discussion of IPs-vs-IDs).

In a sense, (Re)Actor-within-(Re)Actor is a generalization over the
“Concurrent State Machines” as described in [Nystrom, State Pattern].
However, unlike “Concurrent State Machines” (and more along the
lines of rather general “orthogonal regions” from [Wikipedia, UML
State Machine]): (a) we’re not specifying how exactly our ParentReactor
should route incoming events to the ChildReactors; (b) we allow for an
arbitrary amount of processing within ParentReactor before we decide
whether to forward the event to ChildReactor (plus, events can be gen-
erated by ParentReactor itself); and (c) we also allow interaction be-
tween ChildReactors.

From my experience, ParentReactor/ChildReactor splits simplify
development very significantly, so I strongly suggest looking for them,
and splitting (Re)Actors along these lines wherever possible. On

From my experience,
ParentReactor/
ChildReactor splits
simplify development
very significantly, so
I strongly suggest
looking for them, and
splitting (Re)Actors
along their lines wher-
ever possible.

192 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

the other hand, while I am all for ChildReactors representing items-
and-concepts-that-already-exist-in-the-original-(Re)Actor (or more
generally – within GDD), I am generally against creating artificial
ChildReactors; such artificial ChildReactors (i.e., those created just for
the sake of splitting (Re)Actors without any “natural” objects behind
them) tend to be very fragile and require too much rewriting in case of
changing requirements.135

State Pattern
When implementing (Re)Actors, more often than not, we DO need a
state variable, which represents the “current state” of the object. Tradi-
tionally, state is of enum type, but as we’ll see below, it is not the only
way to skin this cat.

Of course, in addition to this enumerated state member, our
(Re)Actor will have quite a few other members (which represent the so-
called “Extended State” in terms of [Wikipedia, UML State Machine]).
Moreover, some parts of this “Extended State” are specific to the specific
values of state, and this is what we’re about to exploit.

State-Specific Handling

In terms of our (Re)Actors, classical State pattern (as described, for
example, in [Nystrom, State Pattern]) would look along the following
lines:

//Listing 5.StatePattern
//PSEUDO-CODE
//each of State* classes is expected to have
// enterState and exitState() members
class StateA {
 function react(ev) {
 switch(ev.type) {//similar to Big-n-Ugly switch
 // discussed above
 case EV_X:
 //some code
 return null;//means ‘STATE DID NOT CHANGE’
 case EV_Y:
 //some_code

135 And ever-changing requirements is one of the very few things we can rely on.

 Divide et Impera, or How to Split the Hare the Hair the (Re)Actor · 193

 return new StateB(some_params);
 //...
 }
 }
}
// other State* classes go here
class Reactor {
 constructor() {
 currentState = new someState();//one of State* objects
 }
 function react(ev) {
 newState =
 currentState.react(ev);
 if(newState) {
 currentState.exitState();
 currentState = newState;
 currentState.enterState();
 }
 }
}

Note that while we were using react() (and not OnMsg*()) in the ex-
ample above, OnMsg*()-style handlers can be used with State pattern
too. One way to implement it – is to have our IDL compiler generate
the switch-calling-OnMsg*() handlers for each specific State* class.

The main point of the State pattern is to have our States completely
separated, so the data members and code belonging to different States
doesn’t become tightly coupled without reason.

Common Data Members

Having handling of our states separated according to State pattern is
all fine and dandy, but (as everything else in this world) it comes at a
price. The first problem with State pattern is that it implicitly relies on
the states being completely independent and not sharing anything(!).
And as soon as our states DO share something (which is very common
BTW), we’re facing two rather bad choices:
♦♦ Option 1. We MAY store those data-members-which-need-to-be-

shared-between-State-objects in (Re)Actor (and provide a pointer
from each of the State objects back to the (Re)Actor, so that they
can manipulate these shared members).

Having handling of
our states separated
according to State
pattern is all fine
and dandy, but (as
everything else in this
world) it comes at a
price.

194 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 ▪ This option will work, but the more such shared-members
you have, the more encapsulation you will give away, and
the more your code will become entangled, effectively
defeating our original reason to separate states <sad-face />.

♦♦ Option 2. We MAY keep our States independent, with all the
information that needs to be exchanged between them passed via
parameters of those new StateXX() constructors.

 ▪ This option will also work and in a sense is significantly
cleaner than Option 1 above (and, more importantly, it will
provide better encapsulation and separation of concerns).
However, it will come at the price of the call to the con-
structor becoming really ugly and unreadable as more and
more information needs to be passed.

♦♦ Of course, hybrid approaches are also possible. One such policy
is to keep the stuff-that-is-common-to-all-the-States in the
(Re)Actor and modify it via a pointer, and to keep everything-else
as private members of State objects.
While each of these approaches is workable, they’re different in their

pros and cons, and unfortunately there is no “silver bullet” solution
here. In other words, if you’re going to use State pattern - you DO need
to think about how you’re going to handle common data members for
your specific (Re)Actor.

Potentially Expensive Allocations

Another potential issue that we’re introducing with State pattern, is ex-
tra allocations; as we’ll see in Vol. V’s chapter on C++, extra allocations
tend to hurt performance significantly. On the other hand, unless we’re
talking about ChildReactors, the chances of visibly hurting performance
by allocating State objects are usually pretty slim (this is because each
event tends to have quite a bit of associated processing anyway, so the
cost of allocation is negligible compared to the other stuff we’re doing).

In any case, at least in C++, there exists a way to fight these extra
allocations; see Appendix 5.A for more details. In addition, using (Re)
Actor-specific non-contentious local allocators (as discussed in Vol. V’s
chapter on C++) tends to reduce allocation costs significantly too.

 Divide et Impera, or How to Split the Hare the Hair the (Re)Actor · 195

Hierarchical States
After we’ve discussed both (Re)Actor-within-(Re)Actor and classical
State pattern, we can go a bit further and discuss Hierarchical States (in
the UML world, they’re known as “Hierarchically Nested States”; see,
for example, [Wikipedia, UML State Machine]).

The idea goes as follows: some of the States can have their own sub-
states. Then, if we’re currently in a sub-state, a sub-state gets the incom-
ing event first. However, if the sub-state doesn’t handle the event, it is
forwarded to the base State for processing. In [Nystrom, State Pattern],
an example of PC’s DuckingState being a subclass of an OnGroundState
is used; I can only add that the situations when such hierarchies arise
are not restricted to PCs or Characters.

As [Nystrom, State Pattern] notes, Hierarchical States fit very nicely
into class hierarchies. Extending our own example above, Hierarchical
States may look along the following lines:

//Listing 5.HierarchicalState
//PSEUDO-CODE
class StateA {
 function react(ev) {
 switch(ev.type) {
 //...
 }
 }
}
class StateAA {
 function react(ev) {
 switch(ev.type) {
 case EV_X:
 //some code
 return null;
 case EV_Y:
 //some_code
 return new StateB(some_params);
 //...
 default:
 return Parent.react(ev);
 //forwarding ev to base class
 // for processing
 }
 }
}

196 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

To avoid confusion, it should be noted that Hierarchical States are
very different from the (Re)Actor-within-(Re)Actor pattern discussed
above. (Re)Actor-within-(Re)Actor is about separating (Re)Actors; in
contrast, Hierarchical States are dealing with separating States within
the same (Re)Actor. In fact, there can be a (Re)Actor-within-(Re)Actor
with both ParentReactor and ChildReactor using their own (and inde-
pendent) Hierarchical States.

Stack-of-States

As described in [Boer] and [Nystrom, State Pattern], it is a rather com-
mon occurrence to have a “history of states.” In other words, you want
to enter a certain State, but when leaving that new State, you want to
return not to a predefined state, but rather to a previous state.

In this case, you basically need to implement a stack of your states
within your (Re)Actor, and allow your react() function to return a
special marker meaning “return to previous State” instead of new State.
It is not rocket science (and, unlike [Nystrom, State Pattern], I am
stopping short of naming this construct a “Pushdown Automata”), but
it can easily come in handy if the logic of your (Re)Actor needs such
functionality.

VALIDATE-CALCULATE-MODIFY-SIMULATE
Pattern
One very important practical pattern for (Re)Actors is VALI-
DATE-CALCULATE-MODIFY-SIMULATE. The idea behind this
pattern is that often, when processing incoming the event/message
within our (Re)Actor, we need to go through the following four stages:
♦♦ VALIDATE. Check that the incoming event/message is valid. State

of the (Re)Actor is not changed (yet).
♦♦ CALCULATE. Calculate changes that need to be made to the state

of our (Re)Actor. State of the (Re)Actor is still unchanged.
♦♦ MODIFY. Apply those calculated changes.
♦♦ SIMULATE. Simulate changes within our Game World. SIM-

ULATE stage (unlike all the previous stages) normally does not
depend on the nature of the incoming message/event.

One very important
practical pattern
for (Re)Actors is
VALIDATE-CALCU-
LATE-MODIFY-SIMU-
LATE.

 Divide et Impera, or How to Split the Hare the Hair the (Re)Actor · 197

When talking about VALIDATE-CALCULATE-MODIFY-SIM-
ULATE, first we need to note that for most messages/events, certain
stages of the processing can be omitted. For example, for “network tick”
events in a traditional Game Loop-based simulation, there is nothing
but SIMULATE (though in some cases, “network ticks” MAY include
all the input packets received during the previous tick, and then we’ll
usually get VALIDATE-SIMULATE, with inputs taken into account
within SIMULATE). On the other hand, for a Cashier (Re)Actor
processing, usually there is only VALIDATE-CALCULATE-MODIFY
(and no SIMULATE).

However (and probably counterintuitively), for quite a few games,
all four stages may be necessary to process some of the input events.
In such systems, handling of all the logic on a per-message basis turns
out to be too cumbersome, so VALIDATE-CALCULATE-MODIFY
stages are allowed to leave the (Re)Actor in a some kind of interme-
diate (though somehow consistent) state — and then the SIMULATE
stage (while acting pretty much as a simulator or real-time control
system) will bring it to the final state. Processing in such as SIMU-
LATE-stage-coming-after-VALIDATE-CALCULATE-MODIFY can
be pretty much everything: from “if there is a bullet with coordinates
(X,Y,Z) and velocity (Vx,Vy,Vz), it will continue moving along the par-
abolic trajectory” to timeout handling. What is important, however, is
that the SIMULATE stage should have nothing to do with the event that
we’ve just processed; all the processing within the SIMULATE stage
should be of the form “if we’re in this state, we need to do this and that”
(not referring to the reasons why we got into this state).

Overall, the VALIDATE-CALCULATE-MODIFY-SIMULATE pat-
tern is so generic that it covers a vast majority of all the processing in all
the (Re)Actors; in fact, I don’t remember seeing an app-level event that
doesn’t fit into this pattern, ever. As a result of this (and also because
the pattern allows you to structure your code, and structuring is a good
thing much more often than not), I strongly advocate that you use this
pattern for pretty much all of your (Re)Actor processing (skipping
unused stages as necessary).

For quite a few games,
all four stages may be
necessary to process
some of the input
events.

198 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

VALIDATE-CALCULATE-MODIFY-SIMULATE and
Exceptions

VALIDATE and CALCULATE stages

The VALIDATE-CALCULATE-MODIFY-SIMULATE pattern has
quite a few useful properties; one of them is closely related to excep-
tions. As long as we (as advertised above) don’t modify the state of our
(Re)Actor within the VALIDATE and CALCULATE stages, the effects
of any exception happening before the MODIFY stage are trivial: as we
didn’t modify anything, any exception will lead merely to ignoring the
incoming message, and without any need to roll back any changes, as
there were none; as for on-stack allocations, they need to be handled
via traditional-and-rather-straightforward RAII (or equivalent; see also
below) regardless of VALIDATE-CALCULATE-MODIFY-SIMULATE.

This effectively means that it is rather easy to ensure exception safe-
ty for VALIDATE and CALCULATE stages. Formally, for these stages
we can easily provide strong exception safety guarantees, a.k.a. “com-
mit-or-rollback” or “all-or-nothing”. From a practical point of view, any
offending incoming packet/message/event that throws an exception
during the VALIDATE or CALCULATE stages can be simply thrown
away without any side effects(!). It means that after such an offending
event, your (Re)Actor is still in a valid state, ready to process the next
incoming message “as if ” the offending event has never occurred. Sure,
in extreme cases of a really-necessary message causing an exception, it
may still lead to certain parts of your system hanging, but in practice
most of the time the impact of such an exception is very limited (usu-
ally, it is much better to have one-Client-that-went-crazy to hang, than
your whole Server to hang, to terminate, or to end up in an inconsistent
state).

BTW, our exception safety guarantees for VALIDATE and
CALCULATE stages cover not only our own exceptions, but also
CPU-level exceptions (with dereferencing NULL pointer/nullptr and
division-by-zero being all-time favorites). Of course, such exceptions
should not happen – but in the real-world, just as with any other bug,
they can happen (especially as we’re dealing with the validation of
completely-unknown and potentially-malicious inputs). In such a case,

dropping an incoming
event “as if it
never happened”
and continuing to
work, is usually much
preferred to killing the
whole (Re)Actor

Exception
Safety

Exception safety
guarantees… are a
set of contractual
guidelines that class
library implementers
and clients can use
when reasoning about
exception handling
safety

—Wikipedia

 Divide et Impera, or How to Split the Hare the Hair the (Re)Actor · 199

VALIDATE-CALCULATE-MODIFY-SIMULATE and
Exceptions

VALIDATE and CALCULATE stages

The VALIDATE-CALCULATE-MODIFY-SIMULATE pattern has
quite a few useful properties; one of them is closely related to excep-
tions. As long as we (as advertised above) don’t modify the state of our
(Re)Actor within the VALIDATE and CALCULATE stages, the effects
of any exception happening before the MODIFY stage are trivial: as we
didn’t modify anything, any exception will lead merely to ignoring the
incoming message, and without any need to roll back any changes, as
there were none; as for on-stack allocations, they need to be handled
via traditional-and-rather-straightforward RAII (or equivalent; see also
below) regardless of VALIDATE-CALCULATE-MODIFY-SIMULATE.

This effectively means that it is rather easy to ensure exception safe-
ty for VALIDATE and CALCULATE stages. Formally, for these stages
we can easily provide strong exception safety guarantees, a.k.a. “com-
mit-or-rollback” or “all-or-nothing”. From a practical point of view, any
offending incoming packet/message/event that throws an exception
during the VALIDATE or CALCULATE stages can be simply thrown
away without any side effects(!). It means that after such an offending
event, your (Re)Actor is still in a valid state, ready to process the next
incoming message “as if ” the offending event has never occurred. Sure,
in extreme cases of a really-necessary message causing an exception, it
may still lead to certain parts of your system hanging, but in practice
most of the time the impact of such an exception is very limited (usu-
ally, it is much better to have one-Client-that-went-crazy to hang, than
your whole Server to hang, to terminate, or to end up in an inconsistent
state).

BTW, our exception safety guarantees for VALIDATE and
CALCULATE stages cover not only our own exceptions, but also
CPU-level exceptions (with dereferencing NULL pointer/nullptr and
division-by-zero being all-time favorites). Of course, such exceptions
should not happen – but in the real-world, just as with any other bug,
they can happen (especially as we’re dealing with the validation of
completely-unknown and potentially-malicious inputs). In such a case,

dropping an incoming
event “as if it
never happened”
and continuing to
work, is usually much
preferred to killing the
whole (Re)Actor

Exception
Safety

Exception safety
guarantees… are a
set of contractual
guidelines that class
library implementers
and clients can use
when reasoning about
exception handling
safety

—Wikipedia

dropping an incoming event “as if it never happened” and continuing to
work, is usually much preferred to killing the whole (Re)Actor; and our
exception safety discussed above, provides exactly this.136 Of course, it
is certainly not a silver bullet (and we have to be sure to log all such oc-
currences and treat them as blocking bugs) – but it did save my bacon
quite a few times.

To make sure that we are exception-safe within the VALIDATE and
CALCULATE stages (and more generally – that we do NOT modify the
state within these stages), we have to answer the question of “how we can
enforce that there are no state changes before the MODIFY stage?” The
answer to this question is largely programming-language-dependent
(and unfortunately, most languages lack the necessary tools to enforce
it or even to hint at violations), but a kinda-enforcement (assuming that
there are no deliberate attempts to bypass it) is certainly possible at least
in C++; more on it in Appendix 5.A.

MODIFY and SIMULATE stages

Up to now, we discussed exception safety only for the VALIDATE and
CALCULATE stages. It still leaves us with the MODIFY and SIMU-
LATE stages to deal with; however, the MODIFY stage is usually simple
enough so the vast majority of exceptions won’t happen there.

To make your MODIFY stage strongly exception-safe, you will
still need to either make your modifications part of RAII, or resort to
stuff such as ScopeGuard (see [Alexandrescu and Marginean, Generic:
Change the Way You Write Exception-Safe Code — Forever] and [Al-
exandrescu, Declarative Control Flow]); fortunately, you need to do it
only for your MODIFY stage <phew />.

As for the SIMULATE stage, normally there should be no legitimate
exceptions within it — none whatsoever. As noted above, a problem
within the SIMULATE stage would mean that the (Re)Actor has al-
ready been inconsistent before the SIMULATE stage has started, which
shouldn’t be possible (save for bugs, of course). From the point of view
of Exception Safety, we can say that we expect the SIMULATE stage to
provide the so-called “no-throw guarantee”.

136 With regard to CPU exceptions, exception safety stands only if you can convert CPU exception into
your-language-exception; see Vol. V for details on such conversion for C++.

As for the SIMULATE
stage, normally
there should be no
legitimate exceptions
within the SIMULATE
stage — none whatso-
ever.

200 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

On the other hand, SIMULATE stage can easily be complicated
enough to cause unexpected exceptions; however, as SIMULATE doesn’t
depend on the incoming event/message, an exception effectively means
that we failed to sanitize the state before reaching SIMULATE (i.e., that
we already got a bug earlier). In turn, it implies that recovery from such
an exception (that is, beyond scrapping the whole offending (Re)Actor
and re-creating it from scratch) will most likely be impossible, at least in
a generic manner. And however cynical it may sound, IMO it is a Good
Thing™ too, as we won’t try to recover from inherently irrecoverable
scenarios, instead concentrating on preventing them from happening
in the first place. Also, let’s keep in mind that separating the input val-
idation from simulation does help the SIMULATE stage too: while at
the SIMULATE stage we do need to handle all the different potential
values of the current state, at least we don’t need to deal with all the
different input events, which tends to simplify things at least a little bit.

RAII Equivalents in Different Programming Languages

As noted above, RAII (=“Resource Allocation Is Initialization”) is
necessary to guarantee exception safety in case of exception during the
VALIDATE or CALCULATE stages (and is a Good Thing™ regardless
of the VALIDATE-CALCULATE-MODIFY-SIMULATE pattern). In
C++, RAII has been known for a long while (at least since the 1980s).
Now, let’s take a look at other programming languages.

First, let’s make it very clear:

DON’T use finalizers (and kinda-destructors,
which are called by GC when it feels like it)!

This includes at least Java finalize(), C# destructor, and Python’s __del__
(also known as “destructor” in Python); however, synchronous C++
destructors are perfectly fine.

I won’t discuss the problems with finalizers (including those
finalizers posing as destructors) in detail here; it is already common
knowledge that finalizers are evil, with the most evil thing about them
being the lack of determinism. The finalizer is called whenever-the-gar-
bage-collector decides to call it, which can happen “right away” for your

 Divide et Impera, or How to Split the Hare the Hair the (Re)Actor · 201

development box, and “in the next century” for the production. And, as
we’ve discussed above, such non-determinism means that finalizers are
inherently untestable <ouch! />. There are very few things out there that
are more annoying than a production crash which happened because
once in a month GC decided to refrain from calling a finalizer (where
you put some file.close()) long enough so that the next request to open
the same file runs into problems.

Fortunately, garbage-collected programming languages have started
to add support for RAII-like resource handling too. In particular, Java’s
try-with-resources, C#’s using statement, and Python’s with statement
are essentially providing RAII-like functionality (with AutoCloseable.
close(), IDisposable.dispose(), or __exit__() called in lieu of C++ de-
structor).

In JavaScript, there seems to be no explicit support for RAII-like
behavior, but (like pretty much everything else in JS) it can be imitated
using lambdas/closures (see [Lauliac] for details).

Posting Messages (calling RPCs, etc.) Within VALIDATE/
CALCULATE

In your (Re)Actors, you will often need to post messages (call RPCs,
etc., etc.). One of the questions that arises in this regard is whether such
calls are allowed in VALIDATE/CALCULATE stages.

The answer to this question goes as follows: your first (and most
obvious) option is to prohibit such calls within your VALIDATE / CAL-
CULATE stages (and BTW this goes nicely with the logic which usually
corresponds to VALIDATE and CALCULATE).

On the other hand, it is possible to allow such requests (as well as
‘read’ requests to DB/storage/etc.) to be performed in the VALIDATE/
CALCULATE stages without violating the principle of “VALIDATE/
CALCULATE stages are guaranteed to be strongly exception-safe.” To
achieve this guarantee, your Infrastructure Code will need to buffer all
the outgoing messages that were posted from within react() (without
actually sending them out), and to send them out only after the react()
successfully returns (silently dropping these buffered outgoing messag-
es in case of exception).

Fortunately,
garbage-collected pro-
gramming languages
have started to add
support for RAII-like
resource handling too.

202 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Divide et Impera Summary
To summarize our main observations on “how to tackle the complexity
of (Re)Actors”:
♦♦ (Re)Actor-within-(Re)Actor is an extremely powerful mechanism

to control the complexity of (Re)Actors.
 ▪ Both ParentReactor and ChildReactor can use all the other

complexity-control techniques (including further splitting).
 ▪ Separation SHOULD be done along the lines of the

already-existing-entities within (Re)Actors.
♦♦ State Pattern is often a Good Thing™, as it allows us to reduce code

spaghetti, and allows for further refinements, including such things as:
 ▪ Hierarchical States
 ▪ Stack-of-States

♦♦ OTOH, State Pattern has its own drawbacks (so it is not a silver
bullet). Whether State pattern is worth using or not – depends a lot
on many factors (including whether-your-team-likes-or-hates-it).

 ▪ In any case, it SHOULD NOT be seen as a replacement
for (Re)Actor-within-(Re)Actor (instead, these patterns
complement each other).

♦♦ VALIDATE-CALCULATE-MODIFY-SIMULATE is a pattern that cov-
ers pretty much all the (Re)Actors (at least those encountered in games).

 ▪ While not all the stages are always necessary, there are
processing scenarios where all four stages are used.

 ▪ From what I’ve seen, this pattern simplifies reasoning about
the code significantly.

 ▪ It simplifies life on the Server-Side after deployment too
(while it is not a MUST-have, it is a very-nice-to-have).

 ▪ If you’re following a VALIDATE-CALCULATE-MODI-
FY-SIMULATE pattern (which you SHOULD), enforcing
it (for example, via this being const — as described in
Appendix A for C++) is a Good Thing™.

 ▪ Following the VALIDATE-CALCULATE-MODIFY-SIM-
ULATE pattern will allow you to safely ignore quite a few
things-you-forgot-about without crashing (don’t over-rely
on it, though; it is not a silver bullet).

 (Kinda-)Scaling Individual (Re)Actors · 203

yy In particular, it provides formal exception safety
guarantees for the VALIDATE and CALCULATE
stages.

yy To achieve the Holy Grail of your whole react()
being exception-safe, you will still need to use other
techniques. However, practicality of being excep-
tion-safe beyond VALIDATE-CALCULATE is often
not that obvious.

(KINDA-)SCALING INDIVIDUAL
(RE)ACTORS

Our (Re)Actors are wonderful from lots of different perspectives, in-
cluding performance (there are few thread context switches, and spatial
locality tends to be very good). However, as for anything else in this

204 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

world, all those goodies come at a price. For (Re)Actors, the price is that
while the (Re)Actor works perfectly as long as it can be processed by
one single CPU core, splitting it over several CPU cores can be quite a
challenge. Sure, at 3GHz one modern CPU core can do quite a damn
lot, but what if we need more than that?

We’ve already discussed the question of “how to split one huge
Game World into independent parts” in Vol. I’s chapter on Commu-
nications — and, if you’re running an MMOG with all your players in
one Game World, this is an exercise that you will most likely need to
do on the Server-Side regardless of using (Re)Actors or not. On the
Client-Side, there are also quite a few (Re)Actors that can be separated
(and therefore can run in different threads/on different CPU cores);
we’ll discuss them in Chapter 6.

However, there are still situations (especially on the Client-Side)
when one of the (Re)Actors137 gets overwhelmed. In this section, we’ll
discuss how this problem of “how to scale one single (Re)Actor to sev-
eral CPU cores” can be mitigated.

Keep in mind that with the techniques discussed in this section,
we won’t be achieving real scaling (as in “ability to scale our (Re)
Actor into as-many-cores-as-we-want”); to get real scalability, you
still need to split your (Re)Actors at application level (for example,
along the lines of the split discussed in Vol. I’s chapter on Com-
munications). Instead, in this section we’ll be talking about (kinda-)
scaling (as in “ability to scale (Re)Actor to a just a few cores”). Still,
in some scenarios (especially Client-Side ones), it may be just the
ticket.

Splitting and Offloading
To really scale our (Re)Actor, the best option is to try to split it into
N functionally separate Shared-Nothing (Re)Actors, which can be run
in N separate threads (in fact, this model is sometimes referred to as
“System-on-a-Thread”). If it is feasible, that’s the best way of scaling
(Re)Actors. However, quite often such splitting is not that easy, in par-
ticular because of the Shared-Nothing requirement.

137 Usually an Animation&Rendering one; see Chapter 6 for details.

Sure, at 3GHz modern
CPU can do quite a
damn lot, but what if
we need more than
that?

Offloading tends to
work pretty well, but
only as long as the
amount of data trans-
ferred back and forth
is not overly large

 (Kinda-)Scaling Individual (Re)Actors · 205

world, all those goodies come at a price. For (Re)Actors, the price is that
while the (Re)Actor works perfectly as long as it can be processed by
one single CPU core, splitting it over several CPU cores can be quite a
challenge. Sure, at 3GHz one modern CPU core can do quite a damn
lot, but what if we need more than that?

We’ve already discussed the question of “how to split one huge
Game World into independent parts” in Vol. I’s chapter on Commu-
nications — and, if you’re running an MMOG with all your players in
one Game World, this is an exercise that you will most likely need to
do on the Server-Side regardless of using (Re)Actors or not. On the
Client-Side, there are also quite a few (Re)Actors that can be separated
(and therefore can run in different threads/on different CPU cores);
we’ll discuss them in Chapter 6.

However, there are still situations (especially on the Client-Side)
when one of the (Re)Actors137 gets overwhelmed. In this section, we’ll
discuss how this problem of “how to scale one single (Re)Actor to sev-
eral CPU cores” can be mitigated.

Keep in mind that with the techniques discussed in this section,
we won’t be achieving real scaling (as in “ability to scale our (Re)
Actor into as-many-cores-as-we-want”); to get real scalability, you
still need to split your (Re)Actors at application level (for example,
along the lines of the split discussed in Vol. I’s chapter on Com-
munications). Instead, in this section we’ll be talking about (kinda-)
scaling (as in “ability to scale (Re)Actor to a just a few cores”). Still,
in some scenarios (especially Client-Side ones), it may be just the
ticket.

Splitting and Offloading
To really scale our (Re)Actor, the best option is to try to split it into
N functionally separate Shared-Nothing (Re)Actors, which can be run
in N separate threads (in fact, this model is sometimes referred to as
“System-on-a-Thread”). If it is feasible, that’s the best way of scaling
(Re)Actors. However, quite often such splitting is not that easy, in par-
ticular because of the Shared-Nothing requirement.

137 Usually an Animation&Rendering one; see Chapter 6 for details.

Sure, at 3GHz modern
CPU can do quite a
damn lot, but what if
we need more than
that?

Offloading tends to
work pretty well, but
only as long as the
amount of data trans-
ferred back and forth
is not overly large

The second common approach to (Re)Actor scaling is to try off-
loading some of the calculations to another (Re)Actor (see, for exam-
ple, the Offloading section above). Note that with Offloading, we don’t
really have a state for the receiving (Re)Actor, but rather transfer all the
necessary data into it as an input message (and then it can do all the
number crunching).

Offloading tends to work pretty well, but only as long as the
amount of data transferred back and forth is not overly large. This
effectively prevents us from using Offloading for scaling in quite a few
scenarios, where one single-big-state needs to be processed by several
(Re)Actors; and, unfortunately, such scenarios are quite common for
game Clients.

(Re)Actor-with-Mirrored-State — Limited
Relief
When the state of our (Re)Actor is really large (think “all the visible
Game World State to be rendered”), we MAY start having scalability
issues, and can run into a situation where splitting Game Worlds is very
difficult; moreover, often Offloading doesn’t help either.

In a gamedev world, one of the known ways to deal with this
problem is the one when at certain points (such as “the end of each
tick”) our Infrastructure Code makes a copy (“mirror”) of the whole
Game World, so that while one (Re)Actor running on one thread/
core is working on rendering, another (Re)Actor running on an-
other thread/core can work on preparing the state of the Game
World for the next tick. Such a model was, in particular, used in
Halo engine, as discussed in [Chen, Silvennoinen and Tatarchuk]
and [Tatarchuk].

This technique tends to work reasonably well; however, it has an
obvious drawback: as there are only two threads involved, we won’t be
able to utilize more than two CPU cores. And if we try to make more
than one copy/mirror to work on it, we’ll quickly run into another
problem: if our state is large enough, we may end up spending too

206 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

much time just copying the data we need.138 All of this leads us to the
observation that

While mirroring MAY allow for up to
2x improvement, using mirror to scale further

is usually very difficult.

(Re)Actor-with-Extractors
To deal with scaling issues for (Re)Actors-having-a-really-large-state
further, another modification to the classical (Re)Actor can be used
(as far as I know, it was first described in [Tatarchuk] with regards to
Destiny engine, albeit without fancy naming). For the purpose of this
book, we will name this approach “(Re)Actor-with-Extractors.”

The idea of (Re)Actor-with-Extractor goes almost along the same
lines as traditional (Re)Actor, with just one twist:

There is a special “extracting” stage within
(Re)Actor processing that allows several threads/cores

to “extract” (read) the data from the (Re)Actor’s
state, while the (Re)Actor itself is guaranteed

not to modify the state.

During this “extracting” stage, the (Re)Actor’s state is guaranteed to
be constant, so there is no need to synchronize access of the readers
(which means that there are no locks/forced thread context switches).
This allows us to extract information very quickly, while keeping the
(Re)Actor as the very same familiar-and-simple no-thread-sync game-
loop-like code we’ve discussed above.

An example of processing flow for (Re)Actor-with-Extractors is
shown in Fig 5.2:

138 Side consideration to be kept in mind in this regard: speed of copying is closely related to the
question of “how flat is our data”; see the discussion on data locality in Vol. V’s chapter on C++. In
other words, the flatter our data, the faster the copying will be.

During this “extract-
ing” stage, the
(Re)Actor’s state is
guaranteed to be con-
stant, so there is no
need to synchronize
access of the readers
(which means that
there are no locks/
forced thread context
switches).

 (Kinda-)Scaling Individual (Re)Actors · 207

 NB: in the flow shown in Fig 5.2, we’re assuming that our (Re)Actor
is following the VALIDATE-CALCULATE-MODIFY-SIMULATE
model, and calls modify_stage_reactor() to denote that it is switch-
ing from read-only processing into read-write processing.139

139 Note that while modify_stage_reactor() MAY be used to enforce const-ness (see the discussion
in the C++: Enforcing const-ness for VALIDATE and CALCULATE stages in VALIDATE-CALCULATE-
MODIFY-SIMULATE pattern section), it is not a requirement for (Re)Actor-with-Extractors.

208 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

As shown in Fig. 5.2, when an incoming event comes in, Infrastruc-
ture Code checks whether an incoming event140 is “extractable”; if not,
the processing goes along the usual event-processing lines outlined
above.

If, however, the incoming event is “extractable” (i.e., it does imply
that extractors need to be launched), the processing is modified. First,
infrastructure code grants (read-only) access to “extractors.” Then, it still
may call react() (read-only processing is still possible while “extractors”
are working). If react() calls modify_stage_reactor() (to obtain writable
access to the (Re)Actor state), then in the case of an “extractable” event,
Infrastructure Code should block react()141 until all the extractors
are done.142 After all extractors are done, modify_stage_reactor() may
proceed. After going out of react(), infrastructure code should make
another check to make sure that all the extractors are done (in case if
react() didn’t call modify_stage_reactor()), and then the processing of
the “extractable” event is over.

As we can see, we were able to make our (Re)Actor app-level code
completely unaware of the extraction (handling all the sync on the infra-
structure level). Among other things, it means that we still keep most of
the (Re)Actor goodies. Of course, (Re)Actor blocking for extractors to
finish their job does mean having a thread context switch at that point,
but as long as our extraction stages are relatively rare (like “60 times per
second”), costs of these very-rare-by-CPU-standards context switches
won’t be too noticeable.143

140 As mentioned above, pretty much anything can serve as an event trigger, including “timer event”
and an event such as “we’ve just finished rendering of the previous frame.”

141 Note that it should be real blocking, with a thread context switch; all the non-blocking trickery
we’ve discussed in Take 1-Take 8 won’t fly here, as there are other threads involved.

142 BTW, as extractors are read-only and do not use mutexes within the Reactor, it is technically
possible to terminate them forcibly without affecting the Reactor; I hope that you won’t need this
option, but it does exist.

143 Even if the cost of the context switch is at closer-to-maximum 1M CPU cycles, and we’re doing it
60 times per second, for modern 3GHz CPUs we’re talking about 2% of the penalty to our single
critical core, and it is not going to kill our performance. On the other hand, this calculation shows
the dangers of having too many thread context switches — having as little as 50–500 context
switches per frame can easily be devastating.

We were able to
make our (Re)Actor
app-level code com-
pletely unaware of the
extraction (handling
all the sync on the
infrastructure level).

 (Kinda-)Scaling Individual (Re)Actors · 209

Fig 5.3 demonstrates how the load is separated between different threads/
cores in the (Re)Actor-with-Extractors model. Here, Core 1 is running
our main (Re)Actor itself, and other cores are running extractors and
performing some additional work on the extracted data.

As noted above, one example of such a (Re)Actor-with-Extractors
architecture (save for our fancy name) is currently used in Destiny
engine by Bungie (see [Tatarchuk]). Very briefly: in Destiny engine,
they’re running their Game World in a classical game loop, and once
per tick they’re stopping it, running a bunch of “extractors” to get the
data-necessary-for-rendering. After the “extracting” stage, they run
rendering threads on the extracted data and the game loop can proceed

210 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

with calculating and modifying the state of the Game World for the
next tick. Bingo! Bungie! They have single-threaded game-level code
and are using multiple cores too.

One thing to remember when implementing this model is that while
the number of logical extractors (and target-(Re)Actors-they’re-extract-
ing-to) can be arbitrarily large, it is important to keep the number of
threads running these extractors comparable to the number of cores on
the machine your program is running on. Running hundreds of threads
extracting on a 10-core box will usually cause too many unnecessary
context switches and/or cache trashing.

Another potential (and very nasty one, if it hits) issue when imple-
menting (Re)Actor-with-Extractors is related to so-called memory bar-
riers, a.k.a. memory fences. The thing here is that, strictly speaking, we
are not guaranteed that representations of the same portion of memory
are the same for different CPU cores.144 This MAY cause rarely occur-
ring errors, which are extremely difficult to track. I don’t want to get
into a lengthy discussion of memory barriers here (if you’re interested
in this complicated subject, you may refer to the very practical, though
maybe a bit over-generic-for-those-writing-only-for-x86/x64 [Howells,
et al.]). In our case, we may say that we need the thread that runs our
(Re)Actor to issue a memory fence with release semantics (such as
std::atomic_thread_fence(std::memory_order_release)) after finishing
all the modifications to the (Re)Actor state (i.e., after react() returns)
but before starting to inform “extractors” that they’re allowed to run; on
the other hand, each of the threads running “extractors” needs to issue
a memory fence with acquire semantics (such as std::atomic_thread_
fence(std::memory_order_acquire)) after they’ve gotten notification that
they may run but before starting to read the (Re)Actor’s state. In most
cases (especially when x86/x64 is concerned), these memory fences will
be implicitly invoked as side effects of the synchronization calls, but
to be on the safer side (and unless we’re willing to prove that fences
are called by mechanisms-used-to-allow-extractors-to-run), I would
suggest having them explicit.145

144 For mutex-protected memory, memory barriers are usually called within mutex acquire/release,
but as we’re not using mutexes, it becomes our responsibility to deal with them.

145 And as they’re going to be called only once per core per frame, the performance hit will be
negligible.

(Re)Actor-with-Extractor
can have perfectly
legitimate uses on the
Server-Side too.

Memory
Barrier

A memory barrier, also
known as a membar,
memory fence or
fence instruction,
is a type of barrier
instruction that causes
a central processing
unit (CPU) or compiler
to enforce an ordering
constraint on memory
operations issued
before and after the
barrier instruction.

—Wikipedia

 (Re)Actor-fest Architecture: Putting It All Together · 211

with calculating and modifying the state of the Game World for the
next tick. Bingo! Bungie! They have single-threaded game-level code
and are using multiple cores too.

One thing to remember when implementing this model is that while
the number of logical extractors (and target-(Re)Actors-they’re-extract-
ing-to) can be arbitrarily large, it is important to keep the number of
threads running these extractors comparable to the number of cores on
the machine your program is running on. Running hundreds of threads
extracting on a 10-core box will usually cause too many unnecessary
context switches and/or cache trashing.

Another potential (and very nasty one, if it hits) issue when imple-
menting (Re)Actor-with-Extractors is related to so-called memory bar-
riers, a.k.a. memory fences. The thing here is that, strictly speaking, we
are not guaranteed that representations of the same portion of memory
are the same for different CPU cores.144 This MAY cause rarely occur-
ring errors, which are extremely difficult to track. I don’t want to get
into a lengthy discussion of memory barriers here (if you’re interested
in this complicated subject, you may refer to the very practical, though
maybe a bit over-generic-for-those-writing-only-for-x86/x64 [Howells,
et al.]). In our case, we may say that we need the thread that runs our
(Re)Actor to issue a memory fence with release semantics (such as
std::atomic_thread_fence(std::memory_order_release)) after finishing
all the modifications to the (Re)Actor state (i.e., after react() returns)
but before starting to inform “extractors” that they’re allowed to run; on
the other hand, each of the threads running “extractors” needs to issue
a memory fence with acquire semantics (such as std::atomic_thread_
fence(std::memory_order_acquire)) after they’ve gotten notification that
they may run but before starting to read the (Re)Actor’s state. In most
cases (especially when x86/x64 is concerned), these memory fences will
be implicitly invoked as side effects of the synchronization calls, but
to be on the safer side (and unless we’re willing to prove that fences
are called by mechanisms-used-to-allow-extractors-to-run), I would
suggest having them explicit.145

144 For mutex-protected memory, memory barriers are usually called within mutex acquire/release,
but as we’re not using mutexes, it becomes our responsibility to deal with them.

145 And as they’re going to be called only once per core per frame, the performance hit will be
negligible.

(Re)Actor-with-Extractor
can have perfectly
legitimate uses on the
Server-Side too.

Memory
Barrier

A memory barrier, also
known as a membar,
memory fence or
fence instruction,
is a type of barrier
instruction that causes
a central processing
unit (CPU) or compiler
to enforce an ordering
constraint on memory
operations issued
before and after the
barrier instruction.

—Wikipedia

Oh, and last but not least, while Bungie (as described in [Tatarchuk])
seems to use such a (Re)Actor-with-Extractor only for the Client-Side,
it can have perfectly legitimate uses on the Server-Side too (in particu-
lar, to solve the same problem of extracting the data from the large state
of the Server-Side Game World to send it to the Clients).

(RE)ACTOR-FEST ARCHITECTURE:
PUTTING IT ALL TOGETHER

Philosophy of (Re)Actor-fest
By this point, we’ve discussed a lot of the details of individual
(Re)Actors. Now we can proceed to the next step: discussing how to
design an architecture that is not only built on top of (Re)Actors, but
also has nothing but (Re)Actors. To reiterate:

In (Re)Actor-fest Architecture, all the app-level code
is contained within (Re)Actors.

While it may sound crazy, I’ve seen systems-with-all-the-app-level-
code146-residing-within-(Re)Actors working in the real-world, and
working really well. In particular, such systems were observed as being
much more reliable than the competition; while it is always tempting
to attribute these effects to developers being much better than the
competition (especially if you were a part of the team <wink />), I am
positive that using (Re)Actor-fest architecture was instrumental in this
regard.

Let’s also note that the bold statement above applies only to app-level
code, and that the Infrastructure Code is exempt from the requirement
to be (Re)Actor-based. While we’ll discuss “full-scale” (Re)Actor-fest
architectures that use nothing-but-(Re)Actors even for Infrastructure
Code (in particular, in Vol. III’s chapter on Server-Side Architectures),
and while I personally prefer such architectures too, I have to admit

146 Except for database reporting.

While it may sound
crazy, I’ve seen
systems-with-all-
the-app-level-code-
residing-within-
(Re)Actors working in
the real-world, and
working really well

212 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

that implementing your Infrastructure Code as (Re)Actors qualifies
only as “nice-to-have”; on the other hand, implementing your app-level
code as (Re)Actors usually qualifies as an “architecture that will give you
a Big Advantage™ in the long run.”

(Re)Actor-fest and Conway’s Law

Back in 1967, Melvin Conway observed that

“Organizations which design systems (in the broad
sense used here) are constrained to produce designs

which are copies of the communication structures
of these organizations”147

which became known as “Conway’s Law.”

From the perspective of Conway’s Law, our (Re)Actor-fest architec-
ture tends to work very well. As we’ll see in Chapter 6, on the Client-Side
we’ll be talking about Game Logic (Re)Actors, Animation&Rendering
(Re)Actors, and various Communication (Re)Actors — and these
happen to be naturally mapped into Game Logic Team, 3D Team,
and Network Team. On the Server-Side, mapping between teams and
(Re)Actors is also very straightforward: we’ll probably have Game
World (Re)Actor written by Game World Team, Database (Re)Actor
(with all the SQL stuff) maintained by dedicated Database Team, very
separate Cashier (Re)Actor written by Payments Team, and dealing
with nothing but money and payments, Matchmaking (Re)Actor
(which can easily get its own team), Facebook Gateway (Re)Actor with
its own mini-team, and so on.

This, in turn, means that all the interactions between different teams
will go over very-well-defined message exchanges between (Re)Actors;
in other words, while we’re defining inter-team interactions, we’re
leaving each of the teams more or less free with their implementation
choices, which is a Good Thing™.

147 Later, Conway’s Law was corroborated by several empirical studies (see [Wikipedia, Conway’s Law]
for a list), and, even more importantly — by my personal observations <wink />.

 (Re)Actor-fest Architecture: Putting It All Together · 213

From a bit of a different perspective, we can say that each (Re)Actor
(if used along the lines outlined above148) is highly cohesive,149 but at the
same time is loosely coupled to other (Re)Actors — and this is known
to be a Good Thing™.

Implementing (Re)Actor-fest
With all the preliminary work we’ve already done discussing individual
(Re)Actors, we don’t have to add much to allow for architectures that
consist of (Re)Actors and nothing but (Re)Actors. In fact, I can think of
the only thing missing so far: a way to create new (Re)Actors; this leads
us to the discussion of (Re)Actor Factories.

(Re)Actor Factories

While quite a few of our (Re)Actors can be pre-created, very often there
is the need to create instances of our (Re)Actors on demand — espe-
cially on the Server-Side. For example, if your Matchmaking (Re)Actor
decides to create a Game World so that a competitive match between
the teams can be played, then within our (Re)Actor-fest Architecture
we’ll need a way to create that Game World (Re)Actor that will handle
the game.

Personally, I strongly prefer to do it via — no surprise here —
(Re)Actors. Let’s say that we have a special (Re)Actor, named (Re)Actor
Factory, and that we always run an instance of (Re)Actor Factory on
each of our physical Server boxes. Then, all our matchmaking (Re)Ac-
tor needs to do to create a new Game World on Server Box X is to issue
a non-blocking RPC call CreateGameWorld() to the (Re)Actor Factory
residing on that Server Box X, passing all the necessary info about the
player IDs, game parameters, etc. as parameters of that RPC call.

On receiving the RPC call, the (Re)Actor Factory will create another
instance of the Game World (Re)Actor, will probably assign some port
numbers (or other kind of IDs) to this created Game World (Re)Actor,

148 Of course, any architecture can be abused, and (Re)Actor-fest is no exception; however,
(Re)Actors can be used properly (and, from my experience, are pretty difficult to abuse compared
to alternatives).

149 (Re)Actor-based cohesion (provided that (Re)Actors are reasonable and not abused) qualifies as
“Communicational Cohesion” as defined in [Yourdon and Constantine], and “Communicational
Cohesion” is pretty high on the list of possible reasons to create the association.

Very often, there
is the need to
create instances of
our (Re)Actors on
demand — especially
on the Server-Side.

214 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

and will pass this information back to the matchmaking (Re)Actor as a
reply to the RPC call. Bingo! We’ve just created a new instance of one of
our (Re)Actors on demand.

This (Re)Actor Factory model works very well pretty much re-
gardless of what underlying technology you’re using. For example,
for C++-based (Re)Actors, we can easily have the (Re)Actor Factory
launch a new thread/process to run our new (Re)Actor, and in Node.js
world, it is perfectly possible to have a Node that does nothing but wait
for incoming requests, and spawn an appropriate child_process when
such a request comes in. Also, regardless of the specific platform (but
provided that your (Re)Actors are 100% blocking-free) – it might be
possible to create (Re)Actors within the existing threads/processes too.

That’s Pretty Much It
With individual (Re)Actors, plus (Re)Actor Factories, we can build
a complete distributed system of arbitrary size, with such a system
consisting of nothing but (Re)Actors. Nothing more is necessary, we’re
done, and that’s pretty much it.

On the Client-Side, often all the (Re)Actors are pre-created (and so
there is no need for (Re)Actor Factories), though I’ve seen a Client that
did have a (Re)Actor Factory too.

On the Server-Side, the situation tends to be more complicated.
Usually, on the Server-Side, the (Re)Actor-fest system starts with
some pre-created (Re)Actors; at the very least, it should consist of one
app-level (Re)Actor such as Matchmaking, plus (Re)Actor Factories on
each of the Servers.

As Clients come in to the Matchmaking (Re)Actor, it decides to
run a game, and decides which Server Box will run the game; then the
Matchmaking (Re)Actor requests an appropriate (Re)Actor Factory to
create a Game World (Re)Actor. After being created, the Game World
(Re)Actor lives its own life according to its own logic — and terminates
itself when the game is over (i.e., normally there is no need to terminate
(Re)Actors forcefully).

Of course, there will be quite a bit of additional work along
the way. Still, 99.9% of it will be doable without departing from the
(Re)Actor-fest.

With individual
(Re)Actors, plus
(Re)Actor Factories,
we can build a
complete distributed
system of arbitrary
size, with such a
system consisting
of nothing but
(Re)Actors.

 (Re)Actor-fest Architecture: Putting It All Together · 215

For example, some addition will be necessary to balance Game
Worlds. On the other hand, this is perfectly doable by staying within
(Re)Actors. The simplest balancing is just to keep track of the num-
ber of Game Worlds running on each Server; the more complicated
one is to measure actual load. However, whatever method you prefer,
both of these things can be easily done by the same (Re)Actor Factory
(Re)Actor (or a separate per-Server Load Balancing (Re)Actor).

(Re)Actor-fest and Programming Languages
Last, but not least: within our (Re)Actor-fest Architecture, nothing
forces us to have all the (Re)Actors within our system written in the
same programming language. In fact, as soon as we fix the protocol
between our (Re)Actors (for example, using IDL), we can easily have
different (Re)Actors run in different programming languages.

It does come in handy in practice, too. For example, quite often it
makes sense to write your Game World (Re)Actor in C++, but your
payment (Re)Actor in Java/Node.js/Python. I’ve seen such a multi-lan-
guage (Re)Actor-fest system in a quite a large project (using a combina-
tion of C++/Java/C#) — and it worked like a charm.

Relation of (Re)Actor-Fest to Other Systems
As noted in the Other Event-Driven Systems: GUI, Erlang, Node.js, and
Java Reactor section above, our (Re)Actors have quite a few similari-
ties with other event-processing systems; they also have quite a bit of
resemblance to the Actor Concurrency model coming from computer
science. Let’s take a close look at the similarities and differences of
(Re)Actor-fest to these approaches.

NB: Unless you’re versed in one of the event-processing approaches,
feel free to skip this section; however, if you are, it might be quite use-
ful to see how our (Re)Actor-fest relates to familiar technologies (and
even more importantly, to familiar concepts). Overall, (Re)Actors are
nothing really new — it is just undeservingly-forgotten event-driven
programming with a few modern tricks added, so putting (Re)Actors
into context is both possible and potentially useful.

Within our
(Re)Actor-fest Archi-
tecture, nothing forces
us to have all the
(Re)Actors within our
system written in the
same programming
language.

Actor
Concurrency

Model
The actor model in
computer science
is a mathematical
model of concurrent
computation that
treats ‘actors’ as the
universal primitives
of concurrent com-
putation: in response
to a message that it
receives, an actor can
make local decisions,
create more actors,
send more messages,
and determine how to
respond to the next
message received.

—Wikipedia

216 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Relation to Actor Concurrency

From a theoretical point of view, our (Re)Actor-fest architecture can
be seen as a system that is pretty close to the so-called “Actor Con-
currency Model,” with (Re)Actor-fest’s deterministic (Re)Actors being
Actor Concurrency’s “Actors.” However, there is a significant difference
between the two, at least perception-wise. Traditionally, Actor concur-
rency is considered a way to ensure concurrent calculations; that is, the
thing we’re usually trying to consider within Actor concurrency is usu-
ally a “pure” calculation, with all the inputs of the calculation known in
advance.

With games (and interactive systems in general), the situation
is very different because we don’t know everything in advance (by
definition); in other words, while a usual view of Actor concurrency is
calculation-oriented, with our (Re)Actor-fest (and games in general),
we’re interaction-oriented.

Overall, it means that while the (Re)Actor is indeed a close cousin
of Actor concurrency, quite a bit of the analysis made for Actor-con-
currency for HPC-type tasks is not exactly applicable to inherently
time-dependent systems such as games, so make sure to take it with a
good pinch of salt.

Relation to Erlang Concurrency, Akka Actors, and
Node.js

If looking at Erlang concurrency (more specifically, at ! and receive
operators), at Akka’s Actors, Node.js, or at Microsoft Fabric Actors, we
will see that our (Re)Actors implement pretty much the same concept
as these technologies.150 There are no shared states, everything goes via
message passing, et cetera, et cetera, et cetera.

The only significant difference concept-wise is that for (Re)Ac-
tor-fest I am arguing for determinism. In general, determinism is not
guaranteed in Erlang/Akka/Node.js/etc. (at least not without DIY Call
Wrapping); on the other hand, you can write deterministic actors using

150 While Erlang, Akka, and Microsoft zealots will argue ad infinitum that their favorite technology is
much better than anything else in existence, from our perspective the differences are pretty much
negligible.

Akka
is... simplifying
the construction
of concurrent and
distributed applica-
tions on the JVM.
Akka... emphasizes
actor-based concur-
rency, with inspiration
drawn from Erlang.

—Wikipedia

 (Re)Actor-fest Architecture: Putting It All Together · 217

these technologies the same way as in the (Re)Actor-fest. After all,
determinism is just an additional restriction you need to keep in mind
and enforce. Other than that, and some of those practical goodies in
(Re)Actor-fest (such as recording/replay with all the associated ben-
efits), (Re)Actor-fest looks very close to Erlang’s /Akka’s/Node.js/etc.
concurrency from the developer’s point of view.

Which can be roughly translated into the following observation:

To have a good concurrency model, it is not strictly necessary
to program in Erlang or to use Akka or Node.js

That being said, while the concept is about the same, implementations
are quite different (and can cause quite a bit of trouble).

In this respect, I want to mention Erlang’s “selective receive.” I know
that I will certainly be pummeled by Erlang fans, but I have to confess
that I don’t really like “selective receive” (and especially an associated
“save queue”). Sure, “selective receive” can be used to write exactly the
same things that we were discussing throughout this chapter (and it is
not difficult to write a C++/Java/… library that would provide selec-
tive receive functionality too), but I still prefer other means to express
(Re)Actors.

My main argument against using “selective receive” at the app-level
of game-like processing, goes along the following lines: with “selective
receive”, way too much effort (and way too many discussions around
recommended techniques) revolves around NOT processing the in-
coming message; in particular, if there is no match for the message, the
message just sits in the queue (for our purposes, we can leave out the
rather weird processing rules of the save queue). Moreover, as [Trotti-
er-Hebert] puts it, “Ignoring some messages to handle them later in the
manner described above is the essence of selective receives.”

However, when talking about inherently interactive (Re)Actors such
as Game Worlds, Cashiers, etc., 99% of the time we DO want to pro-
cess incoming messages right away. There are several reasons for such
processing-unless-proven-impossible paradigm: (a) very often, doing
nothing while performing message processing effectively blocks the
other side of communication, and blocking is bad for both performance

When talking about
inherently interactive
(Re)Actors, 99% of
the time we DO want
to process incoming
messages right away.

218 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

and scalability; (b) having blocking in multi-(Re)Actor scenarios creates
risks for inter-(Re)Actor deadlocks <ouch! />; (c) while scenarios when
we have to delay event/message processing, DO exist — off the top of
my head, I can remember only two such cases (and it was <0.1% of all
the message processing cases I have seen for sure). As noted above, this
doesn’t mean that you cannot write robust non-blocking distributed
programs based on “selective receive” (after all, it is possible to specify a
catch-all pattern for “selective receive”) — just that there are more con-
venient ways to do it (and with less risk of running into problems too).

(Re)Actors and Microservices as Close Cousins

These days, everybody and their dog talks about microservices. Well,
whatever dogs can do, hare can do better <wink />, so let’s say some-
thing about microservices.

The general idea of microservices as defined in [Fowler and Lewis,
Microservices. a definition of this new architectural term] is all about
decoupling certain parts of monolithic code, and separating them into
different parts, which enables quite a few benefits, including (but not
limited to) smaller, and therefore more manageable, chunks of tight-
ly-coupled code, smaller per-service upgrades, and the ability to do
per-service scaling.

Beyond this rather vague definition, the term “microservices” is not
very well-defined, but of the existing interpretations, I certainly prefer
the one discussed in [Bonér] (BTW, if dealing with microservices,
make sure to read this freely available book — it is, IMO, by far the best
discussion on microservices out there).

[Bonér] goes a bit further than [Fowler and Lewis, Microservices.
a definition of this new architectural term] and discusses ways of im-
plementing microservices; and as we’ve read about these ways, we’re
realizing that microservices and (Re)Actors are pretty much the same
thing. Autonomous operation? Decoupling with the only way to interact
being via published APIs? Exclusive ownership of the state? Asynchro-
nous non-blocking message passing? Publish-subscribe mechanisms?
These are the topics discussed in [Bonér], and are exactly the same as
discussed in the course of this chapter.

Event Sourcing
is a very close
cousin of the
recording-and-replay
determinism-based
techniques we’ve
discussed above.

 (Re)Actor-fest Architecture: Putting It All Together · 219

and scalability; (b) having blocking in multi-(Re)Actor scenarios creates
risks for inter-(Re)Actor deadlocks <ouch! />; (c) while scenarios when
we have to delay event/message processing, DO exist — off the top of
my head, I can remember only two such cases (and it was <0.1% of all
the message processing cases I have seen for sure). As noted above, this
doesn’t mean that you cannot write robust non-blocking distributed
programs based on “selective receive” (after all, it is possible to specify a
catch-all pattern for “selective receive”) — just that there are more con-
venient ways to do it (and with less risk of running into problems too).

(Re)Actors and Microservices as Close Cousins

These days, everybody and their dog talks about microservices. Well,
whatever dogs can do, hare can do better <wink />, so let’s say some-
thing about microservices.

The general idea of microservices as defined in [Fowler and Lewis,
Microservices. a definition of this new architectural term] is all about
decoupling certain parts of monolithic code, and separating them into
different parts, which enables quite a few benefits, including (but not
limited to) smaller, and therefore more manageable, chunks of tight-
ly-coupled code, smaller per-service upgrades, and the ability to do
per-service scaling.

Beyond this rather vague definition, the term “microservices” is not
very well-defined, but of the existing interpretations, I certainly prefer
the one discussed in [Bonér] (BTW, if dealing with microservices,
make sure to read this freely available book — it is, IMO, by far the best
discussion on microservices out there).

[Bonér] goes a bit further than [Fowler and Lewis, Microservices.
a definition of this new architectural term] and discusses ways of im-
plementing microservices; and as we’ve read about these ways, we’re
realizing that microservices and (Re)Actors are pretty much the same
thing. Autonomous operation? Decoupling with the only way to interact
being via published APIs? Exclusive ownership of the state? Asynchro-
nous non-blocking message passing? Publish-subscribe mechanisms?
These are the topics discussed in [Bonér], and are exactly the same as
discussed in the course of this chapter.

Event Sourcing
is a very close
cousin of the
recording-and-replay
determinism-based
techniques we’ve
discussed above.

Oh, and BTW: if talking about Event Sourcing (as discussed in
[Fowler, Event Sourcing] and [Richardson]), we notice that Event
Sourcing is essentially relying on the behavior of the microservice
being deterministic and having a log of all input events; as such, it is
a very close cousin of our recording-and-replay determinism-based
techniques we’ve discussed above.

At this point, I can see only two significant differences between
microservices-as-discussed-in-[Bonér] and our (Re)Actors:
♦♦ First, microservices usually have some database behind; on the

other hand, (Re)Actors can have either in-memory state — or a
persistent one (for example, a database-based state); while we
didn’t discuss the latter yet, they will be discussed in Vol. III’s chap-
ter on Server-Side Architecture and Vol. VI’s chapter on Databases.

 ▪ While stateful microservices (those with an in-memory
state rather than DB-based state) are not unknown, they’re
generally frowned upon in the enterprise-app development
world (where the whole microservices thing originated).
This is usually done in the name of apparent scalability of
stateless microservices. However, as we’ll discuss in more
detail in Vol. III’s chapter on Scalability 101, I contend that
making microservices stateless merely pushes the scalability
problem to the database, and that real-world databases
(in spite of what your DB sales person will tell you) do not
scale in a linear manner unless aided by application level.
To make things worse, all-stateless-microservices tend to
throw too much data updates at the DB, increasing the DB
load — the one that doesn’t really scale well — many-fold
(I’ve seen 30x, but if you try to make a stateless simulation
game, it can get as high as 1000x). While this is clearly a
Good Thing™ for DBMS vendors who can charge an arm
and a leg for “enterprise” versions of their DBs, it is not nec-
essarily so for app-devs and gamedevs. As a result, I have to
insist on using stateful microservices/(Re)Actors at the very
least as our Game Worlds; for details, see the discussion in
Vol. III’s chapter on Scalability. As for ways to scale the DB,
this is apparently doable with (Re)Actor-style programming
too; see Vol. VI’s chapter on Databases for details.

220 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

♦♦ Second, [Bonér] doesn’t specify threading models for the micros-
ervices, while our (Re)Actors are inherently single-threaded. BTW,
let’s note that while the very notion of a single-threaded-DB-access
is almost-guaranteed to cause an enormously-angry-outburst
from any enterprise-level architect (with “are you freaking crazy?”
being the most polite words you’ll likely hear from him), such
single-writing-DB-connection architectures were observed to
work very well (and scale very well) in the real world; these archi-
tectures and the way to scale them (proven on a real-world system
processing 10+ billion real-world-transactions/year and making its
owners several hundreds of millions/year as a side effect <wink />)
will be discussed in detail in Vol. VI’s chapter on Databases.

Physical Server — VM Docker — (Re)Actor as a Spectrum of
Tradeoffs Between Isolation and Flexibility

When talking about microservices, it is common to mention ap-
plication containers such as Docker. And while Docker guys do not
like when Docker containers are named “lightweight VMs” (see [Cole-
man]), from a 50,000-foot view they, even if not exactly the same thing,
are indistinguishably close.

From my perspective, the whole thing looks as follows. Originally,
there were physical servers and just physical servers. Then VMs ap-
peared, gaining in deployment-time flexibility over physical servers
while giving up some isolation between different boxes (at the very
minimum, VMs on the same physical box DO compete for resources).
Then there was Docker (more generally – app containers), gaining
more flexibility while giving up more isolation. And the last (to date)
stage in improving deployment-time flexibility even further at the
cost of giving up even more isolation is our (Re)Actors: after all, de-
ployment-wise, (Re)Actors are even more flexible than app containers
(while obviously less isolated). In other words, IMNSHO we’re talking
about the whole spectrum of Physical Servers — VMs — Docker Con-
tainers — (Re)Actors, with deployment-time flexibility increasing (and
isolation decreasing) as we go from left to right along this spectrum.

 Summary of Chapter 5 · 221

SUMMARY OF CHAPTER 5
To summarize the main points from Chapter 5:

♦♦ (Re)Actors, Actors, event-driven programs, and ad-hoc finite
state machines are pretty much the same thing under different
names.

♦♦ (Re)Actors tend to provide a very good separation (with very clean
interfaces) between different pieces of logic, and a very good sepa-
ration between platform-independent logic and platform-specific
infrastructure.

♦♦ (Re)Actors do NOT require thinking about thread sync while
thinking about the logic. IMO this alone is sufficient to justify
(Re)Actors.151

♦♦ I am arguing for mostly-non-blocking deterministic (Re)Actors,
which provide numerous benefits:

 ▪ High performance (if you do things right)
 ▪ Replay-based regression testing
 ▪ Production post-factum analysis (including visual post-fac-

tum analysis of the Client-Side when the player complains
about lagging or something)

 ▪ Potential for Server-Side features such as low-latency
fault-tolerance, (Re)Actor migration, and almost-ze-
ro-downtime upgrades

 ▪ Better quality of testing and better quality of code
 ▪ And quite a few other things

♦♦ Non-blocking handling is admittedly a headache, but can be
implemented in several different ways.

 ▪ We don’t really need non-blocking processing for every-
thing; instead, we need to have non-blocking processing for
those-potentially-long outstanding requests where we want
to process intervening requests coming while we’re waiting
for the reply. Hence, the concept of mostly-non-blocking
programming.

151 I’ve spent enough time working with thread sync to understand that the best way to guarantee
that multi-threaded code works is to make it single-threaded.

222 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 ▪ All the Takes discussed in this chapter with regards to
handling non-blocking returns, are equivalent (in par-
ticular, none requires thread sync), but they still differ in
syntax, in “how straightforward the code is compared to
the original intention,” and in the amount of boilerplate
code.

 ▪ Personally, I prefer Take 3 (that is, if you don’t have access
to C++11), Take 5 (futures-based), or Take 8 (await, though
it is limited to only a few programming languages now).

♦♦ Determinism in (Re)Actors can be achieved by relatively simple
means, as described above.

 ▪ However, optimal methods of achieving determinism
vary for different non-deterministic system calls; see the
Dealing with System Calls: Which System Functions Are
We Talking About and What Do We Do About Them?
section above.

Other precautions are also necessary, though most of the time
they’re aligned with other existing “best practices” (see the Implementing
Deterministic Logic: Other Sources of Non-Determinism section above).

 ▪ Achieving cross-platform determinism is much more
difficult (in particular, because of the floating point issues),
but is rarely necessary (that is, unless you want to rely on
Deterministic Lockstep or implement User Replay).

♦♦ Normally the (Re)Actor doesn’t scale beyond one single core.
However:

 ▪ It is usually possible to split (Re)Actors, providing real
scalability.

yy Moreover, this kind of scalability is Shared-Nothing
Scalability, and Shared-Nothing is the only thing
which really scales.

 ▪ In some cases, Offloading can provide real scalability too.
 ▪ If real scalability is not possible, a few (kinda-)scalability

tricks can still help:
yy (Re)Actor-with-Mirrored-State (Halo-style)
yy (Re)Actor-with-Extractors (Destiny-style)

 Summary of Chapter 5 · 223

♦♦ When implementing (Re)Actors, there are certain common
patterns to keep complexity under control:

 ▪ App-level (Re)Actors are usually NOT table-driven (due to
“state explosion” problems).

 ▪ (Re)Actors-within-(Re)Actors is a Good Thing™ wherever
applicable.

 ▪ State pattern MAY help to tackle complexity, but has certain
drawbacks (such as shared states).

yy State pattern simplifies implementing Hierarchical
States and Stacks-of-States.

 ▪ The VALIDATE-CALCULATE-MODIFY-SIMULATE
pattern is generally a Good Thing™ too.

♦♦ (Re)Actor-fest Architecture is The Way to Go™.
 ▪ More precisely – I strongly advocate for using only

(Re)Actors at app-level; as for Infrastructure Code – I
still tend to prefer (Re)Actors, but have to acknowledge
that they’re only one of the possible ways to implement
Infrastructure.

 ▪ To build (Re)Actor-fest system from individual (Re)Actors, we
need to add only (Re)Actor Factory, and that’s pretty much it.

Bibliography
Aldridge, David. 2011. “I Shot You First: Networking the Gameplay of

HALO: REACH.” http://www.gdcvault.com/play/1014345/
I-Shot-You-First-Networking.

Alexandrescu, Andrei. 2015. “Declarative Control Flow.” CppCon.
https://www.youtube.com/watch?v=WjTrfoiB0MQ.

Alexandrescu, Andrei, and Petru Marginean. 2000. “Generic: Change
the Way You Write Exception-Safe Code — Forever.” CUJ.
http://www.drdobbs.com/cpp/generic-change-the-way-you-
write-excepti/184403758.

ARM. 2010-2011. “C library functions that are not thread-safe.”
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.dui0492c/Chddjdaj.html.

(Re)Actor-fest Archi-
tecture is The Way to
Go™.

224 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Böck, Hanno. 2015. “How Heartbleed could’ve been found.”
https://blog.hboeck.de/archives/868-How-Heartbleed-
couldve-been-found.html.

Boer, James. 2005. “1.8 Large-Scale Stack-Based State Machines.” In
Game Programming Gems 5.

Bonér, Jonas. 2016. “Reactive Microservices Architecture.”
http://downloads.lightbend.com/website/reactive-microservices-
architecture/Reactive_Microservices_Architecture.pdf.

Bonér, Jonas, Dave Farley, Roland Kuhn, and Martin Thompson. 2013.
“The Reactive Manifesto.” http://www.reactivemanifesto.org/.

Butcher, Chris. 2015. “Learning from the Core Engine Architecture
of Destiny.” GDC. http://www.gdcvault.com/play/1022106/
Lessons-from-the-Core-Engine.

Calderone, Jean-Paul. 2013. “What is a State Machine?”
https://clusterhq.com/2013/12/05/what-is-a-state-machine/.

Chen, Hao, Ari Silvennoinen, and Natalya Tatarchuk. 2011.
“Making Games from Polygon Soup.” https://mediatech.
aalto.fi/~ari/Publications/Making_Game_Worlds_from_
Polygon_Soup.pptx.

Coleman, Mike. 2016. “Containers Are Not VMs.” https://blog.docker.
com/2016/03/containers-are-not-vms/.

Cox, Russ. 2014. “Libtask: a Coroutine Library for C and Unix.”
https://swtch.com/libtask/.

Dawson, Bruce. 2013. “Floating-Point Determinism.”
https://randomascii.wordpress.com/2013/07/16/floating-
point-determinism/.

Dickinson, Patrick. 2001. “Instant Replay: Building a Game Engine
with Reproducible Behavior.” http://www.gamasutra.com/view/
feature/131466/instant_replay_building_a_game_.php.

Dunkels, Adam. “Protothreads.” http://dunkels.com/adam/pt/index.
html.

Dmitry Vyukov, “Faster Fibers/Coroutines.” http://www.1024cores.net/
home/lock-free-algorithms/tricks/fibers.

 Summary of Chapter 5 · 225

Fiedler, Glenn. 2014. “Deterministic Lockstep.” http://gafferongames.
com/networked-physics/deterministic-lockstep/.

— . 2006. “Fix Your Timestep!” http://gafferongames.com/game-
physics/fix-your-timestep/.

— . 2010. “Floating Point Determinism.” http://gafferongames.
com/networking-for-game-programmers/floating-point-
determinism/.

Fowler, Martin. 2011. “Eradicating Non-Determinism in Tests.”
http://martinfowler.com/articles/nonDeterminism.html.

— . 2005. “Event Sourcing.” http://martinfowler.com/eaaDev/
EventSourcing.html.

Fowler, Martin, and James Lewis. 2014. “Microservices. a definition of
this new architectural term.” http://martinfowler.com/articles/
microservices.html.

Fugal, Hans. 2015. “Futures for C++11 at Facebook.”
https://code.facebook.com/posts/1661982097368498/futures-for-
c-11-at-facebook/.

Geels, Dennis, Gautam Altekar, Scott Shenker, and Ion Stoica. 2006.
“Replay Debugging for Distributed Applications.” USENIX 2006.
http://www.cs.berkeley.edu/~istoica/papers/2006/liblog.pdf.

Hare, ‘No Bugs’. 2016. “Determinism: Requirements vs Features.”
Overload (135).

— . 2016. “Deterministic Components for Distributed Systems.”
Overload (#133). http://accu.org/index.php/journals/2251.

— . 2015. “Multi-threading at Business-logic Level is Considered
Harmful.” Overload (#128). https://accu.org/index.php/
journals/2134

— . 2017. “ Allocator for (Re)Actors. Part III – “Speedy Gonzales”
Serializing (Re)Actors via Allocators “ Overload (#140).

Harrington, Dom. 2017. “Using async/await in Node.js 7.6.0.”
https://blog.readme.io/using-async-await-in-node-js-7-6-0/

Hauser, John. “Berkeley SoftFloat.” http://www.jhauser.us/arithmetic/
SoftFloat.html.

226 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

— . 2016. Private communications with.

Henney, Kevlin. 2017. “Thinking Outside the Synchronisation
Quadrant.” ACCU 2017.

Hoskinson, Rick. 2017. “DETERMINISM IN LEAGUE OF
LEGENDS: IMPLEMENTATION.” https://engineering.
riotgames.com/news/determinism-league-legends-
implementation.

Howells, David, Paul E. McKenney, Will Deacon, and Peter Zijlstra.
“LINUX KERNEL MEMORY BARRIERS.” https://www.kernel.
org/doc/Documentation/memory-barriers.txt.

Ignatchenko, Sergey. 1998. “STL Implementations and Thread Safety.”
C++ Report, Vol. 10, Number 7.

— . 2017. “Deterministic Components for Interactive Distributed
Systems: Benefits and Implementation.” ACCU 2017.
http://ithare.com/deterministic-components-for-interactive-
distributed-systems-with-transcript/

— . 2017. “Eight Ways to Handle Non-blocking Returns in Message-
passing Programs: from C++98 via C++11 to C++20”
CPPCON2017.

Ignatchenko, Sergey, and Dmytro Ivanchykhin. 2016. “Ultra-fast
Serialization of C++ Objects.” Overload (#136). http://accu.org/
index.php/journals/2317

Kaiser, Hartmut. 2017. “The Asynchronous C++ Parallel Programming
Model”. CPPCON2017

Karjalainen, Antti. 2014. “How we discovered Heartbleed?”
https://www.youtube.com/watch?v=ezjRv_7iZZM.

Knuth, Donald E. 1969. “The Art of Computer Programming. Vol. 2
Seminumerical Algorithms.”

Kowalke, Oliver. 2014. “Boost.Context Architectures.”
http://www.boost.org/doc/libs/1_60_0/libs/context/doc/html/
context/architectures.html.

Lauliac, Jean. 2015. “Looking for RAII in Javascript.”
http://jeanlauliac.com/raii-in-javascript/.

 Summary of Chapter 5 · 227

Li, Chuanpeng, Chen Ding, and Kai Shen. 2007. “Quantifying The Cost
of Context Switch.” http://www.cs.rochester.edu/u/cli/research/
switch.pdf.

Ligoum, Dmitri, and Sergey Ignatchenko. 2016. https://github.com/
O-Log-N/Autom.cpp.

McFarlane, John. 2017. “Composition of Arithmetic Types”, P0554R0
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
p0554r0.html

— . “CNL: A Compositional Numeric Library for C++.” https://github.
com/johnmcfarlane/cnl

McShaffry, Mike, and David “Rez” Graham. 2012. “Game Coding
Complete 4th Edition.”

Nelson, Randal C. “Finite Automata.” https://www.cs.rochester.edu/u/
nelson/courses/csc_173/fa/fa.html.

Nishanov, Gor. 2017. “Naked coroutines live (with networking)”.
CPPCON2017

Nystrom, Robert. 2014. “Game Loop.”
http://gameprogrammingpatterns.com/game-loop.html.

— . 2014. “Game Programming Patterns.”
http://gameprogrammingpatterns.com/.

— . 2014. “State Pattern.”
http://gameprogrammingpatterns.com/state.html.

Trottier-Hebert, Frederic. “More On Multiprocessing”
http://learnyousomeerlang.com/more-on-multiprocessing

Richardson, Chris. 2016. “Pattern: Event sourcing.”
http://microservices.io/patterns/data/event-sourcing.html.

Serebryany, Kostya, and Alexander Potapenko. “Address
Sanitizer.” https://github.com/google/sanitizers/wiki/
AddressSanitizer.

Jim Springfield. “Using C++ Resumable Functions with Libuv”.
https://blogs.msdn.microsoft.com/vcblog/2017/02/02/
using-ibuv-with-c-resumable-functions/

228 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

Spruiell, Mark. 2016. “Avoiding Server-Side Garbage.”
https://doc.zeroc.com/display/Ice36/Avoiding+Server-
Side+Garbage.

Standard C++ Foundation. “How do I select the best serialization technique?”
https://isocpp.org/wiki/faq/serialization#serialize-selection.

STEIIAR-GROUP. “hpx”. https://github.com/STEllAR-GROUP/hpx

Tatarchuk, Natalya. 2015. “Destiny’s Multithreaded Rendering
Architecture.” GDC. http://www.gdcvault.com/play/1021926/
Destiny-s-Multithreaded-Rendering.

Walfridsson, Krister. 2017. “Why undefined behavior may call a
never-called function.” https://kristerw.blogspot.com/2017/09/
why-undefined-behavior-may-call-never.html

Wikipedia. 2017. “State Transition Table.” https://en.wikipedia.org/
wiki/State_transition_table.

— . 2017. “Associative property.”

https://en.wikipedia.org/wiki/Associative_property.

— . 2017. “Conway’s Law.” https://en.wikipedia.org/wiki/
Conway%27s_law.

— . 2017. “Deterministic Finite Automaton.” https://en.wikipedia.org/
wiki/Deterministic_finite_automaton.

— . 2017. “UML State Machine.” https://en.wikipedia.org/wiki/
UML_state_machine.

Yourdon, Edward, and Larry L. Constantine. 1978. “STRUCTURED
DESIGN. Fundamentals of a Discipline of Computer Program
and Systems Design.” http://chiclassiccomp.org/docs/content/
books/StructuredDesign_EdwardYourdonLarryConstantine.
pdf.

Zalewski, Michal. “afl-fuzz.” http://lcamtuf.coredump.cx/afl/.

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 229

APPENDIX 5.A. C++-SPECIFIC
EXAMPLES AND COMMENTS FOR
CHAPTER 5
//Listing 5.A.Reactor
class GenericReactor {
 virtual void react(const Event& ev) = 0;
};
class Infrastructure {
 std::unique_ptr<GenericReactor> r;
 public:
 Infrastructure(std::unique_ptr<GenericReactor>& r_)
 : r(std::move(r_)) {
 }
 void run_loop() {
 while(true) {
 Event ev = wait_for_event();
 ev.inputs = read_inputs();
 r->react(ev);
 }
 }
};
class ConcreteReactor : public GenericReactor {
 public:
 void react(const Event& ev) override {
 assert(ev.type == TIMER_EVENT);
 //in real-world, most of assert()’s SHOULD be replaced
 // with throwing-exception MYASSERT() macros, see
 // Vol. V’s chapter on C++
 process_inputs(ev.inputs);
 update();
 post_updates_to_clients();
 post_timer_event(time_left_until_end_of_network_tick);
 }
};

//Listing 5.A.Blocking.noexcept
bool CashierReactor::purchaseItem(
 int item_id, int connection_id) {
 int user_id = get_user_id(connection_id);
 //blocking RPC call to DB (Re)Actor:
 bool db_ok = dbPurchaseItem(db_reactor_id,
 user_id, item_id);

230 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 if(!db_ok)
 return false;
 //blocking RPC call to Game World (Re)Actor:
 gameworld_reactor_id = find_gameworld_for_user(user_id);
 bool gameworld_ok = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 return gameworld_ok;
}

//Listing 5.A.Take1.IDLGen
//GENERATED FROM IDL, DO NOT MODIFY!
#define CASHIER_PURCHASEITEM_REQUEST 123
#define CASHIER_PURCHASEITEM_RESPONSE 124
#define DB_PURCHASEITEM_REQUEST 125
#define DB_PURCHASEITEM_RESPONSE 126
#define GAMEWORLD_ADDITEM_REQUEST 127
#define GAMEWORLD_ADDITEM_RESPONSE 128
Msg cashierPurchaseItem_request_compose(
 int request_id, int item_id);
//returns (request_id, item_id)
tuple<int,int> cashierPurchaseItem_request_parse(
 const Msg& msg);
Msg cashierPurchaseItem_response_compose(
 int request_id, bool ret);
//returns (request_id,returned_value)
tuple<int,bool> cashierPurchaseItem_response_parse(
 const Msg& msg);

Msg dbPurchaseItem_request_compose(
 int request_id,
 int user_id, int item_id);
//returns (request_id, int user_id, int item_id)
tuple<int,int,int> dbPurchaseItem_request_parse(
 const Msg& msg);
Msg dbPurchaseItem_response_compose(
 int request_id, bool ret);
//returns (request_id,returned_value)
tuple<int,bool> dbPurchaseItem_response_parse(
 const Msg& msg);
Msg gameworldAddItem_request_compose(
 int request_id,
 int user_id, int item_id);
//returns (request_id, user_id, item_id)
tuple<int,int,int> gameworldAddItem_request_parse(
 const Msg& msg);

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 231

Msg gameworldAddItem_response_compose(
 int request_id, bool ret);
//returns (request_id,returned_value)
tuple<int,bool> gameworldAddItem_response_parse(
 const Msg& msg);

//Listing 5.A.Take1.noexcept
//CAUTION: SEVERELY UGLY CODE AHEAD!!
struct PurchaseRqData {
 enum class Status { DBRequested, GameWorldRequested };
 Status status;
 int user_request_id;
 int user_id;
 int item_id;
 PurchaseRqData(int user_request_id_,
 int user_id_, int item_id)
 : user_request_id(user_request_id_),
 user_id(user_id_), item_id(item_id_) {
 status = Status::DBRequested;
 }
};
class CashierReactor {
 map<int,PurchaseRqData> purchase_item_requests;
 public:
 void react(const Event& ev);
};
void CashierReactor::react(const Event& ev) {
 switch(ev.type) {
 case CASHIER_PURCHASEITEM_REQUEST:
 {
 const Msg& msg = ev.msg;
 int user_request_id, item_id;
 tie(user_request_id, item_id) =
 cashierPurchaseItem_request_parse(msg);
 int user_id = get_user_id(ev);
 int request_id = new_request_id();
 Msg msg2 =
 dbPurchaseItem_request_compose(
 request_id, user_id, item_id);
 send_msg_to(db_reactor_id, msg2);
 purchase_item_requests.insert(
 pair<int, PurchaseRqData>(request_id,
 PurchaseRqData(user_request_id,
 user_id, item_id));
 break;
 }

232 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 case DB_PURCHASEITEM_RESPONSE:
 {
 const Msg& msg = ev.msg;
 int request_id;
 bool db_ok;
 tie(request_id, db_ok) = dbPurchaseItem_parse(msg);
 auto found =
 purchase_item_requests.find(request_id);
 assert(found != purchase_item_requests.end());
 assert(found->status ==
 PurchaseRqData::Status::DBRequested);
 if(!db_ok) {
 Msg msg3 =
 cashierPurchaseItem_response_compose(
 found->second.user_request_id, false);
 send_msg_back_to(user_id, msg3);
 purchase_item_requests.erase(found);
 break;

 }

 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(
 found->second.user_id);
 Msg msg4 =
 gameworldAddItem_request_compose(
 request_id,
 found->second.user_id,
 found->second.item_id);
 send_msg_to(gameworld_reactor_id, msg4);
 found->status =
 PurchaseRqData::Status::GameWorldRequested;
 break;
 }
 case GAMEWORLD_ADDITEM_RESPONSE:
 {
 const Msg& msg = ev.msg;
 int request_id;
 bool gw_ok;
 tie(request_id, gw_ok) =
 gameworldAddItem_response_parse(msg);
 auto found = purchase_item_requests.find(
 request_id);
 assert(found != purchase_item_requests.end());
 assert(found->status ==
 PurchaseRqData::Status::GameWorldRequested);

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 233

 Msg msg2 =
 cashierPurchaseItem_response_compose(
 found->second.user_request_id, gw_ok);
 send_msg_back_to(user_id, msg2);
 purchase_item_requests.erase(found);
 break;
 }
 }
}

//Listing 5.A.Take2.IDL
//Client-to-Cashier:
void cashierPurchaseItemRequest(int request_id,
 int item_id);
void cashierPurchaseItemResponse(int request_id,
 bool ret);
//CASHIER-to-DB:
void dbPurchaseItemRequest(int request_id,
 int user_id, int item_id);
void dbPurchaseItemResponse(int request_id, bool ret);
//CASHIER-to-GameWorld
void gameworldAddItemRequest(int request_id,
 int user_id, int item_id);
void gameworldAddItemResponse(int request_id, bool ret);

//Listing 5.A.Take2.IDLGen
//GENERATED FROM IDL, DO NOT MODIFY!
void CashierReactor::cashierPurchaseItemRequest(
 REACTORID peer_reactor, int request_id,
 int item_id);
 //for Cashier, this is an RPC function
 // to be implemented
void CashierReactor::cashierPurchaseItemResponse(
 REACTORID peer_reactor, int request_id,
 bool ret);
 //for Cashier, this is an RPC stub
 // to be called
void CashierReactor::dbPurchaseItemRequest(
 REACTORID peer_reactor, int request_id,
 int user_id, int item_id);
 //for Cashier, this is an RPC stub
 // to be called
void CashierReactor::dbPurchaseItemResponse(
 REACTORID peer_reactor, int request_id,
 bool ret);
 //for Cashier, this is an RPC function

234 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 // to be implemented
void CashierReactor::gameworldAddItemRequest(
 REACTORID peer_reactor, int request_id,
 int user_id, int item_id);
 //for Cashier, this is an RPC stub
 // to be called
void CashierReactor::gameworldAddItemResponse(
 REACTORID peer_reactor, int request_id,
 bool ret);
 //for Cashier, this is an RPC function
 // to be implemented

//Listing 5.A.Take2.noexcept
//CAUTION: RATHER UGLY CODE AHEAD!!
struct PurchaseRqData { // same as for Take 1
 enum class Status { DBRequested, GameWorldRequested };
 Status status;
 int user_request_id;
 int user_id;
 int item_id;
 PurchaseRqData(int user_request_id_,
 int user_id_, int item_id)
 : user_request_id(user_request_id_),
 user_id(user_id_), item_id(item_id_) {
 status = Status::DBRequested;
 }
};
class CashierReactor {
 map<int,PurchaseRqData> purchase_item_requests;
 public:
 void cashierPurchaseItemRequest(REACTORID peer_reactor,
 int request_id, int item_id);
 //...
};
void CashierReactor::cashierPurchaseItemRequest(
 REACTORID peer_reactor, int request_id,
 int item_id) {
 int user_id = get_user_id(peer_reactor);
 int request_id = new_request_id();
 dbPurchaseItemRequest(db_reactor_id,
 request_id,
 user_id, item_id);
 purchase_item_requests.insert(
 pair<int, PurchaseRqData>(request_id,
 PurchaseRqData(user_request_id,
 user_id, item_id));

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 235

}
void CashierReactor::dbPurchaseItemResponse(
 REACTORID peer_reactor, int request_id,
 bool db_ok) {
 auto found = purchase_item_requests.find(request_id);
 assert(found != purchase_item_requests.end());
 assert(found->status ==
 PurchaseRqData::Status::DBRequested);
 if(!db_ok) {
 REACTORID user_reactor =
 find_user_reactor_id(found->second.user_id);
 cashierPurchaseItemResponse(user_reactor,
 found->second.user_request_id, false);
 purchase_item_requests.erase(found);
 return;
 }

 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(found->second.user_id);
 gameworldAddItemRequest(gameworld_reactor_id, request_id,
 found->second.user_id, found->second.item_id);
 found->status =
 PurchaseRqData::Status::GameWorldRequested;
}
void CashierReactor::gameworldAddItemResponse(
 REACTORID peer_reactor, int request_id,
 bool gw_ok) {
 auto found = purchase_item_requests.find(request_id);
 assert(found != purchase_item_requests.end());
 assert(found->status ==
 PurchaseRqData::Status::GameWorldRequested);
 REACTORID user_reactor =
 find_user_reactor_id(found->second.user_id);
 cashierPurchaseItemResponse(user_reactor,
 found->second.user_request_id, gw_ok);
 purchase_item_requests.erase(found);
}

//Listing 5.A.Take3.IDL, same as 5.Take1.IDL
bool cashierPurchaseItem(int item_id);
//CASHIER-to-DB:
bool dbPurchaseItem(int user_id, int item_id);
//CASHIER-to-GameWorld
bool gameworldAddItem(int user_id, int item_id);

236 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

//Listing 5.A.Take3.IDLGen
//GENERATED FROM IDL, DO NOT MODIFY!
class CashierPurchaseItemReplyHandle {
 public:
 void reply(bool ret);
};
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 //reply_handle MAY be copied (as shared_ptr<>),
 // if it is necessary to postpone replying
 // until later
 int item_id);
 //for Cashier, this is an RPC function
 // to be implemented
class DbPurchaseItemCallback {
 public:
 DbPurchaseItemCallback(Reactor* r);
 Reactor* get_reactor();
 void react(bool ret) = 0;
};
void CashierReactor::dbPurchaseItem(
 /* new */ DbPurchaseItemCallback* cb,
 //NOT using unique_ptr<>
 // to save on verbosity for caller
 REACTORID reactor_to,
 int user_id, int item_id);
 //sends a message, calls cb->react() when done
 //for Cashier, this is an RPC stub
 // to be called
class GameworldAddItemCallback {
 public:
 GameworldAddItemCallback(Reactor* r);
 Reactor* get_reactor();
 void react(bool ret) = 0;
};
void CashierReactor::gameworldAddItem(
 /* new */ GameworldAddItemCallback* cb,
 REACTORID reactor_to,
 int user_id, int item_id);
 //for Cashier, this is an RPC stub
 // to be called

//Listing 5.A.Take3.noexcept
//CAUTION: VERBOSE CODE AHEAD!
//TAKE 3 IS LESS ERROR-PRONE THAN TAKES 1-2,
// BUT STILL HAS LOTS OF BOILERPLATE CODE

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 237

class DbPurchaseItemCallbackA
: public DbPurchaseItemCallback {
 shared_ptr<CashierPurchaseItemReply> reply_handle;
 int user_id;
 int item_id;

 public:
 DbPurchaseItemCallbackA(Reactor* r,
 shared_ptr<CashierPurchaseItemReply>& reply_handle_,
 int user_id_, int item_id_)
 : DbPurchaseItemCallback(r), reply_handle(reply_handle_),
 user_id(user_id_), item_id(item_id_) {
 }
 void react(bool db_ok) override;
};
class GameworldAddItemCallbackA
 : public GameworldAddItemCallback {
 shared_ptr<CashierPurchaseItemReply> reply_handle;
 int user_id;
 int item_id;

 public:
 GameworldAddItemCallbackA(Reactor* r,
 shared_ptr<CashierPurchaseItemReply>& reply_handle_,
 int user_id_, int item_id_)
 : GameworldAddItemCallback(r), reply_handle(reply_handle_),
 user_id(user_id_), item_id(item_id_) {
 }
 void react(bool gw_ok) override;
};
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id) {
 int user_id = get_user_id(reply_handle);
 auto cb = new DbPurchaseItemCallbackA(
 this, reply_handle,
 user_id, item_id);
 dbPurchaseItem(cb, db_reactor_id,
 user_id, item_id);
}
void DbPurchaseItemCallbackA::react(bool db_ok) {
 if(!db_ok) {
 reply_handle->reply(false);
 return;
 }
 REACTORID gameworld_reactor_id =

238 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 get_reactor()->find_gameworld_for_user(user_id);
 auto cb = new GameworldAddItemCallbackA(
 get_reactor(), reply_handle,
 user_id, item_id);
 gameworldAddItem(cb, gameworld_reactor_id,
 user_id, item_id);
}
void GameworldAddItemCallbackA::react(bool gw_ok) {
 reply_handle->reply(gw_ok);
}

//Listing 5.A.Blocking.except
bool CashierReactor::purchaseItem(int item_id,
 int connection_id) {
 try {
 int user_id = get_user_id(connection_id);
 bool db_ok = dbPurchaseItem(db_reactor_id,
 user_id, item_id);
 if(!db_ok)
 return false;
 gameworld_reactor_id = find_gameworld_for_user(user_id);
 bool gameworld_ok = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 return gameworld_ok;
 }
 catch(const std::exception& x) {
 LogException(x);
 return false;
 }
}

//Listing 5.A.Take3a.except
//NON-BLOCKING VERSION OF LISTING 5.A.Blocking.except
//CAUTION: VERBOSE CODE AHEAD!
class DbPurchaseItemCallbackA
: public DbPurchaseItemCallback {
 shared_ptr<CashierPurchaseItemReply> reply_handle;
 int user_id;
 int item_id;

 public:
 DbPurchaseItemCallbackA(Reactor* r,
 shared_ptr<CashierPurchaseItemReply>& reply_handle_,
 int user_id_, int item_id_)
 : DbPurchaseItemCallback(r), reply_handle(reply_handle_),

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 239

 user_id(user_id_), item_id(item_id_) {
 }
 void react(bool db_ok) override;
 void except(const std::exception& x) override;
};
class GameworldAddItemCallbackA
: public GameworldAddItemCallback {
 shared_ptr<CashierPurchaseItemReply> reply_handle;
 int user_id;
 int item_id;

 public:
 GameworldAddItemCallbackA(Reactor* r,
 shared_ptr<CashierPurchaseItemReply>& reply_handle_,
 int user_id_, int item_id_)
 : GameworldAddItemCallback(r), reply_handle(reply_handle_),
 user_id(user_id_), item_id(item_id_) {
 }
 void react(bool db_ok) override;
 void except(const std::exception& x) override;
};
void CashierReactor::handleCashierPurchaseError(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 const std::exception& x) {
 LogException(x);
 reply_handle->reply(false);
}
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id) {
 try {
 int user_id = get_user_id(reply_handle);
 auto cb = new DbPurchaseItemCallbackA(
 this, reply_handle,
 user_id, item_id);
 dbPurchaseItem(cb, db_reactor_id,
 user_id, item_id);
 }
 catch(const std::exception& x) {
 handleCashierPurchaseError(reply_handle, x);
 }
}
void DbPurchaseItemCallbackA::react(bool db_ok) {
 try {
 if(!db_ok) {
 reply_handle->reply(false);

240 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 return;
 }
 REACTORID gameworld_reactor_id =
 get_reactor()->find_gameworld_for_user(user_id);
 auto cb = new GameworldAddItemCallbackA(
 get_reactor(), reply_handle,
 user_id, item_id);
 gameworldAddItem(cb, gameworld_reactor_id,
 user_id, item_id);
 }
 catch(const std::exception& x) {
 handleCashierPurchaseError(reply_handle, x);
 }
}
void DbPurchaseItemCallbackA::except(
 const std::exception& x) {
 handleCashierPurchaseError(reply_handle, x);
}
void GameworldAddItemCallbackA::react(bool gw_ok) {
 reply_handle->reply(gw_ok);
}
void GameworldAddItemCallbackA::except(
 const std::exception& x) {
 handleCashierPurchaseError(reply_handle, x);
}

//Listing 5.A.Take3b.except
//NON-BLOCKING VERSION OF LISTING 5.A.Blocking.except
//CAUTION: VERBOSE CODE AHEAD!
class DbPurchaseItemCallbackA
: public DbPurchaseItemCallback {
 shared_ptr<CashierPurchaseItemReply> reply_handle;
 int user_id;
 int item_id;

 public:
 DbPurchaseItemCallbackA(Reactor* r,
 shared_ptr<CashierPurchaseItemReply>& reply_handle_,
 int user_id_, int item_id_)
 : DbPurchaseItemCallback(r), reply_handle(reply_handle_),
 user_id(user_id_), item_id(item_id_) {
 }
 void react(bool db_ok) override;
 void except(const std::exception& x) override;
};
class GameworldAddItemCallbackA

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 241

: public GameworldAddItemCallback {
 shared_ptr<CashierPurchaseItemReply> reply_handle;
 int user_id;
 int item_id;

 public:
 GameworldAddItemCallbackA(Reactor* r,
 shared_ptr<CashierPurchaseItemReply>& reply_handle_,
 int user_id_, int item_id_)
 : GameworldAddItemCallback(r), reply_handle(reply_handle_),
 user_id(user_id_), item_id(item_id_) {
 }
 void react(bool db_ok) override;
};
void CashierReactor::handleCashierPurchaseError(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 const std::exception& x) {
 LogException(x);
 reply_handle->reply(false);
}
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id) {
 try {
 int user_id = get_user_id(reply_handle);
 auto cb = new DbPurchaseItemCallbackA(
 this, reply_handle,
 user_id, item_id);
 dbPurchaseItem(cb, db_reactor_id,
 user_id, item_id);
 }
 catch(const std::exception& x) {
 handleCashierPurchaseError(reply_handle, x);
 }
}
void DbPurchaseItemCallbackA::react(bool db_ok) {
 if(!db_ok) {
 reply_handle->reply(false);
 return;
 }
 REACTORID gameworld_reactor_id =
 get_reactor()->find_gameworld_for_user(user_id);
 auto cb = new GameworldAddItemCallbackA(
 this /*’inherits’ exception handler*/,
 reply_handle,
 user_id, item_id);

242 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 gameworldAddItem(cb, gameworld_reactor_id,
 user_id, item_id);
}
void DbPurchaseItemCallbackA::except(
 const std::exception& x) {
 handleCashierPurchaseError(reply_handle, x);
}
void GameworldAddItemCallbackA::react(bool gw_ok) {
 reply_handle->reply(gw_ok);
}

//Listing 5.A.Take4.IDL, same as 5.Take1.IDL and 5.Take3.IDL
//Client-to-Cashier:
bool cashierPurchaseItem(int item_id);
//CASHIER-to-DB:
bool dbPurchaseItem(int user_id, int item_id);
//CASHIER-to-GameWorld
bool gameworldAddItem(int user_id, int item_id);

//LISTING 5.A.Take4.IDLGen
//GENERATED FROM IDL, DO NOT MODIFY!
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id);
 //for Cashier, this is an RPC function
 // to be implemented
void CashierReactor::dbPurchaseItem(
 REACTORID reactor_peer,
 int user_id, int item_id,
 std::function<void(const std::exception*,bool)> cb);
 //for Cashier, this is a stub
 // to be called
void CashierReactor::gameworldAddItem(
 REACTORID reactor_peer,
 int user_id, int item_id,
 std::function<void(const std::exception*,bool)> cb);
 //for Cashier, this is a stub
 // to be called

//LISTING 5.A.Take4.except
//NON-BLOCKING VERSION OF LISTING 5.A.Blocking.except
//BEWARE: “LAMBDA PYRAMID” ROLLER COASTER AHEAD!
// NOT FOR THE FAINT OF HEART!
bool ifCashierPurchaseError(const std::exception* x) {
 if(x) {
 LogException(x);

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 243

 return true;
 }
 return false;
}
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id) {
 int user_id = get_user_id(reply_handle);
 dbPurchaseItem(db_reactor_id,
 user_id, item_id,
 [=](const std::exception* x, bool db_ok) {
 //same as DbPurchaseItemCallbackA::(react()+except())
 // from Take 3a
 //NB: reply_handle gets copied exactly as in Take 3
 if(ifCashierPurchaseError(x))
 return;
 if(!db_ok) {
 reply_handle->reply(false);
 return;//returns from current lambda function
 }
 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gameworldAddItem(gameworld_reactor_id,
 user_id, item_id,
 [=](const std::exception* x, bool gw_ok){
 //same as GameworldAddItemCallbackA::react()
 // from Take 3
 if(ifCashierPurchaseError(x))
 return;
 reply_handle->reply(gw_ok);
 });
 });
}

IMPORTANT C++ note: if our lambda functions will want to modify
members of our class CashierReactor, it will be possible (either directly
or indirectly via a (member) function call) in spite of us specifying
capture as [=]. This happens because while [=] in C++ means “capture
everything by value,” when talking about accessing members (those
accessible via this pointer) from lambda function, it is this that gets cap-
tured, and while this is indeed captured by value, it doesn’t prevent us
from using it to refer to data members and modify them. Fortunately, it
is exactly the behavior that we want.

Fortunately, it is
exactly the behavior
that we want.

244 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

//LISTING 5.Take4a.except
//NON-BLOCKING VERSION OF LISTING 5.A.Blocking.except
//BEWARE: “LAMBDA PYRAMID” ROLLER COASTER AHEAD!
// NOT FOR THE FAINT OF HEART!
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id) {
 int user_id = get_user_id(reply_handle);
 auto catc =
 [=](std::exception& x) {
 LogException(x);
 };
 dbPurchaseItem(db_reactor_id,
 user_id, item_id,
 [=](bool db_ok){
 if(!db_ok) {
 reply_handle->reply(false);
 return;//returns from current lambda function
 }
 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gameworldAddItem(gameworld_reactor_id,
 user_id, item_id,
 [=](const std::exception* x, bool gw_ok){
 reply_handle->reply(gw_ok);
 }, catc);
 }, catc);
}

//LISTING 5.A.Take5.IDLGen
//GENERATED FROM IDL, DO NOT MODIFY!
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 //reply_handle MAY be copied (as shared_ptr<>),
 // if it is necessary to postpone replying
 // until later
 int item_id);
 //for Cashier, this is an RPC function
 // to be implemented
ReactorFuture<bool> CashierReactor::dbPurchaseItem(
 Reactor* r, REACTORID reactor_peer,
 int user_id, int item_id);
 //for Cashier, this is a stub
 // to be called

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 245

ReactorFuture<bool> CashierReactor::gameworldAddItem(
 Reactor* r, REACTORID reactor_peer,
 int user_id, int item_id);
 //for Cashier, this is a stub
 // to be called

Note that our class ReactorFuture<> that we use here is quite differ-
ent from std::future<> and boost::future<>; see the Similarities and
Differences from Existing Futures/Promises section for a discussion of
differences between futures.

//LISTING 5.A.Take5.except
//NON-BLOCKING VERSION OF LISTING 5.A.Blocking.except
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id) {
 int user_id = get_user_id(reply_handle);
 auto catc =
 [=](std::exception& x) {
 LogException(x);
 };
 ReactorFuture<bool> db_ok = dbPurchaseItem(
 this, db_reactor_id,
 user_id, item_id);
 //NB: infrastructure code
 // should effectively postpone
 // all the exceptions within
 // until except() handler is provided
 ReactorFuture<bool> gw_ok(this);
 db_ok.then([=](){
 if(!db_ok.value()) {
 reply_handle->reply(false);
 return;//returns from current lambda function
 }
 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gw_ok = gameworldAddItem(
 this, gameworld_reactor_id,
 user_id, item_id);
 }).except(catc);
 gw_ok.then([=](){
 reply_handle->reply(gw_ok.value());
 }).except(catc);
}

246 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

//LISTING 5.A.Take5.parallel
ReactorFuture<A> a = rpcA(this);
ReactorFuture b = rpcB(this);
ReactorFutureBoth<A,B> both(this,a,b);
both.then([=](){
 //...
});

//LISTING 5.A.Take6.except
//NON-BLOCKING VERSION OF LISTING 5.A.Blocking.except
void CashierReactor::cashierPurchaseItem(
 shared_ptr<CashierPurchaseItemReply> reply_handle,
 int item_id) {
 int user_id = get_user_id(reply_handle);
 ReactorFuture<bool> db_ok(this);
 ReactorFuture<bool> gw_ok(this);
 CCode code(
 ttry(
 [=](){
 db_ok = dbPurchaseItem(
 db_reactor_id,
 user_id, item_id);
 },
 waitFor(db_ok),
 [=](){
 if(!db_ok.value()) {
 reply_handle->reply(false);
 eexit();//ensures exit out of whole CCode
 return;
 }
 REACTORID gameworld_reactor_id =
 find_gameworld_for_user(user_id);
 gw_ok = gameworldAddItem(
 gameworld_reactor_id,
 user_id, item_id);
 },
 waitFor(gw_ok),
 [=]() {
 reply_handle->reply(gw_ok.value());
 }
)//ttry
 .ccatch([=](std::exception& x) {
 LogException(x);
 }
);//CCode
}

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 247

//Listing 5.A.RecordingReplay
class Infrastructure {
 std::unique_ptr<GenericReactor> r;
 public:
 Infrastructure(std::unique_ptr<GenericReactor>& r_)
 : r(std::move(r_)) {
 }

 void run_loop(InputsLogForWriting* log4w) {
 //log4w is nullptr if no logging is needed
 while(true) {
 Event ev = wait_for_event();
 ev.inputs = read_inputs();
 if(log4w)
 Event::serializeToLog(ev, log4w);
 r->react(ev);
 }
 }
 void replay_loop(InputsLogForReading& log4r) {
 while(true) {
 Event ev = Event::deserializeFromLog(log4r);
 r->react(ev);
 }
 }
};

//Listing 5.A.DoubleHit.nondeterministic
class DoubleHit {
 private:
 const int THRESHOLD = 5;//in MyTimestamp units
 MyTimestamp last_hit;
 //actual type of MyTimestamp may vary
 // from time_t to uint64_t representing microseconds,
 // and is not important for our current purposes

 public:
 DoubleHit() {
 last_hit = MYTIMESTAMP_MINUS_INFINITY;
 }

 void hit() {
 MyTimestamp now = system_get_current_time();
 //for our current purposes, it doesn’t really matter
 // which system time function we’re calling here
 if(now – last_hit < THRESHOLD)
 on_double_hit();

248 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 last_hit = now;
 }

 void on_double_hit() {
 //do something nasty to the NPC
 }
};

//Listing 5.A.call_wrapping
class Infrastructure {
 enum class Mode { NONE, RECORDING, REPLAY };
 Infrastructure() {
 //initialize log4r, log4w, mode
 }
 MyTimestamp wrapped_get_current_time() {
 if(mode == Mode::REPLAY) {
 assert(log4r != nullptr);
 return log4r.read_timestamp();
 }

 MyTimestamp ret = system_get_current_time();

 if(mode == Mode::RECORDING) {
 assert(log4w != nullptr);
 log4w.write_timestamp(ret);
 }

 return ret;
 }
};

//Listing 5.A.TLS_compromise
class Infrastructure {
 std::unique_ptr<GenericReactor> r;
 static thread_local MyTimestamp current_time;
 friend Mytimestamp my_get_current_time();
 public:
 Infrastructure(std::unique_ptr<GenericReactor>& r_)
 : r(std::move(r_)) {
 }

 void run_loop(InputsLogForWriting* log4w) {
 //log4w is nullptr if no logging is needed
 while(true) {
 Event ev = wait_for_event();

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 249

 ev.inputs = read_inputs();
 current_time = system_get_current_time();
 if(log4w) {
 Event::serializeToLog(ev, log4w);
 log4w.write_timestamp(current_time);
 }
 r->react(ev);
 }
 }
 void replay_loop(InputsLogForReading& log4r) {
 while(true) {
 Event ev = Event::deserializeFromLog(log4r);
 current_time = log4r.read_timestamp();
 r->react(ev);
 }
 }
};

//Listing 5.A.BigUglySwitch
void Reactor::react(const Event& ev) {
 switch(ev.type) {
 case NETWORK_PACKET_EVENT:
 switch(ev.packet.type) {//(*)
 case MSG_ABC:
 auto abc = unmarshal_abc(ev.packet.body);
 //unmarshal_abc() is generated by IDL compiler
 OnMsgAbc(abc);
 //real processing,
 // hand-written member of our (Re)Actor
 break;
 case MSG_DEF:
 //pretty much the same thing,
 // replacing “abc” with “def”...
 break;
 }
 break;
 case SOME_OTHER_EVENT:
 //...
 break;
 }
}

//Listing 5.A.StatePattern
class State {
 public:
 virtual void enterState() {}//Enter function

250 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

 virtual void exitState() {}//Exit function
};
class StateA : public State {
 //some data members go here
 //pointer to parent Reactor also MAY be here
 /* new */ State* react(const Event& ev) {
 //you MAY want to return std::unique_ptr<>() instead,
 // but this is one case when semantics is very obvious
 // so I prefer to avoid additional verbosity and return
 // naked ‘new’ pointer
 switch(ev.type) {//similar to Big-n-Ugly switch
 // discussed above
 case EV_X:
 //some code
 return nullptr;//means ‘STATE DID NOT CHANGE’
 case EV_Y:
 //some_code
 return new StateB(some_params);
 //...
 }
 }
};
// other StateXX objects
class Reactor {
 std::unique_ptr<State> currentState;
 void react(const Event& ev) {
 std::unique_ptr<State> newState =
 currentState->react(ev);
 if(newState) {
 currentState->exitState();
 currentState = newState;
 currentState->enterState();
 }
 }
};

Avoiding Expensive Allocations
As we’ll discuss in Vol. V’s chapter on C++, allocations are often a major
source of performance problems. As a result, using new on each state
change is something I’m usually reluctant to do. Fortunately, there is
a solution that allows us both to have our elegant new State() change
states, and to avoid allocations.152

152 Technically, we’ll still be “allocating,” but the way we do it will be optimized to avoid ill effects of
default-allocation-from-the-global-heap.

There is a solution that
allows us to have our
elegant new State()
change states, and
avoid allocations.

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 251

To achieve it, we can play the following game:
♦♦ Add Reactor* pointer to base class State (it will be necessary to

implement operator delete() as required below).
♦♦ Add static void* operator new(size_t sz, Reactor*) and static void

operator delete(void* p) to base class State.
 ▪ Implement allocator for these operators within the Reactor.

If you’re following the pattern above, then, in most cases, a
very simple mechanism of having exactly two (more rarely
– three) blocks of uint8_t[max_size_of_your_State_ob-
jects]153 will do (one block is necessary to store currentState,
and another to store newState, and that’s it).

yy This should already improve cacheability of your
State objects quite significantly (compared to allo-
cating from the global heap).

yy Moreover, if you feel like it, you can even keep these
blocks as members of your Reactor object, further
improving locality.

 ▪ As you DO know that the object is derivative from class
GenericReactor, within delete you can get pointer to your
class GenericReactor from p.154

♦♦ To the same base class State, add private static void* operator
new(size_t sz) with an assert(false) within to make sure that
all the objects of class State are created only via new(reactor)
StateXX(…) (and not via usual new StateXX(…)). Even better, if
your compiler allows it, mark this operator new(size_t sz) with “=
delete.”

♦♦ Use new(reactor) StateXX(some_params) instead of former new
StateXX(some_params) in all places.

♦♦ Bingo! We have our nice and readable programming model, and it
will work rather fast too…155

153 Make sure to properly align these blocks using alignas!
154 Under the assumption that there is no multiple inheritance in sight, this is rarely a problem.
155 While the cost of the polymorphic call is still there, it is comparable to the cost of an equivalent

switch; and we’ve improved locality to the point where ill effects due to locality being imperfect
are pretty much negligible. For more discussion on data locality and performance, see Vol. V’s
chapter on C++.

252 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

//Listing 5.A.HierarchicalState
class StateA : public State {
 /* new */ State* react(const Event& ev) {
 switch(ev.type) {
 //...
 }
 }
};
class StateAA : public StateA {
 /* new */ State* react(const Event& ev) {
 switch(ev.type) {
 case EV_X:
 //some code
 return nullptr;
 case EV_Y:
 //some_code
 return new StateB(some_params);
 //...
 default:
 return StateA::react(ev);
 //forwarding ev to base class
 // for processing
 }
 }
};

C++: Enforcing const-ness for VALIDATE and
CALCULATE stages in VALIDATE-CALCULATE-
MODIFY-SIMULATE pattern
To rely on exception safety during the VALIDATE and CALCULATE
stages with the VALIDATE-CALCULATE-MODIFY-SIMULATE
pattern, it is important to enforce immutability of our (Re)Actor state
before the MODIFY stage. And as it was noted in [Butcher], no rule
is good if it is not enforced by code. Fortunately, at least in C++, we
can enforce immutability relatively easily (that is, for reasonable and
non-malicious developers).

First, let’s define our task. We want to be able to enforce const-ness
along the following lines:

 Appendix 5.A. C++-Specific Examples and Comments for Chapter 5 · 253

//Listing 5.A.VALIDATE-CALCULATE.const-ness
void ConcreteReactor::react(Event& ev) {
 ///VALIDATE: ‘this’ is const
 //...validating code...

 //CALCULATE: ‘this’ is still const
 //...calculating code...

 //MODIFY/SIMULATE: ‘this’ is no longer const
 //...modifying code...
}

To make it work this way, for C++ I suggest the following (reasonably
dirty) trick:

void ConcreteReactor::react(Event& ev) const {
 //yes, react() is declared as ‘const’!
 ///VALIDATE: ‘this’ is enforced const
 //...validating code...

 //CALCULATE: ‘this’ is still enforced const
 //...calculating code...

 ConcreteReactor* r = modify_stage_reactor();
 //modify_stage_reactor() returns
 // const_cast<MyReactor*>(this)

 //MODIFY/SIMULATE: ‘this’ is still const, BUT we can use
 // non-const ‘r’ to modify current MyReactor object
 //...modifying code...
}

While not 100% neat, this trick does the trick (pun intended), and
prevents accidental writing to the (Re)Actor state before modi-
fy_stage_reactor() is called (as the compiler will notice modifying this
pointer declared as const, and will issue an error). Of course, one can
still call modify_stage_reactor() at the very beginning of the react(),
negating all the protection (or use one of several dozens of another
ways to bypass const-ness in C++), but we’re assuming that you do
want to benefit from such a split, and will honestly avoid bypassing
protection.

While not 100% neat,
this trick does the trick
(pun intended), and
prevents accidental
writing to the
(Re)Actor state before
modify_stage_reac-
tor() is called.

254 · CHAPTER 5. (Re)Actor-fest Architecture. It Just Works

On Posting messages from VALIDATE/CALCULATE in
C++

If your Infrastructure Code performs the buffering described in the
Posting Messages (calling RPCs, etc.) Within VALIDATE/CALCULATE
section, in C++ it MAY declare all posting-messages functions (more
generally, all having-buffered-side-effects functions) as const (or to
have their Reactor* parameter as const) to enable calling them from
within VALIDATE/CALCULATE stages.156 Otherwise (i.e., without
such buffering being performed by your class Infrastructure), to en-
force const-correctness of the VALIDATE/CALCULATE stages, your
Infrastructure Code SHOULD declare these functions as non-const to
prevent them being called from the VALIDATE/CALCULATE stages.

156 Sure, the buffer to store outgoing messages will need to be declared as mutable, but that’s about
the only complication on this way.

 Graphics 101 · 255

CHAPTER 6.

CLIENT-SIDE
ARCHITECTURE
As discussed in Chapter 4, there are basically only two viable ap-
proaches for building your game: we named one an “Engine-Centric
Approach” and the other a “Responsible Re-Use Approach.” Which of
these approaches is right for your game depends a lot on the genre and
other GDD-level Requirements; the choice between the two was more
or less explained in Chapter 4.

In this chapter, we’ll discuss a Client-Side architecture based on the
“Responsible Re-Use Approach.”157 On the other hand, if you’re going
to implement your game as an “Engine-Centric” one, you still need to
read this chapter; while most of these decisions we’re about to discuss
are already made for you by your game engine, you still need to know
what these decisions are (and whether you like what the specific engine
has chosen for you); and whatever-your-engine didn’t decide for you,
will be decisions you need to make yourself. For more discussion on
using an Engine-Centric Approach (as well as specific third-party game
engines), see Chapter 7.

GRAPHICS 101
NB: this section is intended neither for graphics professionals nor
game developers who spend half of their conscious life coding 3D;
you’re NOT likely to find anything new for you here. However,

157 As always, “Responsible Re-Use” is subject to interpretation; as I am known for leaning toward
“DIY Everything,” feel free to re-use more. However, for whatever you’re re-using, the glue code
should be yours!

This section is intend-
ed neither for graphics
professionals nor
game developers who
spend half of their
conscious life coding
3D; you’re NOT likely
to find anything new
for you here.

256 · CHAPTER 6. Client-Side Architecture

for the rest of us (in particular, those coming from fields such as web
development or social games), even a very cursory discussion of graphics
MIGHT still be useful.

One of the first things you need when dealing with the Client-Side is
the graphics engine. Here, depending on the specifics of your game,
there are significant differences, but there are still a few things that
are (almost) universal. Please note that at this point we’re not about
to discuss any implementation details of graphics engines; a bit more
on graphics will be discussed in Volume V’s chapter on Graphics 101,
though even there please don’t expect a really serious explanation of
3D stuff (there are MUCH better and more detailed books for this
purpose; see the Recommended Reading section in the very beginning
of Volume I).

For the time being, we only need to figure out a few very high-level
concepts, which allow us to describe the processes involved in very
general terms, and to know just enough to start drawing an overall
Client-Side Architecture.

 Graphics 101 · 257

On Developers, Game Designers, and Artists
For most of the games out there, there is a pretty obvious separation
between developers and artists. There is usually a kind of mutual
understanding that developers do not interfere in drawing pictures
(making 3D models, etc., etc.), and artists are not teaching developers
how to program. This, however, raises a Big Fat Question™ about a tool-
chain that artists can use to do their job. These toolchains are heavily
dependent on the graphics, on the game engine you’re using, etc., etc.
When making decisions about your graphics, you absolutely need to
realize which tools your artists will use (and which file formats they will
produce, so that you can convert from these formats to whatever-for-
mats-your-game-engine-requires).

For some genres (at least for FPS and RPG), there are usually also
game designers. These folks sit in-between developers and artists, and
are usually responsible for creating levels, writing quests, etc., etc. And
guess what: they need their own tools too.

Actually, these toolchains are so important that I would say that at
least half of the value the game engine provides to your project comes
from them. If you’re going to write your own engine, you need to think
about these toolchains, as they can easily make-or-break your game de-
velopment process. And if you’re going to use a 3rd-party game engine,
make sure that the toolchain it provides is understandable to and usable
by both your artists and your developers (and to/by game designers too,
if applicable).

We’ll discuss more about these toolchains and, more generally,
asset pipelines that use these toolchains, in Volume V’s chapter on
Graphics 101.

On Using Game Engines and Vendor Lock-In
These days, if you want to use a 3rd-party graphics engine, most of the
time you won’t find “graphics engine” as such, but will need to choose
between “game engines.” And “game engines” tend to provide much
more functionality than just “graphics engines”— which have many
positives, but there is also one negative. These additional features
provided by “game engines” (in addition to pure graphic-rendering

Actually, these
toolchains are so
important that I would
say that at least half
of the value the game
engine provides to
your project comes
from them.

258 · CHAPTER 6. Client-Side Architecture

capabilities) may include such things as processing user input, support
for humanoid-like creatures (which may include such things as inverse
kinematics), asset management, scripting, network support, toolchains,
etc., etc., etc. And guess what: most of these features even work.

So far, so great, however, there is a dark spot in this overall bright
picture; exactly the same great features that tend to help a lot tend to
backfire too. The thing is that the more useful features the engine has,
the more you will want to use (well, they were the reason to use the
3rd-party game engine to start with). And the more features you use,
the more you’re tied to a specific 3rd-party game engine, and this pro-
cess will very soon make it your Absolute Dependency (as defined in
Chapter 4), also known as a Vendor Lock-In.

It is not that Absolute Dependencies are bad per se (and, as men-
tioned in Chapter 4, for quite a few games the advantages of having it
outweigh the negatives), but, if you have an Absolute Dependency, it is
really, really important to realize that you are Locked-In, and that you
SHOULD NOT rely on throwing away your game engine in the future.

Just one example where this can be important. Let’s consider you’re
writing a game with an Undefined Life Span (i.e., you’re planning for
your game to run for a really long while; see Vol. I’s chapter on GDD
for further details); then you decide (to speed things up) to make a
first release of your game using a 3rd-party game engine. Your game
engine of choice is very good, but has one drawback: it doesn’t sup-
port one of the platforms that you do want to support (for example, it
doesn’t support mobile, which you want to have ASAP after the very
first release). So you’re thinking, “Hey, we’ll release our game using
this engine, and then we’ll migrate our game from it (or will support
another graphics engine for those platforms where it doesn’t run,
etc.)”.

In theory, it all sounds very good. In practice, however, you’ll find
yourself in hot water. By the time you want to migrate away, your code
and game in general will be that much intertwined and interlocked
with the game engine that separating your code from your game engine
will amount to a full rewrite (which in turn is rarely possible within
the same game without affecting too many subtle gameplay-affecting
issues that make or break your game). It means that in our hypothetical

If you’re using only a
graphics engine (as
opposed to a full-scale
game engine, or are
using your game
engine only as a
graphics engine), you
MAY be able to avoid
it becoming your
Absolute Dependency.

 Graphics 101 · 259

capabilities) may include such things as processing user input, support
for humanoid-like creatures (which may include such things as inverse
kinematics), asset management, scripting, network support, toolchains,
etc., etc., etc. And guess what: most of these features even work.

So far, so great, however, there is a dark spot in this overall bright
picture; exactly the same great features that tend to help a lot tend to
backfire too. The thing is that the more useful features the engine has,
the more you will want to use (well, they were the reason to use the
3rd-party game engine to start with). And the more features you use,
the more you’re tied to a specific 3rd-party game engine, and this pro-
cess will very soon make it your Absolute Dependency (as defined in
Chapter 4), also known as a Vendor Lock-In.

It is not that Absolute Dependencies are bad per se (and, as men-
tioned in Chapter 4, for quite a few games the advantages of having it
outweigh the negatives), but, if you have an Absolute Dependency, it is
really, really important to realize that you are Locked-In, and that you
SHOULD NOT rely on throwing away your game engine in the future.

Just one example where this can be important. Let’s consider you’re
writing a game with an Undefined Life Span (i.e., you’re planning for
your game to run for a really long while; see Vol. I’s chapter on GDD
for further details); then you decide (to speed things up) to make a
first release of your game using a 3rd-party game engine. Your game
engine of choice is very good, but has one drawback: it doesn’t sup-
port one of the platforms that you do want to support (for example, it
doesn’t support mobile, which you want to have ASAP after the very
first release). So you’re thinking, “Hey, we’ll release our game using
this engine, and then we’ll migrate our game from it (or will support
another graphics engine for those platforms where it doesn’t run,
etc.)”.

In theory, it all sounds very good. In practice, however, you’ll find
yourself in hot water. By the time you want to migrate away, your code
and game in general will be that much intertwined and interlocked
with the game engine that separating your code from your game engine
will amount to a full rewrite (which in turn is rarely possible within
the same game without affecting too many subtle gameplay-affecting
issues that make or break your game). It means that in our hypothetical

If you’re using only a
graphics engine (as
opposed to a full-scale
game engine, or are
using your game
engine only as a
graphics engine), you
MAY be able to avoid
it becoming your
Absolute Dependency.

example above, you won’t be able to support mobile devices ever (well,
unless you scrap the whole thing and rewrite it from scratch, which
will almost inevitably require a re-release at least on a different set of
servers, if not under a different title).

If you’re using only a graphics engine (as opposed to a full-scale
game engine, or are using your game engine only as a graphics engine),
you MAY be able to avoid it becoming your Absolute Dependency.
However, even in such cases, to avoid being Locked-In, you’ll need to
be extremely vigilant at limiting the features you’re using. As a very
rough rule of thumb: whatever-feature-affects-only-rendering without
information ever going back to your code is okay, but any use of the
features that provide you with some feedback from a supposed-graph-
ics engine is a Big No-No™. This automatically rules out (that is, if you
want to avoid being Locked-In) using a 3rd-party engine for physics
(even as simple as collision detection); on the other hand, in the Au-
thoritative-Server model, you won’t be able to use a graphics engine for
physics anyway.

Let’s re-iterate:

Having an Absolute Dependency is not necessarily evil,
but, if you have one, you’d better realize it and also

think of worst-case scenarios.

As noted above, this is especially important for games with an Unde-
fined Life Span.

Types of Graphics
Now, let’s start considering different types of graphics that you may
want to use for your game.

Games with Rudimentary Graphics

First, let’s see what happens if your game requires only minimal graph-
ics (or none at all).

Contrary to popular belief, you can build a game without any graph-
ics at all, or with very rudimentary ones. When talking about rudimen-

Contrary to popular
belief, you can build
a game without any
graphics at all, or with
very rudimentary
ones.

260 · CHAPTER 6. Client-Side Architecture

tary graphics, I mean static graphics, without animation — just pictures
with defined areas to click. Such games-with-rudimentary-graphics are
not limited to obvious examples like stock exchanges, but also include
some games that are doing it with great success (one such example
being the quite popular Lords & Knights).

If your graphics are nonexistent or rudimentary, you can (and prob-
ably should) write your graphics engine all by yourself. It won’t take
long, and having a dependency on a 3rd-party engine merely to render
static images is usually not worth the trouble.

The artists’ toolchain is almost nonexistent, too; all the artists need
to work with rudimentary graphics is their favorite 2D graphics editor
(which usually happens to be Photoshop) to provide you with bitmaps
of sizes-that-you-need.

Games with 2D Graphics

The next step on the ladder from nonexistent graphics to the holy grail
of realistic ray-traced 3D158 is 2D graphics. 2D graphics is still very
popular, especially for games oriented toward mobile phones, and for
social games (also social games tend to have a mobile phone version, so
there is a strong correlation between the two). This section also covers
2D engines used by games with pre-rendered 3D graphics.

In general, when you’re making a 2D game, your development
process, while more complicated than for games with rudimentary
graphics, will still be much, much simpler than that of 3D games.159
First, 2D graphics (unlike 3D graphics) are rather simple, and you can
easily write a simple 2D engine yourself (I’ve seen a 2D engine with
double-buffering and virtually zero flickering written from scratch
within 8-10 man-weeks for a single target platform; not too much, if
you ask me). Actually, in Vol. V’s chapter on Graphics 101, we’ll discuss
pretty-much-everything you need to develop your own 2D engine;
TBH, it is not much: sprites and double-buffering will get most 2D
games running (and the rest can be added as you need it). On the other

158 I do know that nobody does ray tracing for games (yet), but who said that we can’t daydream a
bit?

159 Hey, isn’t it a good reason to scrap all 3D completely in the name of time to market? Well,
probably not.

In general, when
you’re making a 2D
game, your develop-
ment process, while
more complicated
than for games with
rudimentary graphics,
will still be much,
much simpler than
that of a 3D game.

 Graphics 101 · 261

hand, you may want to go further and to use the GPU to render your
2D graphics (with shaders etc.); we’ll briefly discuss related techniques
in Vol. V’s chapter on Graphics 101.

Alternatively, you can use one of the many available “2D game
engines”; however, you need to keep in mind the risk of becoming
Locked-In (see the On Using Game Engines and Vendor Lock-In sec-
tion above). In particular, if you’re planning to replace your 2D game
engine in the future, you should stay away from using such things as
“2D Physics” features provided by your game engine, and limit your
use of the game engine to rendering only. In practice, with 2D engines
it is usually not-too-difficult to avoid Vendor Lock-In (and keep your
option to migrate from this 2D engine, or add another 2D or even 3D
one alongside it, etc.); while it still requires you to be extremely vigilant,
at least it has been done and is usually doable.

One good example of a 2D game engine (which is mostly a 2D
graphics engine) is [Cocos2D-X]. It is a popular enough cross-platform
engine (including support for iOS, Android, and WinPhone, and go-
ing mobile is one-really-popular-reason for creating a 2D game these
days), and has an API that is good enough for practical use. If you’re
developing only for iOS, SpriteKit [Apple] is another popular choice.
BTW, if you’re vigilant enough in avoiding dependencies, you can try
making your game with Cocos2D-X, and then support SpriteKit for
iOS only (doing it the other way around is also possible, but is usually
riskier unless you’re absolutely sure that most of your users are coming
from iOS).

NB: if you’re serious about such cross-engine development, make
sure to implement a Logic-to-Graphics API as described in the
“Generic Client Architecture“ section below.

About using 2D functionality of the primarily 3D engines such as
Unity or Unreal Engine: personally, I would stay away from them
when it comes to 2D development (for my taste, they are way too
locking-in for a task as relatively simple as 2D). Such engines would
have a Big Advantage™ for quite a few genres if they could support
both 2D and 3D “views” on the same Game World, but to the best
of my knowledge, none of the major game engines provide such
support.

262 · CHAPTER 6. Client-Side Architecture

About toolchains for 2D development. For 2D, artists’ toolchains
are usually fairly simple, with artists using their favorite animation
editor. As a result of their work, they will usually provide you with
sprites (for example, in a form of series of .pngs-with-transparency, or
“sprite sheets”). More on example toolchains in Volume V’s chapter on
Graphics 101.

On Pre-rendered 3D

Now, let’s see what happens if your game is supposed to look like a
3D game. In this case, first you need to think whether you really need
to do 3D rendering in real-time, or if you will be fine with so-called
pre-rendered 3D.

When talking about pre-rendered 3D, the idea is to create your
3D models and 3D animations, but then, instead of rendering them
in real-time using OpenGL or DirectX, to pre-render these 3D models
and animations into 2D graphics (often, into 2D “sprites”); this pre-ren-
dering is usually done in the comfort of the artist’s own environment,
with all the sophisticated rendering stuff (such as ray tracing) she or he
may prefer to use. Then, we’ll ship this pre-rendered 2D graphics with
your game instead of shipping full 3D models, and then will render
them with a 2D graphics engine.

Fully 3D pre-rendered games160 allow you to have graphics that look
like 3D, while avoiding running a 3D engine on Clients, replacing it
with a much simpler (and much less demanding) 2D engine.

Usually, full 3D pre-rendering won’t work for first-person games
(such as MMORPG/MMOFPS), but it may work reasonably well even
for (some kind of) MMORTS, and for many other kinds of popular
MMO genres too. Full 3D pre-rendering is quite popular for platforms
with limited resources, such as in-browser games, or games oriented
toward mobile phones.

Technically, fully pre-rendered 3D development flow consists of:
♦♦ 3D design, usually made using a readily available 3rd-party 3D

toolchain. For this purpose, you can use tools such as Maya,

160 In fact, partial 3D pre-rendering is also perfectly viable, and is used a lot in 3D games that do have
a 3D engine on the Client-Side, but this is beyond the scope of our discussion until Vol. V’s chapter
on Graphics 101.

Fully 3D pre-rendered
games allow you to
avoid running a 3D
engine on Clients,
replacing it with a
much simpler (and
much less demanding)
2D engine.

 Graphics 101 · 263

3D Max, Poser, or — for really adventurous ones — Blender. 3D
design is not normally done by developers, but by 3D artists. It
includes both models (including textures, etc.) and animations.

♦♦ Pre-rendering of 3D design into 2D graphics, such as sprites.
Usually implemented as a bunch of scripts that “compile” your
3D models and animations into 2D graphics, including animated
sprite sequences; the same 3D tools that were used for 3D design
are usually used for this 3D-to-2D rendering. Using the same 3D
tools for both design and rendering is one Big Advantage™ of this
approach; it allows you to avoid compatibility issues between your
3D modeling tools and your 3D engine, which will otherwise
plague your game development.

♦♦ Rendering of 2D sprites on the Client, using a 2D graphics engine.
As an additional bonus, with 3D pre-rendering, you normally don’t
need to bother with optimizing your 3D models to be low-poly, and
can keep your 3D models in as high a number of polygons as you wish.
Granted, these high-poly models won’t usually make any visual differ-
ence (as each of the 2D sprites is commonly too small to notice the
difference, though YMMV), but at least you won’t need to bother with
polygon number reduction (and you can be sure that your 3D artists
will appreciate it, as achieving low-poly-but-still-decent-looking 3D
models is well-known as a Big Headache™).

3D pre-rendering is certainly not without disadvantages. The
two biggest problems of 3D pre-rendering that immediately come to
mind are:
♦♦ First, you can pre-render your models only at specific angles;

it means that if you’re showing a battlefield in isometric pro-
jection, pre-rendering can be fine, but doing it for a MMOFPS
(or any other game with a first-person view) is usually not an
option.

♦♦ Second, if you’re not careful enough, the size of your 2D sprites
can easily become huge.

On the positive side, if you can survive 3D pre-rendering without
making your game unviewable (and without making it too huge in
size), you can make your game run on the platforms that have no 3D
at all (or their 3D is hopelessly slow to do what-you-need); I’m mostly

If you can survive 3D
pre-rendering without
making your game un-
viewable (and without
making it too huge in
size), you can make
your game run on the
platforms that have no
3D at all (or their 3D is
hopelessly slow).

264 · CHAPTER 6. Client-Side Architecture

talking about smartphones here (while smartphones have made huge
improvements in 3D performance, they are still light years away from
PCs — and it will probably stay this way for a long while, so if you want
to show a thousand units at the same time, well, you’ll probably be out
of luck with 3D on a smartphone).

The second big benefit of 3D pre-rendering (compared to re-
al-time rendering) is a clean separation of the artist’s toolchain. In
general, artists’ toolchains are usually not a problem for pre-rendered
3D; artists are pretty much free with regards to what they use (though
it is still advisable to use one tool across the whole project); it can be
anything ranging from Maya to Blender, with 3D Max in-between.
In most cases, for 3D pre-rendering, your job as developer in this
regard is limited to making artists use some kind of source control
system, and writing the scripts for the automated “build” of their
source files (those in 3D Max or whatever-else-they’re-using) into
2D sprites.

Bottom Line about pre-rendered 3D: whether you want/can
switch your game to 3D pre-rendering depends, but at least you
should consider this option (that is, unless your game has a first-per-
son view). While this technique is often frowned upon (often, using
non-arguments such as “it is not cool”), it might (or might not) work
for you.

Just imagine: there is no need to make those low-poly models; no
need to worry that your models become too “fat” for one of your re-
source-stricken target platforms as soon as you throw in 100 characters
within one single area; no need to bother with texture sizes; and so on.
It does sound “too good to be true” (and in most cases it will be), but if
you’re lucky enough to be able to exploit pre-rendering, you shouldn’t
miss the opportunity.

Last, but not least: if you manage to get away with pre-rendered 3D,
make sure to read the section on 2D graphics above (as you’ll still need
to render 2D within your Client).

If you’re lucky enough
to be able to exploit
pre-rendering, you
shouldn’t miss the
opportunity.

 Graphics 101 · 265

Games with 3D Graphics

— But first you must put on the spectacles.
 — Why?

 — Because if you did not wear spectacles the brightness and glory
of the Emerald City would blind you. Even those who live in the

City must wear spectacles night and day.
They are all locked on, for Oz so ordered it when the City was first

built, and I have the only key that will unlock them.
— Wizard of Oz

If you have found that your 3D game is not a good match for pre-ren-
dered 3D, you will probably need to have a 3D rendering engine on
the Client-Side. This tends to unleash a whole lot of problems, from
weird exchange formats between the toolchain and your engine, to
implementing inverse kinematics (if applicable). We’ll discuss some
of these problems in Vol. V’s chapter on Graphics 101; for now, let’s
just write down that non-pre-rendered 3D is a Big Pain in the Neck™
(compared to the other types of graphics discussed above). If you do
need a 3D rendering engine on the Client-Side, you basically have two
distinct options.

Option 1 goes along “DIY” lines, with you writing your own ren-
dering engine over either OpenGL or DirectX. In this case, be prepared
to spend a lot of time making your game look somewhat reasonable.
Making 3D work is not easy to start with, but making it look good is
a major challenge. In addition, you will need to implement the artist’s
toolchain; at the very least, you’ll need to provide a way to import and
use files generated by popular 3D design programs (hint: supporting
import from Wavefront .obj won’t be enough; you’ll generally need to
dig much deeper into the specifics of the 3D-program-you’re-support-
ing and its formats, and whenever formats go beyond Wavefront, things
start to get ugly).

On the plus side, if you manage to survive this ordeal and get rea-
sonable-looking graphics with your own 3D engine, you’ll get a solid
baseline that will give you a lot of flexibility (and you may need this

Making 3D work is
not easy, but making
it look good is a major
challenge.

266 · CHAPTER 6. Client-Side Architecture

flexibility, especially if we’re talking about the games with Undefined
Life Span).

Option 2 is to try using some “3D game engine” as your “3D ren-
dering engine.” This way, unless you’ve already decided that your game
engine is your Absolute Dependency, is rather risky – though you still
have a fighting chance.

The problem you’ll be facing is that 3D game engines tend to be
very complicated, and have lots of interaction with the game. This
means that to prevent your 3D engine from becoming your Abso-
lute Dependency a.k.a. Vendor Lock-In, you’ll need to be extremely
vigilant when it comes to dependencies. In particular – you have to
restrain all interactions with your 3D engine to the Logic-to-Graph-
ics API as discussed in the Logic-to-Graphics API section below, oth-
erwise you will almost certainly won’t be able to replace the engine
later. Once again, I am not saying that Wizard-of-Oz Vendor Lock-In
is necessarily a bad thing, but if you’re going along this Yellow Brick
Road toward the shiny Emerald City of <whatever-3D-engine-you-
want-to-use>, you do need to realize that there are very few forks
in this road, and only a small portion of them can possibly get you
out of being forced to wear green spectacles (without any chance of
taking them off).

GENERIC CLIENT ARCHITECTURE
How do you program an elephant? One byte at a time!

— (Almost) proverb

Okay, after all the preliminaries, we’re now ready to draw our first Client
Architecture Diagram. At this point, I don’t want to go into any details,
so it is bound to be extremely generic (and of limited use):

 Generic Client Architecture · 267

 Fig 6.1, in spite of being very generic, still provides some valuable in-
formation. In particular, it demonstrates that even on the Client-Side
(and contrary to the beliefs of many indie gamedevs), it is necessary to
split your program into several loosely coupled (and highly cohesive)
Modules. In particular, as a Big Fat Rule of Thumb™, I insist on:
♦♦ Separating your Communication Module from your Game

Logic Module. Doing otherwise would keep your Game Logic
cluttered with communication stuff <big-ouch />. NB: if you’re
using something like Unity HLAPI or UE4 networking, this sepa-
ration will be more or less done for you by the engine <phew />.

♦♦ Separating Animation&Rendering from Game Logic. More on it
in the Logic-to-Graphics API section below.

♦♦ Separating the Sound Module from everything else (that is, if
sounds for your game go beyond “start playing this sound now.”)

These separations are extremely important (and having very clean,
very-well-defined interfaces between the Modules is very important
too). The reason is that if you don’t have even a very basic separation,
you’ll for sure end up with a huge monolith of spaghetti code, which
will become a guaranteed disaster as soon as your project grows to
about 100K–200K LOC (which is not much for a game).

LOC
Lines of Code is a soft-
ware metric used to
measure the size of a
computer program by
counting the number
of lines in the text of
the program’s source
code.

—Wikipedia

268 · CHAPTER 6. Client-Side Architecture

Logic-to-Graphics API
Of all the separations in Fig. 6.1, arguably the most important is the sep-
aration between your Game Logic Module and your Animation&Ren-
dering Module. In Fig 6.1, it is shown as a “Logic-to-Graphics API,”
followed by a “Logic-to-Graphics Layer.” Note that, strictly speaking,
the Logic-to-Graphics Layer is optional, and in some cases its function-
ality can be performed by the Animations&Rendering Module itself;
however, the Logic-to-Graphics API is of paramount importance and
most of the time I insist on having it.

Let me explain the concept in one simple example. If your game is
blackjack, Client-Side Game Logic needs to produce rendering instruc-
tions to your graphics engine. Usually, naïve implementations will just
have Client-Side Game Logic issue instructions, such as “draw such-
and-such bitmap at such-and-such coordinates.” This approach works
reasonably well, until you need to port your Client to another device (in
an extreme case, from PC to phone — with the latter having much less
screen real estate, and the coordinates being very different too).

In contrast to this naïve approach, with a Logic-to-Graphics API
expressed in terms of Game World, your blackjack Game Logic will
issue rendering instructions NOT in terms of “draw 9S.png at the point
(234,567) on the screen,” but rather in terms of “place the card 9S in
front of player #3 at the table.” Then it becomes the job of the Log-
ic-to-Graphics Layer (or, more generally, the Animations&Rendering
Module) to translate this instruction into screen coordinates.

Of course, the Logic-to-Graphics layer is not limited to blackjack,
and is applicable pretty much across the board. If your game is a strate-
gy, Client-Side Game Logic should issue instructions in terms of “move
unit A to position (X,Y)” (with the coordinates expressed in terms of
simulated-world coordinates, not in terms of on-screen coordinates(!)),
and, again, the translation between the two should be performed by our
Logic-to-Graphics Layer. And for a 3D simulation such as a first-view
RPG, Game Logic should prepare a 3D scene in physical world coordi-
nates (based on information from the Server, plus Client-Side Interpola-
tion/Extrapolation/Prediction; see Vol. I’s chapter on Communications
for details), and again the translation from physical world coordinates
into screen coordinates should be done by the Animation&Rendering
Module (ideally – by a separate Logic-to-Graphics layer).

For a 3D simulation
such as a first-view
RPG, Game Logic
should prepare a
3D scene in physical
world coordinates,
and again the trans-
lation from physical
world coordinates into
screen coordinates
should be done by the
Animation&Rendering
Module.

 Generic Client Architecture · 269

270 · CHAPTER 6. Client-Side Architecture

 Fig 6.2 illustrates how screen-independent and Game-World-oriented
Logic-to-Graphics API can facilitate vastly cross-platform Clients. As
screen real estate is very different on desktops and mobile devices,
screen coordinates will be very different too; on the other hand, Game
Logic in Fig 6.2 can stay exactly the same regardless of running on a
desktop or mobile device (or even on a browser; more in the Big Fat
Browser Problem section below). After all, all Game Logic does is just
issue instructions in terms of the Game World, not in terms of screen
coordinates. This, in turn, has been observed as an extremely important
factor when trying to maintain161 your Game Client across different
platforms.

Naïve vs Logic-to-Graphics for Cross-Platform
Development

Let’s compare these two approaches — the “naïve” one and Log-
ic-to-Graphics one — in the context of cross-platform development.

In naïve implementations without Game-World-oriented Log-
ic-to-Graphics API, your whole Game Logic would become plat-
form-specific; and Game Logic is the thing that tends to be changed
a lot. Which means that without Logic-to-Graphics API expressed in
terms of Game World, you’ll need to maintain two substantially simi-
lar, but technically different, code bases for your Game Logic Module.
This, in turn, leads to a very serious problem, as having more than one
code base has been observed as being devastating for maintainability.
I’ve seen a game that tried to release a Mac Client in addition to an
already-existing PC Client — using two separate code-bases for PC and
Mac. The whole process went as follows:
♦♦ First, they released a shiny new Mac Client alongside the PC

Client.
♦♦ Then, over the next few months, the PC Client was modified

(with support of new game rules, new Game World entities, new
UI, etc.), and the Mac Client began to fall behind the PC Client.

♦♦ And at around six months after the initial release, the Mac
Client became so out-of-sync with Servers that it wasn’t playable
anymore, and the Mac Client was abandoned completely.

161 A euphemism for “keep modifying.”

Having more than
one code base has
been observed as
being devastating for
maintainability.

 Generic Client Architecture · 271

A competing game went the way of Logic-to-Graphics API (and
the associated Logic-to-Graphics Layer), working in terms of Game
World. It took longer to implement the Mac Client there (as it re-
quired quite a bit of preliminary work to make a clean separation
along the lines of Logic-to-Graphics API). On the other hand, after
the separation was completed, everything worked like a charm. The
frequently changing piece of code — Game Logic — was identical for
PC and Mac, so maintaining it didn’t cause any trouble. As for the
Logic-to-Graphics Layer and the Animation&Rendering Module:
they happened to be changed much less frequently than the Game
Logic, which means that they stayed pretty much without changes for
long periods of time (and when they were changed, all the changes
were very straightforward). Moreover, later the very same game was
ported with relatively little effort to tablets and mobile devices (with
updates to all the Clients across four platforms released within 1-2
days).

Moreover, the amount of work involved tends to be much higher
for the naïve approach even if we don’t take the costs of keeping-differ-
ent-pieces-of-code-in-sync into account. From a formal point of view,
in “naïve” implementations with per-platform code bases, any change
concerning either Game Logic or Animation&Rendering needs to be
duplicated on all the P platforms we want to support. It means that
the amount of work for a new release with G changes in Game Logic
and A changes in Animation&Rendering is (G+A)*P (let’s name it
naïve_work).

On the other hand, for games with a Logic-to-Graphics layer, the
amount of work for the same new release will be G+A*P (let’s name it
LtG_work), so we have pure savings of (G-1)*P compared to the naïve
approach. Furthermore, as usually at the later-stages-of-game-develop-
ment162 A happens to be much smaller than G, the ratio of naïve_work/
LtG_work = ((G+A)*P)/(G+A*P) becomes pretty close to P (with
A<<G, ((G+A)*P)/(G+A*P) ~= G*P/G = P).

I rest my case.

162 And especially after deployment, which is a critical part of an MOG life cycle.

272 · CHAPTER 6. Client-Side Architecture

Logic-to-Graphics Benefits

Overall, when keeping your Logic-to-Graphics API Game-World-ori-
ented, you’ll get quite a few benefits.

First, you will have a very clear separation between the different
layers of the program, which tends to help a whole lot in the long run.

Second, even if you’re supporting only one platform now, with
a Logic-to-Graphics layer you’re leaving the door open for adding
support for all the platforms you might want to support in the future.
This includes such things as adding a 3D-rendered version to your cur-
rently-2D-only game, and an in-browser version (more on it in the Big
Fat Browser Problem section below). And with regard to cross-platform
support: as discussed above, Logic-to-Graphics-based architectures
beat naïve ones hands down.

Third, with a Logic-to-Graphics layer you don’t have a strong
dependency on any graphics engine, so if in five years from now a
new, much-better engine arises, you’ll be able to migrate there without
rewriting the whole thing.

Fourth, due to making the monolithic-block-of-code-around-your-
Game-Logic smaller, Logic-to-Graphics separation tends to enable
more sophisticated Game Logic; this is especially important if you need
to implement complicated features such as Client-Side Extrapolation
and/or Prediction (see Vol. I’s chapter on Communications for details).
In addition, having your Game Logic cross-platform enables code re-
use between the Server and the Client (which is often a Good Thing™,
especially for Client-Side Prediction).

Logic-to-Graphics Costs

By now, we’ve discussed the benefits of Game-World-oriented Log-
ic-to-Graphics API, but what about the cost? In fact, I can only think of
two realistic negatives of Logic-to-Graphics:
♦♦ There is a certain development overhead that is necessary to

achieve this clean separation. I’m not talking about performance
overhead, but about development overhead. With Log-
ic-to-Graphics being used, if the Game Logic developer needs to
get something from the graphics engine, he can’t just go ahead

First, you will have a
very clear separation
between the different
layers of the program,
which tends to help a
whole lot in the long
run.

 Generic Client Architecture · 273

and call the graphics-engine-function-that-she-wants. Instead,
an interface to get whatever-she-needs should be created, has to
be supported by all the engines, etc., etc. It’s all easily doable, but
it introduces quite a bit of mundane work. On the other hand,
I contend that in the long run, such clean interfaces provide
much more value than this development overhead takes away;
in particular, clean interfaces have been observed as a strong
obstacle to the code becoming “spaghetti code,” which is already
more-than-enough to justify them.

♦♦ A learning curve for those game developers coming from
traditional limited-life-span (and/or not-massively-multiplayer)
3D games. In these classical games (I intentionally don’t want
to use the term “old-fashioned” to avoid being too blunt about
it <wink />) everything revolves around the 3D engine, so for
such developers moving toward the model with clean separation
between graphics and logic can be rather painful. However, for
most of the games with Authoritative Servers, you need to move
away from 3D-engine-centric approach anyway (we have to sep-
arate Server-Side decision-making from Client-Side rendering),
so I would say that this drawback shouldn’t be attributed solely
to the Logic-to-Graphics Layer.

Overall, the benefits of Logic-to-Graphics happen to greatly outweigh
the costs for the vast majority of major distributed systems, IMNSHO.

Dual Graphics, Including 2D+3D Graphics

In some cases, you may need to support two substantially different types
of graphics. One such example arises when you need to support your
game both for PC and phone; quite often, the difference between available
screen real estate is too large to keep your layout the same, so you usually
need to redesign not only the graphics, but also redesign the layout.

In such cases of dual graphics, it is paramount to have your Log-
ic-to-Graphics API expressed in terms of Game World, as described
above. As soon as you have your Logic-to-Graphics API work in terms
of Game World, adding a new type of graphics becomes a breeze. You
just need to add another implementation of your Animation&Render-
ing Module (re-using your Logic-to-Graphics Layer if applicable), and

The benefits of Log-
ic-to-Graphics happen
to greatly outweigh
the costs for the vast
majority of major
distributed systems,
IMNSHO.

In such cases of
dual graphics, it is
paramount to have
your Logic-to-Graphics
API expressed in terms
of the Game World.

274 · CHAPTER 6. Client-Side Architecture

there is no need to change Game Logic at all(!). These two different
implementations of the Animation&Rendering Module may have
different APIs on the boundary with graphics engines, but they always
have the same API on the boundary with Game Logic (and this is possi-
ble because the API actually has nothing to do with graphics). The latter
observation will allow you to keep development of your Game Logic
without caring about the specific engines you’re using.

Of course, if you need to add a new instruction that comes from
Game Logic to the Animation&Rendering Module (for example, if
you’re adding a new graphical primitive), you will still need to mod-
ify both your implementations of the Animation&Rendering Module.
However, if your Logic-to-Graphics API is clean enough, you will find
rather soon that such changes (while still happening and causing their
fair share of trouble) are, by orders of magnitude, rarer than changes
to the Game Logic; this difference in change frequencies makes the
difference between workable workflow and an unworkable one.

An extreme case of dual graphics is dual 2D+3D graphics. Not all
game genres allow it (for example, first-person shooters usually won’t
work too well in 2D <wink />), but if your game genre is okay with it,
and you have a Logic-to-Graphics separation layer, this becomes per-
fectly feasible. You just need to have two different graphics engines: a 3D
one and a 2D one (they can be in separate Clients, or even switchable
in run-time), and an implementation of the Animation&Rendering
Module for each of them (both using the same Logic-to-Graphics API
to communicate with the Game Logic). As soon as you have this —
Bingo! — you’ve provided your players with a choice between 2D and
3D graphics (depending on their preference, or platform, or whatever
else). Even better, when using a clean Logic-to-Graphics API, you can
start with the type of graphics that is simpler/more important/etc., and
add alternative graphics later.

Modules and Their Relationships
Now, as we’ve finished discussing Logic-to-Graphics API and its
benefits, let’s take a look at Fig 6.1 once again, and explore a proba-
ble separation of the responsibilities between different modules for
a more or less “typical” game. As always, YMMV (and in this case,

 Generic Client Architecture · 275

even more than usual), so the separation above may or may not
apply to your specific game; still, chances are that at least some of
the modules won’t be too different.

Game Logic Module

Game Logic Module is the one that makes most of the decisions
about your Game World. More strictly, these are not exactly deci-
sions about the Game World in general (as this one is maintained by
our Authoritative Server), but about the Client-Side copy of the Game
World. In some cases, it can be almost trivial, though in other cases
(especially when Client-Side Prediction is involved) it can be very
elaborate.

In any case, the Game Logic Module is likely to keep a more-or-less
up-to-date copy of the Game World State (or of the relevant portion of
the Game World State) from the Game Server. However, as we discussed
in Vol. I’s chapter on Communications, there can be up to three different
states in our MOG: Server-Side State (often represented by ultra-low-po-
ly meshes without textures, which are sufficient for simulation but not
for rendering), Publishable State (the one usually expressed in terms
such as “there is a PC standing at position (X,Y) in the Game World
coordinates, facing NNW,” or “there are cards AS and JH on the table”),
and “Client-Side State” (sufficient for rendering, so high-poly meshes,
textures, and lots of other stuff is necessary). As we have three different
Game World States – a question arises “which one of these Game World
States should be within our Game Logic?”

Usually, however counterintuitively it may sound, Game World State
within Game Logic Module should not correspond to the Client-Side
State; normally, the Client-Side State belongs to the Animation&Ren-
dering Module (and only there). And within the Game Logic Module,
we’ll usually have either the Publishable State, or the Server-Side State
(the latter is common if we want to run the Client-Side Prediction). This
separation between Game Logic Module and high-poly Client-Side
State is important to facilitate a clean separation along the lines of the
Logic-to-Graphics API (and also has side benefits such as the re-use of
Server-Side code for Client-Side Prediction).

Game Logic Module is
likely to keep a copy of
the Game World from
the Game Server as
part of its state.

276 · CHAPTER 6. Client-Side Architecture

Game Logic Module & Graphics

Probably the most closely related to the Game Logic Module is the An-
imation&Rendering one. Most of the interaction between the two goes
in the direction from Game Logic to Animation&Rendering, using
Logic-to-Graphics API commands. As a rule of thumb, the Game Logic
Module will instruct Animation&Rendering Module to construct a
portion of its own copy of the Game World State as a (2D or 3D) scene,
and then will instruct it to update Animation&Rendering copy as its
own copy of the Game World State changes.

In addition, the Game Logic Module is going to handle (but not
render) UI, such as HUDs, and various UI dialogs (including the dia-
logs leading to purchases, social stuff, etc.). As long as it is possible, this
UI handling should be implemented in a very cross-platform manner.
All APIs or messages intended for UI handling, just as anything else
going over Logic-to-Graphics API, should be expressed in very graph-
ics-agnostic terms, such as “show health at 87%” or “show the dialog
described by such-and-such resource.”

To handle UI, the Game Logic Module might need to issue
a request (for example, make an API call or send a message) to the
Animation&Rendering Module asking for information such as “what
object (or dialog element) is currently in the crosshair (or under the
cursor)”. On receiving a reply, the Game Logic Module may decide to
update HUD, or do whatever-else-is-necessary (more on it in the UI
Interaction Example section below).

If Client-Side Prediction is involved, it might be tempting to request
other services from the Animation&Rendering Module, such as “notify
me when the bullet hits the NPC.” However, most of the time I argue
against such a dependency of Game Logic from Animation&Rendering,
and argue instead for implementing all the physics (such as Client-Side
Prediction etc.) completely within the Game Logic Module; in quite a
few cases, it can/should be done by re-using some parts of the Game
Logic from the Server-Side (see the Game Logic Module: Client-Side
Prediction and Simulation section below for further discussion).

Overall, there can be quite a few interactions between the Game
Logic Module and the Animation&Rendering Module. Still, while it
may be tempting to combine the Game Logic Module with the Ani-

While it may be
tempting to combine
the Game Logic
Module with the An-
imation&Rendering
Module, I usually
strongly advise
against it.

 Generic Client Architecture · 277

mation&Rendering Module, I usually strongly advise against it for the
reasons discussed at length above.

Game Logic Module: Client-Side Prediction and Simulation

One practically important case for a Game Logic Module is when it
needs to implement Client-Side Prediction (for a discussion on Cli-
ent-Side Prediction, see Vol. I’s chapter on Communications). Very
briefly – with Client-Side Prediction, for those actions coming from
our own player, we will be both sending them to the Server-Side, and at
the same time will start simulating them right away on the Client-Side.
The idea of Client-Side Prediction is to reduce perceivable lag, i.e. the
way the player can observe the lag (and BTW, lag happens to be most
visible exactly for player’s own actions). On the negative side, with
Client-Side Prediction there is a risk that the authoritative picture of
the Game World (coming later as an update from the Server-Side) will
look different from our Client-Side Prediction – and in this case the
so-called “reconciliation” has to be used, to make Client-Side consistent
with Server-Side, which is not that easy (to complicate things further,
a good reconciliation process has to do things smoothly, avoiding any
“sudden jumps”).

To implement Client-Side Prediction, the Game Logic Module
will need to simulate the Game World (including physics and maybe
some AI, but not rendering). In quite a few cases, simulation within
the Game Logic Module will mimic certain parts of the Server-Side
logic (after all, Client-Side Prediction is nothing more than an attempt
to “predict” what the Server-Side would decide anyway); on the other
hand, care needs to be taken not to make significant decisions (such as
“the opponent is dead”) on the Client-Side, as reversing such significant
decisions during reconciliation will look way too counterintuitive to
the player.

Simulating physics means that in certain cases our Game Logic
Module may need to use some meshes (though not textures). On the
other hand, its meshes should be as simple as possible, and they usually
will be the same kind of meshes used by the Server-Side — the ones
with characters represented by cubes or hexagonal prisms (see Vol. I’s
chapter on Communications for a discussion of the Server-Side State
and its meshes), and not high-poly meshes used for rendering purposes.

278 · CHAPTER 6. Client-Side Architecture

This means that meshes SHOULD NOT be shared between the Game
Logic Module and the Animation&Rendering Module, which further
facilitates very clean separation between the two.

Game Logic Module: Game Loop

If your Game Logic Module is running Client-Side Prediction (or any
other kind of simulation), it is likely running a Game Loop. When it
happens, this simulation Game Loop within the Game Logic Module
will be a separate one from the rendering Game Loop in the Anima-
tion&Rendering Module. In addition, as noted below, most of the time
you’ll want to run Game Loop within your Animation&Rendering
Module at the refresh rate of the monitor; on the other hand, updates
from the Server-Side will come to your Game Logic Module on network
ticks. It means that you’ll face a question: whether your simulation
Game Loop (the one within Game Logic Module) needs to run at the
speed of the network ticks, or at the refresh rate of your monitor.

As it often happens in real-world, there is no once-and-for-all an-
swer to this question (=”you’ll need to figure it out yourself ”).

What is obvious is that we will need to synchronize two simulations
running with two different and unrelated frequencies (“network tick
rate” and “monitor refresh rate”),163 or more generally – with different
time steps (as at least in theory we can use variable time steps for any of
the Game Loops). As as frequencies/time-steps are not related – we’ll
likely need to perform some kind of interpolation (see, for example,
[Fiedler], and also Client-Side Interpolation in Vol. I’s chapter on
Communication) regardless of our choice between two frequencies
for our Game Logic Module; the only question is whether this syn-
chronization+interpolation will happen (a) on the boundary between
messages-coming-from-Server-Side and our Game Logic Module, or
(b) on the boundary between the Game Logic Module and the Anima-
tion&Rendering Module.

163 BTW, if V-Sync is involved, even typical frequencies of 20fps for “network ticks” and 60fps for
“monitor refresh rate” are unrelated <sad-face />.

When it happens,
simulation Game
Loop within Game
Logic Module will be
separate from the ren-
dering Game Loop in
Animation&Rendering
Module.

You should make all
effort possible to keep
your Game Logic the
same across all your
platforms.

 Generic Client Architecture · 279

This means that meshes SHOULD NOT be shared between the Game
Logic Module and the Animation&Rendering Module, which further
facilitates very clean separation between the two.

Game Logic Module: Game Loop

If your Game Logic Module is running Client-Side Prediction (or any
other kind of simulation), it is likely running a Game Loop. When it
happens, this simulation Game Loop within the Game Logic Module
will be a separate one from the rendering Game Loop in the Anima-
tion&Rendering Module. In addition, as noted below, most of the time
you’ll want to run Game Loop within your Animation&Rendering
Module at the refresh rate of the monitor; on the other hand, updates
from the Server-Side will come to your Game Logic Module on network
ticks. It means that you’ll face a question: whether your simulation
Game Loop (the one within Game Logic Module) needs to run at the
speed of the network ticks, or at the refresh rate of your monitor.

As it often happens in real-world, there is no once-and-for-all an-
swer to this question (=”you’ll need to figure it out yourself ”).

What is obvious is that we will need to synchronize two simulations
running with two different and unrelated frequencies (“network tick
rate” and “monitor refresh rate”),163 or more generally – with different
time steps (as at least in theory we can use variable time steps for any of
the Game Loops). As as frequencies/time-steps are not related – we’ll
likely need to perform some kind of interpolation (see, for example,
[Fiedler], and also Client-Side Interpolation in Vol. I’s chapter on
Communication) regardless of our choice between two frequencies
for our Game Logic Module; the only question is whether this syn-
chronization+interpolation will happen (a) on the boundary between
messages-coming-from-Server-Side and our Game Logic Module, or
(b) on the boundary between the Game Logic Module and the Anima-
tion&Rendering Module.

163 BTW, if V-Sync is involved, even typical frequencies of 20fps for “network ticks” and 60fps for
“monitor refresh rate” are unrelated <sad-face />.

When it happens,
simulation Game
Loop within Game
Logic Module will be
separate from the ren-
dering Game Loop in
Animation&Rendering
Module.

You should make all
effort possible to keep
your Game Logic the
same across all your
platforms.

Game Logic Module: Keeping it Cross-Platform

Last but not least about the Game Logic Module. If your game has
even the slightest chance of becoming cross-platform, you MUST keep
your Game Logic Module truly platform-independent. While all the
other Client-Side Modules MAY be platform-specific (and separation
between Modules along the lines described above facilitates plat-
form-specific development when/if it becomes necessary), you should
make all effort possible to keep your Game Logic the same across all
your platforms. The reason has already been discussed in detail, and it
is mostly about Game Logic being the most-frequently-changing part
of your Client-Side code; usually, it changes so often that you won’t
be able to keep several code-bases-supposedly-doing-the-same-thing
reasonably in sync.

Animation&Rendering Module

The Animation&Rendering Module is more or less similar to the
rendering part of your usual single-player game engine. Usually, at the
heart of the Animation&Rendering Module, there is a more or less
traditional Game Loop. How to implement it depends on the further
specifics of your Client-Side architecture; we’ll discuss implementing
Game Loop for (Re)Actor-fest Client in the Animation&Rendering
(Re)Actor and Game Loop section below.

If your game is a 3D one, then in the diagram above,

It is the Animations&Rendering Module that keeps and cares
about all the renderable meshes, textures, and animations;164

as a Big Fat Rule of Thumb™, nobody else in the system
(including the Game Logic Module) should know about them.

Going against this advice and sharing renderable meshes with the rest
of the Client would kill our clean separation between Modules (and,
unless we want to incur the heavy penalties of inter-thread-synchro-
nization, would prevent us from running each Module in its own
thread). As, in addition to causing problems, such sharing is usually

164 As noted above, even if the Game Logic (Re)Actor uses some meshes, they are usually ultra-low-
poly Server-Side meshes rather than renderable Client-Side meshes.

280 · CHAPTER 6. Client-Side Architecture

unnecessary — keeping renderable meshes to the Animation&Render-
ing Module becomes a no-brainer.

Communications Module

Another Module that is all-important for your MOG is the Communi-
cations Module. The idea here is to keep all the communications-related
logic in one place. This may include very different things, from plain
socket handling to such things as connect/reconnect logic,165 con-
nection quality monitoring, encryption if applicable,166 etc., etc. Also,
implementations of higher-level concepts such as generic publisher/
subscriber, generic state synchronization, etc. (see Vol. I’s chapter on
Communications for further details) also generally belong here.

For most of (if not “all”) the platforms, the code of Client-Side
Communications Module can (and SHOULD) be kept the same. In
particular, all the input packets (and/or messages over TCP stream) are
usually considered input events for our Module (and therefore, can be
logged, etc.).

To send packets/messages by the Communications Module, it will
normally use some kind of socket-related API (for C/C++, it is going
to be something like Berkeley Sockets’ send()/sendto()). On the other
hand, I suggest that you use your own (however thin) wrapper around
these functions to account for platforms with some peculiar ideas about
sockets (errno vs WSAGetLastError() anyone?).

Sound Module

The Sound Module handles, well, sound. In a certain sense, it is some-
what similar to the Animation&Rendering Module, but for audio. If
your sound is at least somewhat non-trivial, the interface of the Sound
Module will usually need to be implemented via some kind of “Logic-
to-Sound API.”

This “Logic-to-Sound” API should be conceptually similar to the
“Logic-to-Graphics API”; in particular, similar to the Logic-to-Graph-

165 BTW, handling connect/reconnect will be most likely needed even for UDP.
166 And more often than not, you DO need encryption — at least to prevent proxy bots; more on it in

Vol. VIII’s chapter on Bot Fighting.

For most of (if not
“all”) the platforms,
the code of the Com-
munications Module
can (and SHOULD) be
kept the same.

 Generic Client Architecture · 281

ics API, the Logic-to-Sound API should be Game-World-oriented; in
other words, commands going from the Game Logic Module to the
Sound Module should be expressed in terms of “play this sound at
such-and-such a volume coming from such-and-such a position within
the Game World” (with all the further translation happening within the
Sound Module, and potentially in a system-dependent way).

Relation to MVC
When looking at Fig 6.1, we can observe rather obvious similarities
to a Model-View-Controller model (the one that is very-widely-used
at least in the non-gamedev world). In the case of Fig 6.1, the Game
World State of the Game Logic Module acts as an MVC Model, and
the Animation&Rendering Module and the Sound Module act as MVC
Views. As for the MVC Controller, the situation is a bit less obvious:
for MOGs it is the Server (not shown in Fig 6.1) that acts as an MVC
Controller.

If looking at it this way, we can see that player inputs go to the Server
(MVC Controller), then changes caused by player inputs return to the
MVC Model (Game World State maintained by Game Logic Module),
which in turn notifies the Animation&Rendering Module (MVC View)
so it can show whatever is necessary to the player.

If we take into account Client-Side Prediction (see the Game Logic
Module: Client-Side Prediction and Simulation section above), we will
notice that we have two different data flows (and, as a result, two sepa-
rate MVC Controllers within our system). The first flow goes as before:
via the Server as an MVC Controller, to the MVC Model within the
Game Logic Module, and to the Animation&Rendering Module as an
MVC View. The second flow goes a shorter way: directly to the Game
Logic Module (which acts as a second MVC Controller in this case),
then to the same MVC Model within the Game Logic Module, and to
the Animation&Rendering Module as an MVC View.

Not that this relation to MVC is really important per se, but for
those-coming-from-traditional-business-programming where MVC is
ubiquitous, it may clarify a thing or two.

MVC
Model–view–
controller (MVC)
is a software
architectural pattern
for implementing user
interfaces. It divides
a given software
application into
three interconnected
parts, so as to
separate internal
representations of
information from the
ways that information
is presented to or
accepted from the
user.

—Wikipedia

282 · CHAPTER 6. Client-Side Architecture

Differences from Classical 3D Single-Player
Game
If you’re coming from single-player game development, you may find
the whole diagram in Fig 6.1 confusing; this may be especially true for
the inter-relation between the Game Logic Module and the Anima-
tion&Rendering Module.

From the point of view of single-player gamedev who wants to
make an MOG out of her single-player game, the idea of the diagram
in Fig 6.1 can be seen as having 90% of your existing “3D engine as you
know it” with all the 3D stuff as a basis for the “Animation&Rendering
Module.” You will just need to separate Game Logic (the one that makes
decisions about gameplay, including physics if applicable — and it needs
to be moved to the Server-Side anyway167), and UI logic (which will go
into the Game Logic Module), and that’s pretty much it.

As discussed above, all the mesh-related stuff should stay exclusively
within the Animation&Rendering Module; i.e., even Game Logic Mod-
ule should know absolutely nothing about renderable meshes, vertexes,
and textures.

Interaction Examples in 3D World: Single-Player vs
MOG

By now, we have more-or-less defined our Modules; however, as usual,
without concrete examples there is lots of potential for misunder-
standings. To be a bit more specific, let’s consider how a few typical
(and not-so-trivial) interaction examples can be implemented over the
modular Client-Side Architecture shown in Fig 6.1.

MMOFPS Interaction Example (Shooting)

First, let’s consider an MMOFPS example when Player A presses a
button to shoot with a laser gun, and Game Logic needs to perform
a raycast to see where it hits and what else happens. In single-player,
all this usually happens within a 3D engine. For an MOG, it is more
complicated:

167 Also, it may be partially duplicated to the Game Logic Module too for Client-Side Prediction
purposes.

The idea of the
diagram in Fig 6.1 can
be seen as having 90%
of your existing “3D
engine as you know
it” with all the 3D stuff
as a basis for the “An-
imation&Rendering
Module.”

Let’s consider an
MMOFPS example
when Player A presses
a button to shoot
with a laser gun, and
Game Logic needs to
perform a raycast to
see where it hits and
what else happens.

 Generic Client Architecture · 283

♦♦ Step 1. Button press goes to our Authoritative Server as a
message.

♦♦ Step 2. Authoritative Server receives the message, performs a
raycast, and calculates where the shot hits (all within its Serv-
er-Side ultra-low-poly Game World).

♦♦ Step 3. Our Authoritative Server expresses “where it hits” in
terms such as “Player B got hit right between his eyes”168 and
sends it as a message to the Client (actually, to all the Clients,
usually as a (kinda-)Broadcast message; see Vol. I’s chapter on
Communications for details).

♦♦ Step 4. This message is received by the Game Logic Module
and translated into the commands of Logic-to-Graphics API
(still without meshes and triangles; for example, “show laser ray
from my gun to the point right-between-the-eyes-of-Player B,”
and “show laser hit right between the eyes of Player B”), which
commands are sent (as messages) to the Animation&Rendering
Module.

♦♦ Step 5. The Animation&Rendering Module can finally render
the whole thing.169

While the process is rather involved, most of the steps are inherently
inevitable for an MOG; the only thing that you could theoretically save
compared to the procedure described above is merging step 4 and step
5 (by merging the Game Logic Module and the Animation&Rendering
Module), but I advise against it as such merging would introduce too
much coupling, which will haunt you in the long run. Doing such
different things as parsing network messages and rendering within
one tightly coupled module is rarely a good idea, and it becomes even
worse if there is a chance that you may ever want to use some other
Animation&Rendering Module (for example, a newer one, or the one
optimized for a different platform).

168 This is generally preferable to player-unrelated “laser hit at (X,Y,Z)” in case of Client-Side
Prediction; of course, in practice you’ll use some coordinates, but the point is that it is usually
better to use player-related coordinates rather than absolute Game World coordinates — as in
case of discrepancies it is more important to see that it was the player who got hit, and not a
bullet hit in a technically correct place but outside of the player.

169 I won’t try to teach you how to render things; TBH, if you’re from the 3D development side, you
already know much more about it than me.

284 · CHAPTER 6. Client-Side Architecture

MMORPG Interaction Example (Ragdoll)
In a typical MMORPG example, when an NPC is hit for the 93rd
time and dies as a result, ragdoll physics is activated. And in a typical
single-player game, once again the whole thing is usually performed
within a 3D engine. And once again, for an MOG, the whole thing will
inevitably be more complicated:
♦♦ Step 1. Button press (the one that will cause NPC death) goes to

the Authoritative Server.
♦♦ Step 2. Server checks attack radius, calculates chances to hit,

finds that the hit is successful, decreases health, and finds that
NPC is dead.

♦♦ Step 3. Server performs ragdoll simulation in the Server-Side 3D
world. However, the Server doesn’t need to send it to the Clients
as a complete vertex-based animation. Instead, the Server can
usually send to the Client only a movement of “center of gravity”
of NPC in question (calculated as a result of 3D simulation).
This movement of “center of gravity” is sent to the Client (either
as a single message with the whole animation or as a series of
messages with the “current position” of each).

 ▪ As an interesting side effect: as the whole thing is quite
simple, there may be no real need to calculate the whole
limb movement on the Server-Side, and it may suffice to
calculate just a simple parabolic movement of the “center of
gravity,” which MAY save you quite a bit of resources (both
CPU and memory-wise) on the Server-Side.

♦♦ Step 4. Game Logic Module receives the message that
describes “center of gravity” movement and translates it into
Logic-to-Graphics commands. This doesn’t necessarily need
to be trivial, and may include simulating the whole ragdoll
movement (including limbs movement) while keeping center-
of-mass movement as prescribed by the Server; OTOH, in most
cases, simulation of the limbs’ movement during ragdoll will be
delegated to the Animation&Rendering Module.

♦♦ Step 5. The Animation&Rendering Module gets the movement,
performs ragdoll simulation if necessary (=“if simulation wasn’t
performed by Game Logic Module”), and then renders the
whole thing.

In a typical MMORPG
example, when an
NPC is hit for the 93rd
time and dies as a
result, ragdoll physics
is activated.

Ragdoll
physics

In computer physics
engines, ragdoll
physics is a type of
procedural animation
that is often used as
a replacement for
traditional static death
animations in video
games and animated
films.

—Wikipedia

 Generic Client Architecture · 285

 ▪ It should be noted that when using this approach to ragdoll
animation, fine details of the ragdoll simulation MAY be
slightly different on the Server-Side and the Client-Side;
however, if there are any discrepancies, Client-Side simu-
lation will eventually correct coordinates so that “center of
gravity” is adjusted to the position sent by the Server, and
this is the only thing that really matters for an RPG. For a
typical RPG, nobody really cares about exact movement
of limbs during ragdoll; what is really important is where
the NPC eventually landed — here or over the edge of the
cliff — and this is guaranteed to be the same for all the
Clients, as they’re synchronized to the final position of the
“center of gravity,” which comes from the Server Side.

UI Interaction Example

In a typical RPG game, a very common task is to show object properties
when the object is currently under cursor. For the diagram in Fig 6.1
above, it can be implemented as follows:
♦♦ Step 1. Game Logic Module sends a request to the Anima-

tion&Rendering Module: “what is the object ID of the object
under the cursor?” (“…in the crosshair?” etc.)

♦♦ Step 2. Animation&Rendering Module processes this (trivial)
request and returns object ID back.

♦♦ Step 3. Game Logic Module finds object properties by ID,
translates them into text, and instructs Animation&Rendering
Module to display object properties in HUD.

While this may look like overkill, the overhead (both in terms of the de-
veloper’s time and CPU time) is negligible, and the good old rule of “the
more cleanly separated parts you have, the easy is further development
is” will more than compensate for the complexities of such separation
in the long run.

Pre-alloc Everything

Another difference of an MOG over classical single-player games is
related to the concept of “pre-allocating all the resources you will need”
for an upcoming “game event.”

What is the object ID
of the object under
the cursor?

286 · CHAPTER 6. Client-Side Architecture

The point here is that in a multi-player game, it is usually better
to allocate all the resources needed for a certain “game event” than
to risk that your player’s PC runs out of resources right in the middle
of the “game event.” For example: if your game is a 2D MOBA, it is
usually better to pre-allocate all the resources you will need (such as
bitmaps, memory, GPU resources, etc., etc.) than to risk that you face
resource-allocation-failure in the middle of a MOBA match. Of course,
we still need to check for resource allocation failures, but if we allocate
(and therefore detect allocation failure) before the MOBA match starts,
we can often prevent the player from entering that-MOBA-match-that-
he’s-going-to-lose-anyway-because-of-a-lack-of-resources (!).

Contrast it with single-player games, where resource allocation fail-
ure, however unpleasant, doesn’t usually cause effects such as “losing
that ranking match the player was preparing for a month,” or “losing
that artifact that is worth $10K on eBay.”

Some notes about pre-allocating everything in advance:
♦♦ In a real-world game, such a “preallocate everything” approach

has been seen to reduce the number of Client-Side in-game
failures (IIRC, the reduction was over 2x). Measuring (and
attributing) improvement in player satisfaction is much more
difficult, but I am sure that there was quite a bit of it; in short, I
am sure that pre-allocation did make business sense.

♦♦ I do not mean that we should load all the bitmaps, etc. into RAM;
rather, we should have enough bitmap objects of sufficient size
to load everything-we-might-need-to-have-loaded-at-the-same-
time. The rationale for it is simple: from what I’ve seen in the real
world, the chances of the file becoming suddenly unavailable are
extremely slim; however, the chances of the player running a hun-
dred other programs that already ate all the resources so there is
nothing left for our Client is much much higher (and BTW, doesn’t
depend on how-powerful-modern-machines-are).170

 ▪ More generally, we MUST be very careful about all the
resources we’re using, and bring them to the absolute
minimum. On the other hand, after we have reached this
absolute minimum – it is usually fine to pre-allocate it.

170 As computers become more powerful, programs become more resource-hungry. As a result, in
a shared environment such as the Client-Side Device, the problem of insufficient resources isn’t
going to go away any time soon (if ever).

It is usually better to
allocate all the re-
sources needed for a
certain “game event”
than to risk that your
player’s PC runs out of
resources right in the
middle of the “game
event.”

 Generic Client Architecture · 287

♦♦ Sure, the “preallocate everything” approach inevitably means
that our Client effectively becomes a “resource hog”; however,
if we’d make a player survey asking what they’d prefer, have
the gameplay guaranteed while consuming more resources, or
risking that during the all-important-match we won’t be able to
render the enemy, we can be pretty sure of the answer (and it is
the player who we should make happy).

Progressive Downloading

One technique that is not 100% MOG-specific, but is still pretty new
(and relies on the Internet being always-available) is so-called “pro-
gressive downloading” (also known as the “file streaming” flavor of the
“cloud gaming” buzzword).

NB: unlike “pixel streaming” or “video streaming”-based “cloud
gaming,” “progressive downloading” can be made viable with existing
technologies (more on the difference between the two in Vol. VII’s
chapter on Preparing for Deployment).

The idea behind Progressive Downloading is to download a small
part of the game first, and to proceed with downloading of parts-like-
ly-to-become-necessary, as the game goes on. Business-wise, Progres-
sive Downloading aims to achieve “instant gameplay,” which in turn
can become a competitive advantage (whether it is worth the trouble is
a different story that needs to be decided at the GDD level; see Vol. I’s
chapter on GDD).

Architecture-wise, Progressive Downloading consists of two big
parts:
♦♦ Making your Client work with only some of the necessary files

(for example, your Client may start running with just a few
meshes/textures/etc., as long as it knows for sure that for the
upcoming “game event” it won’t need anything else).

NB: for “seamless worlds,” it might be difficult to achieve, but for
games with discrete “game events” (such as MOBAs with different
maps, etc.) it can be done for sure.

 ▪ For the time being, this “work with only some of necessary
files” is the only thing that you need to think about.

Progressive Download-
ing aims to achieve
“instant gameplay,”
which in turn can
become a competitive
advantage.

288 · CHAPTER 6. Client-Side Architecture

♦♦ Online download while playing. Implementing concurrent
download that doesn’t interfere with gameplay can be a non-trivial
exercise, but, fortunately, we don’t need to deal with it right now;
this topic will be discussed in Vol. V’s chapter on Client Updates.

(RE)ACTOR-FEST CLIENT-SIDE
ARCHITECTURE
While the diagram in Fig 6.1 above is pretty good, it has one obvious
drawback: it is too generic to be practical without further clarifications
and specifications.

First, let’s note that there are many different ways to implement
Game Client while staying within very generic boundaries of Fig 6.1,
and (Re)Actor-fest Client-Side Architecture, which we’ll discuss in this
section is just one of these ways. Still,

(Re)Actor-fest is the way I recommend architecting your Game
Client (and I have Good Reasons™ to do it).

On the other hand, if you really hate (Re)Actors, it is not the end of
the world; doing things in a different manner will most likely cost you
(especially when you start deploying your game into the real world),
but, well, it might still be workable. However, even if you do NOT like
(Re)Actors, make sure to follow generic advice with respect to generic
architecture in Fig 6.1 above; it applies pretty much across the board
regardless of using or not using (Re)Actors.

 (Re)Actor-fest Client-Side Architecture · 289

(Re)Actor-fest Client Architecture
Do not communicate by sharing memory;
instead, share memory by communicating.

— Effective Go

Fig. 6.3 shows a diagram that depicts one of the possible implementa-
tions of the Client under (Re)Actor-fest architecture.

 Of course, as noted above, such a (Re)Actor-fest Client Architecture is
(by far) not the only possible one, and even not the most popular one,
but this architecture and its variations have been seen to produce games
with extremely good reliability, extremely good decoupling between
parts, and very good maintainability (for a very detailed discussion of
the benefits coming from (Re)Actors, see Chapter 5). On the minus
side, I can list only a bit of development overhead due to the mes-
sage-based exchange mechanism, but from my experience it is more
than covered with better separation between different parts (supported
by very-well-defined interfaces), which leads to development speedups

290 · CHAPTER 6. Client-Side Architecture

even in the medium run (and is even more important in the long run to
avoid spaghetti code). Throw in the ability of “replay-based regression
testing” and “replay-based post-factum debugging” in production, and
it becomes a solution for lots of real-world problems.

In short, I’m a very strong advocate of this architecture
(and its variations described below), and don’t know of any
practical cases when it is not the best thing you can do.171
While it might look over-engineered on first glance, it pays

off in the medium and long run.

I hope that the diagram in Fig 6.3 is more or less self-explanatory, but I
will elaborate on a few points that might not be too obvious:
♦♦ Ideally, each of the (Re)Actors is a mostly-non-blocking determin-

istic (Re)Actor as described in Chapter 5.
 ▪ While being deterministic is not a strict requirement,

implementing your (Re)Actors this way will make your
debugging and post-factum analysis much, much easier.

♦♦ All the exchange between different (Re)Actors is message-based.
Here “message” is a close cousin of a network packet; in other
words, it is just a bunch of bytes formatted according to some
convention between sending and receiving thread.

 ▪ There can be different ways of passing these messages around;
examples include explicit message posting, or implementing
non-blocking RPC calls instead. While the idea behind the
(Re)Actor-fest architecture won’t change because of the way
the messages are posted, convenience and development time
may change quite significantly. Still, while important, this is
only an implementation detail (with a detailed discussion on
the ways to implement it available in Chapter 5).

 ▪ For the messages exchanged between the Game Logic Thread
and the Animation&Rendering Thread, the message format/
API should be along the lines of “Logic-to-Graphics API,” as

171 As usual, “I don’t know of any cases” doesn’t provide guarantees of any kind, and your mileage
may vary. However, before throwing this architecture away and doing something-that-you-
like-better, please make sure to read the rest of this section, where quite a few of the potential
concerns will be addressed.

On the minus side,
I can list only a bit
of development
overhead due to
the message-based
exchange mechanism,
but from my experi-
ence it is more than
covered with better
separation between
different parts and
very-well-defined
interfaces, which
leads to development
speedups even in the
medium run.

Still, while important,
this is only an imple-
mentation detail.

 (Re)Actor-fest Client-Side Architecture · 291

described in the Generic Client Architecture section above.
In short: it should be all about logical changes in our Game
World, along the lines of “NPC ID=ZZZ is currently moving
along the path defined by the set of points {(X0,Y0),(X-
1,Y1),...} with speed V” (with coordinates being game-world
coordinates, not screen coordinates), or “Player at seat #N is
in the process of showing his cards to the opponents.”172

♦♦ Each thread has an associated Queue, which is able to accept mes-
sages, and provides a way to wait on it as long as the Queue is empty.

 ▪ Queues of Game Logic Thread and Communications
Thread are rather unusual. They’re waiting not only for
usual inter-thread messages, but also for some other stuff
(namely input messages for the Game Logic Thread, and
network packets for the Communications Thread). More on
implementing such Queues in Vol. V’s chapter on C++.

yy In most cases, at least one of these two particular
queues will be supported by your platform.

yy For those platforms that don’t support such queues, you
can always use your-usual-inter-thread-queue (once
again, the specifics will be discussed in Vol. V), and
have an additional thread that will get user input
data (or call select()), and then feed the data into
your-usual-inter-thread-queue as yet another mes-
sage. This will create a strict functional equivalent of
the two specific Queues mentioned above.173

♦♦ The architecture is “Shared-Nothing.” It means that there is no data
shared between threads, and the only way to exchange data between
threads is via Queues and messages-passed-via-the-Queues.

 ▪ Shared-Nothing means no thread-synchronization prob-
lems (there is no need for mutexes, critical sections, etc.,
etc. outside of your Queues). This is a Really Good Thing™,
as trying to handle thread synchronization with any
frequently changeable logic (such as the one within at least

172 Yes, I know I’ve repeated it quite a few times already, but it is that important that I prefer to risk
being bashed for annoying you rather than being pounded by somebody who didn’t notice it and
got into trouble.

173 Performance-wise, having an additional thread is not ideal, but TBH, on the Client-Side the
difference will be very small.

The architecture is
“Shared-Nothing.” It
means that there is no
data shared between
threads, and the only
way to exchange data
between threads
is via Queues and
messages-passed-via-
the-Queues.

292 · CHAPTER 6. Client-Side Architecture

some of the (Re)Actors) inevitably leads to lots and lots of
problems (see, for example, [Hare]).

 ▪ Of course, while we’re implementing Queues, we still need
to use inter-thread synchronization, but this is a one-time
effort and has been done many times before, so it is not
likely to cause too much trouble; see Vol. V’s chapter on
C++ for further details on implementing Queues in C++.

 ▪ As a nice side effect, Shared-Nothing architecture means
that whenever you want it, you can deploy your threads into
different processes without changing any code within your
(Re)Actors (merely by switching to an inter-process imple-
mentation of the Queue). In particular, it can make answering
very annoying questions such as “who’s guilty for the memory
corruption” much easier; I’ve also seen it handy to deal with
stuff such as Vista-and-later process permissions (which may
need to be different for different parts for your Client).

 ▪ One possible exception to this Shared-Nothing approach
is related to using “(Re)Actor-with-Extractors” (see the
Parallelizing Client-Side (Re)Actors section for relevant
discussion).

♦♦ All the threads on the diagram (with one possible exception being
the Animation&Rendering Thread; see below) are NOT tight-
looped, and unless there is something in their respective Queue,
they just wait on the Queue until some kind of message comes in
(or select() file descriptor becomes “ready”).

 ▪ While “no-tight-loops” is not a strict requirement for the
Client-Side, wasting CPU cycles in tight loops without a
Really Good Reason™ is rarely a good idea, and might hurt
quite a few of your players (those with weaker rigs).

 ▪ The Animation&Rendering Thread is a potentially special
case, and MAY use tight loop; see the Animation&Render-
ing (Re)Actor and Game Loop section below for further
discussion.

♦♦ To handle delayed actions (at least in other-than-Animation&Ren-
dering Thread), Queues should allow (Re)Actors to post some
kind of “timer message” to their own thread. In practice, it is not a
problem to implement it.

 (Re)Actor-fest Client-Side Architecture · 293

(Re)Actor Specifics
Fig. 6.3 shows four different (Re)Actors; they directly correspond
to Modules we’ve discussed above, so all the discussions in the Ge-
neric Client Architecture section about Modules apply to respective
(Re)Actors too. Still, there are a few notes that are specific to
(Re)Actors:
♦♦ It is possible to run several (Re)Actors within the same thread (and

without changing the (Re)Actor code at all).
 ▪ Still, even if running two or more (Re)Actors from the

same thread, I strongly suggest keeping the (Re)Actors
separate. It is both cleaner and leaves you more flexibility
in case one core proves to be insufficient. In other words:
even if you decide to run two (Re)Actors from the same
thread, do yourself a favor and keep the (Re)Actors sep-
arate; some months down the road, you’ll be very happy
that you kept your interfaces clean and different Modules
nicely decoupled.174

 ▪ As a rule of thumb, (Re)Actors that are using blocking calls
SHOULD NOT run within the same thread as the other
(Re)Actors.

 ▪ See the Variations section below for further examples.

If by any chance one of your (Re)Actors becomes that CPU-consuming
that one single CPU core won’t cope with it, in most cases it can be ad-
dressed without giving up the goodies of the (Re)Actor-based system;
see the Scaling (Re)Actor-fest Architecture section below.

Now, let’s discuss (Re)Actor-related specifics on a per-(Re)Actor
basis.

Animation&Rendering (Re)Actor and Game Loop

As noted above, our Animation&Rendering Module (and therefore our
Animation&Rendering (Re)Actor) will usually contain some kind of
Game Loop.

174 Or you’ll regret that you didn’t do it <sad-face />.

Even if you decide to
run two (Re)Actors
from the same thread,
do yourself a favor and
keep the (Re)Actors
separate.

294 · CHAPTER 6. Client-Side Architecture

And as described in Chapter 5, Game Loops usually looks as follows:

//Example 6.1 (taken from Chapter 5)
while(true) {
 process_input();
 update();
 render();
}

When applying this classical Game Loop to our Animation&Rendering
(Re)Actor, we can move an inner part of this loop into the react() func-
tion of our Animation&Rendering (Re)Actor, taking into account the
following considerations:
♦♦ Just like the inner part of the game loop above, react() consists of

calls to process_input(), update(), and render().
 ▪ process_input() function, instead of processing user input, pro-

cesses instructions coming from the Game Logic (Re)Actor.
 ▪ update() function updates only the 3D-scene-to-be-

rendered, and not the Game Logic’s representation of the
Client-Side Game World; all the decision-making is moved
at least to the Game Logic (Re)Actor, with most of the
decisions actually being made by our Authoritative Server.

 ▪ render() works pretty much the same as it worked for a
single-player game.

♦♦ After the Animation&Rendering (Re)Actor’s react() function
returns, the Animation&Rendering Thread may deal with timestep
as it sees fit (in particular, any classical timestep mentioned in
Chapter 5 can be implemented).

♦♦ Then, the Animation&Rendering Thread goes back to the very
beginning (back to checking if there is anything in its Queue),
which completes the infinite Game Loop.

As noted in Chapter 5, all the common variations of Game Loop (and
timesteps) can be implemented via (Re)Actors if you want it.

On the other hand, if you’re not a 3D guru yet, I would suggest to
start with running your Animation&Rendering (Re)Actor at the fixed
rate, which is equal to your monitor’s refresh rate and is synchronized
with V-Sync (more on V-Sync in Vol. V’s chapter on Graphics 101).
While it is certainly not the only way to shoe this horse, it is known to
provide decent results without too much complications.

All the decision-mak-
ing is moved at least
to the Game Logic
(Re)Actor, with most
of the decisions actu-
ally being made by our
authoritative server.

 (Re)Actor-fest Client-Side Architecture · 295

As discussed in [Nystrom] and [Fiedler] (and briefly mentioned in
Chapter 5), for single-player games it is common to run your rendering
at one fixed rate, and your physics timestep at a different fixed rate. This
is exactly what will happen in our case (though, for us, network timestep
will usually be slower than frame rate). For a more detailed discussion
on timesteps and their implications, see [Fiedler] and [Nystrom].

One further variation of the Animation&Rendering (Re)Actor that is
not commonly mentioned in the context of games is a simple event-driv-
en thing that you would use for your usual Windows programming; in
this case, delays in Game Loop under Windows can be implemented
via WM_TIMER,175 and 2D drawing via something like BitBlt(). While
usually woefully inadequate for any serious frames-per-second-oriented
games, it has been seen to work very well for social- and casino-like ones
(and interestingly, it still maps to our (Re)Actor-fest very well).

Overall, IMO one of the best things about our Client-Side
(Re)Actor-fest Architecture shown in Fig 6.3 is that the architecture as
a whole doesn’t really depend on timestep choices made for rendering;
you can even make different timestep choices for different platforms
and still keep the rest of your code (beyond Animation&Rendering
Thread) intact.

Communications (Re)Actor and Blocking/Non-
Blocking Sockets

The diagram in Fig. 6.3 shows an implementation of the Communications
(Re)Actor that uses non-blocking socket calls. For the Client-Side, it is per-
fectly feasible to keep the code of the Communications (Re)Actor exactly
the same, but to deploy it in a different manner, simulating non-blocking
sockets via two additional threads (one to handle reading and another to
handle writing), with these additional threads communicating with the
main Communications Thread via Queues (using the Communication
Thread’s existing Queue, and one new Queue per new thread).176 BTW,
it illustrates an all-important point: with (Re)Actors properly separated

175 Yes, this does work, despite being likely to cause ROFLMAO syndrome for any game developer
familiar with serious game engines.

176 For the Server-Side, however, these extra threads are not advisable due to the performance
overhead. See Vol. III’s chapter on Server-Side Architecture for more discussion on, well, Server-
Side architectures.

Our (Re)Actor-fest Ar-
chitecture as a whole
doesn’t really depend
on timestep choices
for rendering; you can
even make different
timestep choices for
different platforms
and still keep the rest
of your code intact.

296 · CHAPTER 6. Client-Side Architecture

from infrastructure code, we can easily have non-blocking (Re)Actors
while serving them with blocking sockets; more generally, the (Re)Actor
being non-blocking doesn’t necessarily imply using only non-blocking
calls at the system level.

One more thing to keep in mind with regard to blocking/
non-blocking Berkeley sockets is that the getaddrinfo() function,177
which is commonly used for DNS resolution, is usually blocking, with
many platforms having no non-blocking counterpart. However, for the
Client-Side, in most cases it is a non-issue unless you decide to run
your Communications (Re)Actor within the same thread as your Game
Logic (Re)Actor. In the latter case, calling a function with a potential to
block for minutes can easily freeze not only your game updates (which
is inevitable anyway in the case of connectivity problems), but also
game UI (which is not acceptable, regardless of network connectivity).
To avoid this effect, you can always introduce yet another thread (with
its own Queue) with the only thing for this thread to do being to call
getaddrinfo() when requested, and to send results back as a message
when the call is completed.178

Other (Re)Actors

While not shown in Fig 6.3, there can be other (Re)Actors within your
Client. Usually, such (Re)Actors may run in their own threads, but
other variations are also possible.

One practical example of such a Client-Side (Re)Actor (which was
implemented in practice) was “update (Re)Actor,” which handled an
online download of DLC (a.k.a. “progressive download”) while making
sure that the gameplay delays were within acceptable margins (see more
on Client updates in general and updates-while-playing in particular in
Vol. V).

In general, any kind of entity that performs mostly-indepen-
dent tasks on the Client-Side can be implemented as an additional

177 As well as an older gethostbyname() function.
178 Alternatively, it is also possible to create a new thread for each getaddrinfo() call (with such a

thread performing getaddrinfo(), reporting the result back, and terminating). This thread-per-
request solution would work, but would be a departure from (Re)Actor-fest architecture, and it can
lead to creating too many threads in some fringe scenarios, so I usually prefer to keep a specialized
thread intended for getaddrinfo(), staying within a pure (Re)Actor-fest model.

 (Re)Actor-fest Client-Side Architecture · 297

(Re)Actor. While I don’t know of practical examples of extra Client-Side
(Re)Actors other than “update (Re)Actor” as described above, it doesn’t
mean that your specific game won’t allow/require any, so make sure to
keep your eyes open.

On (Re)Actors and Latencies
One question that often arises when discussing queue-based architec-
tures and fast-paced games is related to latencies introduced by those
additional Queues. The question is usually asked along the lines of “Hey,
why have all those queues if we need absolutely the best possible latency?”

Sure, we do want to show the data to the user as fast as possible. How-
ever, my experience shows that179 with queues, we’re talking about addi-
tional latency180 of the order of single-digit microseconds. This number
can probably be lowered further into a sub-microsecond range by using
less trivial non-blocking queues, but this I’m not 100% sure of because
of the relatively expensive allocations usually involved in marshalling/
unmarshalling; for further details on implementing high-performance
low-latency queues in C++, please refer to Vol. V’s chapter on C++. As
this single-digit-microsecond delay is at least three orders of magnitude
smaller than an inter-frame delay of 1/60 sec or so, I am arguing that
nobody will ever notice the difference, even for single-player or LAN-
based games; for Internet-based MOGs the absolute best we can hope
for is delays in the order of dozens of milliseconds, which makes this
additional microsecond-level latency even less relevant.

On the other hand, if our thread/(Re)Actor is overloaded (so the
queue starts to grow), it can cause additional latencies, and very easily
too. However, this type of delay is not specific to (Re)Actors; if we’d
implement the same thing with a large mutex on the same state as the
(Re)Actor, we’d only make the situation worse.181

179 Assuming that the thread is not busy doing something else, and that there are available CPU cores
to run it.

180 Introduced by a reasonably well-designed message marshalling/unmarshalling + reasonably well-
designed inter-process single-reader queue.

181 Strictly speaking, there may be situations when splitting one big (Re)Actor state into two smaller
sub-states, each sub-state protected with its own mutex, can help to reduce the bottleneck;
however, splitting one big (Re)Actor into two independent Shared-Nothing (Re)Actors along the
same lines will help even more. Moreover, in all-real-world-cases-I’ve-seen, whenever a split of
(Re)Actor state was possible, splitting to two (Re)Actors was also possible (and was universally the
only viable option, at least for app-level code).

Why have all those
queues if we need
absolutely the best
possible latency?

298 · CHAPTER 6. Client-Side Architecture

To summarize:
♦♦ I don’t think the additional single-digit-microsecond delay

due to Queues can possibly have any effect that is visible to the
end-user.182

♦♦ If the (Re)Actor gets overloaded, it can cause lots of latencies.
This effectively means that the (Re)Actor’s state needs to be split,
and the best way to do so is usually via splitting the overloaded
(Re)Actor into two Shared-Nothing (Re)Actors.

(Re)Actor-fest Variations
Fig 6.3 shows each of the (Re)Actors running within its own thread.
On the other hand, as noted above, each of the (Re)Actors can be run
in the same thread as the Game Logic (Re)Actor. In the extreme case,
it results in a system where all the (Re)Actors are running within a
single thread, and a corresponding diagram is shown in Fig 6.4:

Each and every one of the (Re)Actors in Fig 6.4 is exactly the same
as a corresponding (Re)Actor in Fig 6.3; moreover, logically these two
diagrams are exactly equivalent (and the “recording” made within

182 That is, if queues are implemented properly, and if there are idle cores most of the time.

Logically, Fig 6.3
and 6.4 are exactly
equivalent.

 (Re)Actor-fest Client-Side Architecture · 299

To summarize:
♦♦ I don’t think the additional single-digit-microsecond delay

due to Queues can possibly have any effect that is visible to the
end-user.182

♦♦ If the (Re)Actor gets overloaded, it can cause lots of latencies.
This effectively means that the (Re)Actor’s state needs to be split,
and the best way to do so is usually via splitting the overloaded
(Re)Actor into two Shared-Nothing (Re)Actors.

(Re)Actor-fest Variations
Fig 6.3 shows each of the (Re)Actors running within its own thread.
On the other hand, as noted above, each of the (Re)Actors can be run
in the same thread as the Game Logic (Re)Actor. In the extreme case,
it results in a system where all the (Re)Actors are running within a
single thread, and a corresponding diagram is shown in Fig 6.4:

Each and every one of the (Re)Actors in Fig 6.4 is exactly the same
as a corresponding (Re)Actor in Fig 6.3; moreover, logically these two
diagrams are exactly equivalent (and the “recording” made within

182 That is, if queues are implemented properly, and if there are idle cores most of the time.

Logically, Fig 6.3
and 6.4 are exactly
equivalent.

the architecture on Fig. 6.3, can be “replayed” on architecture shown
in Fig. 6.4 and vice versa). The only difference in Fig 6.4 is that we’re
using the same thread (and the same Queue) to run all our (Re)Actors.
(Re)Actor Selector here is just a very dumb piece of code, which looks
at the destination-(Re)Actor field (set by whoever-sent-the-event) and
routes the event accordingly.

This kind of threading could be quite practical, for example, for a
casino or a social game. However, not all the platforms allow you to
wait for the select() in the main graphics loop, so you may need to resort
to another variation, shown in Fig 6.5:

Here Sockets Thread is very simple and doesn’t contain any substantial
logic; all it does is merely push whatever-it-got-from-Queue to the
socket, and pushing whatever-it-got-from-socket to the Queue of the
Main Thread; all the actual processing will be performed there, within
the Communications (Re)Actor.

300 · CHAPTER 6. Client-Side Architecture

An architecture shown in Fig 6.5 (and its variation with Commu-
nications (Re)Actor moved to Socket Thread) will work for a social or
casino-like game on Windows, with Main Thread in Fig 6.5 being your
usual Windows UI thread, and all the communications with it going via
Windows messages.183

On the other end of the spectrum of different Client-Side variations
of the (Re)Actor-fest architecture lie such heavyweight implementa-
tions as the one shown in Fig 6.6:

Here, the Animation&Rendering (Re)Actor and the Communications
(Re)Actor run within their own processes. This approach might be useful
during testing (in general, you may even run (Re)Actors on different develop-
ers’ computers if you prefer this kind of interactive debugging); in particular,
I observed it to be useful to answer a pretty nasty and fingerpointing-risky

183 While on Windows it is easy to create both “|select()” and “|user-input” queues, creating one
single queue that will be both “|select()” and “|user-input” simultaneously is not that trivial — which
makes configurations such as the one in Fig. 6.5 quite a logical choice. For more details on implementing
these and other queues, see Vol. V’s chapter on C++.

 (Re)Actor-fest Client-Side Architecture · 301

question of “which of the (Re)Actors is responsible for memory corruption.”
However, for production, it is better to avoid such configurations, in partic-
ular as inter-process interfaces may help bot writers.

Overall, the whole point of the variations shown above is not to
demonstrate all the viable configurations, but rather to demonstrate
that:

a) There are lots of different configurations that we can build
using exactly the same (Re)Actors.

b) That with (Re)Actors, configurations can be changed as
desired at later stages of development and deployment (among
other things, it means that our current choice is not that
important, as it can be easily changed later).

c) That different configurations can be useful in practice.
From a practical perspective (and keeping (b) in mind), what really

matters is that

As long as you’re keeping your development model
(Re)Actor-based, you can deploy it any way you like

without any changes to your (Re)Actors.

In practice, this property has been observed as providing quite significant
help in the long run. While this effect has significantly more benefits on
the Server-Side,184 it has been seen to aid Client-Side development too;
for example, different configurations for different platforms do provide
quite a bit of help. In addition, situation-dependent configurations have
been observed to help a bit during testing (including in-production
testing).

On Code Bases for Different Platforms
As mentioned above, you SHOULD keep your Game Logic (Re)Actor
the same for all the platforms (i.e., as a single code base). Otherwise,
given the frequent changes to Game Logic, all-but-one of your code
bases will most likely start to fall behind, to the point of being com-
pletely useless.

184 Which will be discussed in Vol. III’s chapter on Server-Side Architecture.

There are lots of dif-
ferent configurations
that we can build
using exactly the same
(Re)Actors.

302 · CHAPTER 6. Client-Side Architecture

But what about those other (Re)Actors? Do you need to keep them
as a single code base? The answer here is quite straightforward:

While the (Re)Actor-fest Architecture shown above allows you
to make non-Game-Logic (Re)Actors platform-specific, it is

usually better to keep them the same — as long as possible.

For example, if your game is graphics-intensive, there can be really good
reasons to have your Animation&Rendering (Re)Actor different for
different platforms; for example, you may want to use DirectX on some
platforms, and OpenGL on other platforms (granted, it will be quite
a chunk of work to implement both, but at least it is possible with the
architecture above, and under certain circumstances it MAY become
a potentially viable business choice, especially as the OpenGL version
and DirectX version can be developed in parallel).

On the other hand, chances that you will need the platform-specific
Communications (Re)Actor are much lower.185 Even if you’re writing
in C/C++, usable implementations of Berkeley sockets exist on most
(if not on all) platforms of interest. Moreover, the behavior of sockets
on different platforms is quite close from the game developer’s point of
view (at least with regard to those things that we are able to affect).

As a result, while such choices are obviously specific to your spe-
cific game, statistically there should be more Animation&Rendering
(Re)Actors than Communications (Re)Actors — and, in a heavy
cross-platform development, using the same Communications
(Re)Actors across different platforms can save you a bit of work too.

Scaling (Re)Actor-fest Architecture on the Client
If your existing 3D engine is too CPU-hungry to fit on one single CPU
core, and either your Game Logic Thread or your Animation&Ren-
dering Thread become overloaded, you might need to introduce an
additional thread or five into the picture. This is especially likely for
the Animation&Rendering Thread/(Re)Actor if your game uses serious
3D graphics. While complexities of the threading model for serious 3D

185 I don’t count conditional inclusion of WSAStartup(), and wrapping error handling as being really
platform-specific.

If your game is graph-
ics-intensive, there
can be really good
reasons to have your
Animation&Rendering
(Re)Actor different for
different platforms.

If your existing 3D en-
gine is too CPU-hungry
to fit on one single
CPU core, you might
need to introduce an
additional thread or
five into the picture.

 (Re)Actor-fest Client-Side Architecture · 303

graphics engines are well beyond the scope of this book, I will try to pro-
vide a few hints for those who’re just starting to explore that direction.

As usual with multithreading, if you’re not careful, things can easily
become ugly, so in this case:

First, take another look if you have some gross
inefficiencies in your code.

It is usually much better to remove these inefficiencies rather than trying
to parallelize. For example, if you’re performing an O(N2) sort over a
10K-element collection, it is much better to switch to some O(N*logN)
algorithm rather than try getting more and more cores working on
unnecessary stuff. On the other hand, I am not talking about 20% opti-
mization here — such relatively minor gains are unlikely to prevent the
need to parallelize in the long run; however, any potential improvement
of 2x and more (and in the big-O example above, the difference was in
thousands) does have the chance to save you from multi-threading.

If all the algorithms are already within reason, we’re more or less
bound to parallelize. However, when doing it, we need to keep in mind
that any additional threads add to the overhead; in other words, most
often throughput_of_your_algo_on_N_cores will be less than N*through-
put_of_the_same_algo_on_single_core. In the real world, I’ve even seen
implementations where throughput_on_N_cores was less than through-
put on a single core(!). And it wasn’t a part of the exercise in malicious
coding; it just so happened that thread-switching overhead was too
large compared to the useful tasks (which happened to be very small).

This leads us to one all-important observation:

To be efficient, parallelism SHOULD be coarse-grained.

As noted in [Li, Ding and Shen], a context switch can easily cost as much
as 100K-1M CPU clock cycles. It means that if you will try to perform
a calculation worth 1K CPU cycles in a separate thread, overheads are
likely to be huge. Even if your calculation-to-be-performed-in-a-sep-
arate-thread is worth 1M CPU cycles, you still may feel the overhead
(though TBH, for real-world tasks and computing 1M-cycle chunks, it

304 · CHAPTER 6. Client-Side Architecture

is quite unlikely). NB: for GPGPU programming things are very different
and outside the scope of our current discussion.

Parallelizing Client-Side (Re)Actors

By this point, you have already established that you DO need some kind
of parallelization. As discussed in Chapter 5, there are several different
options to scale/parallelize your (Re)Actors. Let’s see how these options
apply to our Client-Side (Re)Actor-fest architecture.

Option A. System-on-a-Thread. In some cases, you may be able
to split your CPU-hungry (Re)Actors into several less CPU-hungry
ones, and limit interaction between them to messages. In fact, we’ve
already done a bit of it in our (Re)Actor-fest architecture as shown
in Fig. 6.3, separating our Client into several (Re)Actors (which can
run in separate threads, and which can be executed on different CPU
cores). In practice, for the Client-Side this is not that likely to work
beyond what is shown in Fig. 6.3, due to an observation that most of
our CPU-hungry calculations will need access to pretty much the same
Game World States186 (and copying major parts of the game state via
messages-sent-on-each-frame can be rather inefficient).

Option A1. System-on-a-Thread with Mirrored State. This option in-
volves keeping not one, but two copies of the Game State. While one copy is
being modified, another is being rendered. In the 3D world, this approach
is well-known and was used in particular in Halo engine by Bungie ([Chen,
Silvennoinen and Tatarchuk], [Tatarchuk]). Essentially, with Mirrored State
(and one mirror), we can use up to two cores (one core working with one
copy of Game State, and another core working with another copy).

Option A2. System-on-a-Thread with (Re)Actor-with-Ex-
tractors. In a further improvement over State Mirroring, we can use the
(Re)Actor-with-Extractors, which was discussed in Chapter 5. It is the
architecture that was used in the Destiny engine by Bungie [Tatarchuk].
The idea here is to keep Game State as read-only for some time once
per tick, allowing several “extractors” to work in parallel on the Game
State and to extract whatever information they need. Then, after the
extraction phase is completed, threads that ran extractors may proceed

186 Usually, the Server-Side State for Game Logic (Re)Actor, and usually-the-even-larger Client-Side
State for the Animation&Rendering (Re)Actor.

In some cases, you
may be able to split
your CPU-hungry
(Re)Actors into several
less CPU-hungry ones,
and limit interaction
between them to
messages.

 (Re)Actor-fest Client-Side Architecture · 305

with their work (NOT touching the Game State anymore), while the
main thread may proceed with modifying the Game State. For a more
detailed description of this approach, see Chapter 5.

One Good Thing™ about all the System-on-a-Thread approaches (with
or without State Mirroring or (Re)Actor-with-Extractors) is that System-
on-a-Thread is inherently coarse-grained. Good for us, for performance,
and (arguably) for the environment.187 Oh, and System-on-a-Thread keeps
all the (Re)Actor-based goodies mentioned in Chapter 5, too (including
but not limited to “replay testing” and production post-factum analysis).

Option B. Offloading. A subtly different option is to “offload” some
of the processing to a different “calculating” thread, with this “calculat-
ing” thread being just as all the other threads in Fig 6.3; in other words,
it should have an input queue and a (Re)Actor within. This directly
corresponds to “Task-Based Multithreading” described in [Fosner].

The idea here is that whenever our main (Re)Actor thread (the
one running one of those CPU-hungry (Re)Actors) has something to
calculate, it can send a message to the “calculating” thread, “offloading”
the calculation there. And after doing its (very isolated) part of the
job, a.k.a. “task,” the calculating thread may report back to whichev-
er-thread-has-requested-its-services.

In a sense, “offloading” can be seen as an incarnation of System-
on-a-Thread, with the (Re)Actor dedicated for use for offloaded cal-
culations, and effectively having no state (as all the data necessary to
perform calculations is passed to it via the messages).

The way “task offloading” is done depends on the implementation
specifics. In some implementations, we MAY use data-driven pipelines
(similar to those described in [Fosner]) to enable dynamic task balanc-
ing, which allows us to optimize core utilization on different platforms.
For serious calculations, we can even use a library such as HPX (for
a discussion on HPX, see Chapter 5). However, from what I’ve seen,
implementations based on simple non-blocking RPC calls (using one
of the ways described in Chapter 5) are usually more popular.

187 Well, those CPU cycles burned by unnecessary overheads do contribute to unnecessary energy
consumption, and to global warming too. If our game burns 10 unnecessary watts per Client,
and we have a million simultaneous players, we’re talking about 10 MW of unnecessary power
consumed, which roughly corresponds to 65’000 metric tons of CO2 per year, or to yearly emissions
from 14’000 cars [EPA].

The off-loading option,
just like System-on-a-
Thread, allows us
to keep all the
(Re)Actor-based
goodies for all parts of
your Client.

306 · CHAPTER 6. Client-Side Architecture

The offloading option, just like System-on-a-Thread, allows us to
keep all the (Re)Actor-based goodies for all parts of your Client. How-
ever, coarse-grain parallelism, while encouraged by offloading, tends to
be a bit worse than with System-on-a-Thread. On the plus side (com-
pared to System-on-a-Thread), offloading tends to allow for simpler (or
better) load balancing between different CPU cores.

Option C. Traditional Multi-Threading. The third option we have is
to throw away all the “replay debugging” and post-factum analysis benefits
for one specific too-heavy-for-one-single-core (Re)Actor, and to imple-
ment this single (Re)Actor using multi-thread in-whatever-way-you-like
(for example, using traditional inter-thread synchronization stuff such as
mutexes, semaphores, or Dijkstra forbid, memory fences etc., etc.).

This is a very dangerous option, and my advice is to avoid it for new
development as long as possible. However, if you have an existing 3D
rendering code base that already works, well, this option may become
rather viable.

Also, if you want to use Option C for your Game Logic, think twice,
and then think twice more. As Game Logic is the one that changes a
damn lot, with Option C this has all the chance of becoming unman-
ageable (see, for example, [Hare]). It is that bad that if your Game Logic
needs to run over multiple cores, and without ability to use System-on-
Thread or Offloading, I would seriously think whether the Game Logic
requirements are feasible to implement (and maintain) at all.

In any case, if going the way of Option C, your multi-threaded
Option-C Module SHOULD look as a normal (Re)Actor from the
outside. In other words, multi-threaded implementation SHOULD be
just this: an implementation detail of this particular kinda-(Re)Actor,
and SHOULD NOT affect the rest of your code. This is useful for two
reasons. First, it decouples things and creates a clean, well-defined
interface; and second, it allows you to change implementation of this
specific kinda-(Re)Actor (or add another one — for example, for a
different platform) without rewriting the whole Client.

With this in mind, it should be noted that even in case you’re forced
to use Option C, you should be losing (Re)Actor-related benefits (such
as “replay testing” and post-factum analysis) only for that specific kin-
da-(Re)Actor, which uses Option C; all the other (Re)Actors will still
remain deterministic (and therefore, easily testable) <phew />.

If you want to use Op-
tion C for your Game
Logic, think twice, and
then twice more.

 (Re)Actor-fest Client-Side Architecture · 307

Summary of (Re)Actor-fest Architecture on
the Client-Side
Let’s summarize our findings about the (Re)Actor-fest Architecture for
the Client-Side, as shown in Fig 6.3 (as well as variations from Fig 6.4-
Fig.6.6). Overall, it is quite an interesting beast.

First, let’s note that while it does ensure a clean separation between
parts ((Re)Actors in our case), it tends to go against (IMNSHO rather
outdated) API separation techniques of COM-like components. The
key difference between (Re)Actors and COM-like components is that
COM-like components are essentially based on blocking RPC, so after
you called a COM-like RPC, you’re blocked until you get a reply. With
(Re)Actor-based architecture from Fig 6.3-6.6, even if you’re requesting
something from another (Re)Actor, you still can (and usually should)
process events coming while you’re waiting for the reply. For further
details, see the detailed discussion on non-blocking processing in
Chapter 5.

From my experience, while developers usually see this kind of
(Re)Actor-based programming as somewhat more cumbersome than
usual procedure-call-based programming, after trying it most agree
that it is beneficial in the medium to long run. As advantages of our
(Re)Actor-fest architecture, we can list:
♦♦ Very good separation between different modules ((Re)Actors).

With the only way of communication being via message-oriented
APIs, (Re)Actors tend to be isolated very nicely (sometimes even
a bit too nicely, but this is just another way to see the “somewhat
more cumbersome” negative mentioned above).

 ▪ Each of the modules is very much self-contained, which
helps to both (a) separate the work of different teams and
(b) organize testing.

♦♦ Goodies such as “replay-based regression testing” and post-factum
analysis. See Chapter 5 for details.

♦♦ Very good performance. The point here is that with a
(Re)Actor-fest architecture, context switches are kept to the
absolute minimum, and each thread is working without any un-
necessary pauses (and without any overhead associated with these
pauses) as long as it has something to do.

Most developers agree
that (Re)Actor-based
programming is bene-
ficial in the medium to
long run.

308 · CHAPTER 6. Client-Side Architecture

 ▪ On the flip side, the (Re)Actor-fest doesn’t provide inherent
capabilities to scale each (Re)Actor beyond one single core;
however, scaling a (Re)Actor-fest to a limited number of
CPUs (like scaling to 4-6 cores), even for a single Game
World, is perfectly achievable — in particular, along the
lines of the (Re)Actor-with-Extractors described above.

PROGRAMMING LANGUAGE FOR
GAME CLIENT
All those diagrams and discussions are grand and dandy, but we still
need something-to-write-our-Game-Client-with. In other words: we
need to choose a programming language for our Client.

Some of you may ask “what is the Big Fat Hairy Difference™ between
choosing a programming language for the Game Client, and choosing
a programming language for any other programming project?” Fortu-
nately or not, in addition to all the usual language holy wars,188 there are
some subtle considerations that make programming language choices
for the Game Client different; we’ll discuss some of these peculiarities
below.

188 Between strongly typed and weakly typed programming languages, between compiled and
scripted ones, and between imperative and functional languages, just to name a few.

 Programming Language for Game Client · 309

One Language for Programmers, Another for
Game Designers (MMORPG/MMOFPS etc.)
First, let’s note that in quite a few (or maybe even “most”) development
environments, there is a practice of separating game designers from
programmers (see the On Developers, Game Designers, and Artists
section above). This practice is pretty much universal for MMORPG/
MMOFPS, but can be applicable to other genres too (especially if your
game includes levels and/or quests that are designed by hand).

In such cases, it is quite common to use two different programming
languages for the Game Client. One of these programming languages
is (roughly) intended for programmers, and another is (even more
roughly) intended for game designers. For example, Unreal Engine 4
positions C++ for developers, and Blueprint language for game design-
ers. Amazon Lumberyard189 goes further and supports three(!) different
languages: C++, Lua, and Flowgraph. And just for the record (and as
our micro-overview of popular game engines won’t be complete with-
out it), it is worth noting that while Unity 3D doesn’t insist on using
different languages for programmers and designers (so you can use C#
as a scripting language), pretty often you’ll still use C# for programming
and UnityScript/JavaScript for designer-written scripts.

While having two programming languages within your Game
Client is not fatal, it has some important ramifications. In particular,
you need to keep in mind that whenever you have two programming
languages, the cheater (bot writer/reverse engineer/etc.) will usually
attack you through the weakest one. In other words, if you’re using
both C++ and JavaScript within your Client, it is JavaScript that will be
reverse-engineered (that is, if JavaScript allows us to manipulate those
things that are needed for the bot writer — but usually it does).

Let’s also note that at least in theory, as long as you’re using
(Re)Actor-fest architecture, you MAY use different programming lan-
guages for different (Re)Actors (and quite easily too). However, doing
so would mean having more-than-one language for programmers (and
in addition to any programming language(s) for designers), and this
has its drawbacks for the Game Client (in particular, it would further

189 Inheriting it from CryEngine, which Lumberyard is based on.

It is quite common
to have two different
programming languag-
es for the Game Client:
one (roughly) intended
for programmers, and
another (even more
roughly) intended for
game designers.

310 · CHAPTER 6. Client-Side Architecture

facilitate reverse-engineering attacks, and also additional overall com-
plexity is rarely worth doing it this way — on the Client-Side, that is).
On the other hand, if your languages on the Client-Side and Server-Side
are different, and you need to re-use some Server-Side code on the
Client-Side (for example, because you’re using Client-Side Prediction),
your best option MIGHT be to do exactly this; more discussion on it
in the On Consistency Between Client-Side and Server-Side Languages
section below.

A Word on CUDA and OpenCL
I wanna show you something. Look, Timon. Go on, look.

Look out to the horizon, past the trees, over the grasslands.
Everything the light touches...

[sharply] belongs to someone else!
— Timon’s mom, Lion King 1½

If your game is an inherently 3D one, it normally means that you have
a really powerful GPU at your disposal on each and every Client. As a
result, it can be tempting to try using this GPU as a GPGPU, utilizing
all this computing power for your purposes (for example, for physics
simulation or for AI).190

Unfortunately, on the Client-Side, players’ GPU is usually already
pushed to its limits (and often beyond), even when all it does is ren-
dering. This means that if you try using GPU for other purposes, you’re
likely to sacrifice fps, and this is usually a Big No-No™ in 3D game
development. This is pretty much why while in theory CUDA (and/or
OpenCL) is a great thing to use on the Game Client, it is rarely used for
games in practice. In short, don’t hold your breath about using available
GPU power as a GPGPU; not because this power is insufficient (it is
not), but because it is already used.

On the other hand, let’s keep in mind that the question of using
CUDA/OpenCL on the Server-Side is different; we’ll discuss it a bit in
Vol. III’s chapter on Server-Side Architecture.

190 And yes, I’ve heard this argument quite a bit — at least from indie developers.

GPGPU
General-purpose
computing on graphics
processing units
(GPGPU, rarely GPGP
or GP²U) is the use of
a graphics processing
unit (GPU), which
typically handles
computation only for
computer graphics, to
perform computation
in applications tradi-
tionally handled by
the central processing
unit.

—Wikipedia

 Programming Language for Game Client · 311

Different Languages Provide Different
Protection from Bot Writers
As was discussed in Vol. I’s chapter on Cheating, as soon as your mul-
tiplayer game becomes successful, it becomes a target for cheaters. A
short recap. For an MMORPG, you can be pretty sure that there will
be people writing bots; these bots will “grind” through your RPG, will
collect some goodies you’re giving for this “grinding,” and will sell these
goodies, say, on eBay. And as soon as there is a financial incentive for
cheating (and selling on eBay certainly creates one), cheaters will be
abundant. For other genres, such as MMOFPS or casino multiplayer
games, bots (including aimbots, wallhacks/maphacks, grinding bots,
etc.) tend to be at least as popular.

And if cheaters are abundant, and cheaters have significant advan-
tage over non-cheating players, your whole game becomes at risk (in the
ultimate case, your non-cheating players will become so frustrated that
your game is abandoned). As a result, you will find yourself in an un-
pleasant, but necessary, role of policeman who needs to pursue cheaters
so that regular non-cheating players are not at a significant disadvantage.

The problem of bot fighting is extremely common and well-known
for MOGs; unfortunately, there is no “once and for all” solution. In the
best case,191 bot fighting is a two-way battle, with bot writers inventing
a way around the MOG defenses, and then MOG developers striking
back with a new defense against the most recent attack; rinse and repeat.

We’ll discuss bot fighting in detail in Vol. VIII’s chapter on (not too
surprisingly) Bot Fighting, but, at the moment, we won’t delve into the
details of this process; all we need at this point is two observations:
♦♦ For bot fighting, every bit of protection counts (this can be seen as

a direct consequence of the battle going back and forth between
bot writers and MOG developers).

♦♦ Reverse engineering is a cornerstone of bot writing.
From these, we can easily deduce that

For the Game Client, the more resilient the programming
language against reverse engineering, the better.

191 I.e. after you did your homework, and did spend time to architecture and implement your game
properly.

Game Bot
is a type of AI expert
system software that
plays a video game in
the place of a human.

—Wikipedia

Bot fighting is always
a two-way battle, with
bot writers inventing a
way around the MOG
defenses, and then
MOG developers strik-
ing back with a new
defense against the
most recent attack;
rinse and repeat.

312 · CHAPTER 6. Client-Side Architecture

Resilience to Reverse-Engineering of Different
Programming Languages

Now let’s take a look at different programming languages and their
resilience to reverse engineering. In this regard, most practical pro-
gramming languages can be divided into three broad categories.

Compiled Languages192

Whether as a developer you like compiled languages or not, they clearly
provide the best protection from reverse engineering.

And from all the popular compiled languages, C/C++ languages tend
to produce the binary code, which is the most difficult-to-reverse-engi-
neer (that is, provided you have turned all the optimizations on, disabled
debug info, are not using DLLs, and are doing a dozen of other things;
more on it in Vol. VIII’s chapter on Bot Fighting). If you have ever tried to
debug at assembly level your “release” (or “-O3”) C/C++ code, compiled
with a modern compiler, you’ve certainly had a hard time understanding
what is going on there; this is even with you being the author of the
source code! C/C++ compilers are using tons of optimizations that make
machine code less readable; while these optimizations were not intended
to obfuscate, in practice they’re doing a wonderful job in this regard just
as a very-nice-for-our-purposes side effect <smile />. Throw in the heavy
use of allocations typical for C/C++,193 and you’ve produced a binary
code that is among the most obfuscated out there.

One additional phenomenon that helps C++ code to be rather-diffi-
cult-to-reverse-engineer is that even a single-line change in C++ source
code can easily lead to a vastly different executable; this is especially
true when the change is made within an inline’d function, or within a
C++ template.

BTW, if we try to compare C with C++ from the point of view
of reverse engineering, we’ll see that while C++ kinda-aids attackers
with RTTI and virtual method table pointers, C++ templates tend

192 Strictly speaking, protection is not related to programming language as such, but applies to each
compiler/interpreter separately. Still, for the sake of keeping things readable, let’s use the term
“language” for our purposes (with an understanding that there is compiled-to-native-code Java,
which is different from compiled-to-bytecode-Java, etc.).

193 In practice, it may be a good idea to throw in a randomized allocator, so that memory locations
differ from one run to another; ideally, it should be done in addition to any ASLR in use. More on it
in Vol. VIII’s chapter on Bot Fighting.

From all the popular
compiled languages,
C++ tends to produce
the binary code
that is the most
difficult-to-reverse-en-
gineer.

 Programming Language for Game Client · 313

to make the life of the attackers much more difficult. In other words
– anti-reverse-engineering-wise it is all about how we program in
C++, and we’ll briefly discuss it in Vol. IV’s chapter of Things to
Keep in Mind, and in much more detail – in Vol. VIII’s chapter on
Bot Fighting.

Compiled languages other than C/C++ tend to provide good pro-
tection too, though the following observation usually stands. The less
development time has been spent on the compiler, the less crazy opti-
mizations are usually present in generated binary code, and therefore
the more readable and more easy-to-reverse-engineer the binary code
is. In other words: it usually makes sense to pick the compiler that has a
looong development history behind it.

One last thing to mention with respect to compiled languages is that
while C++ usually provides the best protection from reverse engineer-
ing from the programming language side,

Using C++ doesn’t mean that your code won’t be cracked.

Anything that resides on the Client-Side is crackable by definition; the
only question is how long it will take attackers to do it (and there is a
big practical difference between being cracked in two days and being
cracked in two years, especially as we can usually release updates every
few weeks). Therefore, making all the other precautions against bot
writers, mentioned in Vol. IV’s chapter on Things to Keep in Mind (and
discussed at length in Vol. VIII’s chapter on Bot Writing), is still neces-
sary, even if you’re using C++. Moreover, even if you do everything that
I’ve mentioned in this book to defend yourself from bot writers, most
likely there still will be bot writers able to reverse engineer your Client
(or at least to simulate user behavior on top of it); however, with bots, it
is not the mere fact of their existence, but their numbers that count, so
every bit of additional protection does make a practical difference (for
further discussion on it, see Vol. I’s chapter on Cheating).

Languages That Compile to Bytecode

Compiling to bytecode (with the runtime interpreting this bytecode
in some kind of VM) is generally a very useful and neat technique.

314 · CHAPTER 6. Client-Side Architecture

However, as a Big Fat Rule of Thumb™, high-level bytecode tends to
be reverse engineered much more easily than a compiled binary code
(that is, unless you’re using a special closed-source anti-reverse-engi-
neering-VM with opcodes frequently changing and other obfuscation
techniques in use). There are many reasons for (well-known) bytecode
being less resilient to reverse engineering than machine code; for exam-
ple, function boundaries tend to be better visible within the bytecode
than with compiled languages, and in general bytecode operations
tend to have higher-level semantics than “bare” assembler commands,
which makes reverse engineering substantially easier. In addition, some
bytecode-executing VMs (notably JVM) have to verify the bytecode,
which makes it much more formalized and restricted (which in turn
limits options available for obfuscation).

It should be noted that JIT compilers don’t help to protect from the
reverse engineering; however, so-called Ahead-of-Time (AOT) Compil-
ers, such as GCJ194 or Excelsior JET, which compile source code into bi-
nary instructions, do help against reverse engineering (effectively moving
your language from a “Byte-Compiled” into “kinda-Binary-Compiled”
category). What really matters here is what you ship with your Client:
machine binary code or bytecode; if you’re shipping machine code,
you’re better than if you’re shipping byte code. This also means that
those “compile to .exe” techniques that essentially produce .exe consist-
ing of JVM and bytecode (such as jar2exe), do not provide much protec-
tion. Moreover, the “bytecode encryption” feature in such .exes is still a
Security-by-Obscurity feature,195 and (while being useful to scare away
some novice bot writers) won’t withstand an attack by a dedicated at-
tacker (in short: as decryption key needs to be within the .exe, it can be
extracted, and as soon as it is extracted, all the protection falls apart;
moreover, with Java custom class loaders, it is usually easy to find the
point where “decryption” is performed).

One pretty-weird-but-seemingly-working trick that MAY help to
improve the resilience of bytecode to reverse engineering is to recom-
pile your byte code into C++ source code, and then further compile
this generated C++ source code using a regular C++ compiler. This
trick is so important in practice that it is officially supported by Unity

194 Unfortunately, discontinued in 2016.
195 In fact, “scrambling” would be a fairer name for it.

High-level bytecode
tends to be reverse
engineered much
more easily than a
compiled binary code.

JIT
Just-in-Time (JIT)
compilation, also
known as dynamic
translation, is
compilation done
during execution of a
program – at run time
–rather than prior to
execution.

—Wikipedia

 Programming Language for Game Client · 315

via their IL2CPP compiler (though not because of anti-cheating). After
applying IL2CPP, you can expect resilience-to-bot-writers, which is
substantially better than that of the bytecode-given-to-the-Client, but
is still substantially worse than “native” C++ code (especially if we use
all the hardening trickery that we’ll discuss in Vol. VIII’s chapter on Bot
Fighting). Oh, and while we’re at it: when going this way, make sure
that you are compiling/linking your libil2cpp statically(!) — it is really
important for making a whole bunch of attacks more difficult.

Scripting/Interpreted Languages

From a reverse engineering point of view, scripting/interpreted pro-
gramming languages provide almost-zero protection. The attacker
essentially has your source code, and understanding what you’ve meant
there is only a matter of (quite a little) time. Ironically, the better your
scripting code is (i.e., the easier it is to read and maintain your code),
the easier it becomes for the attacker to reverse engineer.

Obfuscators, while improving protection a little against a casual
observer, are no match against dedicated attackers. <Bummer />. As
a rule of thumb, if you have interpreted language in your Client, you
will assume that whatever interpreted code is there will be reverse
engineered, and modified to the bot writer’s taste. Oh, and don’t think
that “we will sign/encrypt the interpreted code, so we won’t need to
worry about somebody modifying it”— exactly like with “bytecode
encryption,” it doesn’t really provide more than a scrambling (and
to make things worse, this scrambling can be broken at one single
point).

On asm.js, wasm, and Emscripten

While all the discussion above about scripting or bytecode-compiled
languages being easily crackable stands firmly in general, fortunately
for us there is one very interesting (and very practical) exception.

If we take C++ code, we can use Emscripten to compile our C++
into a special kind of kinda-assembler (such as asm.js or wasm). Then,
this asm.js/wasm can be run within some kind of browser’s VM (JS VM
for asm.js, and special wasm VM for wasm), effectively allowing us to
run C++ within the browser (!).

From a reverse engi-
neering point of view,
scripting/interpreted
programming languag-
es provide almost-zero
protection.

316 · CHAPTER 6. Client-Side Architecture

As a rule of thumb, while asm.js is able to run on pretty much any
reasonably-modern browser, without special optimizations (those tak-
ing into account the type information) it will be excruatingly slow (and
running wasm on a browser without special support for it, is outright
impossible). On the other hand, as of mid-2017, all the major browsers
(Chrome, Firefox, Safari, and Edge) do support both optimized-asm.js
and wasm; wasm performance on the major browsers is usually with-
in 2x from “native” C++ performance on the same platform [Zakai]
[Krause].196

As the icing on our current anti-reverse-engineering cake — with
emscripten, we can get obfuscation, which is even a bit better than that
of the traditional bytecode-compiled programming languages (the dif-
ference compared to other bytecode-compiled programming languages
is that asm.js and wasm code tends to be more low-level than them, and
also enjoys most of the obfuscations optimizations provided by a very
mature Clang compiler). On the other hand, asm.js/wasm resilience to
reverse engineering is still lacking compared to real C++-compiled-to-
machine-code.

A few notes in this regard:
♦♦ While emscripten is pretty good for obfuscation purposes, I have

no idea how other compilers (such as Cheerp) are doing in this
regard. At least some versions of Cheerp were mapping C++
structures into JS structures – and this practice, while potentially
having other virtues, leads to a reduction in anti-reverse-engi-
neering capabilities <sad-face />. On the other hand – this field
is evolving very rapidly, so it is always better to double-check it
yourself.197

♦♦ Compared to native binary-code C++, asm.js/wasm will still
provide substantially worse obscurity198 — in particular, due to:

 ▪ Obvious function boundaries.

196 Surprisingly, asm.js performance is in the same ballpark, but (a) asm.js suffers from significantly
longer startup times (due to parsing), and (b) performance tends to vary more significantly
between different browsers.

197 At least you should look at the generated code and try to understand what it does; if all you can
see is about as low-level as your usual asm — it should be okay.

198 While being orders-of-magnitude better than any other JS.

With emscripten, we
can get obfuscation,
which is even a bit
better than that
of the traditional
bytecode-compiled
programming
languages

 Programming Language for Game Client · 317

 ▪ Less (if any) asm operator rearranging happening within
LLVM asm.js/wasm back ends compared to x64/ARM/…
back-ends.

 ▪ Simpler-to-identify interactions with the rest of the system.
yy In particular, malloc() is often mapped directly

to the JS-level APIs. NB: this can be mitigated by
using our own sub-allocator on top of malloc()
calls (in a sense – using JS-level malloc() instead of
mmap()/ VirtualAllocEx()), but it requires quite a
bit of work.

♦♦ If you encrypt your traffic (which you SHOULD, at least to
deter proxy bots; see the discussion in Vol. VIII’s chapter on Bot
Fighting), you will face a dilemma: either use browser-provided
TLS (which will weaken your obfuscation greatly), or try
compiling your TLS library with emscripten (which has been
reported to work, but make sure to test its performance while a
computation-heavy public crypto is executed when establishing
TLS connection; also make sure to restrict your TLS to only
one protocol, and to disable as much unnecessary stuff as you
can during compile-time, to reduce the footprint of your TLS
library).

♦♦ All the usual C++ obfuscation measures (such as using STL,
templates, inlines, and custom allocators, and avoiding globals and
externalized functions) still apply; more on “how-to-make-your-
C++-code-more-difficult-to-reverse-engineer” will be discussed
in Vol. IV’s chapter on Things to Keep in Mind (and in Vol. VIII’s
chapter on Bot Fighting).

Summary

Our observations about the resilience of various programming languag-
es to reverse engineering can be summarized in the following Table 6.1
(all numbers are subjective and not to scale; they’re provided merely
to give an extremely rough idea of some relations between different
programming languages anti-reverse-engineering-wise):

318 · CHAPTER 6. Client-Side Architecture

Programming Language

Resilience to Reverse Engineering
(Subjective Guesstimate); on a
scale from 1 to 10 (with 10 being
“not able to break at all”)

C++ with heavy use of templates, lots of force-inlines, no RTTI, and
limited virtual functions (Release/-O3, no debug info, no DLLs) 8

C (Release/-O3, no debug info, no DLLs) 7.5

C++ with limited templates, with lots of virtual functions, and with RTTI 7

C++ compiled to asm.js/wasm (Emscripten) 6

C# recompiled into C++ using IL2CPP 5-6

Java or C# (compiled to binary with an AOT compiler) 5–6

Java or C# (compiled to byte code, obfuscated, and scrambled) 4

Java or C# (compiled to byte code) 3

JavaScript (obfuscated) 2

JavaScript 1

Note that in this table, I’m not trying to compare any of the other ad-
vantages/disadvantages of the listed programming languages; the point
of this exercise is to emphasize one single aspect that is very important
for game Clients, but which is overlooked way too often — and it is
resilience to reverse engineering. Also, just to avoid any doubts, I’m not
trying to say that you MUST program your Client in C++ no-matter-
what; what you should do, however, is take this table into account when
choosing programming language for your Game Client.

 Programming Language for Game Client · 319

Language Availability for Client-Side
Platforms
The next very important consideration when choosing a programming
language is “whether it will run on all the platforms you need.” While
this requirement is very common not only for games, it still has certain
specifics in the game-development world. In particular, the list of the
Client platforms is not that usual.

In Table 6.2 below, I’ve tried to gather as much information as
possible about the support of different programming languages for
different Client-Side game platforms.

Windows Mac OS X PS4199 XBox
One 199 iOS 199 Android Browser

C/C++200
Native Native Native Native Native Native201 Emscripten

Objec-
tive C

GNUStep Native No No Native No No

Java

Oracle, can
be distribut-
ed with the
game

Oracle, can
be distribut-
ed with the
game

Not
really202

Not
really202

Oracle
MAF

Native,

Oracle
MAF

Oracle, usually requires
separate install,

or GWT

C#
Native Mono Monogame Native Xamarin Xamarin JSIL, Bridge.NET,

or IL2CPP+Em-
scripten

HTML 5/
Java
Script203

Native Native Native Native Native Native Native

199 Not accounting for jail-broken devices.
200 Caution required to achieve cross-platform code; see Vol. IV’s chapter on Things to Keep in Mind.
201 Via NDK.
202 Well, you can write your own JVM and push it there, but…
203 Compatibility and capabilities are still rather poor.

Will it run on all the
platforms I need?

320 · CHAPTER 6. Client-Side Architecture

Note that Flash, once the king of browser-based development, has
already gone from “pretty much dead” into the “officially pronounced
dead” category, so it is not even in the table above (~=”I certainly don’t
recommend it for any kind of new development”).

On Garbage Collection
These days, most programming languages out there are garbage collect-
ed (with C/C++ and Rust being the only exceptions I know of). I don’t
want to start yet another flame-infested debate of “whether garbage
collection is a Good Thing™ or a Bad Thing™”, and will just mention
that IMO, the pros and cons of GC’d programming languages vs non-
GC’d programming languages are well-balanced. In particular, GC pros
include:
♦♦ Shorter learning curve (to start programming, that is)
♦♦ Faster development (as a rule of thumb)
♦♦ No syntactic memory leaks (though see below on semantic memo-

ry leaks)
♦♦ No dreaded memory corruptions that are next-to-impossible to

find
However, these pros are quite well-balanced with GC cons (that’s even
if you’re NOT using finalize() / Finalize() / __del__() etc., which you
really shouldn’t; see a bit of discussion on it in Chapter 5):
♦♦ Significantly higher risk of “semantic memory leaks,” especially by

those-programmers-who-skipped-the-long-learning-curve.
 ▪ For a discussion on the differences between “syntactic” and

“semantic” garbage and memory leaks, see, for example,
[Wikipedia, Garbage (computer science)].

 ▪ Sure, these leaks are avoidable, but avoiding them requires
the effort that is IMNSHO comparable to the effort to avoid
syntactic memory leaks in C/C++ (after all, placing = null
all over the code is not that much different from placing
deletes in more or less the same places).

 ▪ In practice, it often leads to an outright memory bloat
(OpenHAB or Eclipse anyone?)

♦♦ Stop-the-World problem:

 Programming Language for Game Client · 321

 ▪ As we’ll see below, avoiding it for fast-paced games will
often require very significant efforts.

While most of the items are self-explanatory, the Stop-the-World one
is unusual enough (and is very important especially in the context of
fast-paced games) to discuss in more detail.

On “Stop-the-World” Problem

One thing that plays quite a significant role when choosing a program-
ming language for a really fast-paced game (think first-person shooter)
is garbage collection and the “stop the world” (STW) problem.

Very briefly: if your programming language is garbage-collected,
you may face an unpleasant problem when programming your fast-
paced game. The problem is that most garbage collector implementa-
tions out there are using so-called “stop-the-world” garbage collection,
at least at some points in their life cycle.

In short: from time to time, the whole runtime needs to be stopped
for some milliseconds (or seconds(!)) to collect your garbage (or
at least to start or stop collecting your garbage). This, in turn, causes
“micro-freezes” to your game code. If your game is not too fast, you
won’t even notice these micro-freezes (your threads will be just silently
suspended for the duration of STW, and the only thing that changes
is wall-clock time). However, if we’re talking about MMOFPS, or a
fast-paced MMORPG, STW can easily kill player experience unless it
is kept in check.

First, let’s note that

Some production-level Garbage Collectors can easily cause
STW pauses as long as single-digit-seconds(!!)

That-long-STW-times were a Really Big Problem™ fifteen years ago;
these days, quite a few runtimes (especially those for Java and C#) do
provide garbage collectors that are trying to push most of the GC work
into the other threads, therefore reducing (though usually not com-
pletely eliminating) time for stopping the world. By mid-2010s, the best

From time to time,
the whole runtime
needs to be stopped
for some milliseconds
to collect your
garbage, which causes
“micro-freezes” for
your game.

322 · CHAPTER 6. Client-Side Architecture

of the “stock” garbage collectors204 for Java/C# improved STW pauses to
about 50-150ms205 (see, for example, [Shaya], and [Warren, Measuring
the impact of the .NET Garbage Collector]+[Warren, Measuring the
impact of the .NET Garbage Collector - An Update]). BTW, as a rule
of thumb, the smaller the STW pauses are, the less GC performance is
(and a 20% performance penalty in exchange for smaller STW is not
unheard of).

It should be noted that it is possible to reduce STW times further.
In particular, Zing Java runtime (see [AZUL Systems]) claims to reduce
STW times down to single-digit milliseconds. Still, while I agree that
their approach (as discussed in [Tene, Iyengar and Wolf]) seems to be
solid, I didn’t try their implementation, so I cannot vouch for it. Even
more importantly, they support only Linux (and as they seem to require
a kernel-level driver to work(!), cross-platform support doesn’t look
likely), so for our current Client-Side discussion it is not really applica-
ble. In theory, there is also a Metronome family of “incremental” GCs
(see [Bacon, Cheng and Rajan]) (with the idea behind to make each
change very small, so that collection never causes an STW for more
than a few hundred microseconds), but I don’t know of their use for
games either.

In short: as of 2017, if we’re on the Client, it seems that we’re still
more or less stuck with STW pauses of around 50-150ms; however, if
taking a closer look, we’ll notice that these STW times are inevitable
only when we’re talking about pretty big apps having multi-gigabyte
memory usage and lots of allocations/deallocations. Apparently, we can
reduce STW times by the way we program, so for our game STW times
will be lower.

If our game won’t tolerate 150ms delays while we still want to use
a garbage-collected language, we can (and usually SHOULD) do the
following:
♦♦ Avoid swapping. For most GC implementations out there, swap-

ping is an absolute killer (a 5-minute swap isn’t that rare, especially
when it comes to GC). To avoid swapping, I know of two very
different approaches:

204 And configured to minimize STW.
205 Yes, in GC world it was a big improvement(!).

Apparently, we can
reduce STW times by
the way we program,
so for our game STW
times will be lower.

 Programming Language for Game Client · 323

 ▪ Good One™. Reducing memory consumption by your
program (which is a good thing, even without the risk of
swapping, though TBH, on Client devices we always have
such risk206). In turn, reducing memory footprint (when
going beyond an obvious “don’t allocate whatever-you-
don’t-need”) for GC-ed languages often involves at least
two different techniques (both essentially aiming to remove
those semantic memory leaks that tend to plague GC-ed
programs so much):

yy The Big One. Assigning null to those data members
that are no longer necessary (or removing the
no-longer-necessary reference from collection). The
problem we’re addressing here is that whenever we’re
leaving no-longer-necessary data with a reference
to it, by the very idea of GC it causes the data to be
kept while the reference to that not-necessary-any-
more-object still exists. In practice, these no-lon-
ger-necessary references is one of the largest sources
of those semantic memory leaks mentioned above.

yy In a sense, assigning null as soon as the object is
no longer needed is very similar to C++’s delete
(it happens at the same places, causes pretty much
the same results, etc.). So in case you thought that
in GC’ed language there is no need to do manual
memory management, think again </trolling> (see
also below on weak references).

yy I’ve heard arguments that manual assignment of nulls
is no longer necessary (because the newer, better
compiler will handle it for you automatically); well, it
still is (and there is no foreseeable way to avoid it in
the future; moreover, as [Wikipedia, Garbage (com-
puter science)] says, identifying semantic garbage in
a general case is an undecidable problem).207

206 Except for some of the consoles.
207 What DID improve is automated null-ifying of no-longer-used local (on-stack) references, which is trivial

and can indeed be done automagically; however, automated null-ifying of on-heap references is a
semantic issue, which cannot possibly be solved by the compiler (it just cannot possibly know whether
you will need a referenced object in the future, unless you tell it explicitly by removing the reference).

324 · CHAPTER 6. Client-Side Architecture

yy A useful-but-more-tricky technique involves using
weak/soft references. In general, weak references can
be used to avoid some of the semantic memory leaks
(which effectively leads to reducing the memory
footprint and avoiding swapping) — though, keep in
mind that weak refs, when used to avoid semantic
leaks, require a very good understanding of what-
is-going-on (otherwise they can backfire, removing
that-object-that-you-need, earlier than you expect).
NB: in addition to removing semantic leaks, weak
refs (actually, in Java it is soft refs) can be used to
implement caches-that-are-automagically-dropped
when you’re running out of RAM; however, you
need to be very careful when using such caches for
fast-paced games (if you’re dropping caches, you’re
slowing down some part of the system, so you may
need to account for significantly slower loads from
your caches in some cases).

 ▪ Bad One™. Locking pages in memory (using mlock() or Vir-
tualLock()), or disabling swapping system-wide, which has
very similar effects. While these techniques are often useful
for soft-real-time Servers such as Game World Servers,
locking pages on Client PC (or asking the player to disable
swapping) is quite problematic. Oh, and BTW: if you didn’t
reduce memory consumption, then trying to lock your
whole multi-gigabyte working set into RAM won’t work, so
we’re pretty much back to square one.

♦♦ Make sure to use GC, which at least tries to reduce STW pauses.
 ▪ To make a shortlist of GC candidates, you may use data

from [Shaya] and [Warren, Measuring the impact of the
.NET Garbage Collector]+[Warren, Measuring the impact
of the .NET Garbage Collector - An Update].

 ▪ Make sure that good-enough GCs are available for all our
platforms.

 ▪ Make sure to test your GC-of-choice yourself (things do
change, and not always for the better), and on all your
platforms.

Weak refs (actually, in
Java it is soft refs) can
be used to implement
caches-that-are-au-
tomagically-dropped
when you’re running
out of RAM.

 Programming Language for Game Client · 325

 ▪ Moreover, we need to make sure to run ongoing tests with
GC STW measurements (methodics for STW measure-
ments can be found in the articles mentioned above) while
our game is being developed. It is pretty difficult to judge
the amount of “stutter” within your own game (especially
when most of the time it is run in debugger), so we need
to test it objectively and, moreover, there is nothing worse
than running such a test after your game is finalized — and
realizing that the results are pretty bad (which in turn can
require quite a bit of rewriting along the lines discussed
here).

♦♦ Reduce the number of allocations/deallocations (especially of
long-term allocations) as much as possible. Note that this point is
subtly different from reducing-the-memory-footprint discussed
above; here we’re talking about reducing the number of allocations/
deallocations, even if they’re not leaks and even if the total
memory footprint is the same. For example, if the same amount of
RAM can be allocated in two chunks or in one, we should prefer
the latter.

 ▪ If you’re writing a fast-paced game using a GC-collected
programming language, this should become a part of the
programming culture across the whole gamedev project.208

 ▪ Note that depending on the specifics of GC used, reducing
the number of allocations may either reduce STW times or
reduce the frequency of STW pauses, while keeping STW
pauses the same.

♦♦ Reduce the size of our garbage-collected heaps by splitting one
single heap into several. Doing so will reduce the amount of work
to be done on collection (in each of the heaps, that is), and will
shorten that dreadful STW time.

 ▪ Just as one example: if you run different processes, they
generally will use different instances of GC, which will lead
to smaller STW times for each.

208 Well, actually, even if you’re writing your fast-paced game in C/C++, avoiding allocations should
also be a part of your coding culture, though for slightly different reasons (more on it in Vol. IV’s
chapter on Things to Keep in Mind). Still, it is worth noting that C/C++ developers — who got
used to manual memory management from the very beginning — tend to use significantly fewer
allocations to start with.

To reduce STW time,
we can try to reduce
the size of our garbage
collected heaps (by
splitting one single
heap into several).

326 · CHAPTER 6. Client-Side Architecture

This goes very well alongside the Share-Nothing (Re)Actors dis-
cussed in the context of (Re)Actor-fest architecture above (by running
some (Re)Actors within a separate process). While on Clients you still
MAY have one of the (Re)Actors with a large state (usually an Anima-
tion&Rendering one; see also the Scaling (Re)Actor-fest Architecture on
the Client section below), you still MAY get a bit of STW time improve-
ment by separating all the other (Re)Actors into a separate process
(with its own GC).
♦♦ In some cases, you may be able to get away with allocating some of

your objects using some C/C++ (which in turn will allow you to
move these objects to a separate heap — which doesn’t need to be
GC-ed); this is doable at least in C# (via unmanaged code, BTW
this — to the best of my knowledge — is more or less what Unity is
doing), and in Java (via JNI).

♦♦ I’ve also heard about people trying to delay garbage collection until
“later” (to avoid stopping it “right now”), but I’ve never heard of
anything good coming from it. Very briefly, in a fast-paced game
there aren’t usually any “safe points” when it is safe to stop-the-
world.209

All in all, I’ve heard of decent fast-paced games written in the GC-col-
lected programming languages (at least Game Logic Module, that is);
however, when speaking to those developers who have done it, way too
often it became a story of “how we’ve spent several months wrestling GC
to work without STW pauses being noticeable”— and I’ve even heard
of games that were abandoned because of such problems. On the other
hand, the whole STW problem doesn’t apply to slower-paced games (at
least those where the occasional 100ms delay is not a problem).

To GC or Not to GC?

Personally, as a developer with a C++ background, I usually prefer to
have everything in my own hands (and avoid depending on GC, which
is a big and IMO rather unpleasant dependency).

209 Strictly speaking, such “safe points” DO usually exist; they’re just way-too-far from “right now” to
be of any practical use. For example, for MOBA, such a “safe point” will certainly come at the end
of match — but it can be as far as an hour from “now,” so delaying GC for such a long time is rarely
feasible (that is, unless you’re doing your own allocation and avoiding GC allocations during this
time altogether, but this is pretty much hopeless for most of the GC’d languages out there).

 Programming Language for Game Client · 327

However, I won’t say that GC-collected languages are inherently
bad; in recent years, GCs have made significant improvements with
regards to the STW problem, and you MIGHT be able to find con-
current-enough implementations for all your platforms, which in turn
MIGHT enable you to develop your fast-paced games in garbage-col-
lected language without too much trouble.

Bottom line:

When answering “to GC or not to GC,” do what you’re
more comfortable with.

However, if using GC’d language for a fast-paced game, make sure to
test your game on ALL your target platforms ASAP; otherwise, you still
may be facing some quite nasty surprises, if on one of your must-have
target platforms there is no decent GC implementation (and/or if your
own code is not STW-friendly).

And even more importantly: keep in mind that most of the time
“to GC or not to GC” is not the most important question to ask when
choosing your programming language for the Client-Side; in particular,
issues such as availability-on-all-your-platforms and resilience-to-re-
verse-engineering play an extremely important role when making this
all-important choice.

On Consistency Between Client-Side and
Server-Side Languages
One not-so-usual consideration when choosing a programming lan-
guage for your MOG is related to the observation that there might be
some benefit in keeping programming languages the same for your
Client and your Server. Having them different is certainly not the end
of the world, but it might mean certain issues with integration (which
is usually not that big a deal), and with inter-team communication (and
this one might be more significant in the long run, though still unlikely
to be fatal).

In addition, if you have your Client-Side and your Server-Side
programming languages the same, you often will be able to use two

Most of the time, “to
GC or not to GC” is
not the most import-
ant question when
choosing your pro-
gramming language
for the Client-Side.

328 · CHAPTER 6. Client-Side Architecture

important parts of your code both on the Client and the Server:
♦♦ Communication Module
♦♦ Parts of Game Logic Module

 ▪ The latter can become Really Important™ if you are doing
Client-Side Prediction, which is often best implemented via
running the same simulation code on both the Server-Side
and the Client-Side.

yy If you’re NOT using the same language for the
Client-Side and the Server-Side, this need to re-use
may even call for using two programming languages
on the Client-Side (one to re-use a portion from the
Server-Side, and another to code your Client-Side
specific stuff, such as rendering).

♦x At least with (Re)Actors, it is doable.
♦x OTOH, due to increased exposure to reverse

engineering, it is usually not too desirable
(though not really fatal either).

How important these considerations are in your context depends on the
specifics of your game, but they might play an important role for your
project, so it is better to take them into account sooner rather than later.

Sprinkle with All the Usual Considerations
We’ve discussed several peculiarities of the programming languages
when it comes to games. In addition to these not-so-usual things to be
taken into account, all the usual considerations still apply. In particular,
you need to think about:
♦♦ Is your-language-of-choice used long enough to be reasonably

mature (so you won’t find yourself fixing compiler bugs — believe
me, this is not a task that you’re willing to do while developing a
game)?

♦♦ Are available tools/libraries/engines sufficient for your game?
♦♦ Is your programming language readable? More specifically: “is it

easily readable to the common developer out there?” (the latter is
necessary so that those developers you hire later won’t have too
much trouble jumping in).

Any (half-)decent
programmer with any
real-world experience
in more than one pro-
gramming language
can start writing in
a new one in a few
weeks without much
problem.

 Programming Language for Game Client · 329

important parts of your code both on the Client and the Server:
♦♦ Communication Module
♦♦ Parts of Game Logic Module

 ▪ The latter can become Really Important™ if you are doing
Client-Side Prediction, which is often best implemented via
running the same simulation code on both the Server-Side
and the Client-Side.

yy If you’re NOT using the same language for the
Client-Side and the Server-Side, this need to re-use
may even call for using two programming languages
on the Client-Side (one to re-use a portion from the
Server-Side, and another to code your Client-Side
specific stuff, such as rendering).

♦x At least with (Re)Actors, it is doable.
♦x OTOH, due to increased exposure to reverse

engineering, it is usually not too desirable
(though not really fatal either).

How important these considerations are in your context depends on the
specifics of your game, but they might play an important role for your
project, so it is better to take them into account sooner rather than later.

Sprinkle with All the Usual Considerations
We’ve discussed several peculiarities of the programming languages
when it comes to games. In addition to these not-so-usual things to be
taken into account, all the usual considerations still apply. In particular,
you need to think about:
♦♦ Is your-language-of-choice used long enough to be reasonably

mature (so you won’t find yourself fixing compiler bugs — believe
me, this is not a task that you’re willing to do while developing a
game)?

♦♦ Are available tools/libraries/engines sufficient for your game?
♦♦ Is your programming language readable? More specifically: “is it

easily readable to the common developer out there?” (the latter is
necessary so that those developers you hire later won’t have too
much trouble jumping in).

Any (half-)decent
programmer with any
real-world experience
in more than one pro-
gramming language
can start writing in
a new one in a few
weeks without much
problem.

♦♦ How comfortable are your team’s feelings about it?
♦♦ How difficult is to find developers willing to write in it?

 ▪ Note that I’m not talking about “finding somebody with
five years of experience in the language”; I’m perfectly sure
from my own twenty years of experience as an architect
and a team lead that any (half-)decent programmer with
any real-world experience in more than one programming
language can start writing in a new one in a few weeks
without much problem. 210,211 It is frameworks that usually
require more knowledge than languages, but the chance of
finding somebody who is versed in your specific framework
is usually small enough to avoid counting on such miracles.

 ▪ On the other hand, if your programming language of
choice is a COBOL, Perl, FORTRAN, or (Ritchie forbid!)
assembler, you may have difficulty finding developers
willing to use it.

♦♦ Do you have at least one person on the team with substantial
real-world experience in the language, with this person devel-
oping a comparable-size project in it. Right above, I was arguing
that in general language experience is not really necessary,
but this argument applies only when the developer comes to a
well-established environment. And to build this well-established
environment, you need that “at least one person” with an inti-
mate knowledge of the language, environments, their respective
peculiarities, and so on.

♦♦ Is it fast enough for your purposes? Here it should be noted that
performance-wise, there are not that many tasks that are time-crit-
ical on the Client Side. Traditionally, with games, time-critical stuff
is pretty much restricted to graphics, physics, and AI. With an
MOG, however, most of the physics and AI normally need to be
moved to the Authoritative Server, leaving graphics and rendering
pretty much the only Client-Side time-critical thing.212

210 BTW, feel free to pass this message on to your hiring manager; while he or she might not trust you
that easily, in certain not-so-hopeless cases, a quote from a book might help.

211 That is, if the new language is not an exotic one such as LISP, PROLOG, or Haskell.
212 In case of Client-Side Prediction, however, you may need to duplicate some or even most of the

physics/AI on the Client-Side; see the Game Logic Module: Client-Side Prediction and Simulation
section for the relevant discussion.

330 · CHAPTER 6. Client-Side Architecture

 ▪ Sure, 3D rendering is usually damn important, perfor-
mance-wise; however, if you have delegated rendering to a
3rd-party rendering engine, it is out of the picture, and then
it might (or might not) happen that all your Game Logic is
not time-critical. And if it isn’t time-critical, you can pretty
much forget about the performance of your programming
language (though you still need to remember not to do cra-
zy things such as using O(N3) algorithms on million-item
containers).

And just for the sake of completeness, here is the list of questions that
are NOT to be taken into account when choosing your programming
language:
♦♦ Is it “cool”?
♦♦ How will it look on my resume after we fail at this project?213

♦♦ Is it the #1 language in popularity ratings? (while popularity has
some impact on those valid questions listed above, popularity as
such is still very much irrelevant, and choosing programming
language #6 over language #7 just because of its position in the
ratings is outright ridiculous).

♦♦ Is the code short? As code is read much more often than it is writ-
ten, it is “readability” that needs to be taken into account, not the
“amount of stuff that can be fit into 10 lines of code.” Also note that
while way too often “brevity” is interpreted as “expressiveness,”
they’re not the same.

C++ as a Default Game Programming
Language
Given our analysis above, it is not at all surprising that C++ is frequently
used for game Clients. Just a few years ago, it was pretty much the only
programming language used for serious game development (with some
other language often used at the game-designer level). These days, there
is a tendency toward introducing other programming languages into
gamedev; in particular, Unity is pushing C# (and quite successfully too).

213 If you succeed with your MOG project, the project itself will be much more important for
your resume than the language you’ve used, so the only scenario when you should care about
“language looking good on resume” is when you’re planning for failure.

How will it look on my
resume after we fail
this project?

 Programming Language for Game Client · 331

However, we should note that while C# may214 speed up your de-
velopment, it comes with several significant (albeit non-fatal) caveats.
First, as noted above, C# apps (at least when they are shipped as byte
code) have a lower resilience to bot writers. Second, you need to keep an
eye on the platforms supported by C#/Mono. Third, as a GC’d language,
it comes with a whole bunch of pros and cons (see the On Garbage
Collection section above), which also need to be taken into account.

Bottom line: C++ is indeed a default programming for game Cli-
ents, and there are both objective and subjective/historical reasons for
it. On the other hand, your team might benefit from using alternative
languages such as C#; however, make sure to take a look at the issues
discussed above to make sure that they won’t affect your specific game
too much.

Big Fat Browser Problem
As we can see from Table 6.2 above, if you need to run your game both
on a browser, and on some other platform, you have quite a problem on
your hands. First, let’s see more-or-less viable options available in this
case.

Usually-Not-Really-an-Option 0 would be to… drop support for
the browser — or, for everything-except-for-the-browser as a platform
for your Client. While very tempting technically (“hey, we can stay with
C++/C#/.../JS then!”), business-wise (and GDD-wise) it might easily be
unacceptable. <Bummer />

BTW, even if your game is okay to be browser-only, still make sure
to keep reading (Option 3 may especially be of practical interest).

Option 1. Write downloadable Client in Other-Language plus
browser-based one in HTML5/JS. The idea here is to keep two sep-
arate code bases for “Other-Language” (for downloadable/installable
Clients) and HTML5/JS (for browser-based Clients). In theory, it may
even work. However, in practice, there are three Big Fat Problems™ with
this approach.

First, despite all the improvements with JavaScript, it is still one big
can of worms with lots of browser compatibility problems trying to get

214 And usually, though not necessarily, will.

Dropping browser as
a platform. While very
tempting technically,
business-wise it might
easily be unaccept-
able.

332 · CHAPTER 6. Client-Side Architecture

out of the can right in the face of your unfortunate player. While devel-
opment of simpler games in JS may be viable (see, for example, [Berg-
ström]), as the complexity of your game grows, problems will mount
exponentially. While HTML5/JS might become a viable technology for
larger games at some point, right now it is still not there.

Second, even if/when JS-based development does become viable,
you need to keep in mind that protection of JS from being hacked tends
to be very low (see Table 6.1 above), and that all your protocols — ac-
cording to “the weakest link” security principle — will be hacked using
JS code base, which means that resilience of your whole Client to reverse
engineering will become pretty much non-existent <very-sad-face />.

And third, in practice, Clients with two separate code bases are
known to fail pretty badly. You may still try it, but don’t tell me that I
didn’t warn you. For a real-world horror story about a Client with two
separate code bases, see the Logic-to-Graphics API section above.

It should be noted that the third problem can be mitigated by (a)
writing your Client with a Logic-to-Graphics API as discussed above,
(b) using the “1.5 code bases” technique (discussed in Vol. IV’s chapter
on Things to Keep in Mind) for Game Logic, and hopefully also for the
Communication Module, and (c) having two separate code bases for
the Animation&Rendering Module. Such an approach, if executed cor-
rectly, will effectively remove most of the third problem, and will even
make code maintenance viable; however, the first and second problems
mentioned above will still haunt you pretty badly.

Option 2. Write non-browser Client in Some-Other-Language,
using Logic-to-Graphics API — and then run Game Logic on the
Server Side using a “Client-on-Server” trick, essentially passing Log-
ic-to-Graphics commands from the Server Side to a dumb HTML5/JS
front-end. Details of the “Client-on-Server” approach will be discussed
in the Client-on-Server Trick section below.

The disadvantages of this option are mostly related to (a) potentially
vastly different experiences for different Clients, and (b) scalability. On
the other hand, on the plus side, you can stay with single-code-based
Other-Language for your Game Logic, and you can keep your Oth-
er-Language reasonably protected from bot writers (that is, if you are
not too concerned about bots coming from JavaScript Clients, which

Clients with two
separate code bases
are known to fail
pretty badly.

 Programming Language for Game Client · 333

may happen if player capabilities for JS and non-JS versions are differ-
ent, and JS Client is actually just a “teaser” for the main downloadable
Client).

Option 3. Write your Client in C++ (once again, with a Log-
ic-to-Graphics API) and use emscripten to re-compile your code into
asm.js/wasm for the browser-based version.

With Option 3, you can develop your Client along the following
lines:
•♦ You develop your non-browser Client in C/C++ — and with

Logic-to-Graphics API.
•♦ You recompile the same Game Logic (and hopefully also

Communication Module) into asm.js or wasm using emscripten;
at the same time, you’ll most likely need to re-implement your
Animation&Rendering Module under JS — and that’s where
your Logic-to-Graphics API will come in handy (allowing you to
change only your Animation&Rendering Module, without rewrit-
ing the rest of your Client).

 ▪ In practice, make sure to do this recompile-into-asm.js-
or-wasm ASAP; the longer you wait, the more (solvable,
but cumbersome) problems will occur when trying to
recompile, so it is better to align your different versions as
early as feasible.

This model is free of the problems of Options 1 and 2, and provides
pretty good protection from reverse engineering (it is pretty much the
best you can get when using browser215). The only potential problem
with asm.js / wasm is performance – but, as noted above, as of 2017 it is
usually within 2x from native C++ (which is not bad at all, though you
still may have to sacrifice some of less-powerful Client-Side devices as
your Clients).

Side notes:
♦♦ Unity allows to use C# instead of C++ to compile into asm.js.

When Unity compiles C# into JS, first they’re converting C# (or,
more precisely, .NET’s Intermediate Language) into C++, using the

215 Except for Google NaCl, which is somewhat-better reverse-engineering-wise, but is deprecated
now <sigh />

emstripten+asm.js/
wasm model is free
of the problems of
Options 1 and 2,
and provides pretty
good protection from
reverse engineering.

334 · CHAPTER 6. Client-Side Architecture

IL2CPP compiler, and then are going along the very same route
as discussed for our Option 3 above. Overall, I don’t see too many
problems with this approach, though reverse-engineering-wise it is
not perfect <sad-face />.

♦♦ before 2017, Google NaCl/PNaCl was competing with asm.js/
wasm; however, in May 2017, Google has officially announced the
deprecation of (P)NaCl, leaving asm.js/wasm as the only viable
option for running C++ code within the browser.
Choosing the Right Option. Which of the options above will

suit your game better is your decision, and it depends on the specifics
of your game (and even more so on the specifics of your GDD and
monetization). Still, personally, if facing the task of developing a game-
that-needs-both-browser-and-downloadable-Clients, I’d very seriously
consider Option 3 (emscripten+asm.js/wasm).

Client-on-Server Trick

One of the cross-platform options discussed in the Big Fat Browser
Problem section above mentioned the “Client-on-Server” trick. While
with the advent of emscripten, Client-on-Server is usually not the most
viable option, let’s still take a quick look at it.

Let’s assume that you already have a working code in some pro-
gramming language (such as C++), and want to create a browser-based
Client. Assuming that your working code is cross-platform (and that it
has that Logic-to-Graphics API we’ve discussed above), such a brows-
er-based Client might be implemented along the following route:
♦♦ Make your Client-written-in-C++ (or whatever other language)

run on the Server, but without graphics (i.e., with dummy imple-
mentation Logic-to-Graphics API doing nothing).

♦♦ Write a Logic-to-Graphics Layer, which will simply send
Logic-to-Graphics commands to a really-dumb-Client over the
network.

♦♦ Write a really-dumb-Client in HTML5/JS. This really-dumb-Client
should just receive rendering commands (which go along the lines
of Logic-to-Graphics API, as discussed above) from the network
and render them.

 On UI Dialogs · 335

To be honest, given the progress with emscripten, I am no longer a
fan of this approach (especially if you’re planning for a dual download-
able/browser Client from the very beginning). In particular, with Cli-
ent-on-Server, the player experience on browser platforms may be
much worse than that of a downloadable one; also, Server resources
necessary to run Clients are going to be significant (as logic on Clients
is rarely optimized for the Server-Side). However, in certain cases of
converting the existing game into the browser, Client-on-Server still
might happen to work for you.

ON UI DIALOGS
One Client-Side issue that traditionally looks minor in the Grand
Scheme of Things™, but which tends to cause quite a bit of trouble later
down the road, is UI Dialogs. Most of the time, even for a multiplayer
game, you will need at least some dialogs (at the very least, settings and
purchases216) — and starting off implementing them on the wrong foot
will have pretty unpleasant implications in the long run.

One Big Fat Rule of Thumb™ about UI dialogs is

DON’T use UI dialogs with fixed layout. DO use HTML
(or HTML-like) layouts.

Dialogs with fixed layout (like thirty-year-old Windows-resourc-
es-based ones) tend to work okay at first, but become a nightmare very
quickly as soon as you either (a) try to make your game cross-platform,
or (b) try to make your game internationalized.

Fixed layouts — Way to Disaster
While a detailed discussion of i18n won’t happen until Volume IX,217

UI dialogs is one of those things we need to think about from the very
beginning to avoid expensive rewrites in the future. And from those
real-world translation efforts I’ve seen, while it is very easy to find

216 As discussed in Vol. I’s chapter on GDD, you DO need to make money from your game to at least
pay for Servers.

217 There also will be a brief mentioning in Vol. IV’s chapter on Things to Keep in Mind.

To be honest, given
the other options
currently available, I
am no longer a fan of
the Client-on-Server
approach.

336 · CHAPTER 6. Client-Side Architecture

translation folks to translate a bunch of strings, the same folks won’t
adjust layouts (it is not their job, they don’t have the tools, etc., etc.).

As a result, with fixed a-la Windows dialog layouts (and an approach
of “hey, we’ll just put resources for each language, with the resources
including dialog layouts too”) you’d end up having a special person on
the team who will just monitor translation changes (and translations
happen to be adjusted all the time) and change fixed layouts according-
ly (and for all the supported platforms). Given enough languages and
enough platforms, it simply doesn’t work.

I’ve seen a game that supported twenty-five different languages over
five different platforms; for such a game, with a fixed-layout approach,
a simple addition of one checkbox to one of the dialogs would result in
125(!) dialog layouts in need of being manually adjusted, which would
pretty much be a non-starter.

Way Out — HTML-Like Flexible Layouts
As a rule of thumb, a much better alternative is to use flexible HTML-like
layouts; in this case, most of the time translations will be readjusted
automatically, and without too much hassle to change layouts. Sure,
there will be languages-that-have-too-long-translations to fit into the
existing layout (out of European languages, I’ve heard that Norwegian
and German are two of the most likely offenders, though YMMV), but
as soon as you have plenty of reserves (which can be done by using
pseudolocalization with, say, 1.5x of the original English symbols),
the whole thing tends to work pretty well (while there are occasional
hiccups here and there, they’re usually not too bad).

BTW, I am not saying that you MUST use a fully HTML5-compliant
engine to render your UI dialogs. Instead, pretty much anything that al-
lows for flexible layouts will do; in particular, wxWidgets’ wxHTML or
litehtml will usually be fine (NB: you still MAY use a full-scale HTML/
Web engine; it is just not a firm requirement).

On Modal Dialogs and MOGs
One further issue that is rather common with quite a few of the existing
UI Dialog libraries is the way they handle so-called modal dialogs. By

With a fixed-layout
approach, a simple ad-
dition of one checkbox
to one of the dialogs
would result in 125(!)
dialog layouts in need
of being manually
adjusted, which would
pretty much be a
non-starter.

Pseudo-
localization

is a software
testing method
used for testing
internationalization
aspects of software.
Instead of translating
the text…, the
textual elements of
an application are
replaced with an
altered version of the
original language.

—Wikipedia

 On Using Browser Window Alongside the Client · 337

definition, a modal dialog is “something that blocks underlying UI,”
and it works nicely for a usual business app.

However, for MOGs, at least those that allow invoking dialogs over
updatable-from-Server-Game-World, it is not that simple. In such
cases, while the dialog is open, we usually still need to handle those
Server updates and draw the things underneath our supposedly-modal
dialog(!). While such handling is doable in pretty much any modal-di-
alog implementation I know, it is way too inconsistent across different
implementations, so going cross-platform quickly starts to cause way
too many problems. In particular, I’ve seen that those Windows-like
systems-that-create-second-event-handler-for-modal-dialog-while-
still-running-the-first-one (i.e., they have more than one event loop on
the program stack at the same time) tend to be very difficult to port.

As a result, I usually prefer to treat all your dialogs as if they’re
modeless. It means that there is no such thing as an event-handler-
running-on-top-of-event-handler on your program stack <phew />;
instead, all your processing is good ol’ event-driven processing with all
the events handled at the same level (if you’re using (Re)Actors, within
the same (Re)Actor218). While this programming style is usually more
cumbersome for UI developers, it tends to pay off very well as soon
as you need to migrate your code to the second substantially different
platform.

To simplify work for your developers, make sure to have a library
that simulates modal behavior while staying within single-level event
handling; if using (Re)Actors, such a library will be very similar to the
non-blocking (Re)Actor handling (which was discussed ad nauseam in
Chapter 5).

ON USING BROWSER WINDOW
ALONGSIDE THE CLIENT
As mentioned in Vol. I’s chapter on GDD, for MOG development, quite
often it is tempting to use our-own-downloadable-Client for receiv-
ing-and-rendering our Game World in real-time, and to use a traditional

218 Though this (Re)Actor MAY be split using (Re)Actor-within-(Re)Actor, as discussed in Chapter 5.

It is tempting to use
our-own-download-
able-Client for receiv-
ing-and-rendering
our Game World in
real-time, and to use
a traditional browser
window to implement
all the other boring
stuff.

338 · CHAPTER 6. Client-Side Architecture

browser window (speaking to a traditional-web-server-on-the-Server-
Side) to implement all the other boring stuff. Overall, it is a perfectly
viable technique to speed up your development; the only question here
is “how to do it in a way that won’t haunt you for years to come.”

Implementation-wise, separating some stuff into a web-driven part
can be done in a number of different ways; let’s see what each of them
means in practice. BTW, to be clear: for the time being, we’ll be talking
only about using-HTML-to-show-our-own-stuff (leaving aside integra-
tion with 3rd-party sites — most importantly, 3rd-party logins).

To show our-own-stuff using HTML, we have at least the following
options.

Downloadable Client + Completely Separate
Web Site
Our very first and most obvious option is to use a downloadable Client
alongside a completely separate web site; it means separate logins into
the Client and into the site, etc.

As was already discussed in Vol. I’s chapter on GDD, personally, as
a player, I hate such things (I want to feel my game as a whole, and not
as a bunch of unconnected pieces; also a requirement to login twice is
an unnecessary burden for me as a player – and exposes me to phishing
too). Still, it is a GDD-level decision, so if your GDD is fine with such
an IMO-abomination, you’re fully within your rights to use it.

Technically, it is certainly the simplest option; however, it has sever-
al important drawbacks:
♦♦ As noted above, as the separation is obvious to the end-user, it may

create the feeling of being half-baked, cumbersome, etc., etc.
♦♦ Separate logins represent a significant problem from a security

point of view.
 ▪ In particular, they increase the chance of phishing attacks

to succeed by orders of magnitude.
 ▪ In addition, it makes your web server an additional attack

surface on your whole system (and, as a rule of thumb,
web servers are much easier to attack compared to Game
Servers).

 On Using Browser Window Alongside the Client · 339

♦♦ As interactions between the Client and web browser are complete-
ly open to the potential cheater, it MAY be used to mount certain
cheating attacks (in particular, receiving feedback to see whether
the attack is doing fine can be much easier this way). While I didn’t
see too bad cheats using this attack vector, as a rule of thumb, pret-
ty much any weakness along these lines can be abused (eventually,
pretty badly).

♦♦ As the UI and browser connections are completely separate, it
will be extremely difficult to implement throttling-down-heavy-
download (such as DLC or theme) while a time-critical game is
in progress. This can easily lead to a degraded experience for your
players (and you can be sure that they will complain about your
game lagging, even if it is them who caused it in the first place).

♦♦ Potential inter-browser compatibility issues require you to be
careful with your site (keeping to testing it everywhere), though
not more so than for a usual website.

Downloadable Client with a System-Provided
In-App Browser
The second option we have to allow us to leverage existing web in-
frastructure for a not-so-time-critical part of our MOG, is to use a
system-provided in-app browser. In this case, at least you’ll be able to
make the player experience (including login) seamless <phew />.

Still, I don’t like this option either, in spite of it being quite popular.
My concerns about using a system-provided in-app browser go along
the following lines:
♦♦ System-provided browsers have (not really surprisingly) sys-

tem-specific APIs for our Client to interact with them.
 ▪ This instantly creates a Big Headache™ for cross-platform

development.
 ▪ It becomes even worse as these APIs tend to change way

too often.
♦♦ In addition, from what I’ve seen, these APIs (and surround-

ing-those-APIs-implications) are often buggy-as-hell.
 ▪ Once upon a time, I saw a competitor’s game that used

At least you’ll be able
to make the player
experience seamless
<phew />.

340 · CHAPTER 6. Client-Side Architecture

a system-provided in-app browser. And it happened to
crash when being run on systems with exactly-one-spe-
cific-version-of-IE-installed (all other versions, both
before and after, were perfectly fine). Testing for this kind
of thing is one of the worst possible nightmares for the
developer.

♦♦ As now we pretend that the browser window is actually our win-
dow, any browser incompatibility will be perceived as an outright
bug within our Client, so we need to test the whole thing even more
vigorously. And with more-than-one-platform to be supported, it
will become a never-ending nightmare (heck, even for one single
platform, it can easily become a very serious issue; see the example
above about Client-crashing-when-player’s-system-had-one-exact-
version-of-IE).

♦♦ As interaction API between Client and web parts is well known,
cheating is still simplified.

♦♦ Web server is still an additional attack surface.
♦♦ Throttling down in-game downloads is still very difficult.

Downloadable Client with an Embedded Web
Engine
The next option we have to delegate some of our MOG development to
the well-known web infrastructure is to integrate a 3rd-party-web-en-
gine into our Client. Now we’re talking. In general, if the engine is good
enough (and assuming that we can get it running on all the platforms
of interest), we can avoid most of the compatibility problems and issues
listed above; in particular, we can test our website only once (in our
own Client), and that’s it.

However, all the beauty of this approach hinges on the question of “is
there a good enough web engine available for easy embedding?”— and
fortunately, there is such an engine: WebKit. NB: from what I’ve seen
myself and heard from others, I’d stay away from trying to integrate/
embed Gecko; last time I looked at its code, it was quite a mess from an
integration perspective, without clear separation between those-parts-we-
want-to-use and those-parts-that-are-irrelevant-for-embedding-engine-
into-app.

Is there a good
enough web engine
available for easy
embedding?

 On Using Browser Window Alongside the Client · 341

Taking all the considerations into account, I DO like this approach;
however, when using it, a few (admittedly rather minor) issues still
remain:
♦♦ Throttling competing traffic is usually still complicated.
♦♦ The web server is still an additional attack surface.

Embedded HTML Engine but Own Communications

To deal with these issues, I usually suggest going a little bit further.
More specifically, if we integrate a 3rd-party-web-engine along the lines
above, while implementing a network layer for that web engine ourselves,
we’ll be able to solve those remaining problems listed above.

If you decide to go this way, it should be done more or less along the
following lines:
♦♦ Intercept all the network/URL accesses coming from your 3rd-

party-web-engine (which still runs within your Client).
♦♦ Tunnel them through your own communication channels (includ-

ing authentication etc.).
♦♦ On the Server-Side, get the requests out of the tunnel and feed

them to your usual web servers (more on using web servers
in MOGs will be discussed in Vol. III’s chapter on Server-Side
Architecture).
The only disadvantage of this approach compared to a web-en-

gine-without-communications is the additional work involved (es-
pecially if the rest of your game is UDP-based); whether it is worth
it for your game depends, though personally I don’t really like going
for in-Client web without it. Still, it is certainly not a black-and-white
decision whether to do it.

Last but not least: when using such an HTML-engine-with-our-
own-communications, we can use much lighter engines than a full-
scale WebKit, and wxHTML and litehtml are immediately coming to
mind; what exactly to choose depends on your specific requirements
(do you need JavaScript within your HTML, or HTML+a-bit-of-CSS
will be fine?), but it is still nice to have such an additional option.

The only disadvantage
of a 3rd-party-HTML-
engine with
DIY-communications
compared to a
web-engine-without-
communications is
the additional work
involved; whether it is
worth it for your game
depends.

342 · CHAPTER 6. Client-Side Architecture

On Embedding and emscripten

When going the route of embedding a web engine (especially a full-
scale one such as WebKit) into your Client, and if we want to have our
downloadable Client run under a browser using emscripten (see the On
asm.js, wasm, and Emscripten section above), we may end up running
WebKit-compiled-with-emscripten-running-under-browser’s-Web-
kit — and it sounds outright crazy.

TBH, I never run into such scenarios (and have even never heard
of somebody running into them), so all I’ll be saying below is outright
speculation. Still, in such a case, you have three rather obvious options:
♦♦ Try to compile WebKit under emscripten. While this sounds even

more crazy than usual emscripten, and is going to be tough — but if
you manage to do it and it works — well, you just got away without
any changes to your Client (and kept all the anti-cheating defenses
up too).

♦♦ Use significantly lighter wxHTML/litehtml rather than WebKit.
IMO this option is the best bet in this case — that is if you can
afford to drop those-features-available-in-WebKit-but-unavailable-
in-wxHTML/litehtml (and unfortunately, there are quite a few of
them).

♦♦ For a browser-based Client, replace your embedded-WebKit with
using the browser itself (while still using embedded WebKit for
a downloadable Client). While it is quite an obvious approach,
it is going to be a significant headache (among other things, you
will need to test the web part of your app on all the browsers),
and, depending on your game and information-that-is-provid-
ed-via-web-interface, MAY lower your resilience to certain cheats.
Still, it can be made to work, and if nothing else works for you it
MAY be your only option (and not that bad of one, TBH).

Integrating with 3rd-party Websites. 3rd-
party Logins
Up until now, we discussed only those scenarios when our Client need-
ed to show only the data coming from our own Servers. When we need
to deal with some information coming from a 3rd-party website (to

 On Using Browser Window Alongside the Client · 343

perform a 3rd-party login, or to perform a payment, or invite a friend
from Facebook), the whole thing is turned upside down, and none of
our previous arguments stand anymore.

Whenever we need to integrate with a 3rd-party website (especially
for the purposes of logging in/socializing/payments),

The most important thing is to use the same browser that
the player routinely uses for regular web browsing.

If we’re doing it in any other manner, our players, when opening a
3rd-party web page in some-other-browser (whether system-provided
or our-own embedded one), won’t be able to use their saved passwords/
auto-filled forms/existing-login-sessions, which will put so much un-
necessary pressure on our players that up to a half of them219 will leave
without logging in/referring-a-friend/paying, etc.

Most of the time, our best bet is just to use some OS API that is
supposed to open OS default browser (while not ideal, it is still by far
the best way I know). Depending on the specific platform, it can be
ShellExecute(), or openURL, or Intent.ACTION_VIEW, etc.

At this point, two different data flows can occur. The simpler one
does not require the browser to return anything to our Client; while
such a simple workflow is often possible with asking-to-share and
sometimes is possible for payments (for payments, we might be able
to obtain a “payment completed” confirmation from our own Serv-
er-Side), it is rarely (if ever) a viable option for logins.

Whenever we DO need a confirmation back from the browser win-
dow, it is going to be quite a headache to say the least. Still, it is doable,
and the most bulletproof (and most cross-platform) solution I know
goes along the following lines:
♦♦ First, our Client app gets a random one-time our_own_token from

our Server. Ideally – it should be an at-least-128-bit-long cryp-
to-quality random number (for a discussion on random numbers,
see Vol. VI’s chapter on RNGs).

 ▪ The server stores information that “this our_own_token was
given to such-and-such Client at such-and-such time.”

219 And potentially even more (unless our game is already a household word).

Our players, when
opening a 3rd-party
web page, won’t be
able to use their saved
passwords/auto-filled
forms.

344 · CHAPTER 6. Client-Side Architecture

♦♦ Then, our Client opens our own URL (i.e., URL residing on our
own web server), using some “open URL in default OS browser”
APIs, and passing our_own_token as a part of this URL.

NB: yes, we’re not opening the 3rd-party site directly.

♦♦ The web page sitting on our-own-URL — just as any other web
site — performs a standard web login procedure with a 3rd-party
web site;220 as this is usually the most common use scenario for
3rd-party logins, it tends to work very smoothly (at least much
more smoothly than anything else).

♦♦ As a result of this 3rd-party login, our own web server (the one han-
dling our-own-URL) usually gets some kind of access_token, which (a)
indicates that the user is authenticated, and (b) can be used to access
some of the social-platform goodies (e-mail address, friends list, etc.).

♦♦ After the login process is completed, our own web server pushes
this access_token alongside our_own_token to our Server (the one
where our Client is connected).

♦♦ Our Server pushes this information to our Client (or our Client
may poll our Server instead221).

 ▪ In this process, our_own_token is used to identify our
Client among all the Clients waiting for login.

yy Note that using ClientID (or anything else but a
randomized one-time our_own_token) for the pur-
poses of such matching is risky and is likely to cause
some kind of trouble down the road. In particular,
security implications can be pretty bad depending
on specifics (while one-time our_own_token tends
to be safe for pretty much any use).

♦♦ Bingo! We’ve got our 3rd-party login working — all while using the
default OS browser (i.e., all the passwords and forms will be auto-filled
for our player) — and without any special support from the 3rd-party
(just using their ubiquitous 3rd-party-login-from-web-site feature).

There are other approaches out there (ranging from running-some-JS-
within-web-browser and communicating back via scanning cookie folder,

220 Or performs a payment, etc., etc.
221 While in general I hate polling, this is one case when you MAY need it.

We’ve got our
3rd-party login
working — all with
passwords and forms
auto-filled — and
without any special
support from the
3rd-party.

 Bottom Line for Chapter 6 · 345

to running-webserver-locally-and-accessing-it-via-localhost), but most
of them are usually way too unreliable when trying to run it on millions
of different player PCs with different browsers/personal firewalls/etc.

One other way of receiving-reply-back-from-login-process that works
is to use officially-supported 3rd-party login APIs for apps (or, for devices,
see, for example, [Facebook]); if such an API is supported for your plat-
form, it is surely your best bet; however, when there is no such API, you
will likely need to resort to the above cumbersome-but-working solution.

BOTTOM LINE FOR CHAPTER 6
Phew, it was another rather long chapter. On the other hand, we’ve
managed to provide a 50,000-feet (and 30,000-word) overview of the
MOG Client-Side architectures, both in a generic form, and as my
favorite (Re)Actor-fest Architecture. To summarize and re-iterate my
personal recommendations in this regard:222

♦♦ Think about your graphics, in particular whether you want to use
pre-rendered 3D or whether you want/need dual graphics (such
as 2D+3D); this is one of the most important questions for your
Game Client.223

 ▪ If your game is an MMOFPS or an MMORPG, most likely
you do need fully-fledged Client-Side 3D, but even for an
MMORTS the answer can be not that obvious.

♦♦ Writing your code as a deterministic event-driven (Re)Actor (as
described in Chapter 5 in nauseating detail) tends to help, and to
help a damn lot.

 ▪ (Re)Actor-fest is not the only viable architecture, and you
may be able to get away without it. However, at the very
least you should consider it and understand why you prefer
an alternative before throwing the (Re)Actor-fest away.

yy Keep in mind that massive multithreading stuff with
mutex-based inter-thread synchronization doesn’t
really work reliably in larger projects (and doesn’t
scale well either, at least in game-like environments).

222 As always, YMMV; all responsibility disclaimed, and batteries not included.
223 Yes, I know I’m putting on my Captain Obvious hat once again.

346 · CHAPTER 6. Client-Side Architecture

yy As for message-passing approaches that are not
(Re)Actors, they MAY work (though I still happen
to prefer (Re)Actors).

 ▪ Having a deterministic (Re)Actor has lots of useful features,
including post-factum analysis of the problem-your-real-
player-complains-about.

 ▪ Keep all your (Re)Actors perfectly self-contained in a
Shared-Nothing model. It will help in quite a few places
down the road.

 ▪ Feel free to run multiple (Re)Actors in a single thread if you
think that your game and/or current platform is a good fit,
but keep those (Re)Actors separate; it can really save your
bacon a few months later.

 ▪ Keep one single code base for your Game Logic (Re)Actor.
For other (Re)Actors, you may make different implemen-
tations for different platforms, but do so only if it becomes
really necessary.

♦♦ When choosing your programming language, think twice about
resilience to bot writers, and also about those platforms you want
to support. While the former is just one of those things to keep
in mind, the latter can be a deal-breaker when deciding on your
programming language.

♦♦ Usually, C++ is quite a good all-around candidate for the Game
Client, but there are other options out there too.

♦♦ Running Game Client on a web browser is a known problem, but
emscripten+asm.js/wasm DO provide an interesting (and often
practical) way of handling it.

♦♦ Make sure to use a flexible layout (such as HTML) for your UI
dialogs; otherwise, i18n and ports will cause many more headaches
than is necessary.

♦♦ Running a non-time-critical part of your game using web
browsers/web servers is possible, but you DO need to be careful.
IMNSHO, the best option is to have a 3rd-party web engine (such
as WebKit/wxHTML/litehtml) embedded into your Client.

 ▪ Keep in mind that interactions with 3rd-party web sites (for
logins, payments, etc.) is a very different beast, and with
very different solutions.

 Bottom Line for Chapter 6 · 347

Bibliography
Apple. “SpriteKit.”

https://developer.apple.com/spritekit/.

AZUL Systems. “Zing.”
https://www.azul.com/products/zing/.

Bacon, David F., Perry Cheng, and V.T. Rajan. 2003. “The Metronome:
A Simpler Approach to Garbage Collection in Real-Time
Systems.”

Bergström, Sven. 2013. “Real Time Multiplayer in HTML5.”
http://www.htmlgoodies.com/html5/client/real-time-
multiplayer-in-html5.html.

Chen, Hao, Ari Silvennoinen, and Natalya Tatarchuk. 2011. “Making
Games from Polygon Soup.” https://mediatech.aalto.fi/~ari/
Publications/Making_Game_Worlds_from_Polygon_Soup.pptx.

Cocos2D-X.
http://www.cocos2d-x.org/.

EPA. “Greenhouse Gas Equivalencies Calculator.” https://www.epa.gov/
energy/greenhouse-gas-equivalencies-calculator

Facebook. 2017. “Facebook Login for Devices.”
https://developers.facebook.com/docs/facebook-login/for-
devices.

Fiedler, Glenn. 2006. “Fix Your Timestep!” http://gafferongames.com/
game-physics/fix-your-timestep/.

Fosner, Ron. 2010. “Task-based Multithreading - How to Program
for 100 cores.” http://www.gdcvault.com/play/1012321/Task-
based-Multithreading-How-to.

Hare, ‘No Bugs’. 2015. “Multi-threading at Business-logic Level is
Considered Harmful.” http://accu.org/index.php/journals/2134.

Krause, Stefan. 2017. “A first look at WebAssembly performance”
http://www.stefankrause.net/wp/?p=405

Li, Chuanpeng, Chen Ding, and Kai Shen. 2007. “Quantifying The Cost
of Context Switch.” http://www.cs.rochester.edu/u/cli/research/
switch.pdf.

348 · CHAPTER 6. Client-Side Architecture

Nystrom, Robert. 2014. “Game Loop.”
http://gameprogrammingpatterns.com/game-loop.html.

Shaya, Daniel. 2015. “Starting out with jHiccup.” http://www.rationaljava.
com/2015/02/starting-out-with-jhiccup.html.

Tatarchuk, Natalya. 2015. “Destiny’s Multithreaded Rendering
Architecture.” GDC. http://www.gdcvault.com/play/1021926/
Destiny-s-Multithreaded-Rendering.

Tene, Gil, Balaji Iyengar, and Michael Wolf. 2011. “C4: The
Continuously Concurrent Compacting Collector.” ACM
SIGPLAN Notices. http://www.azulsystems.com/sites/www.
azulsystems.com/c4_paper_acm.pdf.

Warren, Matt. 2014. “Measuring the impact of the .NET Garbage
Collector - An Update.” http://mattwarren.org/2014/06/23/
measuring-the-impact-of-the-net-garbage-collector-an-update/.

— . 2014. “Measuring the impact of the .NET Garbage Collector.”
http://mattwarren.org/2014/06/18/measuring-the-impact-of-
the-net-garbage-collector/.

Wikipedia. 2017. “Garbage (computer science).”
https://en.wikipedia.org/wiki/Garbage_(computer_science)

Zakai, Alon. 2017. Quote: “Usually [wasm] code is around half as fast as
native, or better, but some things are currently much slower, like
C++ exceptions and SIMD.” https://github.com/WebAssembly/
binaryen/issues/1070

 Bottom Line for Chapter 6 · 349

CHAPTER 7.

CLIENT-DRIVEN
DEVELOPMENT:
UNITY, UE, LUMBERYARD,
URHO3D, AND 3RD-PARTY
NETWORK LIBRARIES

350 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

ON CLIENT-DRIVEN VS.
SERVER-DRIVEN DEVELOPMENT
WORKFLOWS
As we already mentioned in Volume I’s Chapter on GDD, there are
two rather different approaches to MOG development, which we’ve
named “Server-Driven Development Workflow” and “Client-Driven
Development Workflow.” While in this chapter we’ll mostly concen-
trate on Client-Driven Development Workflow, let’s first briefly discuss
Server-Driven one.

On Server-Driven Development Workflow
One common game development scenario occurs when the logic of
your MOG does not require access to game assets. In other words, it
happens when the gameplay is defined by some internal rules, and not
by object geometry or levels. Examples of such games include stock
exchanges, social games, casino-like games, some simpler simulators
(maybe a snooker simulator), and so on.

What is important for us in this case is that you can write your Game
Logic (the one that will run on your Authoritative Server) without any
3D models, and without any involvement of graphics artist and level
designer folks. It means that for such development, Server-Side has no
dependencies whatsoever, and Server-Side becomes a main driver of
game development, plain and simple. And the 3D stuff acts as a mere
rendering of the Server-Side world, without any ability to affect it.

With Server-Driven development workflow, game designers are
working on Server logic, and can express their ideas without referring
to essentially-3D or essentially-graphical things such as game levels,
character geometry, etc.

If your game allows it, Server-Driven development is a Good
Thing™ — and whenever possible, it is generally simpler and more
straightforward than Client-Driven. Developing, say, a social game the
other way around usually qualifies as a pretty bad idea. However, not
all MOGs are suitable for such Server-Driven development, and quite a
few require a different development workflow.

 On Client-Driven vs. Server-Driven Development Workflows · 351

Client-Driven Development Flow
For those games where your Game Designers are not only laying out
the game rules, but are also involved in developing graphical things
such as game levels, Server-Driven Development Workflow as de-
scribed above tends to fall apart fairly quickly. The problem lies with the
fact that when designing game levels, Game Designers shouldn’t (and
usually couldn’t) think in terms of coordinates (which are required to
describe your game in Server-Driven terms). Instead, Game Designers
tend to (and should) think in terms of pictures (or other visualizable
entities) — and this is extremely difficult (to “outright impossible”) to do
while staying completely on the Server-Side.

Two examples of games that almost universally won’t work well
with Server-Driven development flow (and will require a Client-Driven
approach, as described below) are MMORPGs and MMOFPS.

Implementing Client-Driven Workflows
Definitions aside, we can start discussing implementing Client-Driven
Workflows.

As mentioned in Vol. I’s chapter on GDD, one way to implement
Client-Driven Workflow is to create a full-scale toolchain integrating
both the game-level design tools and the authoritative Server-Side.
However, while an AAA game development studio can afford to take
this effort, for indie gamedevs it is very rarely an option, so they need
to stick to existing tools.

Acknowledging that not all the gamedev companies are AAA (with
their own game engines and toolchains), for the rest of this chapter
we will concentrate on ready-to-use 3rd-party game engines (either
2D or 3D) — and the ways an MOG can be developed with your Game
Designers using these 3rd-party game engines (all without developing
your own full-scale toolchains). In Chapter 4, this was referred to as the
“Engine-Centric Approach.”

One practical problem in this regard is that popular 3D engines
(such as UE or Unity) are actually centered on the Client-Side — and
their capabilities with regard to the Server-Side (and especially net-
working) are rather limited <sad-face />.

Games that almost
universally won’t work
well with Server-Driv-
en development flow
are MMORPGs and
MMOFPS.

The rest of this chap-
ter is not intended for
developers coming
from AAA gamedev
companies — unless,
of course, you are go-
ing to use a 3rd-party
game engine.

352 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Single-player Prototype and “Continuous
Conversion”

As discussed in Vol. I’s chapter on GDD, to deal with these limitations,
the following approach (which we named “continuous conversion”) is
used pretty often with varying degrees of success:
♦♦ First, develop a game prototype using the existing game engine “as

if ” it is a single-player game.
 ▪ It means that both Game Designers and 3D artists can

work within a familiar environment and are able to test
things — as well as fix them — right away.

 ▪ At this stage, there is no need to deal with the network at
all: in particular, there are no [SyncVar]s, no RPCs — noth-
ing of the sort.

♦♦ At a certain point, start a parallel project to “convert” your
single-player game into an MOG. This process is going to be
rather involved (and can be done in at least two different ways, as
discussed in more detail below).

While the Client-Driven Development Process as described above is no
picnic, it is IMHO the best you can do for such games given the tools
currently available (and without writing the whole toolchain integrating
your Server into it). Such a process does allow Game Designers to avoid
thinking in terms of coordinates (which would be outright crazy), and
also isolates them from most of the complexities related to state syn-
chronization, RTTs, and latencies; while certain network-related issues
such as “what should happen with a player when she gets disconnected”
will still appear in the Game Designer space, it remains much better
than making your Game Designers think all the time about Clients and
Servers.

How to do this “conversion” is actually the subject of this whole chap-
ter <smile />. However, whichever way you want to “convert” your game,

Make sure to start “conversion” to the Server-Side
as soon as possible, which is “as soon as some playable
prototype becomes available.” Moreover, ensure that

it is a “continuous conversion.”

 On Client-Driven vs. Server-Driven Development Workflows · 353

Starting conversion ASAP is necessary because “conversions” from
single-player are never obvious and tend to cause quite a bit of trouble,
so the sooner you can have your “converted” game playtested,224 the
better; you’ll find quite a few nasty things that you need to fix. More-
over, sometimes these multiplayer-specific restrictions can even affect
your game rules — and sometimes in a drastic manner; as a result, it
may take a while to find proper game balance after you change them.

On the other hand, this process of “conversion” should never end.
As your designers will ask for some new logic (and they will), at least
this new logic will need to be converted to the Server-Side again (and,
even more importantly, your game should be re-tested as a whole; you
never know where latencies can hurt your gameplay, even after the most
innocent-looking change in the logic).

Engine-Provided Server vs. Standalone Server

Using such a “continuous conversion” process is more or less common
across the board.225 However, while staying within a “continuous con-
version” development model, there are at least two distinct ways to
implement your Server.

The first option for implementing your Server is to use the capa-
bilities provided by your 3rd-party engine;226 this also usually implies
using engine-provided network capabilities and protocols. Let’s name
this approach an “Engine-Provided Server.”

The second option for implementing your Server227 while using a
3rd-party game engine is to have a completely standalone Server — with
100% of the Server-Side code being brand new and unrelated to the 3rd-par-
ty game engine you’re using. In other words, when using this Standalone
Server option, your Client will be still developed using a 3rd-party game
engine,228 but your Server will be (almost) completely separated — and can
use any networking libraries, protocols, programming languages, etc.

224 And using latency/packet loss simulators too(!).
225 That is for games that require Client-Driven Development Workflow and without writing your own

toolchain.
226 In Vol. I’s chapter on GDD, we named it “Option 1a.”
227 Referred to as “Option 1b” in Vol. I’s chapter on GDD.
228 Though both the Client and the Server may use a 4th-party network library.

Starting conversion
ASAP is necessary
because “conversions”
from single-player are
never obvious and
tend to cause quite
a bit of trouble, so
the sooner you can
have your “converted”
game playtested, the
better.

354 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Note that for such a Standalone Server approach to work, you’ll need
to make a special converter, which will take all those levels designed by
your Game Designers, and will convert the levels into some kind of
format your Standalone Server is able to understand.

Important Clarification: Development Workflow vs
Data Flow

One important thing to note is that regardless of game development
workflow being Server-Driven or Client-Driven, from a technical point
of view the data flow in our completed Authoritative-Server game will
always be Server-Driven: as our Server needs to be authoritative, all de-
cisions are always made by the Server and are propagated to the Clients,
which merely render things as prescribed by the Server (see more dis-
cussion on different data flows in Vol. I’s chapter on Communications).

MOST POPULAR 3RD-PARTY GAME
ENGINES
Now, as we’re done with discussing generic concepts, we can start re-
viewing specific network-oriented setups, which are based on popular
game engines such as Unity or UE. In this process, we’ll try to cover
both Engine-Provided Servers and Standalone Servers as defined above.

Overall, there are lots of game engines out there, so — being limited
by space — we’ll consider only three commercial engines that are the
most popular ones as of 2017, plus one open-source engine. Specifically,
those lucky ones are Unity 5, Unreal Engine 4, Amazon Lumberyard,
and Urho3D.229 For these engines, we’ll consider both their built-in
network capabilities and 3rd-party network libraries that can be used
to make an MOG with these game engines.

Note that comparing the graphics-related advantages and disadvan-
tages of Unity vs. UE vs. Cryengine/Lumberyard vs. Urho3D, as well as
the graphics performance differences etc., etc., are beyond the scope of

229 As noted in The engine that didn’t make it — Source section below, Source engine didn’t make it
into this comparison, as Source 1 was already badly outdated and Source 2 wasn’t yet available as
of the time of writing.

Regardless of game
development work-
flow being Server-Driv-
en or Client-Driven,
from a technical point
of view the data flow
in our completed
Authoritative-Server
game will always be
Server-Driven.

 Most Popular 3rd-party Game Engines · 355

this book; if you want to find discussion on these issues, Google “Unity
5 vs. UE4” (“Unity vs. Cryengine,” etc.) and you will easily find a ton of
comparisons of their non-network-related features. We, however, are
more interested in network-related topics, and such comparisons are
not that easy to find (to put it mildly). So, let the comparison of dif-
ferent network-related features of Unity 5, UE4, Amazon Lumberyard,
Urho3D, and related libraries begin! <smile />

Unity 5

Unity 5 is a very popular (arguably the most popular among indie de-
velopers) 3D/2D game engine. It supports tons of different platforms
(HTML5 support via IL2CPP+emscripten included), uses .NET CLI/
CLR as a runtime, and supports C#/JS/Boo (whatever the last one is) as
a programming language. One thing about Unity is that it targets a very
wide range of games, from first-person shooters to social games (i.e.,
“pretty much anything out there”).

As usual, support for CLI on non-MS platforms requires Mono,
which is not exactly 100% compatible with CLR, but from what I’ve
heard, most of the time it works (that is, as long as you adhere to the

As usual, support for
CLI on non-MS plat-
forms requires Mono,
which is not exactly
100% compatible with
CLR, but from what
I’ve heard, most of the
time it works.

356 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

“write once — test everywhere” paradigm). As for running Unity on
top of .NET Core instead of Mono, this looks unlikely [Peterson], and
Unity team seems to concentrate on supporting .NET Standard instead
(see [Landwerth]; very briefly, .NET Standard is intended to become an
underlying library for all of the .NET Framework, .NET Core, Xamarin,
and Mono) instead of supporting .NET Core.

Another thing to keep in mind when dealing with Unity is that CLR
(as pretty much any garbage-collected VM; see discussion in Chapter 6)
suffers from certain potential issues. These issues include the infamous
“stop-the-world”; for slower games it doesn’t really matter, but for really
fast ones (think MMOFPS) you’ll need to make sure to read about mit-
igation tricks, which were briefly mentioned in Chapter 6, and test your
game often to make sure you’re not running into this problem.

Event-Driven Programming/Reactors

Like most of the game engines out there, Unity is event-driven by de-
sign <smile />. Normally, Unity’s Game Loop is hidden from sight, but
it does exist “behind the scenes,” so everything basically happens in the
same thread.230 As a result, you don’t need to care about inter-thread
synchronization. From our point of view, Unity can be considered
pretty much a (Re)Actor (as defined in Chapter 5).

With regards to handling non-blocking stuff, Unity supports corou-
tines. Unity coroutines231 are executed within the same thread, so in-
ter-thread synchronisation is still unnecessary when using them <phew
/>. Referring to our eight Takes from Chapter 5, Unity’s coroutines are
roughly analogous to Take 5 (which isn’t too bad to start with).

In addition, at least when using C# for Unity, it seems possible to use
an even-better async/await with Unity [Vermeulen], with the potential
to serialize await frames as well [Wischik]. If both async-instead-
of-coroutines, and serializing of async-frames in C# really do work
in practice232, it would mean that we have the ability to serialise the
program state, enabling such (Re)Actor goodies discussed in Chapter 5

230 Or at least “as if” it happens in the same thread; what is important for us now is that thread-sync
issues can be safely ignored.

231 As coroutines should, and unlike goroutines.
232 Unfortunately, I didn’t have an opportunity to check it

 Most Popular 3rd-party Game Engines · 357

as production post-factum analysis, low-latency server-fault tolerance,
and certain aspects of replay-based testing. IMNSHO, having these
abilities is very important, especially when it comes to the post-de-
ployment debugging of games, so that we can fix those problems which
manifest themselves only in production (see Chapter 5 for the relevant
discussion); as a result – I suggest to at least try playing with async/await
in Unity (and whatever the results are – please let me know <wink />).

Built-In Communications: HLAPI (for Engine-
Provided Server)

Communication support in Unity 5 is known as UNet, and is split into
two separate API levels: High-Level API (HLAPI) and Transport-Level
API (LLAPI). Let’s first take a look at HLAPI.

First, let’s note that high-level APIs (such as HLAPI) are usually
pretty difficult to use for Standalone Servers. In particular, state syn-
chronization is usually quite an involved protocol, and re-implementing
a compatible version of it on your Standalone Server is rarely worth the
trouble. As a result

As a rule of thumb, HLAPI233 is only usable for
the Engine-Provided Server.

Now to the specifics of HLAPI. One potential source of confusion when
using HLAPI is the HLAPI term “Local Authority” as used in [Unity
Technologies, Unity 5 Network System Concepts]. When the game runs,
HLAPI says that usually a Client has “authority” over the correspond-
ing PC. It might sound like a bad case of violating the Authoritative
Server principles (that we need to avoid cheating; see Vol. I’s chapter
on Cheating), but in fact it isn’t. In HLAPI-speak, “client authority”
just means that the Client can send [Command] requests to the Server
(more on [Command]s below) about this specific object — that’s pretty
much it — so it doesn’t really give any decision-making authority to the
Client <phew />.

On the other hand, you should not use [Command] requests to allow
the Client to modify the state of the PC on the Server directly; doing so

233 As well as other high-level APIs.

You SHOULD NOT use
Command requests
to allow the client to
modify the state of
the PC on the Server
directly.

358 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

will violate Server Authority, widely opening a door for cheating. For
example, if you’re allowing a Client to send a [Command] that sets the
PC’s coordinates directly and without any Server-Side checks, you’re
basically inviting a trivial attack when a PC controlled by a hacked
Client can easily teleport from one place to another. To avoid it,

Instead of making decisions on the Client-Side and
sending coordinates calculated from the player’s
inputs, you should send the player’s inputs to the

Server and let the Authoritative Server simulate the
world and decide where the player really goes as a
result of the simulation that uses those inputs.234

State Synchronization

In HLAPI, you basically have two major communication mechanisms:
“state synchronization” and RPCs.

State synchronization is Unity’s incarnation of the Server State ->
Client State synchronization process, which we discussed in Vol. I’s
chapter on Communications. In Unity 5, state synchronization can be
done via the simple addition of a [SyncVar] tag to a variable [Unity
Technologies, Unity 5 State Synchronization]; it is as simple as that.

As discussed in Vol. I, for quite a few games you will need to imple-
ment Interest Management. Not only does it help reduce traffic, but it is
also necessary to deal with “see through walls” cheats, a.k.a. wallhacks,
and “lifting fog of war” cheats, a.k.a. maphacks.

Importantly, Unity does provide support for both distance-based
and custom Interest Management. Distance-based Interest Manage-
ment is implemented via NetworkProximityChecker, and a custom one
via RebuildObservers() (with related OnCheckObservers()/OnRebuil-
dObservers()).

Also, on top of [SyncVar]s, you may need to implement some (or
all) of the Client-Side stuff discussed in Vol. I’s chapter on Communi-

234 As an unfortunate side effect of this approach, you may get additional perceived latencies on the
Client-Side; to deal with these additional latencies, you may need to use Client-Side Prediction as
discussed in Vol. I’s chapter on Communications. Still, however bulky this approach might look on
first glance, it is widely recognized as the only viable way to implement a multiplayer game that
goes beyond playing with friends.

 Most Popular 3rd-party Game Engines · 359

cations (up to and potentially including Client-Side Prediction); one
implementation of Client-Side Prediction for Unity is described in
[Arellano].

So far so good, but the real problems will start a bit later. In the long
run, there are two significant problems with [SyncVar]s in HLAPI:
♦♦ Unity-provided synchronization mechanisms are usually quite in-

efficient traffic-wise. While Unity seems to use Whole-Field Delta
Compression (or a reasonable facsimile), its default serialization
can’t implement most of the compression mechanisms that we dis-
cussed in Vol. I. In particular, Incremental Delta Compression and
restricting precision of Publishable State variables are not possible
(the latter in turn makes bitwise streams pretty much useless). Of
course, you can create a separate set of variables just for synchro-
nization purposes (effectively creating a Publishable State separate
from your normal Server State), but even in this case235 you won’t
be able to implement many of the traffic compression techniques
that we discussed in Vol. I.

♦♦ Even worse: HLAPI as such doesn’t seem to support encryption.
And as a lack of encryption enables fundamentally undetectable
proxy bots, it is usually a Big No-No™ to release any production
game with more than a few thousand players without encryption.

This doesn’t mean that HLAPI is bad; however, it does mean that before
going into production, you should switch from [SyncVar]s to using
“custom serialization” functions (OnSerialize()/OnDeserialize()).

Using custom serialization instead of [SyncVar]s will allow you to:
♦♦ Improve compression. It should be noted, however, that the

custom serialization model in HLAPI is relatively limited; in
particular, it does not support the concept of “difference from any
previous state,” and always refers to the “immediately previous
state” instead. In turn, it implies that HLAPI’s state sync cannot use
the “Low-Latency Compressed State Sync” method as described in
Vol. I’s chapter on Communications; instead, HLAPI needs to rely
on some kind of “reliable UDP,” which tends to exhibit substantial-
ly worse latencies in case of lost packets.

235 Which BTW will require quite an effort, as well as being a departure from HLAPI philosophy, even
if you’re formally staying within HLAPI.

While Unity does use
Whole-Field Delta
Compression (or a
reasonable facsimile),
its default serialization
cannot possibly
implement most of
the compression
mechanisms that we
discussed in Vol. I.

360 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

♦♦ Enable encryption (sort of). With custom serialization, it is pos-
sible to implement kinda-encryption at serialization level. On the
other hand, it should be understood that implementing encryption
via customized serialization is pretty difficult, very cumbersome
and error-prone, and is somewhat limited.236 Also, let’s keep in
mind that if implementing encryption on top of HLAPI, we should
make sure to encrypt RPCs too (separately).
As a result, custom serialization, while being significantly better

than a built-in one, will still lose (both compression-wise and an-
ti-cheating-wise) to a well-designed marshalling library of your own.

RPCs (a.k.a. “Remote Actions”)

In Unity 5, RPCs were renamed “Remote Actions.” However, in reality,
not much has changed compared to Unity 4 — except that now there
is a [Command] tag for Client-to-Server RPC and [ClientRpc] tag
for Server-to-Client RPC, so it is still the same RPCs albeit under a
different name.

In any case, Unity RPCs still must be void. As we’ve seen in Chapter
5, this implies quite a few complications when you’re writing your
code. For example, if you need to query the Server to get some value,
then you need to have an RPC call ([Command] in Unity) going from
the Client to the Server, and then you’ll need to use something like
Networking.NetworkConnection.Send() to send the reply back (not to
mention that all the matching between requests and responses must
be done manually, and it will quickly become a major headache; see
Chapter 5’s Take 2 for examples). In my book,237 it qualifies as “damn
inconvenient” (though you certainly can do things this way).

Of the more serious negatives of HLAPI’s RPCs, we should mention:
♦♦ Lack of encryption. Adding encryption to HLAPI RPCs, while

possible, would be quite an effort. To do so, generally we’d need to
replace all specific [Command]s going from the Client to the Serv-
er, with one single call SendSomethingToServer() having the only

236 At least boundaries between messages will remain unencrypted. Strictly speaking, it is unclear
whether this is inherently exploitable; what is clear is that building a solid encryption schema at
this level, even if possible, is non-trivial and error-prone.

237 Pun intended.

Unity RPCs still must
be void.

 Most Popular 3rd-party Game Engines · 361

byte-array parameter (with SendSomethingToServer() performing
encryption — and calling a special [Command] that will just send
the encrypted data). And to get all the different RPC calls into
this byte-array parameter, we’ll need to use our own marshalling
(and do so manually for all the [Command]s <ouch/>). And then,
we’ll need to do the same thing for all the [ClientRpc]s (replacing
them with SendSomethingToClient() function, calling a special
[ClientRpc] within) <double ouch />.

♦♦ Lack of support for Server-to-Server communications — and it is a
significant limitation for serious games. As we’ll see in Volume III’s
Chapter on Server-Side Architecture, having your Server-Side split
into some kind of modules, microservices, or, even better, Node.js-
style nodes is a must for pretty much any sizeable Server-Side de-
velopment; as a result, having your network/game engine support
interactions between these nodes/modules is extremely important.
Sure, you can use another library (such as ZeroMQ, or maybe even
a DIY library) for Server-to-Server communications; however,
doing so is a headache, and integrating it with Game Logic is even
more of a headache <sad-face />. Once again, while it is certainly
doable, implementing it is going to be rather cumbersome and
time-consuming in practice.

HLAPI Summary

As discussed above, HLAPI comes with quite a few limitations; from
my perspective, the worst is the lack of encryption — and this is going
to be a Big Problem™ for serious games out there (that is, as soon as they
reach enough popularity to attract cheaters). In addition, for quite a
few simulation games, HLAPI’s [SyncVar] won’t provide “good enough”
traffic compression and optimization. As a result,

While HLAPI can be convenient for prototyping, you
do need to think about its limitations ASAP. For your

production game, at least, you should use custom
serialization instead of [SyncVar]s, plus implement

custom marshalling for [Command]s and [ClientRpc]s.
At most, you should switch to LLAPI.

Lack of support for
Server-to-Server
communications is a
significant limitation
for most serious
games out there.

362 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

In other words, HLAPI’s [SyncVar]s and RPCs are reasonably good for
prototyping and the early stages of development, speeding development
up. And then you should be able to rewrite [SyncVar]s and RPCs into
something more efficient (and encrypted(!)) using custom serialization
plus custom RPC marshalling, or (IMO better) using LLAPI. It is not
going to be a picnic, and you need to allocate enough time for this task,
but it can be done.

As a Big Fat Rule of Thumb™, this rewriting into customized-HLAPI
or LLAPI should be started pretty soon in the development cycle (IMO,
as soon as the first multiplayer prototype is up and somewhat-running).
In other words, while it might be a good idea to start your “continuous
conversion” from a single-player game into a multi-player one using
HLAPI, I would suggest starting to convert it further into custom-
ized-HLAPI or LLAPI as soon as you can see that your game is really
playable as a multi-player game after conversion from a single-player
one.238

Answering the question of whether custom serialization/marshal-
ling should be done on top of HLAPI or LLAPI: IMO, writing custom
serialization/marshalling around HLAPI, while possible, should be
avoided for new development (however, if you are already using HLAPI
extensively, and want gradual migration, customizing HLAPI may be
a viable approach). For new projects, instead of customizing HLAPI, I
would suggest using LLAPI; with the need to implement marshalling
yourself anyway, this seems to be the most straightforward and flexible
approach.

Built-In Communications: LLAPI (Both for Engine-
Provided Server and Standalone Server)

Just as advertised, Unity Transport Layer API (also known as
LLAPI239) is an extremely thin layer on top of UDP. There is no RPC
support, no authentication, not even IDL or marshalling. On the other
hand, in certain use cases this lack of built-in marshalling can be seen
as a blessing (in particular, it allows you to use any kind of marshalling,
which in turn enables you to use it with Standalone Servers).

238 With simulated packet loss, but probably without real-world bandwidth limitations at this point.
239 Don’t ask why “Transport-Level API” is abbreviated “LLAPI” and not “TLAPI.”

Just as advertised,
Unity Transport Layer
API (a.k.a. LLAPI) is an
extremely thin layer
on top of UDP.

 Most Popular 3rd-party Game Engines · 363

For me, the biggest practical problems with LLAPI are the following:
♦♦ Lack of IDL (which means manual marshalling for any

not-so-trivial case, and discrepancies between marshalling of
different communication parties tend to cause a lot of unnecessary
trouble).

 ▪ This, however, can be mitigated by using a 4th-party IDL
compiler. In theory -.NET BinaryFormatter or Google Pro-
tocol Buffers can be used for this purpose; however, at least
for Client-2-Server communications – I suggest writing an
IDL compiler yourself.

♦♦ IP:Port addressing model. Having to keep track at application level
of all those IP/port numbers is a significant headache, especially as
they can (and will) change.

♦♦ Lack of explicit support for state synchronization, and lack of
RPCs (even void-only RPCs are better than nothing from a devel-
opment speed point of view).
Still, while each of these problems is somewhat annoying (and all of

them together are quite annoying), neither qualifies as a showstopper.

On the positive side: LLAPI provides you with pretty much
all the capabilities in the world — that is, as long as you do every-
thing-you-need yourself <wink />. Once again, we can think of LLAPI
as a pretty thin layer on top of UDP, so we need to do pretty much
everything that-goes-beyond-sending-and-receiving-UDP-packets
ourselves.

When implementing your own protocol on top of LLAPI, I strongly
suggest that you write your own IDL compiler, supporting both state
sync and RPCs (ideally, non-void ones). For more discussion on IDL
compilers, see Vol. I’s chapter on Communications, and Vol. IV’s chap-
ter on Marshalling and Encodings.

3rd-party Communications for Unity: Photon Server

After we discussed built-in communication support in Unity itself,
let’s proceed with discussing 3rd-party network/communication
libraries for Unity. The most popular of such libraries is probably
Photon Server.

364 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Photon Server is positioned as an “independent network engine,”
and does as advertised — adds its own network layer to Unity (or to
Unreal). On the Client-Side, it integrates with Unity (i.e., the Client will
use Unity’s graphics and most of the scripting); on the Server-Side, in
our terms, it is a Standalone Server (i.e., it uses pretty much nothing
from Unity Client). As a result, it doesn’t need to care about graphics
etc., and can spend more effort on MOG-specific tasks such as load
balancing and matchmaking service.

One restriction of Photon Server is that its Server-Side always runs
on top of Windows .NET and APIs are written with C# in mind (I have
no idea how it feels to use other .NET languages with Photon, and it
seems that Photon doesn’t support Linux240). For the Client-Side, howev-
er, Photon supports pretty much every platform you may want; so as long
as you’re okay with your Servers being Windows/.NET, you should gen-
erally be fine (though keep in mind additional costs of Windows licenses
as discussed in Volume VII’s chapter on Preparing for Deployment).

Functionally, the Photon Server is all about simulated worlds
consisting of multiple relatively small rooms; while it is a restriction,
this is actually how most MOGs out there are built anyway, so it is not
as limiting as it may sound. For example, if you want to develop an
MMORPG with a seamless world, then, as we discussed briefly in Vol.
I’s chapter on Communications, you’ll need to split it into multiple
zones to be able to cope with the load.

Within Photon Server, there are two quite different flavors for net-
worked game development: Photon Server SDK and Photon Cloud (the
latter includes Photon PUN and Photon Realtime).241

First, let’s see how Photon organizes its Server-Side; this includes
both Photon Server SDK and Photon Cloud, though the latter only if
you can run your own Server-Side plugin, which, in turn, requires an
Enterprise Cloud.

240 According to Exit Games, the Photon Server itself is written in C++, but is based on IO Completion
Ports, so it is not easily portable to Linux (if at all).

241 Recently, Photon has added Bolt and TrueSync to the mix of its cloud-based offers. Staying true to
the spirit of Authoritative Servers (as discussed in Vol. I’s chapter on cheating), we won’t discuss
Bolt (which is mostly peer-2-peer technology, and as such is inherently vulnerable to rampant
cheating), and TrueSync (which is lockstep protocol, and as such is wide-open to Information Leak
attacks, not to mention severe problems with over 4-6 players playing within the same Game
World).

One restriction of
Photon Server is
that its Server-Side
always runs on top of
Windows .NET.

 Most Popular 3rd-party Game Engines · 365

As far as I understand, on the Server-Side, Photon uses thread pool-
ing (more specifically – I/O Completion Ports), but it serializes calls
of its Server-Side plugins to Game Worlds (“rooms” in Photon-speak).
This is an architecture that is pretty much indistinguishable242 from
event processing/(Re)Actors, which is a Good Thing™ (in particular,
because you don’t need to care about thread sync <phew />). On the
other hand, performance-wise it is not that obvious how well Photon
synchronization works in practice (there are ways of implementing it in
a good way, and ways to implement it in a pretty performance-hitting
way too <sad-face />). Still, IMO what matters is that the plugin API
is good in this regard (guaranteeing that no-thread-sync will ever be
necessary) — and synchronization issues, if present, can be optimized
by Photon guys without affecting plugins.

Photon Server SDK

IMPORTANT: Photon Server SDK is not to be confused with Photon
Cloud/PUN, which will be discussed below.

Necessary disclaimer. Unfortunately, personally, I didn’t see any
real-world projects implemented over Photon Server SDK, and docu-
mentation on Photon Server SDK is much less obvious than on Photon
Cloud, so I may be missing a few things here and there, but I will try
my best to describe it.

When looking at Photon Server SDK, we’ll notice that it doesn’t
explicitly support the concept of synchronized state. Instead, you can
BroadcastEvent() to all connected peers and handle this broadcast on
all the clients to implement state synchronization. Note that while
BroadcastEvent() can be used to implement synchronized state, there is
a substantial amount of work involved in making your synchronization
work reliably (I would estimate the amount of work required to be of
the same order of magnitude as implementing synchronised states on
top of Unity’s LLAPI). In addition, keep in mind that when relying on
BroadcastEvent(), most compressions we discussed in Vol. I’s chapter
on Communications won’t really work (because with broadcasts, we
won’t be able to adjust packets to account for some Clients having
received the previous packet and some of the Clients not receiving

242 Except for performance implications.

Photon Server SDK
doesn’t explicitly
support the concept
of synchronized state.

366 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

the same packet). Moreover, relying on broadcasts precludes Interest
Management — and this is usually a Pretty Bad Thing™ for most of the
games out there — both because of sending unnecessary traffic and be-
cause of wallhacks/maphacks (see Vol. I’s chapter on Communications
for the discussion). As a result, you will probably need to send events
to individual clients (via SendEvent()), effectively using Photon SDK
exactly as a low-level API such as LLAPI.

From an RPC point of view, the Photon Server has kinda-RPC.
Actually, while it is named Photon.SocketServer.Rpc, it is more like a
message-based request-response than a remote procedure call, as we
usually understand it. In other words, within Photon Server (I’m not
talking about PUN) I didn’t find a way to declare a function as an RPC,
and then to call it with all the stubs being automagically generated for
you. Instead, you need to create a peer, send an operation request over
the peer-to-peer connection, and while you’re at it, register an operation
handler to manage operation response.

This approach is more or less functionally equivalent to the sim-
plistic Take 1 from Chapter 5; as Take 1 is not the most convenient
thing to use (this is putting it mildly), it will become quite a hassle to
work with directly (on the other hand, void RPCs, which are typical
for the other libraries, correspond just to Take 2 out of 8, and are not
that much better). In addition, I have my concerns about Peer.SetCur-
rentOperationHandler() function, which seems to restrict us to one
outstanding RPC request per peer; this in turn creates additional (and
IMHO unnecessary) hassles.

On the positive side (and unlike all the network engines discussed
before), Photon Server does support such all-important-for-any-seri-
ous-MMO-development features as Server-to-Server communication
and Load Balancing. While I didn’t try them and so cannot talk about
how well they’re implemented (and implementing Load Balancing is a
non-trivial exercise), at least there is a chance <smile />.

Photon Cloud (PUN and Realtime)

IMPORTANT: Photon Cloud is not to be confused with Photon
Server SDK, which is discussed above.

On the positive side
(and unlike all the
network engines
discussed before),
Photon Server does
support such features
as Server-to-Server
communication and
Load Balancing.

 Most Popular 3rd-party Game Engines · 367

The second flavor of Photon-based development is Photon Cloud; in
turn, Photon Cloud-oriented Clients can use either Photon Unity Network-
ing (PUN), or Photon Realtime. While Photon Cloud is implemented on
top of Photon Server (which was discussed above), the way Photon Server
is deployed for Photon Cloud is very different from the way you would
develop your own Authoritative-Server game on top of Photon Server SDK.

The key problem with Photon Cloud is that basically you’re not
allowed to run your own code on the Server.243 While there is an
exception for so-called “Photon Plugins,” they’re relatively limited in
their abilities, and what’s even worse, they require a “Photon Enterprise
Cloud” (which as of 2017 doesn’t even have pricing published, instead
saying “contact us” <ouch />).

And as long as you’re not allowed to run your own code on the
Server-Side, you cannot make your Server authoritative, which makes
dealing with cheaters next-to-impossible. That’s the reason I cannot
recommend any kind of the Photon Cloud for any serious MOG devel-
opment, at least until you (a) realize how to deal with cheaters given lim-
ited functionality of Photon Plugins, and (b) get a firm quote from Exit
Games regarding their “Photon Enterprise Cloud” (as noted above, they
don’t provide pricing for the Enterprise Cloud, and the lack of a publicly
available quote is usually a pretty bad sign of it being Damn Expensive™
<sad-face />).244 In addition, it seems that to support encryption of the
whole game traffic in PUN, we’d need to implement it ourselves — and at
a rather inconvenient level (pretty much at the same level as for HLAPI).

These cheater-related potential issues are a pity, as the rest of Photon
Cloud245 is quite easy to use (more or less in the same range as Unity
HLAPI, but with manual serialization of synchronization states). Still,
unless you’ve managed to figure out how to implement an Authoritative
Server over PUN or Realtime (and how to pay for it), I’d rather stay
away from Photon Cloud because IMNSHO any sizeable game with-
out an Authoritative Server carries way too much risk of becoming a
cheaterfest.

243 To the best of my understanding.
244 BTW, I do sympathize with Chris Wegmann in this regard and do realize that allowing foreign code

on your server boxes opens more than just one can of worms, but still having an Authoritative
Server is that important that I cannot really recommend anything-without-the-ability-to-
implement-Authoritative-Servers for any serious MOG.

245 At least as long as we’re talking about PUN

Any game without an
Authoritative Server
carries way too much
risk of becoming a
cheaterfest.

368 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

3rd-party Communications for Unity:
SmartFoxServer

Photon Server is not the only product within the niche of “Stand-
alone Servers for Unity,” and there is a competitor: SmartFoxServer.
SmartFoxServer is a Java-based server, which allows different types of
Clients — including the ones based on Unity.

My biggest complaint about SmartFoxServer is that instead of being
Game Loop/Reactor based,246 it is thread-pool based. Moreover, it is not
just thread-pool based (well, under the hood, Photon Server is thread-
pool-based too, but nobody can really see it), but SmartFox pushes all
the complexity of the inter-thread sync into the face of the unlucky
gamedev. In other words, with SmartFoxServer it is your responsibility
as a gamedev to write all those mutexes, locks, and whatever-other-
thread-sync-things-you-need to guarantee that your Game World State
remains consistent, even under a heavy load.

Being an active opponent of mixing app-level logic with thread sync
for many years (see, for example, [Hare]), I cannot agree with using
thread sync within such a crucial part as Server Game Logic <sad-face />.
For a more detailed discussion of the advantages of (Re)Actors/Game
Loops over massive thread-pooling, see Chapter 5; a short summary
goes along the following lines: (a) (Re)Actors/Game Loops are much
simpler to code and maintain than mutex-ridden programs; (b)
(Re)Actors/Game Loops are testable (while in general, explicitly thread-
synced programs aren’t), and this may enable production post-factum
analysis and replay-based testing; (c) last but not least: (Re)Actors/
Game Loops tend to perform better (for about the same reasons nginx
tends to perform better than Apache).

Of course, it is possible to simulate kinda-(Re)Actors based
on SmartFoxServer (by protecting the state of the corresponding
(Re)Actor with a mutex, and locking it for each and every method call
that goes from SmartFox to our Game Logic247), but the efficiency of
such an approach will inevitably be lacking (especially under a higher
load and especially on typical NUMA server boxes). In addition, having

246 As discussed in this chapter, most other game-oriented network libraries are Game-Loop based.
247 In Java-speak, it is done via using a synchronized keyword that acquires a lock on ‘monitor’ of the

object, but is still the same good old mutex.

To summarize my feel-
ings about massively
multithreaded servers
with thread sync
exposed to the game
logic: while they are
not necessarily fatal,
IMNSHO they’re pretty
bad for the health of
your game.

 Most Popular 3rd-party Game Engines · 369

3rd-party Communications for Unity:
SmartFoxServer

Photon Server is not the only product within the niche of “Stand-
alone Servers for Unity,” and there is a competitor: SmartFoxServer.
SmartFoxServer is a Java-based server, which allows different types of
Clients — including the ones based on Unity.

My biggest complaint about SmartFoxServer is that instead of being
Game Loop/Reactor based,246 it is thread-pool based. Moreover, it is not
just thread-pool based (well, under the hood, Photon Server is thread-
pool-based too, but nobody can really see it), but SmartFox pushes all
the complexity of the inter-thread sync into the face of the unlucky
gamedev. In other words, with SmartFoxServer it is your responsibility
as a gamedev to write all those mutexes, locks, and whatever-other-
thread-sync-things-you-need to guarantee that your Game World State
remains consistent, even under a heavy load.

Being an active opponent of mixing app-level logic with thread sync
for many years (see, for example, [Hare]), I cannot agree with using
thread sync within such a crucial part as Server Game Logic <sad-face />.
For a more detailed discussion of the advantages of (Re)Actors/Game
Loops over massive thread-pooling, see Chapter 5; a short summary
goes along the following lines: (a) (Re)Actors/Game Loops are much
simpler to code and maintain than mutex-ridden programs; (b)
(Re)Actors/Game Loops are testable (while in general, explicitly thread-
synced programs aren’t), and this may enable production post-factum
analysis and replay-based testing; (c) last but not least: (Re)Actors/
Game Loops tend to perform better (for about the same reasons nginx
tends to perform better than Apache).

Of course, it is possible to simulate kinda-(Re)Actors based
on SmartFoxServer (by protecting the state of the corresponding
(Re)Actor with a mutex, and locking it for each and every method call
that goes from SmartFox to our Game Logic247), but the efficiency of
such an approach will inevitably be lacking (especially under a higher
load and especially on typical NUMA server boxes). In addition, having

246 As discussed in this chapter, most other game-oriented network libraries are Game-Loop based.
247 In Java-speak, it is done via using a synchronized keyword that acquires a lock on ‘monitor’ of the

object, but is still the same good old mutex.

To summarize my feel-
ings about massively
multithreaded servers
with thread sync
exposed to the game
logic: while they are
not necessarily fatal,
IMNSHO they’re pretty
bad for the health of
your game.

the ability to “optimize” your code by rearranging mutex locks or using
atomics can easily push you onto a slippery road of mutex-and-atom-
ics-ridden code, and such code is inevitably very deadlock-and-race
prone <very-sad-face />; of course, it is possible to avoid it (just by
providing a wrapper locking the mutex before your Game Logic and
saying “we never ever use mutexes and other thread-sync primitives in
our Game Logic”), but doing so will require a certain level of self-dis-
cipline.

To summarize my feelings about massively multithreaded servers
with thread sync exposed to the Game Logic: while they are not
necessarily fatal (you still can create a wrapper that will eliminate
thread sync at Game Logic level), IMNSHO they’re pretty bad for the
health of your game (as they push you into a very wrong direction,
and resisting the temptation to bend the rules “just this once” will be
difficult).

The second significant drawback of SmartFoxServer is that while
the newer SmartFoxServer seems to kinda support UDP, this support
still feels like the kind of support Cinderella’s sisters provided to
her — just enough to claim that such support does exist (and lacking
any desire to understand her or do anything real).248 And as UDP is still
a cornerstone for many games out there (in particular, it is pretty much
a must for any game that has characteristic times below 100ms), I tend
to see a lack of UDP understanding as a major disadvantage, at least for
faster-paced games.

Other than that unfortunate decision to go massively multi-
threading (and pushing all the sync complexities to the gamedev
instead of taking responsibility itself) and lacking support for UDP,
SmartFoxServer follows pretty much the same patterns as the rest of
the high-level libraries. It seems to support a concept of “sync state”
(via “Room Server Variables”), though in absence of IDL, or equiv-
alent, API to manipulate these variables is quite cumbersome; also
SmartFoxServer has a way to add custom serialization (which is a
Good Thing™ in general, as built-in serializations tend to be lacking).

248 When official “SMARTFOXSERVER 2X FPS TUTORIAL”, while discussing a first-person shooter(!),
claims that “UDP was invented in a different millennium to run games over 14.4k modems,” you
cannot really expect much in terms of UDP understanding <sad-face /> or reasonable support for
it. To see why this point of view is dead wrong – see Vol. IV’s chapter on Network Programming, in
particular, the discussion on Head-of-Line Blocking.

370 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Instead of RPCs, SmartFoxServer has Requests; just as with Photon
Server SDK — while these are functionally similar to RPCs, they’re ac-
tually message-exchange mechanisms — which are quite cumbersome
(though I have to admit that traditional void RPCs are not that much
better).

On the plus side: SmartFoxServer does support encryption for all
traffic; as it was one of my quite serious complaints about Photon, I am
certainly happy to see encryption in SmartFox.

Overall, while I really dislike SmartFoxServer’s approach to push-
ing mutexes/synchronized objects to a Game Logic level, if you make
a framework which wraps all the calls to your Game Logic (synchro-
nizing on a mutex/Java monitor before you enter Game Logic), IMO
for slower-paced games SmartFox might become competitive with
Photon Server SDK. What is important to note though is that both
Photon Server SDK and SmartFoxServer have a killer advantage over
non-Enterprise Photon Server Cloud — namely, both allow all-im-
portant Authoritative Servers. In addition, if your game calls for a Web
Deployment Architecture, as discussed in Volume III’s chapter on
Server-Side Architectures, SmartFoxServer may fly too (along the lines
of Web Deployment Architecture, as discussed in Vol. III, but using
SmartFoxServer protocol instead of the usual-for-web-architectures
HTTP).

3rd-party Communications for Unity: uLink

uLink [MuchDifferent] seems to be quite an interesting beast. It is a
high-level API (effectively competing with Unity’s own HLAPI), and
from uLink documentation it seems that uLink folks know significantly
more about the network than Unity developers. uLink guides (in
particular, specific recommendations on implementing Authoritative
Servers) also look very reasonable.

On the other hand, there are some rants about uLink (in particular,
[Newman] makes me rather uneasy), and more importantly, as of the
time of this writing, uLink is no longer updated for four-plus years
(which is never a good sign <sigh />). As a result, I cannot really rec-
ommend uLink for new development. As for its technical properties,
see the comparison table below.

 Most Popular 3rd-party Game Engines · 371

3rd-party Communications for Unity: DarkRift

DarkRift is another interesting horse out of the stable of Unity network-
ing libraries. What I like about it:
♦♦ It is explicitly oriented toward Authoritative Servers.

 ▪ In particular, it means that the separation between Server
and Client is very explicit, so the Client and Server are
decoupled in a very clean manner.

 ▪ Also, the concept of Server Plugins is good (actually, let’s
make it Very Good™).

♦♦ It is lean and mean.
 ▪ And its protocol is reportedly reasonably lean and mean

too.249

However, nothing is perfect in this imperfect world, and DarkRift has
two very significant drawbacks <sad-face />. My biggest complaint
about DarkRift is the same as about SmartFoxServer: both are mas-
sively multithreaded, pushing all the thread-sync complexity into the
gamedev’s face (and believe me, you as gamedev will have lots of other
things to care about besides mutexes). On the other hand, just like with
SmartFoxServer, it is possible to create a framework that will ensure
proper synchronization, so this IMO-very-significant drawback does
not qualify as a showstopper.

Another big drawback of DarkRift (which is promised to be fixed in
the long-promised DarkRift 2) is a lack of support for UDP.250

BTW, here go two rants about DarkRift marketing claims. First, in
spite of DarkRift guys claiming that DarkRift is “as fast as server solu-
tions can get,” I have to note that (Re)Actor-based apps will generally
beat massively multithreaded mutex-synchronized apps;251 moreover,

249 Though, from what I know, using the compression techniques discussed in Vol. I’s chapter on
Communications, it is beatable.

250 Is it only me, or does DarkRift look like a C# incarnation of SmartFoxServer — or vice versa? On the
other hand, on the plus side for DarkRift 2, it seems that understanding of UDP by DarkRift 2 folks
is significantly better than that of the SmartFoxServer folks (though DarkRift 2, just as any other
UDP-based system out there, still seems to lack support for “Low-Latency State Sync” discussed in
Vol. I’s chapter on Communications).

251 Under load, high-contention mutexes cause lots of thread context switches, and context switches
are Damn Expensive (up to 1M CPU cycles <ouch! />). As a practical manifestation of the same
thing, we can observe that non-blocking nginx does outperform massively-multithreaded Apache.

With DarkRift, the
Client and Server are
decoupled in a very
clean manner.

372 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

if we consider what is “fast” from the player’s perspective, we’ll see that
with only TCP being supported by DarkRift, latency spikes over pack-
et-losing Internet are going to be pretty bad (mostly due to head-of-line
blocking; more in Vol. IV’s chapter on Network Programming). Second,
DarkRift promo materials seem to imply that “multithreaded API” is
a good thing (and even a selling point); well, having (co-)architected
a stock exchange and a game that runs 400K+ players simultaneously
with 99.98% reliability, I contend that “multithreaded API” is a Really
Bad Thing™ (note that “support for multicore processing” is a very dif-
ferent story and is necessary; it is just “multithreaded APIs” that need to
be well-hidden from the view of the app-level developer).

Overall, I would be happy to recommend DarkRift (it does have
a straightforward architecture, and good ideas), but this multithread-
ing-exposed-to-app-level approach (coming right from the pre-nginx
Dark Ages of Massively-Multithreaded Inquisition in the early 2000s)
prevents me from suggesting it for Classical Deployment Architectures
(see Vol. III’s chapter on Server-Side Architecture for details); lack of
UDP support is also a Really Bad Thing™ for fast-paced games such as
FPS.

On the other hand, if your game is asynchronous, then DarkRift can
be used to make an architecture similar to “Web Deployment Architec-
ture” (in the same manner as SmartFoxServer; see above).

Also, I’d suggest keeping an eye on DarkRift 2’s underlying library
(Hazel); it is still under development, but may be just the ticket for
C#-based Clients such as Unity (though more as a “lower-level” library
than a full-scale Standalone Server).

3rd-party Communications for Unity: Lower-Level
Libraries

If you didn’t see anything you like in the list above,252 keep in mind that
it is possible to use lower-level libraries (either C# ones or C++ ones)
with Unity engine.

In particular, there is a whole bunch of “Reliable UDP” (RUDP)
game-oriented libraries, and another bunch of socket-wrapper

252 I didn’t <sad-face />.

Multithreading-ex-
posed-to-app-level
approach (coming
right from the
pre-nginx Dark Ages
of Massively-Multi-
threaded Inquisition
in the early 2000s)
prevents me from
suggesting DarkRift for
Classical Deployment
Architectures.

 Most Popular 3rd-party Game Engines · 373

libraries. Most of such libraries are C/C++, but there are a few C#
libraries too (such as the aforementioned Hazel by DarkRift folks, and
LiteNetLib).

At this point, we need to make one all-important observation about
Clients: any call to a DLL inherently represents a very good attack point
for bot writers,253 so as a Big Fat Rule of Thumb™, DLLs on the Cli-
ent-Side are to be avoided. On the other hand, for low-level DLLs such
as RUDP (and provided that encryption happens before your call to
the RUDP DLL), it is usually not that big a deal. Still, to avoid chances
that you’ll be inadvertently using encryption-within-your-DLL (which
would hurt your anti-bot efforts badly), or any other similar issues, I
would still suggest using pure C# libraries (rather than C/C++ libraries)
from C# Clients.

Still, using a C++ library is possible from Unity. For a discussion
on C++ libraries as such, see the UE Networking: Lower-Level C/C++
Libraries section below. Also, keep in mind that calling C/C++ from
Unity is rather cumbersome; while it is certainly possible, you’ll need to
jump through quite a few hoops, first making a DLL out of your C/C++
library, and then explaining to Unity how to integrate that DLL into C#
(see [Unity Technologies, Native Plugins] for details).

In addition, whether your library is C# or C++, make sure to read
the UE Networking: Lower-Level C/C++ Libraries section below for a
discussion about glue level and its API; to be honest, this is potentially
even more important than bot-fighting considerations (at least, it is
much more difficult to fix later).

Unity 5 Summary

When trying to summarize using Unity for MOG development, we
have to note that from the point of view of MOGs, Unity as such has a
significant drawback. As Unity is using C# on the Client-Side, and C#
(as pretty much any other bytecode-compiled language) stands pretty
poorly against bot writers (see Chapter 6 for a detailed discussion of
this topic), it means that as soon as your game reaches 10K+ players,
you’re risking becoming a bot-writer paradise.

253 We’ll discuss more of it in Vol. VIII’s chapter on Bot Fighting.

374 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

To address this problem to some extent, it might be possible to
recompile your Client-Side Unity code into C++ (via Unity’s IL2CPP),
but it still will certainly be less protected than native C++.254 Still, it is
very important to remember that

If using Unity, make sure to compile your game
with IL2CPP as soon as possible.

While I’m stopping short of saying that “you must not release a Uni-
ty-based game without being recompiled by IL2CPP,” it is very likely
that you’ll need that additional protection provided by IL2CPP. As
a result, making sure that you DO have this option is a very good
thing; also, it is extremely important to avoid any kind of code that
may break this capability (and there were quite a few such things
reported to do so <sad-face />). In addition, while we’re at it, I’ll
repeat a piece of advice from Chapter 6 to use libil2cpp as a static
one (and NOT as DLL/.so) — it is really important for resilience to
reverse engineering.

As for Unity networking, all in all, Unity 5/UNet does a decent job
if you want to try converting your existing single-player game into a
low-player-number multiplayer one. On the other hand, if you’re into
serious MOG development (with thousands of simultaneous players),
you’re going to face quite a few significant issues; while not showstop-
pers, they’re going to take a lot of your time to deal with (and if you
don’t understand what they’re about, you can easily bring your whole
game to its knees).

With regard to 3rd-party networking frameworks aiming at Unity,
well, most of them have their own deficiencies, and unfortunately,
pretty bad ones at that; in particular, as discussed above, Photon
Cloud (though not Photon Server) has problems with implementing
Authoritative Servers, uLink is not updated for several years, and
SmartFoxServer and DarkRift suffer from a massive multithreading
programming paradigm (and a lack of decent UDP support, limiting
their use for fast-paced games).

254 Assuming that in your native C++, you’re following all the hardening guidelines from Vol. VIII’s
chapter on Bot Fighting.

All in all, Unity 5/
UNet does a decent
job if you want to
try converting your
existing single-player
game into a low-play-
er-number multiplayer
one.

 Most Popular 3rd-party Game Engines · 375

For fast-paced games (such as shooters), it essentially leaves us with
the choice of:
♦♦ Engine-Provided Server

 ▪ Unity’s HLAPI and/or LLAPI. I have to admit that Unity’s
HLAPI is not my favorite way of doing things (beyond
prototyping; see the HLAPI Summary section above for a
relevant discussion). Still, with custom serialization and
custom RPC marshalling, it might be made usable — though
I still prefer LLAPI.

♦♦ Standalone Server
 ▪ Unity’s LLAPI
 ▪ Photon Server SDK
 ▪ Lower-level libraries

For slower-paced games (think casinos, though some RPGs might be able to
use them too), Standalone Servers based on DarkRift and SmartFoxServer
might work; however, for both I have to insist on creating a framework
that hides inter-thread synchronization from the application level.

Now, let’s take a closer look at these options.

Engine-Provided Server. HLAPI Now, Probably LLAPI Later

As discussed above, one option for Client-Driven Development is to use
Engine-Provided Server. For Unity, it pretty much means taking quite
a big chunk of your existing single-player Client Logic and running it
on your Server. Usually, this is not the most optimal path, but there are
ways to make it work.

One way of doing it is to take your single-player Client and move
all the decision-making logic to your Authoritative Server (sending
player inputs there via RPC calls)255. After Server processes inputs, it
will change the state and will publish it via HLAPI/[SyncVar] variables.
Then Clients will get the current state of your game via these [SyncVar]
variables — and display it. Bingo! You’ve got your MOG. Sort of…

More specifically, what you’ve got is certainly an MOG; however,
you’ll likely need to make quite a few refinements to make it work over

255 Don’t forget to do it as early as possible in your development process  — that’s Damn Important™.

What you’ve got is
certainly an MOG;
however, you’ll likely
need to make quite
a few refinements
to make it work over
the Internet for many
thousands of players.

376 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

the Internet for many thousands of players. In particular, the following
improvements are likely to be necessary (though YMMV depending on
the nature and specifics of your game):
♦♦ Most likely, you’ll want to use severely simplified 3D models on

your Server-Side. As a Big Fat Rule of Thumb™, no textures are
necessary on the Server-Side; moreover, the number of polygons in
your meshes can be severely reduced (for example, for most RPGs
out there, it is sufficient to describe a PC/NPC as a hexagonal
prism or even box, and each of the rooms as a mere box with
openings for doors).

 ▪ Ultra-low-res meshes tend to reduce the amount of work
on the Server-Side many-fold (100x anyone?) — and as
on the Server-Side, you need to run more than one Game
World per Server; it comes in Very Handy™.

 ▪ Though it is not too likely, low-res meshes can affect
playability, so it is paramount to start doing it (and testing
it) ASAP.

♦♦ If your game is fast-paced, you may want to implement stuff such
as Client-Side Interpolation/Extrapolation/Prediction, which
were discussed in Vol. I’s chapter on Communications. Before
implementing these things, our game corresponds to “Take 1” of
the flow diagram discussed in Vol. I, and if our game is an FPS,
we’ll likely need to get it all the way to “Take 3” (and maybe even
beyond, into rather controversial Lag Compensation).

♦♦ Make sure to add encryption (as noted above, encryption is very
important to deal with proxy bots256). This can be done in at least
two different ways:

 ▪ Via encrypting your data before feeding it to HLAPI. As
discussed above, it can be done within custom serialization
plus via custom encrypted marshalling for HLAPI RPC
calls — and is very cumbersome to say the least.

 ▪ By migrating to LLAPI, and implementing encryption
there.

 ▪ In any case, I strongly suggest writing your own IDL
compiler (see Vol. I’s chapter on Communications and

256 And they’re a very important class of bots/cheaters.

You may find that
HLAPI-generated
traffic for individual
player won’t fit into a
typical ADSL channel.

 Most Popular 3rd-party Game Engines · 377

the Internet for many thousands of players. In particular, the following
improvements are likely to be necessary (though YMMV depending on
the nature and specifics of your game):
♦♦ Most likely, you’ll want to use severely simplified 3D models on

your Server-Side. As a Big Fat Rule of Thumb™, no textures are
necessary on the Server-Side; moreover, the number of polygons in
your meshes can be severely reduced (for example, for most RPGs
out there, it is sufficient to describe a PC/NPC as a hexagonal
prism or even box, and each of the rooms as a mere box with
openings for doors).

 ▪ Ultra-low-res meshes tend to reduce the amount of work
on the Server-Side many-fold (100x anyone?) — and as
on the Server-Side, you need to run more than one Game
World per Server; it comes in Very Handy™.

 ▪ Though it is not too likely, low-res meshes can affect
playability, so it is paramount to start doing it (and testing
it) ASAP.

♦♦ If your game is fast-paced, you may want to implement stuff such
as Client-Side Interpolation/Extrapolation/Prediction, which
were discussed in Vol. I’s chapter on Communications. Before
implementing these things, our game corresponds to “Take 1” of
the flow diagram discussed in Vol. I, and if our game is an FPS,
we’ll likely need to get it all the way to “Take 3” (and maybe even
beyond, into rather controversial Lag Compensation).

♦♦ Make sure to add encryption (as noted above, encryption is very
important to deal with proxy bots256). This can be done in at least
two different ways:

 ▪ Via encrypting your data before feeding it to HLAPI. As
discussed above, it can be done within custom serialization
plus via custom encrypted marshalling for HLAPI RPC
calls — and is very cumbersome to say the least.

 ▪ By migrating to LLAPI, and implementing encryption
there.

 ▪ In any case, I strongly suggest writing your own IDL
compiler (see Vol. I’s chapter on Communications and

256 And they’re a very important class of bots/cheaters.

You may find that
HLAPI-generated
traffic for individual
player won’t fit into a
typical ADSL channel.

Vol. IV’s chapter on Marshalling and Encodings for further
discussion).

♦♦ If you multiply traffic generated by HLAPI-based implementation
by the number of players you want to run on your Servers (and by
the cost per Megabyte), chances are that you’ll find it way too ex-
pensive. Alternatively, you may find that HLAPI-generated traffic
for the individual player won’t fit into a typical ADSL channel.257 In
this case, the following optimizations might help:

 ▪ Make sure to create a separate Publishable State (see Vol. I’s
chapter on Communications for a discussion about the
differences between the Server State, Publishable State, and
Client State).

 ▪ If applicable, make sure to implement Interest Management
as discussed in Vol. I.258

 ▪ Rewrite state sync (of that separate Publishable State) using
custom serialization or LLAPI, using some or all compres-
sion techniques discussed in Vol. I.

yy While you’re at it, pay special attention to rounding:
not only does it reduce the number of bits, but
it also reduces the amount of “white noise” in
your communications — and any “white noise” is
non-compressible by any further compression you
may want to use.

Of course, this is only a very sketchy description, but I hope you’ve
got the overall direction.

Standalone Server with Export from Unity

A second distinct option for working with Client-Driven Development
Workflow (i.e., being able to use Unity’s level editor) goes along the
following lines (once again, we’re assuming that single-player prototype
is already working):
♦♦ Make a script to export data from Unity-level editor into a format

that can be understood by your Standalone Server.

257 And most likely, as of 2017, your GDD still says that you DO need to support ADSL.
258 Or at least to understand why Interest Management doesn’t apply to your game.

378 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

♦♦ Write a Standalone Server that will work with this exported level
data and will use this data for simulation.

 ▪ For communication purposes, pretty much anything can be
used, including LLAPI, Photon Server SDK, and low-level
libraries of all sorts. It means that you’ll need to implement
all the state sync stuff yourself, but, on the other hand,
while doing it, you will have complete flexibility (and will
be able to implement all the stuff you may need, including
all the optimizations described for the Engine-Provided
Server above).

 ▪ As your Server will be standalone and unrelated to the
Client:

yy As a benefit compared to the Engine-Provided
Server, you’ll get much cleaner decoupling between
the Client and the Server (and much less trouble
dealing with removing all the Client-Side stuff from
the Server-Side).

yy On the other hand, additional care will be necessary
to deal with the Client-Side Prediction (in many
cases it is desirable to re-use Server-Side simulation
code for Client-Side Prediction, so clean reusable
API and cross-platform implementation will proba-
bly be necessary).

Engine-Provided vs Standalone: Which One Is Better?

Unfortunately, I can’t tell which option — Engine-Provided Server or
Standalone Server — is better; it depends on too many factors, and I
don’t know the processes well enough to generalize experiences I know
about. However, I need to say that I’ve heard about games that are suc-
cessfully implemented via both these options.

As for Server-to-Server communications (and you will need them;
see for example Vol. I’s chapter on Communications), neither of the
ways described above will provide much help <sad-face />. However, it
is not rocket science (and you can implement them on top of good ol’
TCP sockets, or on top of LLAPI, or on top of a 3rd-party library such
as ZeroMQ).

 Most Popular 3rd-party Game Engines · 379

Unreal Engine 4
Unreal Engine 4 is a direct competitor of Unity, though it has some-
what different positioning. Unlike Unity (which tries to be a jack of all
trades), Unreal Engine is more oriented toward first-person games, and
(arguably) does it better. Just like Unity, UE also supports a wide range
of platforms (with the differences from Unity being of a marginal na-
ture), and does have the support for HTML (again, using emscripten).

For UE4, supported programming languages are C++ and UE’s own
Blueprints. At some point, Mono team has tried to add support for C#
to UE4, but dropped the effort shortly afterward <sad-face />.

It should be noted that UE4’s variation of C++ has its own garbage
collector (see, for example, [Epic Games]). Honestly, I don’t really like
hybrid systems that are intermixing manual memory management with
GC (they introduce too many concepts that need to be taken care of,
and tend to be rather fragile as a result), but Unreal’s is reported to work
pretty well.

Event-Driven Programming/Reactors

Unreal Engine is event-driven by design. As with Unity, normally game
loop is hidden from sight, but you can override and extend it if nec-
essary. And exactly as with Unity or (Re)Actors, everything happens
within the same thread, so (unless you’re creating threads explicitly)
there is no need for thread synchronization.

Support for non-blocking processing in UE4 does exist, but you
have to be very careful here, as there are several different (and often
rather bulky) concepts involved. In particular, one has to be very
careful with offloading, which is implemented via FAsyncTask<>; the
problem here is how to return the data to the main game thread without
crashing, and TBH, calling CreateAndDispatchWhenReady(…, ENam-
edThreads::GameThread) to execute a task in the main thread is not the
most intuitive way of doing it. As for UE4 RPCs, just as with Unity,
they’re non-blocking but void-only, with all the relevant implications.

With regard to serializing the state of the Game World – in yet
another similarity with Unity, such serialization seems to be doable, but
(also like with Unity) it is going to be rather cumbersome.

Unreal Engine is more
oriented toward
first-person games,
and (arguably) does it
better.

380 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

UE for MOG

Moving our discussion on UE towards our primary subject of “using
UE for MOGs,” first we have to observe that pretty much like Unity, UE
as such doesn’t really provide a way to implement a clean separation be-
tween the Client and the Server code (while there is a WITH_SERVER
macro for C++ code, it is far from being really cleanly separated). Now,
let’s take a bit closer look at UE networking.

UE Networking: Very Close to Unity 5 HLAPI

Just like Unity, at a higher level of abstraction, UE4 provides two prima-
ry communication mechanisms: state synchronization (“Replication”
in UE-speak) and RPCs. There is not much to discuss here, as both
replication and RPCs are very close to the Unity counterparts discussed
above.

In particular, replication in UE4 is conceptually very similar to
Unity’s [SyncVar]s (with a different syntax of UPROPERTY(Replicat-
ed) and DOREPLIFETIME()). UE4’s RPCs (again having a different
syntax of UFUNCTION(Client)/UFUNCTION(Server)) are again
very similar to that of Unity HLAPI (with the only-void restriction,
no support for addressing and for Server-to-Server communications,
and so on).

Interest Management in UE4 is based on the concept of being
“network relevant” and is dealt with via AActor::NetCullDistanc-
eSquared() and AActor::IsNetRelevantFor() functions (ideologically
similar to Unity’s NetworkProximityChecker and RebuildObservers()
respectively).

Being so close to Unity 5 ideology means that UE4 also shares all
the drawbacks described above for Unity HLAPI; it includes sub-opti-
mal traffic optimization for replicated variables, void-only RPCs, and a
lack of support for Server-to-Server communications; see the HLAPI
Summary section above for further discussion.

On the minus side, compared to Unity 5, UE4 doesn’t provide LLAPI,
so bypassing these drawbacks as was suggested for Unity is a tad more
difficult (though still possible).

Replication in UE4
is conceptually very
similar to Unity’s
[SyncVar]s.

 Most Popular 3rd-party Game Engines · 381

UE Networking: Lower-Level C/C++ Libraries

While UE4 doesn’t have a direct counterpart to Unity’s LLAPI, it does
provide classes to work directly with sockets (look for FTcpSocketBuild-
er/FUdpSocketBuilder), and using Berkeley sockets seems to be possible
too. And as soon as we have some kind of sockets, implementing an
(very thin) analogue of LLAPI is pretty easy.

Moreover, UE4 comes with an added (though relatively minor)
benefit: UE4 is C++-based, and it is much easier to find 3rd-party C++
network libraries than C# ones. In general, I try to separate these C++
libraries into two broad categories: (a) reliable UDP libraries and (b)
socket wrapper libraries. And as for OO-like libraries/frameworks such
as CORBA/DCOM/ICE, I do NOT recommend them (and in spades
too) for any over-the-WAN interaction; see the discussion in Chapter
5 for details.

Reliable UDP Libraries

The idea of a Reliable UDP (RUDP) library is pretty much as it says on
the tin: it creates a reliable UDP channel to facilitate reliable exchanges
without incurring TCP-style latencies.

There is a wide-spread perception that “RUDP provides better
latencies than TCP;” however, it is really important to realize that re-
transmits and Head-of-Line blocking259 are still necessary to achieve re-
liable-ordered delivery, whether we’re using TCP or RUDP. As a result,
when talking about reliable-and-ordered RUDP channels compared to
TCP, latency improvements are mostly related to subtle reductions of
retransmit timing (including the potential to avoid TCP-style “expo-
nential backoff ”).

In fact, significantly better latency improvements from using UDP
can be achieved when we implement UDP-based Low-Latency Com-
pressible State Sync (which was discussed in Vol. I’s chapter on Com-
munications), but, unfortunately, I don’t know of a single RUDP library
that supports this concept out of the box <sad-face /> (though you can
implement it yourself on top of the unreliable portion of RUDP library,
or on top of plain UDP sockets for that matter). For more discussion on

259 As discussed in Vol. IV’s chapter on Network Programming.

As for C++ libraries, I
try to separate them
into two broad cate-
gories: reliable UDP
libraries, and socket
wrapper libraries.

382 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

TCP, UDP, and their respective latencies, please see Vol. IV’s chapter on
Network Programming.

There are quite a few well-known RUDP libraries out there, including
Enet, UDT, and RakNet; we’ll discuss them in more detail in Vol. IV’s
chapter on Network Programming, but for the time being let’s note
that they give or take provide the same functionality (that is, unless
you need “NAT punchthrough,” but for Authoritative Servers hosted
in datacenters and having static IP addresses, you don’t really need
it). One big problem with these three libraries is that they’re not really
developed/supported anymore; and while they’re still working (there
are no changes in the Internet infrastructure that can really break basic
UDP) — the question of how optimal they still are may not be as obvious
(as fine-tuning of the Internet, such as typical over-the-Internet delays
and the reasons behind dropping packets, does change over time). IMO
it is not that big a deal, but as there are newer alternatives, I’d prefer to
use them <smile />.

Among newer libraries, there are two rather interesting ones.
One is proto-quic [Google], which is essentially latency-optimized
reliable streams by Google. In general, proto-quic (and QUIC in gen-
eral) is intended as a latency-optimized multistream replacement for
TCP+TLS — and should be treated exactly as such. In other words,
do not expect major improvements latency-wise260 (except for the
initial handshake, where improvement is indeed significant), but it will
provide a bit of latency improvement without significant changes to
your TCP-oriented code (i.e., pretty much for free); it also allows for
multiple streams, which allows you to prioritize your traffic within a
single QUIC connection.

Another new kid on the block (and a much more game-oriented
one too) is libyohimbo [Fiedler] by a recognized game networking guru,
Glenn Fiedler. I see libyohimbo as a more traditional RUDP library such
as RakNet etc., but with encryption thrown in. And as (a) encryption is
really important to deal with cheaters (more on it in Vol. VIII’s chapter
on Bot Fighting), and (b) as UDP encryption is non-trivial to implement
(we’ll discuss it in more detail in Vol. IV’s chapter on Basic Security),
well, built-in encryption is certainly a Good Thing™. If Glenn would

260 In particular, Head-of-Line Blocking is still there; more on it in Vol. IV’s chapter on Network
Programming.

Another new kid on
the block is libyohim-
bo by a recognized
game networking
guru, Glenn Fiedler.

 Most Popular 3rd-party Game Engines · 383

also add support for state-sync (allowing for custom inter-packet com-
pression and keeping track of already-acknowledged packets; see the
discussion of Low-Latency Compressible State Sync in Vol I’s chapter on
Communications), I’d even stronger recommend libyohimbo <wink />.

Regardless of specific RUDP library you’re using, I would argue that
such libraries (while certainly very useful) are generally too low-level to
be used directly by your Game Logic. Instead, most of the time a glue
level sitting between your code and lower-level library is necessary;

Moreover, app-facing API of this glue level MUST be
expressed in terms of your app needs (such as “let’s
update this variable on all the Clients”) rather than

in terms of capabilities of the underlying library
(such as sending packets).

This all-important rule makes sure that your game developers can
concentrate on the Game Logic, while your network developers can
concentrate on translating needs of Game Logic into underlying
packets (reliable/unreliable connections, etc. etc.). Even if it is the same
person who is writing both layers – this separation of concerns is still
necessary; at least, it will allow to avoid thinking about both things at
the same time (which almost-universally leads to cognitive overload
and violation of the all-powerful “7±2” cognitive limit).

Socket Wrapper Libraries

The second large family of lower-level libraries lies even lower than
RUDP, and are basically merely wrappers for UDP and/or TCP sockets.
However, there are three important observations about mere wrappers:
(a) Using any 3rd-party socket library — including 3rd-party

wrappers — directly from your Game Logic code qualifies a Pretty
Bad Idea™; this means that you’ll need your own wrapper library
around a 3rd-party library anyway.

(b) Mere wrappers do not provide any additional functionality
(instead, they often lose some functionality that the wrapper writer
considered unimportant); contrast it with RUDP libraries, which
do provide “reliable UDP” as a significant added-value.

384 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

(c) It is usually a bit simpler to wrap system calls than to wrap
3rd-party wrappers (as system calls are usually better documented;
and when talking about Berkeley sockets, well, they’re extremely
well-documented).
As a result, most of the time, I do not recommend using 3rd-party

merely-wrapping libraries (writing your own wrapper-tailored-for-needs-
of-your-app is a very different story — these are useful, even “very useful”).

Examples of such merely-wrapping libraries include PocoProject
and boost::asio (the latter, while providing non-blocking programming
interface, is still too low-level to be used in Game Logic code, and tends
to add unnecessary overheads in infrastructure-level code).

UE4 Summary: Engine-Provided and Standalone Servers

Now, we can try to summarize my ranting on UE4 in the context of
MOGs. Overall, to convert an UE4 single-player game into a multi-
player one, just as with Unity, there are the same two approaches of
Engine-Provided Server and Standalone Server.

Using Engine-Provided Server means starting with splitting the
single-player logic into Client-Side and Server-Side using an UE4-pro-
vided state sync and RPC, getting the whole thing running in this mode,
and converting to custom-written state sync later (when/if it becomes
necessary — though most of the time it will, sooner or later). The whole
process is very similar to the one described for Unity in the Engine-Pro-
vided Server. HLAPI Now, Probably LLAPI Later section above, so make
sure to refer there for a list of potentially important optimizations. One
substantial difference from Unity is that for rewriting state sync (and
potentially RPC) under UE4, you can do one of the following (a) use
low-level UE4 functions such as FUdpSocketBuilder (and build your
own stuff on top of it); or (b) use an RUDP library discussed above
(however, you’ll still need to write state sync yourself).

The Standalone Server approach for UE4 is also conceptually sim-
ilar to the Standalone Server described for Unity 5 above. The idea is
to use some kind of export from the UE4 (to obtain level information
to be used by your Standalone Server), and then to write a standalone
Server from scratch — either on top of plain sockets, or using one of the
lower-level libraries discussed above.

Most of the time, I
do not recommend
using 3rd-party mere-
ly-wrapping libraries
(writing your own
mere wrapper is a very
different story — these
are useful, even very
useful).

 Most Popular 3rd-party Game Engines · 385

Amazon Lumberyard
A relatively recent development in the field of major single-player
engines that allow for MOG development is Amazon Lumberyard.
Looking at it from 30,000-feet, we can consider Amazon Lumberyard
a well-known CryEngine, plus added network support (and also with
full source code, etc., etc.). Moreover, it’s free (well, sort of; see below).

A Choice Between Amazon-Only Hosting — and
(Hopefully) Co-Location

The only free cheese is in the mousetrap
— Proverb

Disclaimer: I am not a lawyer, and the analysis below is just my
personal speculations, and does not represent any attempt to provide
any kind of legal advice. Make sure to seek professional advice in all
legal matters such as licenses, copyrights, etc.

If you think that an AAA-grade engine for free “is too good to be
true,” well, indeed it is. The trick is that

The license of Amazon Lumberyard (at least as I read it)
prevents you from running your Lumberyard-based game on
leased servers (or cloud services) other than Amazon ones.

For details, it is better to refer to the original authoritative source
[Amazon, AWS Service Terms], with the most-interesting-for-us point
being found in paragraph 57.4. Moreover, if you’re serious about using
Lumberyard, it is better still to have your lawyer read the whole agree-
ment (and you may also want to ask Amazon more specific questions
about what is allowed and what is not).

My understanding of paragraph 57.4 from [Amazon, AWS Service
Terms] is that you’re still free to run your-game-using-Lumberyard-en-
gine on the servers that “you own and operate.” From a very unofficial
discussion in [Amazon, Two questions about Lumberyard licensing], it
seems that:

Amazon Lumberyard
can be seen as a
well-known CryEngine,
with network support
added.

386 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

♦♦ Amazon is not okay with you running a Lumberyard game on
traditional rented servers, or cloud servers (that is, unless it is
Amazon cloud).

♦♦ Amazon seems to be okay with you purchasing servers (to “own”
them), and then co-locating them.

 ▪ Whether it is okay to use your-colocating-ISP guys to
install and plug in your servers, and to act as “remote
hands” is still not 100% clear, but at least there is a chance
(and in a really extreme case, you could go to your ISP
yourself once to connect the servers; as we’ll see in Vol.
VII’s chapter on Preparing for Deployment, with the right
choice of servers, 99.99% of the server administration
beyond connecting Ethernet cables can and should be
done remotely).

This basically seems to leave you with two options:
♦♦ Run your game on Amazon EC2. This, however, has two important

drawbacks:
 ▪ As we’ll see in Vol. VII’s chapter on Preparing for Deploy-

ment, virtualization tends to lead to increased latencies
and latency spikes (which BTW tend to be very important
for shooters, which is exactly the kind of game aimed at by
Lumberyard). This is not a problem for social games, but
can become a big deal for shooters and MOBAs.

yy While this problem can be avoided by using
“bare-metal cloud servers,” last time I checked,
Amazon didn’t provide such an option <sad-face />.

 ▪ As we’ll see in Vol. VII, pricing of the cloud services tends
to be higher-than-rented-servers for quite a few games out
there (optimal configurations tend to go along the lines of
“handling constant load on rented servers, and handling
load spikes on the cloud servers”). 261

261 As of 2017, the typical price difference between a per-month lease of a “dedicated server” and
comparable “cloud server” for the same time period is about 4x (i.e. the “cloud server” is 4x more
expensive than the “dedicated rented server”). While the price difference can be compensated
by elasticity of the cloud, for quite a few typical game load patterns elasticity is not sufficient to
compensate for the 4x price difference (and the best option price-wise is usually a hybrid one, with
the “flat” portion of the load handled by per-month leased servers, and load spikes handled by the
cloud servers). For a detailed discussion, see Vol. VII’s chapter on Preparing for Launch.

Pricing of the cloud
services tends to be
higher-than-rent-
ed-servers for quite a
few games out there.

 Most Popular 3rd-party Game Engines · 387

 ▪ In addition, if not for the co-location option, staying with
EC2 forever-and-ever would mean an Absolute Vendor
Lock-In (and I am very, very cautious of such lock-ins, at
the very least for Games with an Undefined Lifespan).

♦♦ Run your game from co-location. This also has a drawback, related
to the costs and complications of co-location. We’ll discuss it in
Vol. VII’s chapter on Preparing for Deployment, but very briefly:
with co-location we’ll need to handle (and pay for) all server
upgrades ourselves, will need to store some spare parts (or keep
whole servers in reserve to account for multi-hour hardware-fix
times by vendors), won’t get any benefit from discounts-that-big-
providers-get-for-the-same-hardware, and so on.
Overall, you may be able to run your Lumberyard-based game

smoothly (for example, using co-location for DB Servers and “flat”
load+EC2 cloud for load spikes262), but keep in mind that due to the li-
censing restrictions, doing so may cause significantly more trouble than
non-Lumberyard-based games. Whether the benefits of the Lumberyard
as an engine are worth the trouble depends entirely on your priorities. If
for any reason you feel that you cannot live without CryEngine/Lumber-
yard, I believe it should be possible to use them; just make sure that you
know ALL the implications of doing this, including licensing ones.

One thing to keep in mind if your balance of pros and cons shows
that you do want to use Lumberyard:

Make 100% sure that if necessary you will be able to use
co-location, even if you do not plan to use co-location in

the foreseeable future.263

To achieve it, I strongly advise that you at least (a) obtain an official
response from Amazon about co-location (and about permission for
ISP folks to connect cables to your Servers without violating the Lum-
beryard license), and (b) have your lawyer read Amazon’s response to
make sure that your intended usage of Lumberyard doesn’t contradict
their license terms.

262 And it will likely be the best approach price-wise regardless of Lumberyard license restrictions,
though beware of cloud latencies.

263 With Games with an Undefined Lifespan, you never know what changes will come five years down
the road, and Absolute Vendor Lock-In is damn dangerous, even when you’re locked-in by Amazon.

388 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Amazon Lumberyard: General

With all the lawyer-speak about licenses aside, we can finally get to
more interesting stuff.

From what I was able to find out (with all the usual disclaimers that
it is just one rabbit’s opinion), Amazon Lumberyard is not that much
different from the other engines we have discussed above. As a result,
I won’t repeat the same things over and over again, but instead will try
to describe differences between Lumberyard and Unity/UE4. Please also
note that information on Lumberyard is relatively scarce, and that I didn’t
have a chance to play with it myself — so please take all my analysis with
even bigger pinch of salt than usual.

Amazon Lumberyard: Platforms, Programming
Languages, and Event-Driven Programming
In a similar manner to the other game engines, Amazon Lumberyard
supports multiple programming languages (C++ and Lua). Note though
that unlike UE4, Lumberyard seems to rely on traditional-for-C++
manual memory management (rather than introducing some kind of
garbage collection like UE4 does).

With regards to platform support, Lumberyard is a bit more limited
than Unity/UE4; and while all the major desktop/console/mobile plat-
forms are supported (and a lack of support for MacOS/Wii/WinPhone
is usually not that important for modern games), an inability to release
an HTML5/browser-based version of your game may be a negative
(depending on the specifics of your game, marketing plans, and GDD;
for more discussion, see Vol I’s chapter on GDD).

As for event-driven programming, at heart Lumberyard264 is essen-
tially an event-driven program. In addition, an equivalent of off-load-
ing capabilities discussed in Chapter 5 is supported (see, for example,
[Amazon, Physics Scripting Guide]).

Amazon Lumberyard Networking: GridMate

The communication layer for Amazon Lumberyard is known as
“Amazon GridMate” and again, its concepts are quite similar to other

264 As is Unity/UE4.

With all the
lawyer-speak about
licenses aside, we can
finally get to more
interesting stuff.

 Most Popular 3rd-party Game Engines · 389

high-level communication systems discussed above. In particular,
GridMate provides both synchronized states and void RPCs.

Synchronized states in GridMate are known as “replicas.” And
while GridMate uses an-IMO-rather-outdated concept of “replica
ownership,”265 it seems that if you keep all your replicas owned by the
Server-Side, it will allow you to make your Server an Authoritative one
<phew />. One thing that I have not the slightest idea about is how
efficient GridMate’s state sync really is; on the positive side, GridMate
seems to support custom serialization (via custom Marshalers), so even
if the built-in one is not good enough for your purposes, you will be
able to provide your own one.

As for void RPCs, they are also present in GridMate, though in a
somewhat unusual manner. In particular, within GridMate, RPCs are
seen primarily as ways to manipulate replicas (and are actually execut-
ed in the context of replicas); still, in spite of this peculiarity, it doesn’t
seem to be too big a deal for our purposes.

Of the unique features of GridMate, I need to mention their support
for encryption266 — and, as I noted earlier more than once, encryption
is a prerequisite for robust anti-cheating. On the other hand, at the mo-
ment GridMate seems to limit encryption to Win64-only(!)267 — and
this pretty much negates most of the good things provided by built-in
encryption (as we’ll discuss in Vol. III’s chapter on Server-Side Archi-
tecture, in most cases we don’t want to run Windows-based Servers,
and limiting Clients to desktops-only is not always feasible either).

AWS Integration: Amazon GameLift

With Amazon being a major cloud provider, it would be quite strange
if they wouldn’t provide integration with their cloud ecosystem in
their Lumberyard. Such an integration service is known as Amazon
GameLift.

Very, very roughly: GameLift is intended to help you run your
Game World Servers (known simply as “Game servers” in Amazon

265 Which IMO comes from the Dark Ages of Authoritative Clients.
266 For other engines, you will need to encrypt the traffic yourself.
267 Which is IMO quite strange: saying “OpenSSL” and “Win64-only” in the same breath doesn’t make

much sense TBH.

At the moment
GridMate seems to
limit encryption to
Win64-only.

390 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

GameLift), to allocate and destroy new cloud instances as necessary, to
load-balance them, and even to optimize player experiences geograph-
ically (see [Amazon, Game Architecture with Amazon GameLift] for a
discussion on GameLift architecture). How good GameLift is for these
purposes is still unclear to me; my own extremely wild guess is that: (a)
GameLift is better than what-most-of-us-would-do from our very first
attempt at writing such a system; (b) taking specifics of our game into
account, we should be able to beat GameLift efficiency-wise268 sooner
rather than later. Still, having the option to launch our game without
knowing much about multi-datacenter hosting certainly qualifies as a
Good Thing™.

Oh, and one more thing: GameLift seems to be heavily oriented
toward games-with-lots-of-small-Game-Worlds, so if your game is an
MMO with larger and/or seamless Game Worlds, make sure to study
whether it will work for you.

Amazon Lumberyard: Summary and Engine-
Provided/Standalone Servers

As the bottom line for Amazon Lumberyard: personally, I am quite
cautious of their license agreement; however, if co-location is indeed
allowed, it can be made viable. Other than that, Lumberyard support
for network stuff seems to be pretty much along the same lines as Unity
and UE4 (with an added benefit of GameLift).

As for options to organize your Client-Driven Development Flow
around Lumberyard, once again, the same options of Engine-Provided
Server and Standalone Server are possible.

To get Engine-Provided Server, you can start moving your Game
Logic to the Server, starting with naïve marshalling (to improve it lat-
er). If you prefer Standalone Server, you can try exporting your levels
(which I hope is possible) and then proceed to write your Standalone
Server (without actually using any of GridMate, but rather relying on
3rd-party libraries or on system-provided sockets). Same old, same
old…

268 Using pretty much any efficiency metric (except, of course, “development time on our side”).

As for options to orga-
nize your Client-Driven
Development Flow
around Lumberyard,
once again, the same
options of Engine-Pro-
vided Server and
Standalone Server are
possible. Same old,
same old…

 Most Popular 3rd-party Game Engines · 391

Urho3D

After we spent this much time discussing commercial game engines,
we need to mention that there are also open-source ones (and usually
they’re free, both as in “free beer” and in “free speech”). At the very least,
it is next-to-impossible to beat them in terms of license price <smile />.
On the other hand, open-source engines tend to be less popular than
their commercial counterparts, tend to have less polished development
UIs, and, probably most importantly, they often fall behind in advanced
3D graphics capabilities when compared to AAA-level engines, such
as UE and CryEngine/Lumberyard.269 This price-vs-capabilities choice
creates a kind of balance between the commercial and open-source
game development worlds.

Of open-source engines, we will discuss Urho3D; of course, it is
certainly not the only open-source 3D engine out there, but from my
mostly-network-oriented perspective I happen to like it more than the
competition (in particular, unlike some other not-named-here open-
source engines, Urho3D devs seem to understand the importance

269 To be honest, 3D graphics provided by good open-source engines such as Urho3D is beyond my
own capabilities with regards to 3D graphics, so it wouldn’t be a limiting factor for me personally.
Still, capabilities of the relevant teams are a completely different story.

392 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

of Authoritative Servers, know what Interest Management is about,
etc. — and this is always a good sign).

Once again, within this book we will not discuss aspects such as
graphics and toolchains (instead, we’ll concentrate on the overall archi-
tecture and networking features). In addition, as differences between
different engines at the concept level are not too drastic, I won’t repeat
the same things again and again, and will refer to differences from pre-
viously discussed engines instead.

Urho3D: Supported Platforms, Programming
Languages, and Event-Driven Programming

Urho3D, being an open-source engine, has platform preferences that
are quite different from commercial ones. In particular, in Urho there
is no support for consoles, but there is support for Client-Side Linux.
HTML5 via emscripten is also supported.

As for programming languages, Urho3D supports C++ and An-
gelScript (which is apparently quite popular among serious gamedevs).

When it comes to event-driven programming, Urho3D (just like
all the other engines we’ve seen) is event-driven (and, of course,
has Game Loop — known as “main loop” in Urho3D). To utilize
multi-core, Urho3D also supports a version of Off-Loading (via
WorkQueue).

Urho3D Networking

As noted above, Urho3D networking is very much centered on Author-
itative Servers (and, as we discussed in Volume II’s chapter on Cheat-
ing, Authoritative Servers are a must for serious MOG development).
What’s good about Urho3D networking is that it will be very difficult
for you to depart from the Authoritative Server paradigm (which is a
Good Thing™, as such departures will cause lots of trouble down the
road).

To implement networking, Urho3D provides “scene replica-
tion” [Urho3D]; moreover, it does support distance-based Interest
Management. As for the other types of Interest Management, it is
unclear whether they are officially supported; however, my wild

Urho3D networking is
very much centered
on Authoritative
Servers.

 Most Popular 3rd-party Game Engines · 393

guess is that even if they’re not, it should be possible to support
them, given the open-source nature of the engine. In addition,
while Urho3D doesn’t support Client-Side Prediction by itself, it
does provide hooks (referred to as “intercepting network updates”)
for doing it yourself.

As for point-2-point communications, Urho3D departs from the
usual-for-other-game-engines concept of void-only RPCs, preferring
plain message exchanges. IMNSHO, it is not that much different from
void-only RPCs (TBH, both are rather ugly; to see the difference your-
self, you can compare Take 1 and Take 2 in Chapter 5).

Under the hood, Urho3D used to use kNet, but very recently it seems
Urho3D devs have switched to RakNet.

Urho3D: Summary and Engine-Provided/Standalone
Servers

Overall, of the open-source game engines I’ve seen, Urho3D devel-
opers seem to be the most aware of the typical problems that arise
in the MOG environment. As a result, if opting for open-source,
Urho3D is the engine that I’d currently recommend for MOG devel-
opment.

As for the Engine-Provided Server and Standalone Server options,
exactly as with other engines, both of these options seem to be workable
for Urho3D.

The Engine That Didn’t Make It — Source
In addition to Unity, UE, and Lumberyard, there is another major game
engine that is worth mentioning, but which didn’t make it to our com-
parison. I am referring to Source engine.

At the time of this writing (late-2017) Source engine was in a state
of “Source 2 engine long-announced but not released to the public”;
as a result, it doesn’t make much sense to review the outdated Source
engine, and is not possible yet to review Source 2. As soon as Source 2
is released (though it is not clear when — or even if — it will happen),
I would certainly like to review it, but for now I don’t have such an
opportunity <sad-face />.

Of the open-source
game engines
I’ve seen, Urho3D
developers seem to
be the most aware of
the typical problems
that arise in the MOG
environment.

394 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Comparison Table
The discussion above (plus some subtle additional details) is summarized in the table below.

Features (those IMO
most important ones
are in bold)

Unity 5
(HLAPI)

Unity 5
(LLAPI)

Photon Server
SDK

Photon Cloud SmartFoxServ-
er 2X

uLink DarkRift 270 Unreal Engine 4 RUDP Libraries Amazon Lumber-
yard

Urho3D My ideal DIY net-
work engine (along
the lines of this book)

General

Price Unity Free: Free,
up to $100K
revenue

Unity Pro: $125/
seat/month,
unlimited revenue

Free: Free,
up to 100
simultaneous
connections

Unlimited:
$175/month,
unlimited .

Unity price
extra

Hosting includ-
ed
$185/month/
1000 simulta-
neous connec-
tions
(no Authorita-
tive Servers)
Unity price
extra

100CCU:
EUR250,
up to 100
connections.
Unlimited:
EUR3000,
unlimited
connections.
Unity price
extra

EUR550 / game
title

Free: up to 20
simultaneous
connections,
Extreme: $100 /
Server: unlimited
connections

5% of revenue Free Free if you’re
running on AWS
or on “owned
and operated
hardware”.
Not available
otherwise

Free (both as
in “free beer”
and “free
speech”

N/A

Last Update271 Less than a month
ago

5 months ago 4 months ago 3 years ago 1 month ago 1.5 months ago From “less than
a month ago” for
libyohimbo ,
to “over 3 years
ago” for UDT

Less than a
month ago

Less than a
month ago

N/A

Platforms

Desktop Win/MacOS/
SteamOS

Win/MacOS Win/ MacOS Win/ MacOS/
SteamOS

Win/ MacOS Win/ MacOS/
SteamOS

Depends Win Win / MacOS
/ Linux

Whatever tickles
your fancy

Consoles PS/Xbox/Wii PS/ Xbox/Wii ?272 PS/Xbox/ Wii ? PS/XBox Depends PS / XBox None Whatever floats
your boat

Mobile IOS/Android /
WinPhone

iOS/Android/ WinPhone iOS/ Android iOS/ Android/
WinPhone

? iOS/ Android Depends iOS / Android iOS / Android Whatever
butters your
biscuit

HTML5 Yes/Websockets Yes/Websockets Yes/Websock-
ets

Yes/ Websock-
ets

No Yes/Websockets No No Yes Yes

Server Windows/ Linux Windows Only Windows/
Linux

Windows/
Linux

Windows /
Linux 273

Windows/ Linux Windows / Linux Windows / Linux Windows /
Linux

Windows / Linux

270 As of mid-2017, DarkRift Networking 2 wasn’t available, so I’m listing properties of DarkRift Networking 1.
271 As of September 2017.

 Most Popular 3rd-party Game Engines · 395

Disclaimer: all information below is “to the best of my understanding”; having some mistakes
in this table is very likely; before relying on anything, make sure to double-check it yourself.

Features (those IMO
most important ones
are in bold)

Unity 5
(HLAPI)

Unity 5
(LLAPI)

Photon Server
SDK

Photon Cloud SmartFoxServ-
er 2X

uLink DarkRift 270 Unreal Engine 4 RUDP Libraries Amazon Lumber-
yard

Urho3D My ideal DIY net-
work engine (along
the lines of this book)

General

Price Unity Free: Free,
up to $100K
revenue

Unity Pro: $125/
seat/month,
unlimited revenue

Free: Free,
up to 100
simultaneous
connections

Unlimited:
$175/month,
unlimited .

Unity price
extra

Hosting includ-
ed
$185/month/
1000 simulta-
neous connec-
tions
(no Authorita-
tive Servers)
Unity price
extra

100CCU:
EUR250,
up to 100
connections.
Unlimited:
EUR3000,
unlimited
connections.
Unity price
extra

EUR550 / game
title

Free: up to 20
simultaneous
connections,
Extreme: $100 /
Server: unlimited
connections

5% of revenue Free Free if you’re
running on AWS
or on “owned
and operated
hardware”.
Not available
otherwise

Free (both as
in “free beer”
and “free
speech”

N/A

Last Update271 Less than a month
ago

5 months ago 4 months ago 3 years ago 1 month ago 1.5 months ago From “less than
a month ago” for
libyohimbo ,
to “over 3 years
ago” for UDT

Less than a
month ago

Less than a
month ago

N/A

Platforms

Desktop Win/MacOS/
SteamOS

Win/MacOS Win/ MacOS Win/ MacOS/
SteamOS

Win/ MacOS Win/ MacOS/
SteamOS

Depends Win Win / MacOS
/ Linux

Whatever tickles
your fancy

Consoles PS/Xbox/Wii PS/ Xbox/Wii ?272 PS/Xbox/ Wii ? PS/XBox Depends PS / XBox None Whatever floats
your boat

Mobile IOS/Android /
WinPhone

iOS/Android/ WinPhone iOS/ Android iOS/ Android/
WinPhone

? iOS/ Android Depends iOS / Android iOS / Android Whatever
butters your
biscuit

HTML5 Yes/Websockets Yes/Websockets Yes/Websock-
ets

Yes/ Websock-
ets

No Yes/Websockets No No Yes Yes

Server Windows/ Linux Windows Only Windows/
Linux

Windows/
Linux

Windows /
Linux 273

Windows/ Linux Windows / Linux Windows / Linux Windows /
Linux

Windows / Linux

272 Issues were reported when trying SmartFox on consoles, but supposedly fixable or even fixed.
273 Via Mono.

396 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Features Unity 5
(HLAPI)

Unity 5
(LLAPI)

Photon Server
SDK

Photon Cloud SmartFox
Server 2X

uLink DarkRift Unreal Engine 4 RUDP Libraries Amazon
Lumberyard

Urho3D My ideal DIY
network engine

Programming Languages
C/C++ Sort Of 274 Client Only275 Client Only Client Only Client Only275 Yes276 Yes Yes Yes Yes
Garbage-Collected C#/CLI C#/CLI Java C#/CLI C#/CLI No277,278 No No No C#/Any, Java/

Any, etc.
Scripting JS/CLI, Boo/CLI Client Only Client Only Client Only Client Only “Blueprint” No Lua AngelScript JS/Any (incl JS/V8

and Node.js), Pyt-
hon/Any, etc.

Best-possible resil-
ience to bot writers279 5-6/10 (C#

with IL2CPP)

N/A280
7.5/10 (C++) N/A280

7.5/10 (C++) 7.5/10
(C++)

7.5/10 (C++)

Programming Model
Event-Driven
Programming without
app-level Thread Sync

Yes Yes Sort of281 Sort Of281 No282 Yes No282 Yes Agnostic283
Yes Yes Yes

Deterministic
Goodies284 No No No No No No No No N/A No No Yes285

void non-blocking
RPCs

Yes No No Yes No Yes No Yes N/A Yes No Yes

non-void non-block-
ing RPCs

No No No No No No No No N/A No No Yes

Futures for RPCs No No No No No No No No N/A No No Yes285

Co-routines Yes Yes Yes Yes No Yes Yes No N/A No No Yes285

Clear Client-Server
Separation

No (favors
Engine-Provided
Server)

Yes (favors
Standalone
Server)

No (favors En-
gine-Provided
Server)

Yes (favors
Standalone
Server)

No (favors En-
gine-Provided
Server)

Yes (favors Stand-
alone Server)

No (favors
Engine-Provided
Server)

Yes (favors Stand-
alone Server)

No (favors
Engine-Provided
Server)

Yes (favors
Standalone
Server)

Whatever you
prefer

Graphics
3D Unity Unity Unity Unity Unity UE4 Any287 CryEngine Urho3D286 Any287

2D Unity Unity, Cocos2D Unity, Flash,
etc.

Unity Unity UE4 Any287 No Urho2D Any287

2D+3D Views on the
same game288 No No DIY No No No No No N/A No No Yes

Networking — General
Support for Authori-
tative Server

Yes Yes Yes No289 Yes Yes Yes Yes Agnostic Yes Yes Yes

274 Unmanaged code is possible, but cumbersome.
275 On Server-Side, unmanaged C++ might work.
276 Actually, UE4 is using a somewhat-garbage-collected dialect of C++.
277 Mono tried to add support for C# in UE4, but this effort looks abandoned.
278 As noted above, UE4 has their own garbage collection for C++.
279 Based on the best programming language available, with per-language resilience to bot writers taken from Table 6.1.
280 Depends on the engine used for the Client.
281 While strictly speaking, Photon plugins are not event-driven, they’re guaranteed to be serialized “as if” they’re in the same thread.

 Most Popular 3rd-party Game Engines · 397

Features Unity 5
(HLAPI)

Unity 5
(LLAPI)

Photon Server
SDK

Photon Cloud SmartFox
Server 2X

uLink DarkRift Unreal Engine 4 RUDP Libraries Amazon
Lumberyard

Urho3D My ideal DIY
network engine

Programming Languages
C/C++ Sort Of 274 Client Only275 Client Only Client Only Client Only275 Yes276 Yes Yes Yes Yes
Garbage-Collected C#/CLI C#/CLI Java C#/CLI C#/CLI No277,278 No No No C#/Any, Java/

Any, etc.
Scripting JS/CLI, Boo/CLI Client Only Client Only Client Only Client Only “Blueprint” No Lua AngelScript JS/Any (incl JS/V8

and Node.js), Pyt-
hon/Any, etc.

Best-possible resil-
ience to bot writers279 5-6/10 (C#

with IL2CPP)

N/A280
7.5/10 (C++) N/A280

7.5/10 (C++) 7.5/10
(C++)

7.5/10 (C++)

Programming Model
Event-Driven
Programming without
app-level Thread Sync

Yes Yes Sort of281 Sort Of281 No282 Yes No282 Yes Agnostic283
Yes Yes Yes

Deterministic
Goodies284 No No No No No No No No N/A No No Yes285

void non-blocking
RPCs

Yes No No Yes No Yes No Yes N/A Yes No Yes

non-void non-block-
ing RPCs

No No No No No No No No N/A No No Yes

Futures for RPCs No No No No No No No No N/A No No Yes285

Co-routines Yes Yes Yes Yes No Yes Yes No N/A No No Yes285

Clear Client-Server
Separation

No (favors
Engine-Provided
Server)

Yes (favors
Standalone
Server)

No (favors En-
gine-Provided
Server)

Yes (favors
Standalone
Server)

No (favors En-
gine-Provided
Server)

Yes (favors Stand-
alone Server)

No (favors
Engine-Provided
Server)

Yes (favors Stand-
alone Server)

No (favors
Engine-Provided
Server)

Yes (favors
Standalone
Server)

Whatever you
prefer

Graphics
3D Unity Unity Unity Unity Unity UE4 Any287 CryEngine Urho3D286 Any287

2D Unity Unity, Cocos2D Unity, Flash,
etc.

Unity Unity UE4 Any287 No Urho2D Any287

2D+3D Views on the
same game288 No No DIY No No No No No N/A No No Yes

Networking — General
Support for Authori-
tative Server

Yes Yes Yes No289 Yes Yes Yes Yes Agnostic Yes Yes Yes

282 Can be kinda-simulated but performance is likely to be hit.
283 It is possible to do event-driven programming using lower-level libs, but it is beyond their scope.
284 Replay testing, production post-mortem, server fault tolerance, etc.
285 Restrictions apply; batteries not included. See Chapter 5 for details.
286 While reasonably good, it still cannot really compete with UE4 or CryEngine <sad-face />.
287 Integrating with the editor is difficult.
288 Note that this is different from 2D+3D “hybrid” games.
289 Photon Plugins may allow for a way out, but this needs separate analysis.

398 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Features Unity 5
(HLAPI)

Unity 5
(LLAPI)

Photon Server
SDK

Photon Cloud SmartFox
Server 2X

uLink DarkRift Unreal Engine 4 RUDP Libraries Amazon
Lumberyard

Urho3D My ideal DIY
network engine

Networking — Marshalling/IDL
IDL In-Lan-

guage
No No In-Language290

No In-Language290
No In-Language No In-Language No Yes

State Synchronization Yes DIY DIY DIY Yes DIY No Yes No Yes Yes Yes
Clear Server-State — 
Publishable State Cli-
ent State separation

No291 N/A N/A No291 No291 No291 N/A No291 N/A No291 No291 Yes

Cross-language IDL No N/A N/A No N/A No N/A No N/A N/A N/A Yes
IDL Encodings No N/A N/A No N/A No N/A No N/A N/A N/A Yes
IDL Mappings No N/A N/A No N/A No N/A No N/A N/A N/A Yes
Interest Manage-
ment

Yes DIY Yes Yes DIY DIY DIY Yes DIY DIY Yes Yes

Client-Side Interpo-
lation

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY-with-
Helper

DIY-with-Helper

Client-Side Extrapo-
lation

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY-with-
Helper

DIY-with-Helper

Client-Side Prediction DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY-with-
Helper

DIY-with-Helper

Delta Compression
(whole fields)

Auto-
matic

DIY DIY DIY DIY Automatic
(reliable stream
only)

DIY Automatic DIY DIY DIY Controlled

Delta Compression
(field increments)

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes

Variable Ranges,
Rounding-when-Trans-
ferring, and Bit-Orient-
ed Encodings

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes

Dead Reckoning DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes
Sync of Arbitrary Trees
(see Vol. I’s chapter on
Communications)

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes

VLQ DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes
Huffman Coding DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes
IDL support for back-
ward compatibility

No N/A N/A No N/A No N/A No N/A No N/A Yes

290 Last time I checked, Photon PUN and uLink had only RPC part as declarative IDL; Publishable State was via manual serialization.

 Most Popular 3rd-party Game Engines · 399

Features Unity 5
(HLAPI)

Unity 5
(LLAPI)

Photon Server
SDK

Photon Cloud SmartFox
Server 2X

uLink DarkRift Unreal Engine 4 RUDP Libraries Amazon
Lumberyard

Urho3D My ideal DIY
network engine

Networking — Marshalling/IDL
IDL In-Lan-

guage
No No In-Language290

No In-Language290
No In-Language No In-Language No Yes

State Synchronization Yes DIY DIY DIY Yes DIY No Yes No Yes Yes Yes
Clear Server-State — 
Publishable State Cli-
ent State separation

No291 N/A N/A No291 No291 No291 N/A No291 N/A No291 No291 Yes

Cross-language IDL No N/A N/A No N/A No N/A No N/A N/A N/A Yes
IDL Encodings No N/A N/A No N/A No N/A No N/A N/A N/A Yes
IDL Mappings No N/A N/A No N/A No N/A No N/A N/A N/A Yes
Interest Manage-
ment

Yes DIY Yes Yes DIY DIY DIY Yes DIY DIY Yes Yes

Client-Side Interpo-
lation

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY-with-
Helper

DIY-with-Helper

Client-Side Extrapo-
lation

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY-with-
Helper

DIY-with-Helper

Client-Side Prediction DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY-with-
Helper

DIY-with-Helper

Delta Compression
(whole fields)

Auto-
matic

DIY DIY DIY DIY Automatic
(reliable stream
only)

DIY Automatic DIY DIY DIY Controlled

Delta Compression
(field increments)

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes

Variable Ranges,
Rounding-when-Trans-
ferring, and Bit-Orient-
ed Encodings

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes

Dead Reckoning DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes
Sync of Arbitrary Trees
(see Vol. I’s chapter on
Communications)

DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes

VLQ DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes
Huffman Coding DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY DIY Yes
IDL support for back-
ward compatibility

No N/A N/A No N/A No N/A No N/A No N/A Yes

291 It is possible to separate them, but requires substantial additional efforts.

400 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Features Unity 5
(HLAPI)

Unity 5
(LLAPI)

Photon Server
SDK

Photon Cloud SmartFox
Server 2X

uLink DarkRift Unreal Engine 4 RUDP Libraries Amazon
Lumberyard

Urho3D My ideal DIY
network engine

Networking — Addressing/Authentication
Addressing Model “Client”/

”Server”292
IP-
:Port293 IP:Port293 “Client”/

”Server”292
“Client”/”-
Server”292

“Client”/”Serv-
er”292

“Server”, By ID
for Clients

“Client”/”Serv-
er”292

IP:Port293 Session-Oriented IP:Port293 By server name for
servers, player ID /
“connected client”
for players

Player Authentica-
tion

DIY DIY DIY DIY DIY Yes DIY DIY DIY. Yes for
libyohimbo and
proto-quic

Yes DIY Yes

Encryption294 Limit-
ed295

DIY DIY Limited295 Yes296 Yes DIY Limited295 DIY. Yes for
libyohimbo and
proto-quic

Win64-only DIY Yes

Server-to-Server
Communications

No297 DIY Yes No297 No297 No297 No297 No297 No No297 No297 Yes

Networking — Supported Protocols
UDP Yes Yes Yes Yes Lacking Yes No298 Yes Yes Yes Yes Yes
TCP Low-Lev-

el Only299 Yes Yes Yes Yes No300 Yes Low-level
Only301

No300 No300 No300 Yes

Websockets Yes (only for
WebGL apps?)

Yes Yes Yes No No No No No No Yes

HTTP Low-Level Only299
Yes Yes Yes No No No No No Yes Yes

Scalability/Deployment Features
Load Balancing DIY DIY World-to -Serv-

er Only
World-to -Serv-
er Only

DIY Special Case for
seamless worlds:
PikkoServer

DIY DIY DIY World-to -Server
Only

DIY Both World-to-
Server and Client
Load Balancing

Integration with
Cloud

DIY DIY DIY DIY DIY DIY DIY DIY DIY Amazon AWS DIY Yes

Front-End Servers No No No No No No No No No No No Optional

292 I.E., there is no way to address anything except “Client” on Server and “Server” on Client; this addressing model is too restrictive, and
effectively excludes Server-to-Server communication.

293 Implementing IP-independent addressing (which is usually necessary) is rather cumbersome.
294 Very important to prevent cheating; see Vol. VIII’s chapter on Bot Fighting for a detailed discussion.
295 It is possible to do encryption on top of Unity 5, PUN, and UE4—but it is cumbersome, error-prone, and limited.
296 TCP and Websockets only.

 Most Popular 3rd-party Game Engines · 401

Features Unity 5
(HLAPI)

Unity 5
(LLAPI)

Photon Server
SDK

Photon Cloud SmartFox
Server 2X

uLink DarkRift Unreal Engine 4 RUDP Libraries Amazon
Lumberyard

Urho3D My ideal DIY
network engine

Networking — Addressing/Authentication
Addressing Model “Client”/

”Server”292
IP-
:Port293 IP:Port293 “Client”/

”Server”292
“Client”/”-
Server”292

“Client”/”Serv-
er”292

“Server”, By ID
for Clients

“Client”/”Serv-
er”292

IP:Port293 Session-Oriented IP:Port293 By server name for
servers, player ID /
“connected client”
for players

Player Authentica-
tion

DIY DIY DIY DIY DIY Yes DIY DIY DIY. Yes for
libyohimbo and
proto-quic

Yes DIY Yes

Encryption294 Limit-
ed295

DIY DIY Limited295 Yes296 Yes DIY Limited295 DIY. Yes for
libyohimbo and
proto-quic

Win64-only DIY Yes

Server-to-Server
Communications

No297 DIY Yes No297 No297 No297 No297 No297 No No297 No297 Yes

Networking — Supported Protocols
UDP Yes Yes Yes Yes Lacking Yes No298 Yes Yes Yes Yes Yes
TCP Low-Lev-

el Only299 Yes Yes Yes Yes No300 Yes Low-level
Only301

No300 No300 No300 Yes

Websockets Yes (only for
WebGL apps?)

Yes Yes Yes No No No No No No Yes

HTTP Low-Level Only299
Yes Yes Yes No No No No No Yes Yes

Scalability/Deployment Features
Load Balancing DIY DIY World-to -Serv-

er Only
World-to -Serv-
er Only

DIY Special Case for
seamless worlds:
PikkoServer

DIY DIY DIY World-to -Server
Only

DIY Both World-to-
Server and Client
Load Balancing

Integration with
Cloud

DIY DIY DIY DIY DIY DIY DIY DIY DIY Amazon AWS DIY Yes

Front-End Servers No No No No No No No No No No No Optional

297 There is always an option to use another 3rd-party library for Server-to-Server.
298 Promised in DarkRift 2.
299 There are low-level socket/HTTP classes, but there is no easy way to integrate into [SyncVar], etc.
300 3rd-party library or sockets are still an option.
301 While there are classes like FTcpSocketBuilder, they are more like Unity’s LLAPI, without an easy way to integrate into UPROPERTY, etc.

402 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

In this table, the rightmost column represents what I would like to
see from my own (hypothetical) DIY game network engine. In this
case, while the network engine itself is DIY, there is a big advantage of
pushing all these things into the network engine (in terms of Chapter
5, known as “Infrastructure Code”), separating them from the Game
Logic. The more things that are separated via well-defined interfaces,
the less cluttered your Game Logic code becomes, and the more time
you have for really important things such as gameplay; in extreme
cases, this difference can even mean the difference between the life
and death of your project. Also keep in mind that if going a DIY route,
for any given game you won’t need to implement all the stuff in the
table; think about what is important for your game, and concentrate
only on those features that you really need. For example, UDP support
and dead reckoning are not likely to be important for a non-simulation
game, and HTTP “long polling” isn’t likely to work for an MMOFPS.

SUMMARY FOR CHAPTER 7
Summarizing the discussion in Chapter 7:
•♦ There are quite a few games out there that require Game Designers

to use level editors.
 ▪ Such games very often require what we name Client-Driven

Development Workflow.
•♦ For games that require Client-Driven Development Workflow, it

is usually an essentially-single-player game that Game Designers
are working with, plus “continuous conversion.” To implement
“continuous conversion”, two approaches are possible:

 ▪ Engine-Provided Server. Essentially, moving Client-Side
Game Logic to the Server, using engine-provided means.

 ▪ Standalone Server. Completely separate development of the
Server, using exported game levels from the game engine.

♦♦ When choosing between network layers of Unity/UE4/Amazon
Lumberyard/Urho3D — when looking at the concepts involved,
all are surprisingly similar. Still, lots of differences of different
magnitude exist; for these, see the huge table above.

 ▪ Two pretty big obstacles when trying to use high-level APIs
is that most of the time they (a) have not-so-efficient mar-

 Summary for Chapter 7 · 403

shalling, and are (b) non-encrypted302 — and encryption is a
very important tool for cheating prevention.

♦♦ As for third-party libraries and frameworks, they’re more diverse.
The issues that concern me the most are:

 ▪ Thread synchronization exposed to game-logic level (IMNSHO,
it is a Big No-No™, so if your library requires it, you must make
a wrapper that entirely hides thread sync from app-level).

 ▪ Lack of UDP support (which makes the library unsuitable
for fast-paced games).

 ▪ Lack of encryption (this is more a problem for frameworks,
as for lower-level libraries it can be added relatively easily).

♦♦ Overall, I clearly do not want to recommend any of the listed
technologies over the others unconditionally. There are many
all-important factors to consider, including those that are not
included in the table above; however, before finalizing your choice
of 3rd-party game engine and your network libraries for your
MOG, make sure to take a look at the table above, and think about
your development flow too.

Bibliography
Amazon. 2017. “AWS Service Terms.” https://aws.amazon.com/service-

terms/.
— . 2016. “Two questions about Lumberyard licensing.”

https://gamedev.amazon.com/forums/questions/10112/two-
questions-about-lumberyard-licensing.html.

— . “Physics Scripting Guide.” http://docs.aws.amazon.com/lumberyard/
latest/developerguide/physics-scripting-threads.html.

— . “Game Architecture with Amazon GameLift.” http://docs.aws.amazon.
com/gamelift/latest/developerguide/gamelift-architecture.html.

Arellano, Christian. 2015. “UNET Unity 5 Networking Tutorial Part 2
of 3 - Client Side Prediction and Server Reconciliation.”
http://www.gamasutra.com/blogs/ChristianArellano/20151009/
255873/UNET_Unity_5_Networking_Tutorial_
Part_2_of_3__Client_Side_Prediction_and_Server_
Reconciliation.php.

302 Except for Lumberyard.

404 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

Epic Games. “Garbage Collection Overview.” https://wiki.unrealengine.
com/Garbage_Collection_Overview.

Fiedler, Glenn. “libyojimbo”
https://github.com/networkprotocol/libyojimbo.

Google. “proto-quic.”
https://github.com/google/proto-quic.

Hare, ‘No Bugs’. 2010. “Single-Threading: Back to the Future?” Overload.

Landwerth, Immo. 2016. “Introducing .NET Standard.”
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/
introducing-net-standard/.

MuchDifferent. 2013. “uLink Overview.” http://developer.
muchdifferent.com/unitypark/uLink/uLink.

Newman, Garry. “Network Recode.” https://playrust.com/friday-
devblog-4/.

Peterson, Josh. 2016. “Unity3D Sripting - .NET Core 1.2 replacement of
Mono.” https://forum.unity3d.com/threads/unity3d-sripting-
net-core-1-2-replacement-of-mono.439826/#post-2860076.

Unity Technologies. 2017. “Unity 5 Network System Concepts.”
http://docs.unity3d.com/Manual/UNetConcepts.html.

— . 2017. “Unity 5 State Synchronization.” http://docs.unity3d.com/
Manual/UNetStateSync.html.

— . 2017. “Native Plugins.” https://docs.unity3d.com/Manual/
NativePlugins.html.

Urho3D. 2017. “Networking.” https://urho3d.github.io/
documentation/1.5/_network.html.

Vermeulen, Steve. 2017. “Async-Await instead of coroutines in Unity
2017” http://www.stevevermeulen.com/index.php/2017/09/
using-async-await-in-unity3d-2017/

Wischik, Lucian. 2016. “Async workflow [how to hibernate async
methods, part 2]” https://blogs.msdn.microsoft.com/
lucian/2016/04/20/async-workflow-2/

 VOL. II Summary · 405

VOL. II

SUMMARY
In this volume, we started with Chapter 4, briefly arguing what-we-
should-do-ourselves and what-we-should-re-use.

Then, in Chapter 5, we presented my favorite way of implementing
distributed systems — (Re)Actors (a.k.a. event-driven programs, a.k.a.
Game Loops, a.k.a. ad-hoc Finite State Machines, et cetera, et cetera).
While (Re)Actors are not strictly required to get your game flying, for
medium- and larger-sized games, they tend to get you there much faster
(and tend to result in much more reliable programs).

First, we mentioned that (Re)Actors can be seen as a generalization
of the good ol’ Game Loop, and discussed how it can be improved to
obtain certain goodies (such as production post-factum debugging and
replay-based regression testing).

One such improvement is non-blocking handling of RPC returns,
and we considered eight different ways to do it; the second improvement
is determinism, and we spent quite a bit of time deliberating on its spe-
cifics (in particular, on cross-platform determinism vs same-executable
determinism).

Last but not least for Chapter 5, we discussed ways to scale
(Re)Actors — and the ways to organize the code within (Re)Actors.

Chapter 6 was dedicated to Client-Side Architecture. Within Chap-
ter 6, we started with a very generic Client-Side architecture and then
proceeded to discuss (Re)Actor-fest Client-Side Architecture as my-fa-
vorite way to implement the generic one. In addition, we also addressed
the questions of choosing a programming language for the Client-Side
(including the resilience of different programming languages to bot
writers, and the ways to use C++ for browser) and integrating web-
based stuff with downloadable Clients.

406 · CHAPTER 7. Client-Driven Development: Unity, UE, Lumberyard, Urho3D, and 3rd-Party Network Libraries

In Chapter 7, which concludes Vol. II, there was an examination of
the different ways of “how 3rd-party game engines can be used to build
your MOG.” In particular, special attention was paid to comparing the
three most popular commercial game engines (Unity, UE, and Lumber-
yard) and one open-source engine (Urho3D) and also the associated
network technologies and libraries (including the Photon and RUDP
libraries).

 What’s Next · 407

WHAT’S NEXT
After discussing issues related to the Client-Side, it is only logical to
proceed to the significantly different world of the Server-Side (however,
I have to note that my beloved (Re)Actors are IMNSHO even more
applicable there <wink />).

In Vol. III, we’ll start our discussion on Scalability 101 in Chapter 8.
We’ll discuss both common topics such as Scaling Up vs Scaling Out,
and MOG-specific issues such as a general desire to roll back to the be-
ginning of the Game Event in case of crash (which, in turn, has serious
implications on MOG Scalability and architecture).

408

 Then, we’ll proceed to a large Chapter 9, discussing many aspects
of Server-Side Architecture. In particular, we’ll discuss issues related
to different deployment architectures (both Web-Based and Classical,
with a Front-End Server twist), their respective scalability, as well as
the choice of operating system and programming language for the
Server-Side.

Then, in Chapter 10, we’ll briefly address ways of dealing with various
failures, ranging from failure containment to full-scale fault tolerance
(with the most practical ways to implement it being VM-based, and
DIY (Re)Actor-based). A discussion of “how improperly implemented
fault tolerance reduces MTBFs” will be included too.

In Chapter 11, we’ll discuss all those boring things that are neces-
sary before starting coding. This discussion will include source control
(including certain peculiarities for gamedev), issue tracking, coding
guidelines, and so on.

This will conclude Vol. III — and also Part ARCH (devoted to Ar-
chitecture and Pre-Coding).

 INDEX · 409

INDEX
Symbols

2D 27, 29, 39, 260-265, 272-274, 276, 286, 295, 345, 351, 355, 396, 397
3D graphics 5, 29, 260, 274, 302, 303, 391
3D MOGs 5

A
ACID 81
Android 64, 120, 261, 319, 394
Animation 147, 204, 212, 267, 268, 271, 274-285, 290, 292-295, 300, 302, 304, 326,

332, 333
Authoritative Server 275, 283, 284, 294, 329, 350, 357, 358, 367, 375, 392, 396

B
Bot 37, 40, 162, 187, 188, 280, 311-313, 315, 317, 373, 374, 382, 400

C
C++ 1, 5, 7, 16, 23, 31, 48, 52, 56, 61, 62, 87, 88, 90, 93, 99, 107, 108, 110, 112, 113,

115-118, 120-127, 130, 132, 141, 147, 149, 150, 153, 156-158, 162-166, 168,
170, 176-179, 181, 194, 199, 200-202, 205, 207, 214, 215, 217, 222-227, 229,
243, 250-254, 280, 291, 292, 297, 300, 302, 306, 309, 312-323, 325, 326, 330,
331, 333, 334, 346, 348, 355, 356, 364, 371-374, 379-381, 388, 392, 396, 406

Cheating 311, 313, 357, 392
Client 10, 11, 36, 37, 39, 40, 46, 47, 53, 54, 56, 57, 62, 65, 68, 70, 73, 76, 80, 81, 83,

87, 88, 91, 100, 114, 137, 139, 141, 146, 147, 151, 162, 166, 167, 175, 181,
185, 188, 198, 204, 211, 212, 214, 221, 233, 242, 255-257, 261-263, 265-268,
270-273, 275-289, 291-297, 300-302, 304-311, 313-315, 318-320, 322-324,
326-329, 330-335, 337-346, 349-354, 357, 358-360, 363, 364, 371, 373-378,
380, 384, 390, 392, 393, 396, 398, 400, 402, 403, 405, 407

Client-Driven Development Workflow 350, 353, 377, 402
Client-Side Extrapolation 272, 398
Client-Side Prediction 11, 141, 175, 181, 272, 275-278, 281, 282, 283, 310, 328, 329,

358, 359, 378, 393, 398
Client-Side State 46, 275, 304
Code Samples 7
Communication 212, 267, 278, 295, 328, 332, 333, 357
Compression 11, 359, 398

410

Console 39
CORBA 66, 67, 69, 381
Costs 272

D
Database 73, 212
Datacenter 9, 73
Deterministic Lockstep 11, 175, 181, 185, 222, 224
DirectX 147, 262, 265, 302
DIY 13, 14, 24, 25, 27, 32, 34-36, 38, 39-41, 44, 187, 216, 255, 265, 341, 361, 394,

396, 398, 400, 402, 408
Downloadable Client 338-340

F
Facebook 212, 225, 343, 345, 347
Fault Tolerance 181
Forwarded Inputs 11
Fuzz testing 145

G
Game Design Document 11
Game loop 51, 44, 46, 47, 50-57, 59, 61-63, 68, 75, 197, 209, 227, 278, 279, 292-295,

348, 356, 368, 379, 392, 405
Gameplay 223
Game World State 76, 205, 275, 276, 281, 368
Garbage Collection (GC) 200, 201, 314, 320-327, 331, 347, 379, 388, 404
Google+ 7, 133, 333, 334, 355, 363, 382, 404

Н
HPX 50, 116, 117, 167, 305

I
ICE 66, 67, 381
Implementation 149, 160, 166, 179, 226, 338
Information Leak 364
Inter-DB Async Transfer Protocol 68
Interest Management 11, 358, 366, 377, 380, 392, 398

 INDEX · 411

Interface Definition Language 12, 80
Internet 65, 287, 297, 372, 375, 376, 382

J
Java 57, 65, 107, 157, 158, 164, 165, 179, 200, 201, 215, 217, 312, 314, 318, 319, 321,

322, 324, 326, 368, 370, 396

L
LAN-based games 297
Latency 181, 359, 371, 381, 383
Logic-2-Graphics 30, 39, 261, 266-268, 270-276, 280, 283, 284, 290, 332-334

M
Marshalling 363, 377, 398
Massively Multiplayer Online Games 8
Matchmaking 9, 57, 212-214
MVC 281

N
Non-blocking 45, 50, 51, 58, 59, 61, 63-83, 85, 87, 88, 89, 91, 93-95, 97, 99, 100-111,

113, 115, 117-123, 125, 127, 129-132, 163, 165-167, 188, 208, 213, 218, 221,
222, 226, 290, 238, 240, 242, 244-246, 295-297, 305, 307, 337, 356, 371, 379,
384, 396, 405

O
Offload 50, 77, 112-117, 132, 167, 222
OpenCL 310
OpenGL 147, 262, 265, 302

P
Packet 59
Payments 212
Physics 261, 388, 403
Point-to-point communications 76
Post-factum analysis 62, 125, 127, 132, 133, 135, 136, 139, 150, 151, 174, 181, 185,

221, 290, 305-307, 346, 357, 368, 405
Protocol 68, 363
Publishable State 11, 275, 359, 377, 398

412

R
Ragdoll 283, 284
(Re)Actor 43, 44, 46, 50-52, 54-63, 65, 68, 69, 71, 72, 74, 75, 77-83, 85, 89, 91, 92, 102-

104, 106-108, 110-115, 117, 119-121, 124-126, 128-132, 134, 137, 139-142, 145-
163, 166, 167-174, 181-184, 186-223, 225, 229, 230, 249, 252, 253, 279, 288-290,
292-302, 304-309, 326, 328, 337, 345, 346, 356, 365, 368, 371, 379, 405, 407, 408

Reconciliation 403, 404
Reliable UDP 372, 381
Replay 62, 138-148, 151-156, 158, 159, 164, 174, 175, 180, 181, 184, 185, 217, 219,

221, 222, 224, 225, 247-249, 290, 299, 305-307, 357, 368, 397, 405
Re-Use 13, 14, 16, 18, 20, 24-28, 30-42, 255, 272, 275, 310, 328, 378, 405

S
Scalability 11, 68, 219, 222, 400, 407, 408
Server 9-12, 19, 20, 44, 46, 47, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 70, 73-76, 80, 114,

115, 129, 132, 139-142, 146, 147, 151, 152, 166, 168, 171, 175, 180, 181, 185, 188,
190, 198, 202, 204, 210-215, 219-221, 227, 259, 268, 272, 273, 275-279, 281-285,
294, 295, 301, 304, 310, 311, 327-329, 332, 334, 335, 337, 338, 341, 343, 344, 350-
354, 357-372, 374-378, 380, 384, 389, 390, 392-394, 396, 398, 400-403, 407, 408

Server-2-Server 12
Server-Driven Development Workflow 350, 351
Server-Side 44, 46, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 73, 74, 76, 129, 139, 140,

151, 152, 166, 168, 171, 175, 180, 181, 202, 204, 210-214, 219, 221, 227, 273,
275-279, 282-285, 295, 301, 304, 310, 311, 327, 328, 335, 338, 341, 343, 350-
353, 358, 361, 364, 365, 367, 370, 372, 376, 378, 384, 389, 396, 407, 408

Server-Side State 275, 277, 304
Simulation 47, 276, 277, 281, 329
State Synchronization 358, 398, 404
Stop-the-World (STW) 320-322, 324-327, 356

T
Turing-complete 5

W
Windows 16, 17, 22, 35, 36, 37, 40, 64, 118, 120, 170, 295, 300, 319, 335, 336, 337,

364, 389, 394
Workflow 350, 351, 353, 354, 377, 402

Z
ZeroMQ 361, 379

 Letter from the Author · 413

LETTER FROM THE AUTHOR

Hello, fellow game developer!

I hope you’ve found something of interest (and maybe even useful) within
all my barely coherent blabbering. And I hope that you’re going to get your
hands on Vol. III of this epic work.

For the time being, chapters of the 1st beta of Vol. III–VII are available
on ithare.com/category/dnd-of-mogs-volII-1st-beta/, with more added
every week. If you have any comments or criticism, please e-mail me at
nobugs@ithare.com, or comment right on the site. For this volume, Vol. II,
comments from website readers (and on Reddit) have helped add a lot of
previously missing things, and have fixed quite a few mistakes of varying
severity. THANKS A LOT to everybody who pointed out omissions and
mistakes (and I hope for further comments to also make future volumes
better)!

Last but not least:

Please consider reviewing this book on Amazon

(or Goodreads, if you already have an account). It will help both me
(the author) and others who could benefit from reading this book. The
landscape of even-somewhat-useful books on multiplayer game program-
ming is IMO really barren these days, so letting others know that there is
something worth reading is really important.

Best regards (and thanks for reading this far <smile/>),

No Bugs’ Hare

