
--	Vol.	III:3rd	beta	--	NOT	A	FINAL	BOOK	--	Vol.	III:3rd	beta	--	
	

Copyright	©	ITHare.com	Website	GmbH,	2015-2017	

Chapter	8.	Scalability	
	
In	Vol.	II,	we	finished	our	first	round	of	discussions	about	Client-Side	(with	more	to	follow	in	
Vol.	V),	so	now	we	can	start	considering	the	almighty	Server-Side.	To	be	honest	–	I	am	
mostly	a	Server-Side	guy	–	and	this	is	IMO	a	Good	Thing™	(there	are	tons	of	books	out	there	
about	game	Clients,	and	almost	none	about	Servers).	
	
Before	we	start,	let’s	note	that	quite	a	few	techniques	which	we	already	discussed	in	Vol.	II,	
are	applicable	to	Server-Side	too.	In	particular	–	(Re)Actors,	while	being	very	useful	for	
Clients,	are	at	least	as	important	for	Servers;	and	while	it	is	possible	to	build	your	game	
Clients	and	your	Game	Servers	without	(Re)Actors	–	as	we’ll	see	below,	I’ll	argue	for	using	
(Re)Actors	on	Server-Side	too.	
	

Server-Side	and	Scalability	
	
On	the	Server-Side,	one	of	the	very	first	things	we	need	to	take	into	account,	is	Scalability.	
In	general,	poor	Scalability	isn’t	usually	observed	until	post-deployment;	on	the	other	hand	
–		

we	DO	need	to	take	Scalability	into	account	while	architecting	and	
developing	our	system.	

	
Otherwise,	it	can	easily	happen	that	at	our	finest	hour	–	say,	when	we	have	a	million	players	
willing	to	play	–	we	won’t	be	able	to	handle	even	half	of	them	(or	even	worse,	our	Servers	
will	be	slowed	down	to	the	point	of	being	completely	unplayable	for	everybody).	In	this	
case,	instead	of	being	the	finest	hour	–	it	can	easily	become	a	disaster,	with	our	game	
beginning	a	downward	spiral	towards	oblivion.1	
	
Let’s	note	that	Scalability	is	a	big	topic,	and	that	this	Chapter	is	certainly	not	the	whole	
discussion	on	Scalability	within	this	series.	In	particular,	we	were	already	discussing	the	
mechanics	of	scaling	for	seamless	Game	World	Servers	in	Vol.	I’s	chapter	on	
Communications,	and	we’ll	also	discuss	DB	Scalability	in	detail	in	Vol.	VI’s	chapter	on	
Databases.	
	
In	this	Chapter,	we’ll	merely	try	to	define	a	few	terms	–	and	to	describe	some	very	high-level	
approaches	to	Scalability	(which,	as	we’ll	see	a	bit	later,	will	affect	our	architecture	greatly).	
	

																																																								
1	no	relation	to	Elder	Scrolls	
	

Performance	!=	Scalability,	but…	Performance	Still	
Matters	
	

What	to	Scale?	
	
In	the	context	of	multiplayer	games,	there	are	traditionally	two	
main	parts	of	the	system	which	need	to	be	scaled.	The	first	one	
–	is	scaling	Game	Worlds;	the	second	such	part	is	scaling	our	
Database.2	
	
In	addition,	at	some	point	you	may	need	to	scale	your	
Matchmaking	(and	if	you	ever	need	to	scale	your	Cashier	and	
Payments	–	you’re	certainly	in	luck	<wink	/>)	–	but	from	our	
current	abstract	perspective,	they	will	be	scaled	in	a	manner	
similar	to	scaling	your	Game	Worlds.	
	
As	a	result,	at	least	for	the	time	being,	we	will	concentrate	on	
scaling	of	(a)	Game	Worlds,	and	(b)	Database.	
	

Improving	Performance	to	Avoid	the	Need	
to	Scale	
	
Even	before	we	need	to	scale	our	app	–	there	is	one	more	thing	
which	we	might	be	able	to	do	to	deal	with	the	load;	it	is	
improving	performance	of	our	app,	so	that	we	can	do	more	on	
the	same	hardware	(actually	–	most	of	the	time	we’ll	need	to	
do	more	on	the	same	CPU	core).3	
	
Of	course,	improving	performance	doesn’t	provide	infinite	
scalability.	However,	in	the	real-world	it	is	all	about	real-world	
numbers.	Let’s	take	a	closer	look	at	them.	
	
Let’s	consider	a	game	which	needs	to	handle	100’000	
simultaneous	players.	And,	as	noted	above	–	let’s	consider	two	
major	points	which	we	need	to	scale:	Game	Worlds	and	
Database.	
	

																																																								
2	more	generally	–	persistent	storage,	but	for	the	purposes	of	this	book	we’ll	name	it	
Database	anyway	
3	I	don’t	want	to	engage	in	discussion	whether	“improving	performance”	is	actually	one	of	
the	forms	of	“Scaling	Up”	or	not;	for	the	purposes	of	this	book	–	let’s	use	“Scaling	Up”	in	a	

	
In	the	context	of	
multiplayer	games,	
there	are	traditionally	
two	main	points	which	
need	to	be	scaled.	The	
first	one	–	is	scaling	
Game	Worlds;	the	
second	such	point	is	
scaling	our	Database.

	
Just	like	Scaling	Up,	
improving	performance	
doesn’t	provide	infinite	
scalability.	However,	it	
happens	that	it	is	all	
about	numbers.	Let’s	
take	a	closer	look	at	
them.

When	scaling	Game	Worlds,	and	assuming	a	typical	industry	number	of	being	able	to	
support	100	players/core	–	we’ll	need	around	1000	cores	to	support	desired	100’000	
players.	Honestly	–	improving	performance	of	our	Game	World	by	1000x	so	we	can	run	the	
whole	thing	on	a	single	core,	is	not	really	realistic.	In	turn,	it	means	that	improving	the	
performance	of	Game	World	Servers	(while	still	being	important	to	reduce	Server	costs(!))	
won’t	save	us	from	the	task	of	ensuring	Scalability	for	Game	Worlds.	
	
On	the	other	hand,	if	trying	to	run	a	Database	for	the	same	game	with	100’000	players	–	
we’ll	usually	be	speaking	about	the	numbers	of	0.1-1	DB	transaction/player/minute	(see	
also	the	[[TODO]]	section	below).	It	translates	into	10’000-100’000	DB	transactions/minute	
~=	150-1500	DB	transactions/second.	And	this	kind	of	load,	as	we’ll	see	in	Vol.	VI,	can	be	
quite	achievable	on	a	single	DB	server	(actually,	even	over	one	single	DB	connection	-	that	is,	
if	we	do	a	really	good	job	optimizing	our	DB	performance).	
	
In	practice,	it	means	that	for	scaling	Databases,	we	can	try	to	avoid	dealing	with	Scalability	
until	our	game	becomes	Really	Large™	(and	usually,	unless	we’re	an	AAA	company	with	a	
huuuge	marketing	budget	and	lots	of	pre-launch	buzz	going	on,	it	doesn’t	happen	
overnight).	
	

Scaling	Up	–	Doesn’t	Help	Much	for	Game	World	Servers	
	
As	soon	as	we	run	out	of	options	to	optimize	our	code	–	we	need	to	scale,	there	is	no	way	
around	it.	And	to	start	discussing	Scalability	–	we	need	to	define	some	terms.	First,	let’s	
observe	that	at	least	in	theory,	there	are	two	different	flavors	of	Scalability:	Scaling	Up	
(a.k.a.	Vertical	Scaling)	and	Scaling	Out	(a.k.a.	Horizontal	Scaling).		
	
Scaling	Up	refers	to	merely	buying	a	better	hardware	Server;	most	of	the	time,	it	is	a	purely	
hardware	solution	which	doesn’t	require	anything	from	software	side.		
	
For	us	(=”developers”),	Scaling	Up	sounds	as	a	really	nice	idea:	“Hey,	we	don’t	need	to	think	
about	scaling	of	our	software	–	just	tell	admins	to	buy	a	new	Server,	and	we’re	done!”	
Unfortunately,	there	is	one	teensy	problem	with	Scaling	Up:	

as	of	2017,	Scaling	Up	doesn’t	help	much.	
	
The	reason	for	it	is	two-fold.	First,	we	need	to	mention	that	

for	Scaling	Up,	it	is	per-core	performance	which	matters.	
	
As	we	don’t	want/need	to	make	our	software	scalable	when	Scaling	Up	–	it	usually	means	
that	our	program	can	run	only	on	N	cores	(not	more);	for	such	a	program	-	buying	new	
Server	won’t	give	it	any	performance	boost	other	than	N*performance-of-new-
cores/N*performance-of-old-cores;	this	pretty	much	translates	into	the	statement	above.	
	
The	second	observation	leading	to	scaling	up	not	working,	is	the	following:	

																																																								
narrow	sense	of	“purely	hardware	upgrade”,	so	“improving	performance”	becomes	a	
separate	concept.	

These	days,	the	best	per-core	performance	we	can	hope	for	–	is	an	around-
4GHz	CPU	core.4	

Moreover,	this	didn’t	change	much	over	last	15	years	or	so.5	
	
Based	on	these	two	observations,	we	can	see	that	if	you’re	already	running	a	3GHz	CPU	
(either	server	one	or	a	desktop	one)	–	possibilities	of	Scaling	it	Up	are	extremely	limited;	all	
we’re	speaking	about	–	is	1.5x	difference	GHz-wise;	in	addition	–	it	might	be	possible	to	get	
an	additional	2x-or-so	per-core	performance	gain	due	to	better	caches	etc.	
	
It	means	that		

CPU-wise,	the	gain	from	Scaling	Up	we	can	expect	is	at	most	3x.	
	
As	discussed	above	–	for	Game	Servers	we	need	about	1000x	performance	improvement	to	
avoid	the	need	to	scale;	and	compared	to	required	1000x,	3x	we	can	get	from	Scaling	Up	
isn’t	much	<sad-face	/>;	it	means	that	most	likely,	we	will	need	to	Scale	Out	our	Game	
World	Servers	(more	on	Scaling	Out	below).		
	
On	the	other	hand	–	for	Database	servers	(which	tend	to	have	loads	which	are	already	
within	the	reach	for	single-DB-connection	not-inherently-scalable	architectures),	that	3x	
gain	which	we	might	be	able	to	obtain	from	Scaling	Up,	might	provide	additional	breathing	
room	(and	a	very	significant	one	at	that).	
	

Scaling	Out	
	
Even	for	Databases,	and	even	when	trying	to	avoid	dealing	with	Scalability	by	improving	
performance	really	hard,	we’re	likely	to	hit	a	wall	somewhere	between	10’000	and	
1’000’000	simultaneous	players.	And	as	discussed	above	–	for	Game	Worlds	neither	Scaling	
Up	nor	improving	performance	will	allow	to	support	even	100’000	simultaneous	players	
without	splitting	our	load	to	multiple	boxes/cores.	
	
To	deal	with	it	–	

we’ll	need	to	Scale	Out.	
	
Unlike	Scaling	Up	which	relies	on	performance	of	one	single	core/Server-box	–	Scaling	Out	is	
all	about	spreading	the	load	across	different	CPU	cores	(Server	boxes	etc.).	As	noted	above,	
this	is	the	only	feasible	way	to	scale	your	programs	these	days	(when	you	DO	need	to	scale,	
that	is).	As	a	result	–	for	the	rest	of	this	book,	whenever	I’m	speaking	about	“Scalability”	or	
“scaling”	without	specifying	whether	it	is	“Scaling	Up”	or	“Scaling	Out”	–	I	will	mean	“Scaling	
Out”.	
																																																								
4	over	the	past	10	years,	IBM	Power	was	the	CPU	having	the	highest	clock	rate	–	and	the	
fastest	Power	goes	around	4.7-5GHz.	Recently,	AMD	has	reached	4.7GHz	too,	and	Intel	was	
rumored	to	release	5.1GHz	CPU	soon	–	though	as	of	early	2017	it	seems	that	these	
expectations	didn’t	materialize.	
5	granted,	per-MHz	performance	did	increase	over	the	last	15	years,	but	gains	of	the	order	
of	3-4x	or	so	do	not	help	much	with	scalability	

	

Shared-Nothing	as	The	Only	Way™	to	Scale	Linearly	
	
[TODO/wiki:	https://en.wikipedia.org/wiki/Shared_nothing_architecture]	One	very	
important	consideration	which	is	well-known,	but	is	largely	ignored	(especially	by	fans	of	
mutex-based	synchronization	and	by	DB	Vendors	trying	to	sell	Enterprise	versions	of	their	
DBs),	is	related	to	shared	resources.		
	
The	sad	truth	in	this	regard	is	that	

Concurrent	writes	to	any	resource	cause	contention,	and	contention	kills	
both	performance	and	scalability.	

	
[TODO/wiki:	Amdahl’s	Law]One	way	to	explain	it,	is	via	a	so-called	Amdahl’s	Law;	when	
applying	it	to	the	system	where	N	threads	perform	90%	of	their	processing	independently,	
and	remaining	10%	of	the	processing	–	under	the	common	mutex,	according	to	Amdahl’s	
Law6	our	overall	speedup	(defined	as	“reduction	in	overall	latency”)	–	cannot	possibly	be	
better	than	1/(1-0.9)	~=	10x,	that’s	regardless	of	number	of	cores	you	throw	in.	Indeed	–	as	
soon	as	we	have	10	cores	working,	our	mutex	will	inevitably	become	the	bottleneck,	
effectively	preventing	any	further	scaling.	
	
In	fact	–	throwing	more	cores	than	necessary,	can	easily	reduce	performance;	this	happens	
because		

Costs	of	context	switches	are	not	negligible7	
	
In	[TODO:	https://www.usenix.org/legacy/events/expcs07/papers/2-li.pdf],	it	was	found	
that	the	costs	of	the	thread	context	switch	(including	cache	invalidation)	can	vary	between	
10’000	CPU	cycles,	and	a	million	CPU	cycles.	From	my	experience,	while	I	never	seen	such	
numbers	as	a	1’000’000	in	practice	–	50’000-100’000	CPU	cycles	are	not	uncommon.	With	
this	in	mind,	it	is	not	surprising	that	
It	is	easy	to	build	a	multithreaded	mutex-based	program,	which	uses	8	cores	
to	perform	the	same	job	slower	than	a	single-core	program	which	uses	the	

same	algorithm.8	
	
These	observations	are	NOT	limited	to	threading	–	and	apply	to	any	resource	which	needs	
to	be	locked.	In	particular,	with	DBs	there	are	lots	of	locks	and	contentions;	in	particular,	
any	DB	has	to	lock	rows	for	writing,9	and	all-multi-object-ACID-DBs-I-know10,	inherently	
																																																								
6	or	to	common	sense,	whichever	comes	first	<wink	/>	
7	Amdahl’s	Law	establishes	only	the	upper	bound	for	scaling,	leaving	these	costs	beyond	its	
scope	
8	the	problem	will	usually	be	with	multithreading	being	too	fine-grained	and	
synchronizations	too	frequent,	which	in	turn	will	lead	to	costs	of	switches	dominating	over	
the	useful	work.	
9	Yes,	even	MVCC-based	DBs	need	resolve	write-write	conflicts	via	locking	
10	MySQL-with-MyISAM	–	or	any	other	DB	which	doesn’t	support	multi-object	ACID	
transactions	for	that	matter	–	doesn’t	qualify	

have	contention	on	the	DB	log	file	(and	as	DB	log	is	system-wide	–	it	can	easily	become	The	
Bottleneck™).	
	
As	a	result	–		

Shared-Nothing	architectures	is	The	Only	Way™	to	Scale	Linearly	
	
This	all-important	observation	plays	an	extremely	important	role	in	practice,	and	effectively	
means	that	synchronization-based	techniques	such	as	mutex-based	multithreading,	and	
federated	DBs,	have	severe	scaling	issues.	Worse	than	that	–	this	observation	is	not	only	a	
theoretical	finding,	but	is	also	supported	by	numerous	real-world	experiences	(mostly	sad	
ones).	
	

Contention-Related	Issues	
	
In	general,	contention	can	(and	usually	will	–	that	is,	if	the	load	is	high	enough)	cause	the	
following	problems:	

• Significantly	worse-than-linear	scaling	
• While	latency	of	a	synchronization-based	multithreaded	system	may	indeed	improve	

compared	to	single-threaded	one11,	in	any	case	we	can	be	100%	sure	that	
throughput	of	such	a	multithreaded	system	becomes	worse.	This	directly	follows	
from	synchronization	costs	being	non-negligible,	but	is	way	too	often	ignored	by	
massively-multithreaded	zealots.	

• As	contention	grows	–	synchronization	costs	go	up.	NB:	this	doesn’t	directly	follow	
from	worse-than-linear	scaling	(in	particular,	Amdahl’s	Law	stipulates	worse-than-
linear	scaling	even	without	referring	to	synchronization	costs).	

o This,	in	turn,	means	that	as	we’re	coming	closer	to	the	load	limit	–	our	system	
will	behave	worse	that	we	predicted	based	on	previous	experiences,	
effectively	spiraling	out	of	control	much	faster	than	we	expect.	

o Compare	it	to	Shared-Nothing	systems	(such	as	(Re)Actors),	where	load	
increase	tends	to	reduce	context	switches,	and	causes	the	system	to	behave	
better-than-expected	in	near-critical	situations).	

	

Making	Overall	Architecture	Scalable	as	a	Whole	
	
Whenever	we’re	faced	with	the	task	of	the	creating	an	MOG	architecture	–	the	very	first	
thing	we	need	to	think	about,	is	“how	to	make	our	architecture	scalable	as	a	whole”.	Here,	
“as	a	whole”	is	an	extremely	important	qualifier,	because	–	as	we’ll	see	below	–	it	is	
extremely	easy	to	design	a	system	where	only	a	part	of	it	scales	easily	(at	the	cost	of	some	
other	part	becoming	a	Really	Bad	Bottleneck™	<sad-face	/>).		
	

On	In-Memory	States	and	Multi-Player	Games	
	

																																																								
11	if	the	task	you	have	lends	itself	to	coarse-grained	multithreading,	and	if	you’re	careful	
enough	

The	show	must	go	on	
The	show	must	go	on,	yeah	yeah	
Ooh,	inside	my	heart	is	breaking	

My	make-up	may	be	flaking	
But	my	smile	still	stays	on	

—	Queen	
		
After	discussing	the	very	basics	of	Scalability	in	general	–	let’s	discuss	Scaling	Out	our	Game	
Servers.		
To	approach	this	task	in	an	at	least	somewhat	generic	manner,	
let’s	observe	that	most	multi-player	games	out	there	can	be	
seen	as	a	sequence	of	“Game	Events”.	Let’s	define	(very	
loosely)	a	multiplayer	Game	Event	as	“some	dynamic	
interaction	which	involves	more	than	one	player,	is	limited	in	
time	and	has	an	obviously	observable	outcome”.	Examples	of	
Game	Events	include	such	seemingly	different	things	as:	

• Arena	match	
• Poker	hand	
• RPG	fight	(or	talk)	

	
Actually,	all	the	multi-player	games	I	know	look	to	the	player	as	
a	sequence	of	Game	Events	–	with,	maybe,	some	interspersed	
interactions	which	involve	only	one	single	player	(for	example,	interactions	with	game	
environment	and	NPCs	but	not	with	other	PCs).	
	
Now,	as	we	realize	that	our	multi-player	game	can	be	seen	as	a	sequence	of	multiplayer	
Game	Events,	we	can	make	a	few	further	observations.	
	
Observation	8.1.	If	Game	Event	is	interrupted	for	more	than	a	few	dozen	seconds,12	it	is	
next-to-impossible	to	get	all	the	players	who	participated	in	the	Game	Event,	back	to	it.	
	
For	example,	if	you	are	running	a	bingo	game	with	a	hundred	of	players,	and	you	disrupt	it	
for	10	minutes	for	technical	reasons,	you	won’t	be	able	to	continue	it	in	a	manner	which	is	
fair	to	all	the	players,	at	the	very	least	because	you	won’t	be	able	to	get	all	that	100	players	
back	into	playing	at	the	same	time.		
	
The	problem	is	all	about	numbers:	for	a	two-player	Game	Event	getting	these	two	players	
back	might	work,	but	for	10+	–	having	all	the	players	to	return	back	to	play	at	the	same	time	
is	very	unlikely.13	
	
Of	course,	if	your	game	is	a	final	of	a	big	tournament	with	a	big	cash	prize,	you’ll	probably	
be	able	to	reschedule	it	for	the	next	day	or	something,	but	gathering	the	same	people	back	

																																																								
12	unless	we’re	speaking	about	big	tournaments	or	large	prizes,	I’d	put	more	or	less	typical	
time	at	about	1-2	minutes	(with	all	the	necessary	disclaimers	about	it	depending	on	your	
game	etc.	etc.).	
13	As	always,	there	are	some	exceptions	here	and	there,	but	they’re	few	and	far	between	

	
all	the	multi-player	
games	I	know	look	to	
the	player	as	a	
sequence	of	Game	
Events

after	15	minutes	or	so	of	your	game	being	irresponsive,	won’t	be	possible	for	the	vast	
majority	of	Game	Events	out	there.	
	
Observation	8.2.	If	Game	Event	is	interrupted	for	more	than	a	few	dozen	seconds,	then	even	
if	we	are	able	to	reconstruct	the	same	Game	World	State	
technically,	it	won’t	be	the	same	from	the	player’s	point	of	
view.	Moreover,	any	substantial	interrupt	of	the	Game	Event	
can	easily	provide	an	unfair	advantage	to	some	of	the	players.	
	
Being	interrupted	in	the	middle	of	a	sword	fight	and	being	
asked	to	resume	from	the	middle	of	it	(which	was	“who-knows-
how-many-milliseconds-before-you-need-to-press-the-
button”)	–	is	not	likely	to	be	satisfying	for	the	players.	In	
addition,	if	the	interrupt	is	rather	long	–	then	from	the	players’	
perspective	they	will	stay	in	a	nervous	state	of	“what	exactly	is	
my	position	within	this	fight”	(which	is	quite	unusual	and	
therefore	rather	uncomfortable	compared	to	usual	“I	am	
preparing	for	this	fight”);	this	is	usually	worse	than	knowing	
that	the	whole	thing	will	be	rolled	back	and	you	can	start	anew	
(of	course,	if	one	of	them	was	winning	–	it	will	be	unfair,	but	
well	–	there	is	no	ideally	fair	solution	here).	
Going	even	further	into	analysis	of	unfair	advantages	due	to	interruptions	–	we’ll	see	that	
for	quite	a	few	games,	it	might	be	possible	for	a	player	to	obtain	some	important	game-
changing	information	during	the	interrupt	within	the	Game	Event.	This	information	can	be	
pretty	much	anything	–	from	noticing	the	start	of	opponent’s	move	and	preparing	to	
counter	it	during	the	interrupt,	to	being	able	to	run	a	sophisticated	analysis	tool	in	the	
middle	of	interrupted	chess	blitz	match.	
	
These	effects	are	known	in	the	game	industry	–	though	way	too	often	they’re	taken	into	
account	only	during	deployment	as	an	afterthought,	and	this	can	easily	lead	to	ugly	
solutions	and	even	uglier	resulting	problems.	In	“In-Memory	Game	World	States:	a	Natural	
Fit	for	‘No	Bugs’	Rule	of	Thumb”	section	below,	we’ll	see	an	example	of	rather	crazy	crash	
recovery	logic	of	a	large	multi-million-dollar	game:	after	the	crash	they	first	restored	a	
perfectly	correct	current	Game	World	State	as-of-the-moment-of-the-crash	(with	this	
restore	itself	causing	lots	of	trouble)	–	merely	to	follow	it	with	rolling	back	this	perfectly-
correct-current-Game-World-State	back	to	the	start	of	Game	Event	–	exactly	because	they	
weren’t	able	to	resume	the	game	due	to	lack	of	players.	
	

‘No	Bugs’	Rule	of	Thumb	for	Multiplayer	Games	
	

The	weight	of	evidence	for	an	extraordinary	claim	
must	be	proportioned	to	its	strangeness	

—	Pierre-Simon	Laplace	
	
Now,	armed	with	these	two	observations,	we	can	try	to	figure	out	what	needs	to	be	done	if	
our	Server	app	crashes	in	the	middle	of	the	Game	Event	(which	inevitably	causes	a	large	
interrupt	in	game	play	–	that	is,	unless	we’re	going	for	full-scale	fault	tolerance	for	all	our	

	
Being	interrupted	in	the	
middle	of	a	sword	fight	
and	being	asked	to	
resume	just	from	the	
middle	of	it	–	is	not	
likely	to	be	satisfying	
for	the	players

Servers,	and	the	crash	was	a	hardware	one14).	Personally,	I	prefer	to	state	it	as	the	following	
“’No	Bugs’	Rule	of	Thumb	for	Multiplayer	Games”:	
Whenever	Game	Event	is	interrupted	for	significant	time,	as	a	rule	of	thumb	
it	is	better	to	roll	back	the	interrupted	Game	Event	rather	than	trying	to	
restore	the	exact	Game	World	State	in	the	middle	of	the	Game	Event.	

	
This	statement	is	very	bold	–	and	as	such,	requires	quite	a	bit	of	explanation.	Let’s	consider	
two	options:	the	first	one	is	to	restore	the	exact	Game	World	State	at	the	moment	of	crash,	
and	the	second	one	is	to	roll	back	our	interrupted	Game	Event	(i.e.	we	restore	the	exact	
Game	World	State	as	of	the	beginning	of	current	Game	Event);	moreover,	let’s	assume	that	
the	both	options	are	feasible	to	implement	(which	is	not	often	the	case	for	the	Option	1,	but	
for	our	current	analysis	we	can	afford	a	bit	of	daydreaming).	
	
In	both	cases,	the	player’s	experience	will	be	hurt.	Of	course,	roll	back	in	Option	2	obviously	
changes	the	game	landscape.	However,	as	it	follows	from	Observation	8.2,	restoring	exact	
Game	World	State	in	Option	1	is	also	far	from	the	ideal.	I’d	say	that	from	the	point	of	view	
of	“providing	the	least	possible	disruption	to	the	players”,	for	quite	a	few	games	out	there	
both	approaches	are	roughly	equal	(=”having	bad	impact	on	the	game	of	the	same	order	of	
magnitude”).	In	other	words	–	whatever	we’re	doing	after	the	crash,	gameplay	will	be	hurt,	
and	players	will	be	inevitably	unhappy	(and	some	players	will	be	inevitably	more	unhappy	
than	the	others).	
	
With	this	in	mind,	we	should	take	into	account	considerations	which	have	led	us	to	
Observation	8.1	–	those	about	getting	players	back.	If	going	the	route	of	Option	1	(taking	
“restoring	Game	Event	in	the	middle”	route),	we’re	basically	saying	that	“everybody	who	
participated	in	that	Game	Event,	needs	to	stay	online	for	some	unspecified	time,	just	polling	
to	see	when	we’re	able	to	relaunch	our	Game	Servers;	anybody	who	doesn’t	do	it	–	will	be	
punished	by	losing	the	Game	Event	by	default”.	Essentially,	we’ll	be	punishing	players	for	
our	own	problems	–	which	is	certainly	not	good	(and	players	tend	to	hate	it	too).	On	the	
other	hand,	if	dealing	with	the	crash	via	Option	2	–	we	can	say	“sorry,	Bad	Thing™	did	
happen	–	but	at	least	we	rolled	back	all	the	current	Game	Events,	so	you	can	come	
whenever-you-want	and	continue	playing	at	your	convenience”.	
	
Overall,	from	what	I’ve	seen	(both	as	a	developer	and	as	a	player)	–	I	like	the	second	option	
(the	“roll	back	to	start	of	Game	Event”	one)	much	much	better	than	the	first	one,	at	the	very	
least	–	for	most	of	the	games	out	there.	Which	is	exactly	what	is	summarized	in	the	“’No	
Bugs’	Rule	of	Thumb”	boldly	stated	in	bold15	above.	
	

																																																								
14	a	reproducible	software	crash	will	be	faithfully	repeated	on	a	reserve	node	(just	as	it	
happened	with	Ariane	5	rocket,	see	[Wikipedia.Cluster.LaunchFailure]	for	details),	so	no	
kind	of	Fault	Tolerance	will	help	against	it.	
15	pun	intended	

BTW,	it	is	exactly	the	same	strategy	which	is	traditionally	applied	for	at	least	one	brick-and-
mortar	game	for	centuries.	As	one	poker	pro	has	explained	it:	if	a	fire	breaks	out	in	a	brick-
and-mortar	poker	room	while	the	hand	is	being	played,	then	
the	whole	hand	gets	cancelled,	and	all	the	chips	are	returned	
to	their	owners	“as	of	the	beginning	of	the	hand”	–	regardless	
of	the	cards	they	were	dealt	and	regardless	of	the	state	of	the	
hand	in	general.	Then,	when	the	fire	is	extinguished,	players	
can	start	a	new	hand	–	or	some	of	them	may	leave;	it	is	their	
choice,	and	certainly	not	the	choice	of	the	casino	owner.	
	
Good	for	Us	(as	developers)	
	
Now,	let’s	note	that	all	this	analysis	above	stands	even	before	
we	take	into	account	the	complexities	of	implementing	
perfectly-durable-intra-Game-Event-Game-World-States.	In	
practice	–	these	complexities	are	so	big	(essentially	leading	to	
pushing	each-and-every-player-action	into	some-kind-of-
durable-database	–	which	in	turn	leads	to	increasing	DB	load	
anywhere	from	10x	to	1000x,	and	scaling	DBs	with	that	much	
transactions	is	going	to	be	next-to-impossible)	–	that	we’d	
likely	to	choose	Option	2	just	to	avoid	these	complexities.	However,	my	point	here	is	
different;	what	I	am	trying	to	say	is	that	
In	case	of	crash,	rolling	back	Game	Event	is	usually	a	Good	Thing™	from	the	

player’s	point	of	view	
	
And	the	fact	it	also	simplifies	development	–	well,	it	means	that	we	as	developers	got	lucky:	
if	the	simplest-for-developers	solution	(the	one	with	in-memory	Game	World	States	–	see	
“In-Memory	Game	World	States:	a	Natural	Fit	for	‘No	Bugs’	Rule	of	ThumbTODO-ref”	
section	below)	happens	to	be	the	best	one	for	players	too,	it	is	certainly	a	Good	Thing™	for	
everybody	involved.	
	
Exception:	Stock	Exchanges	
	
A	word	of	caution	for	stock	exchanges.	If	your	game	is	a	stock	exchange,	you	generally	do	
need	to	save	every-player’s-action	persistently	(to	ensure	strict	correctness	even	in	case	of	
Game	Server	loss),	so	rolling	back	is	not	usually	an	option.	Of	course,	technically	we	can	say	
that	with	stock	exchanges	each	single	bid	constitutes	a	Game	Event,	but	well	–	it	won’t	
really	simplify	our	jobs	down	the	road.	
	
That	being	said,	it	should	be	noted	that	even	for	stock	exchanges	at	least	the	architecture	
based	on	Stateful	Disposable	Apps	described	below	[[TODO	-	section?]],	has	been	observed	
to	work	very	well	despite	DB	transaction	numbers	being	rather	large.	At	least	in	part,	it	can	
be	attributed	to	two	further	observations:	first,	that	for	stock	exchanges	number	of	user	
interactions	are	usually	not	that	high	as	for	MMORPG,16	and	second,	that	price	of	the	

																																																								
16	that	is,	if	we	exclude	post-2007-or-so	NASDAQ	with	lots	of	bots	trading	

	
if	a	fire	breaks	out	in	a	
brick-and-mortar	poker	
room	while	the	hand	is	
being	played,	then	the	
whole	hand	gets	
cancelled,	and	all	the	
chips	are	returned	to	
their	owners	“as	of	the	
beginning	of	the	hand”

hardware	is	generally	much	less	of	a	problem	for	stock	exchanges	than	for	other	types	of	
games.	
	
NOT	applicable	to	Single-Player	Games	
	
It	should	also	be	noted	that	the	logic	above	(and	especially	Observation	8.1)	does	not	apply	
to	single-player	games	(this	includes	over-the-Internet	single-player	games	such	as	Internet	
slot	machines	etc.).		
	
For	a	single-player	game	(whether	Internet-based	or	not),	the	whole	thing	tends	to	work	
exactly	the	other	way	around:	there	is	only	one	player,	and	she	expects	to	resume	the	game	
exactly	at	the	point	when	the	whole	thing	was	interrupted;	moreover,	the	interrupted	
gameplay	is	usually	already	supported	for	single-player	games,	so	handling	it	differently	for	
the	crash	of	our	Servers	will	feel	pretty	bad.	Even	worse,	with	single-player	games	where	
the	player	is	playing	against	the	game	(such	as	casinos),	rolling	the	game	back	for	any	reason	
will	have	pretty	bad	implications	and	will	raise	pretty	bad	suspicions	too.	
	
	In	short	–	single-player	games	and	multi-player	games	are	
two	extremely	different	beasts	in	this	regard,	so	observations	
about	multi-player	games	SHOULD	NOT	be	blindly	extended	
to	the	single-player	ones,	and	vice	versa.	
	
In-Memory	Game	World	States:	a	Natural	Fit	for	‘No	
Bugs’	Rule	of	Thumb	
	
From	the	discussion	above	it	follows	that	if	we	had	a	Server	
crash	with	a	subsequent	reboot,	then	(as	long	as	crash-
reboot	cycle	took	more	than	2	minutes	or	so)	–	we’ll	need	to	
roll	back	the	interrupted	Game	Event,	even	if	we	have	
perfect	data	as	of	the	exact	moment	of	crash.	
	
Now	comes	an	all-important	
Observation	8.3.	Hey,	but	if	we	keep	current	Game	Event	in-
memory	only	(writing	any	changes	to	the	DB	only	after	Game	
Event	ends),	we’ll	get	exactly	the	behavior	we	need	without	
any	“rollback”	efforts	(and	during	normal	operation,	will	
lower	the	DB	load	by	orders	of	magnitude	too)	
	
It	means	that	for	most	of	the	multi-player	games	out	there,	we	can	use	the	following	
paradigm:	

• we	divide	the	game	into	Game	Events,	which	need	to	be	rolled	back	in	case	of	
Server	crash	or	something	

• while	Game	Event	is	in	progress,	this	progress	is	maintained	as	a	part	of	in-
memory	Game	World	State	

	
single-player	games	
and	multi-player	games	
are	two	extremely	
different	beasts	in	this	
regard,	so	observations	
about	multi-player	
games	SHOULD	NOT	be	
blindly	extended	to	the	
single-player	ones,	and	
vice	versa.

• Game	World	States17	SHOULD	be	written	to	DB	only	at	the	end	of	each	Game	
Event,	and	not	while	the	Game	Event	is	in	progress.	
o As	a	side	benefit	–	this	allows	for	the	result	of	the	Game	Event	to	be	written	

to	DB	atomically,	so	if	there	was	one	artifact	for	two	players	before	they	fight	
–	we	can	be	100%	sure	that	in	DB	there	will	be	exactly	one	artifact	after	the	
fight	regardless	of	whatever-has-happened.	

	
Bingo!	We	can	have	our	cake	and	eat	it	too!	We’ve	just	got	a	very	high-performance	system	
(in-memory	states	without	syncing	to	DB	are	about	as	fast	as	they	go)	–	and	it	also	provides	
very	good	player	experience	(well,	as	good	as	possible	after	something	went	horribly	
wrong).	
	
BTW,	if	you	choose	to	ignore	this	observation	–	you	still	can	create	a	workable	system,	but	
the	things	can	easily	get	rather	ugly.	Once,	I’ve	seen	an	architecture	which	wrote	all	the	user	
actions	to	in-memory	DB	right	away	–	effectively	keeping	perfectly	current	Game	World	
State	in	that	in-memory	DB.	It	took	them	quite	an	effort	to	implement	this	DB,	but	it	did	
work.	However	–	whenever	their	Server	crashed	–	they	needed	to	roll-forward	the	whole	
thing,	which	in	turn,	in	quite	a	few	cases	has	led	to	the	need	to	fix	a	bug-which-caused-the-
crash	“right	on	the	fly”	before	roll-forward	can	be	completed(!);	as	a	result	–	the	roll-
forward	implementation	of	the	in-memory	DB	has	been	observed	to	cause	quite	a	few	long	
downtimes.	
	
To	add	insult	to	the	injury	–	in	fact,	all	these	efforts	and	complexities	of	roll-forward	were	
completely	pointless	–	because,	whenever	their	Server	crashed,	their	recovery	procedure	
went	as	follows:	

• first,	they	roll-forwarded	all	the	DB	logs	to	get	a	consistent	DB	state	with	all	the	
user	actions	accounted	for	(including	those	actions	within	unfinished	Game	
Events);18	

• and	right	after	the	roll-forward	was	completed	–	they	ran	an	application-level	
rollback	to	remove	all	those	unfinished	Game	Events	from	DB;	the	latter	was	
necessary	exactly	because	of	the	problems	with	getting	the	players	back	to	the	
same	Game	Event	(see	Observation	8.1).	

																																																								
17	or	a	part	of	the	Game	World	State,	which	part	corresponds	to	the	specific	Game	Event	
18	and,	as	noted	above,	the	completing	roll-forward	could	take	fixing	a	bug,	ouch!	

	
In	short	–	they	made	a	complicated	custom	DB-level	
rollforward,	only	to	follow	it	up	with	a	complicated	custom	
application-level	rollback.	
	
A	competing	system	(couldn’t	help	myself	from	bragging	it	
was	mine<wink	/>),	simply	didn’t	write	all	those	unfinished	
Game	Events	into	the	DB	while	Game	Events	were	in	
progress	(and	wrote	the	whole	Game	Event	only	after	it	is	
completed,	instead).	In	case	of	crash	(BTW,	crashes	were	
extremely	rare)	–	it	simply	started	from	DB	state	(which,	
given	the	logic	above,	corresponded	to	the	end	of	last-Game-
Event),	without	any	additional	rollbacks.19	The	whole	
architecture	was	much	simpler,	scaled	much	better,	and	was	
observed	to	be	much	more	reliable	than	competing	in-
memory-DB-based	one	described	above.	
	

On	Data	Consistency	
	
One	thing	which	comes	to	mind	when	considering	such	in-memory	state-based	processing	
models,	is	a	question	about	data	consistency:	“hey,	how	losing	information	and	data	
consistency	can	possibly	be	a	good	thing?”.	Here	I	need	to	mention	that	I	am	all	for	
consistency;	there	is	still	a	question,	however,	how	to	define	this	consistency.	
	
As	follows	from	the	discussion	above,	from	the	player’s20	point	of	view,	it	is	necessary	to	
include	“interrupts”	into	our	definition	of	consistency;	and	to	do	it	–	we	will	have	to	say	
something	along	the	lines	of	“if	the	game	was	interrupted	for	significant	time	in	the	middle	
of	Game	Event,	then	the	consistent	state	is	defined	as	the	state	at	the	beginning	of	the	
interrupted	Game	Event”.	
	
And	as	soon	as	we	say	it	–	our	in-memory	Game	World	State	(synced	to	DB	at	the	end	of	
each	Game	Event)	becomes	a	perfectly	valid	implementation	(and	a	damn	convenient	one	
too	<wink	/>)	of	the	data	consistency	under	the	definition	above.	While	another	
implementation	discussed	above	–	the	one	based	on	in-memory	DB	with	a	subsequent	app-
level	rollback	–	is	also	valid	under	the	same	definition,	it	happens	to	be	much	less	
convenient	in	the	real-world.	
		

In-Memory	State	Summary	
	
TL;DR	on	in-memory	states:	

																																																								
19	While	in	case	of	DB	crash,	a	DB-level	roll-forward	to	get	consistent	DB	state	was	still	
necessary,	but	–	as	DB	was	a	standard	log-based	RDBMS	(and	RDBMSs	are	doing	log	
rollforwards	for	50+	years	now),	it	worked	like	a	charm	
20	GDD,	business	requirements,	etc.	

	
they	made	a	
complicated	custom	
DB-level	rollforward,	
only	to	follow	it	up	with	
a	complicated	custom	
application-level	
rollback.

• for	multi-player	games,	if	you	disrupt	a	Game	
Event	(such	as	match,	hand,	or	fight)	for	more	
than	a	few	dozen	seconds	–	you	won’t	be	able	to	
continue	it	anyway	because	you	won’t	be	able	to	
get	all	the	players-within-this-Game-Event	back.	
o as	a	result,	you’ll	most	likely	need	to	roll	your	

whole	Game	Event	back.	
o and	to	implement	this	rolling-back-to-the-

beginning-of-the-Game-Event,	in-memory	
states	(with	syncing	to	DB	at	the	end	of	each	
Game	Event)	are	very	natural	and	convenient.	

• As	a	result,	the	following	processing	model	tends	
to	work	very	well	for	multi-player	games,	so	you	
SHOULD	consider	it	very	seriously:	
o Your	gameflow	needs	to	be	split	into	separate	

Game	Events.	
o These	Game	Events	SHOULD	be	more-or-less	

natural	from	player’s	point	of	view	
o You	store	intra-Game-Event	Game	World	State	

in-memory	only.	
o You	synchronize	your	in-memory	Game	World	State	with	DB	around	the	end	

of	each	of	Game	Events.	
o If	your	Server	crashes	in	the	middle	of	the	Game	Event	–	you	lose	your	in-

memory	Game	World	State.	
§ On	restart	–	your	system	will	restore	itself	from	the	DB,	which	

corresponds	to	rolling	the	state	back	to	the	beginning	of	the	
interrupted	Game	Event.	

• It	is	a	Good	Thing™,	as	this	is	exactly	what	is	required	in	vast	
majority	of	cases.21	

	

The	Myth	of	Stateless-Only	Scalability	
	
For	quite	a	long	time	(and	especially	among	webdevs),	there	exists	a	perception	that	to	
achieve	scalability,	all	our	request	handlers	need	to	be	stateless	(at	least,	they	shouldn’t	
have	any	state	which	persists	between	requests).	In	particular,	in	RESTful	web	services	
world,	there	is	a	lot	of	opposition	to	in-memory	states;	while	in-memory	states	are	not	
100%	prohibited,	they	are	very	much	frowned	upon,	and	all	in	the	name	of	the	perceived	
scalability.	In	the	world	of	the	all-popular	Docker	containers,	it	is	leads	to	the	notion	that	all	
the	app	containers	need	not	only	to	be	immutable,	but	also	should	be	ephemeral	(a.k.a.	
disposable).22	
	
From	a	practical	perspective,	it	translates	into	the	following	observation:	

																																																								
21	YMMV,	void	where	prohibited	
22	for	more	discussion	on	Docker,	see	Vol.	VII’s	chapter	on	DevOps	

	
if	you	disrupt	a	Game	
Event	for	more	than	a	
few	dozen	seconds	–	
you	won't	be	able	to	
continue	it	anyway	
because	you	won't	be	
able	to	get	all	the	
players-within-this-
Game-Event	back

It	is	widely	(MIS)believed	that	stateless	Server-Side	Apps	are	The	Only	Way™	
to	scale	Server-Side.	

	
In	this	statement,	it	is	“The	Only”	part	which	I	am	arguing	against.	Sure,	having	perfectly	
stateless	request	processing	is	a	Good	Thing™	–	but	only	as	long	as	you	can	afford	it	<sad-
face	/>.	
	

Pushing	Scalability	Problem	to	the	Database	
	

I	am	innocent	of	the	blood	of	this	just	person:	see	ye	to	it.	
—	Pontius	Pilate,	Matthew	27:24	

	
The	problem	with	stateless	processing	(such	as	web-app-style	stateless	request	handlers)	is	
that	
If	our	functional	specification	requires	storing	the	state	on	Server-Side,23	and	
we’re	using	stateless	request	handlers	–	then	all	the	state	inevitably	ends	up	

in	the	database.	
	
This,	in	turn,	means	that	by	going	for	stateless	request	processing:	

• There	is	no	scalability	problem	on	the	request	processing	
side	anymore	

o In	other	words,	we	DO	have	perfect	scalability	for	
request	processing	apps,	yay!	

• This	undeniable	improvement	for	scaling	request	
processing	app,	however,	doesn’t	come	for	free.	More	
specifically	-	the	whole	scalability	problem	rears	its	ugly	
head	at	the	database	level.	

o And	as	we’ll	see	below	–	scaling	database	is	much	
more	difficult	then	scaling	request	handlers	(even	
if	we’re	speaking	about	stateful	request	handlers),	
up	to	the	point	of	being	completely	
unmanageable	<sad-face	/>.	

	
In	other	words	–	
keeping	our	request	handlers	stateless,	does	NOT	really	solve	the	scalability	

problem;	instead	–	it	merely	pushes	the	problem	to	the	database.	
	
Sure,	if	we’re	working	in	a	classical	Huge-Company	environment,	we	(as	app	developers)	can	
say	“it	is	not	our	problem	anymore”	(washing	our	hands	of	the	matter	Pilate-style).		
	

																																																								
23	which	almost-universally	is	the	case:	when	going	beyond	simple	web	browsing,	100%	
stateless	apps	are	very	rare	

	
The	whole	scalability	
problem	rears	its	ugly	
head	at	the	database	
level	

However,	if	our	aim	is	not	only	to	cover	our	***es	to	keep	our	current	job	while	the	project	
goes	down,	but	rather	want	to	make	sure	that	the	whole	system	succeeds24	–	we	need	to	
think	a	bit	further.	Most	importantly,	we	need	to	realize	that	pushing	the	problem	from	us	
to	DBAs	isn’t	the	end	of	the	scalability	problems;	instead	–	we	should	ask	ourselves:	
with	the	kind	of	load	we’ll	be	throwing	at	the	database,	will	it	be	feasible	to	

scale	the	database25?	
		

Databases	and	Scalability	
	
As	discussed	above	–	we	as	app-developers	DO	need	to	think	how	much	load	we	are	
allowed	to	throw	at	the	database.	And	in	this	department,	there	are	some	pretty	bad	news	
for	us.	In	spite	of	what	your	not-so-experienced	DBA	may	(and	your	database	salesman	will)	
tell	you	–	in	general,26	databases	certainly	do	NOT	scale	trivially	in	a	linear	manner.	Worse	
than	that	–	

In	a	pretty	much	any	serious	real-world	interactive	system,	it	is	database	
which	is	The	Bottleneck™.	

	
I	remember	a	discussion	with	very	knowledgeable	architect-level	guys	from	a	pretty	large	
company	as	early	as	in	2000;	during	the	discussion,	we	had	quite	a	few	disagreements,	but	
one	thing	was	very	obvious	to	everybody	involved:	scaling	everything-besides-database	is	
trivial,	it	is	database	which	is	going	to	cause	trouble	scalability-wise.	Since	that	point,	I’ve	
seen	(and	built)	quite	a	few	serious	systems	–	and	haven’t	see	anything	which	might	have	
changed	my	opinion	about	it.	
	
[[TODO:	wiki	OLTP]]For	the	rest	of	this	section,	we’ll	be	mostly	speaking	about	so-called	
OLTP	databases.	Very	very	roughly	-	OLTP	is	the	database	where	all	the	significant	events	in	
the	system	are	getting	recorded	for	the	first	time27;	also	–	OLTP	is	also	the	database	which	
ensures	consistency,	including	such	things	as	“when	we	try	to	transfer	artifact	X	from	player	
A	to	player	B,	we	can	be	sure	that	there	is	exactly	one	copy	of	the	artifact	X	regardless	of	the	
outcome”.	We’ll	discuss	much	more	on	OLTP	(and	how	it	can	be	optimized/scaled)	in	Vol.	
VI’s	chapter	on	Databases,	and	in	Vol.	VII’s	chapter	on	DB	Optimizations.	
	

																																																								
24	which	BTW	is	the	only	way	to	think	about	it	within	DevOps	paradigm;	more	on	DevOps	in	
Vol.	VII’s	chapter	on	DevOps	
25	that	is,	without	spending	millions	on	hardware/licenses/maintenance	
26	at	least	if	(a)	multiple-object-ACID-transactions	are	necessary,	and	(b)	there	is	no	obvious	
sharding	of	the	objects;	unfortunately	–	most	of	the	time	both	(a)	and	(b)	happen	to	be	the	
case	for	MOGs	and	MOG-like	systems.	
27	After	recording	to	OLTP	–	all	the	data	can	be	replicated	to	other	DBs	for	further	analysis	
and	reporting,	so	“for	the	first	time”	qualifier	is	important.	

When	speaking	about	real-world	OLTP	databases	in	2017,28	the	following	very	practical	
observations	usually	stand	(we’ll	discuss	this	topic	in	more	detail	in	Vol.	VI’s	chapter	on	
Databases):29	

• Pretty	much	any	kind	of	load	up	to	approximately	10	write-ACID-transactions/second	
is	trivial	

• When	you	need	database	loads	of	the	order	of	100	write-ACID-transactions/second	
–	it	is	usually	doable	by	using	traditional	database	optimizations	(indexes,	caches,	
physical	layout,	BBWC	RAID,	etc.).	

• Getting	to	1000	write-ACID-transactions/second	becomes	severely	non-trivial.	If	the	
database	structure	and	loads	don’t	allow	for	trivial	sharding	(in	particular	–	if	we	
need	to	allow	players	to	play	with	anybody-they-want-to-play-with)	–	things	start	to	
get	ugly.	We’ll	discuss	one	way	to	do	it,	in	Vol.	VI’s	chapter	on	Databases.	

• For	a	non-trivially-shardable	database,	10’000	write-
ACID-transactions/second	(which,	with	usual	MOG	load	
patterns,	roughly	corresponds	to	about	100	billion	
transactions/year)	inevitably	becomes	The	Ultimate	
Nightmare™	for	DBAs.	In	practice	–	such	beasts	are	
either	huuuuge	ultra-expensive	systems,	or	Shared-
Nothing	systems	(which	require	support	from	app-level,	
more	on	such	systems	in	Vol.	VI’s	chapter	on	
Databases).	

• Any	systems	with	the	load	significantly	above	10’000	
write-transactions/second	(or	100	billion	write-
transactions/year)	tend	to	exhibit	both	(a)	and	(b)	
properties	below:		

a) Such	systems	are	very	rarely	really	necessary.	
Most	of	those	systems	where	such	loads	are	
necessary	–	are	already	household	names.	Just	a	
few	examples	–	Twitter	handles	about	200B	
tweets/year,	Facebook	is	within	single-digit	
hundreds	of	billions	of	comments	and	status	updates	per	year	too,	UPS	and	
Fedex	deliver	about	6B	and	1B	packages	respectively	(which	translates	into	
about	20x	more	package	status	updates	–	and	again	lands	us	into	tens-to-
hundreds-of-billions-write-transactions-per-day),	and	so	on.30	

b) in	practice,	most	of	such	systems	(except	for	NASDAQ	–	see	below)	work	
either	(b1)	without	strict	ACID	requirements,	or	(b2)	for	trivially-shardable	
scenarios	(or	both).		

																																																								
28	And	however	surprising	it	might	sound	–	these	numbers	changed	very	little	over	last	15	
years	
29	note	that	specific	numbers	below	are	extremely	rough	(give	or	take	at	least	an	order	of	
magnitude);	also	let’s	note	that	we’re	speaking	about	real-world	transactions	(each	writing	
at	least	a	dozen	rows,	not	trivially	shardable,	etc.	etc.),	so	any	overly-optimistic	numbers	
such	as	TPC-C	and	any	other	artificial	tests	do	not	apply.	
30	Note	that	we	didn’t	count	statistical	stuff	such	as	counting	web	site	visits	etc.	etc.	
However	–	this	kind	of	data	has	absolutely	nothing	to	do	with	ACID,	and	is	trivially	shardable	
too;	as	a	result	–	it	is	beyond	the	scope	of	our	current	discussion.	

	
for	a	non-trivially-
shardable	database,	
10’000	write-ACID-
transactions/year	(~=	
100	billion	write-
transactions/year)	
inevitably	becomes	The	
Ultimate	Nightmare™	
for	DBAs	

§ Out	of	those	huge	systems	discussed	above	–	none	really	require	ACID	
(=”if	a	tweet	of	an	average	user31	disappears	once	in	a	blue	moon,	the	
sky	won’t	really	fall”),	and	all	are	almost-trivially-shardable	(because	
of	all	the	transactions	actually	being	tied	to	one	user	or	one	package-
being-delivered,	without	interactions	with	the	DB	between	two	user	
accounts	or	two	packages).		

§ TBH,	I	know	of	only	one	real-world	system	which	does	need	to	go	
significantly	higher	than	100B	ACID-transactions/year:	it	is	post-2007-
or-so	NASDAQ	(with	lots	of	bot	trading	going	on).	Note	that	lots	of	the	
companies	out	there,	while	spending	lots	of	efforts	to	achieve	this	
number	of	transactions,	don’t	really	need	them	(as	one	example,	see	
the	Performance	Perspective	section	below	for	a	brief	discussion	of	
Uber).		

§ On	the	other	hand,	games	(including	stock	exchanges	such	as	
NASDAQ)	tend	to	have	pretty	strong	ACID	requirements,	and	are	not	
trivially-shardable	too.	We	need	the	former	because	we	certainly	
don’t	want	that	artifact-which-costs-$20K-on-eBay,	to	disappear	
because	of	system	crash	at	unlucky	moment;	and	the	latter	happens	
because	for	most	of	the	games,	any	player	can	interact	with	another	
player	(with	immediate	consequences	for	both	player	accounts)	just	
because	she	feels	like	it.	

	
The	observations	above	have	several	important	consequences,	but	for	the	time	being	let’s	
note	that	

Increasing	DB	load	by	a	factor	of	10x,	can	easily	kill	the	whole	thing.	
	
This,	in	turn,	means	that	

When	writing	our	apps,	we	MUST	care	about	DB	load.	
	
As	we’ll	see	below	–	app-level	in-memory	state	can	easily	reduce	number	of	write-ACID-
transactions	by	factor	of	10x	to	1000x(!),	which	will	make	huge	practical	difference;	as	a	
result	–	at	the	very	least	we	should	include	stateful	apps	into	our	consideration.	
	

NoSQL	to	the	rescue?	Not	really	
	
When	speaking	about	databases	and	scalability	–	these	days	we’re	often	told	“hey,	there	
are	lots	of	NoSQL	databases	which	can	handle	Big	Data	and	scale	to	infinity”,	implying	that	
the	whole	scalability	problem	goes	away.	
	

																																																								
31	And	while	losing	president’s	tweet	can	indeed	lead	to	quite	unpleasant	consequences	
(including	diplomatic	ones	<ouch!	/>),	separating	such	high-importance	accounts	and	
handling	them	separately	and	in	durable	manner,	isn’t	too	difficult	(after	all,	as	we	have	
seen	above	-	it	is	all	about	numbers,	and	even	Trump	can’t	produce	anywhere	close	to	a	
hundred	billion	tweets/year).		

Unfortunately,	it	is	not	the	case.	While	NoSQL	databases	indeed	shine	in	certain	scenarios	
(especially	those	when	we	need	to	perform	read-only	queries,	or	when	our	updates	go	to	
independent	objects)	–	they	tend	to	have	very	significant	problems	when	dealing	with	OLTP-
like	load,	with	lots	of	writes	and	very	high	coherency	requirements.	We’ll	discuss	these	
issues	in	detail	in	Vol.	VI’s	chapter	on	Databases,	but	for	now	let’s	note	that	vast	majority	of	
NoSQL	databases	does	not	support	multi-object	database	transactions	with	ACID	guarantees	
(and	proposed	equivalents	either	don’t	scale,	or	aren’t	usable,	or	both).	Yes	–	however	sad	
it	might	sound,	ACID	support	in	most	of	NoSQL	DBs	out	there	is	limited	to	single-object	ACID	
transactions	(which	is	not	enough	for	99%	of	OLTP	processing	tasks);	moreover	–	extending	
this	support	to	multiple	objects	under	traditional	NoSQL	architectures	will	be	at	odds	with	
their	scalability.	
	
BTW,	I	don’t	mean	that	NoSQL	is	a	Bad	Thing™;	it	is	just	that	each	technology	should	be	
used	within	its	own	applicability	realm.	In	particular,	these	days	OLTP	is	still	better	to	be	
performed	over	traditional	RDBMS;	however	–	as	we’ll	see	in	Vol.	VI’s	chapter	on	Databases	
–	it	is	perfectly	possible	to	have	eventually-consistent	replica	of	this	OLTP	in	Big-Data-
oriented	NoSQL,	to	process	all	kinds	of	historical	queries	there	(which	–	depending	on	the	
type	of	query	-	can	be	much	more	efficient).	
	

Scaling	and	In-Memory	State	
	
Let’s	compare	two	different	approaches	to	scaling	our	MOG	(or	any	other	Server-Side-
centric	interactive	distributed	system	for	that	matter).	The	first	approach	will	be	based	on	
classical	web-like	Stateless	Server-Side	Apps.	Within	this	model,	everything	is	very	simple:	all	
the	request	processors	are	stateless	–	which	means	that	all	the	state	ends	up	in	the	
database.		
	
An	alternative	approach	will	be	using	some	kind	of	in-memory	state.	As	we’ll	see	below,	
there	are	at	least	two	different	ways	to	organize	such	a	state	(via	making	our	Server-Side	
Apps	Stateful,	or	via	using	a	centralized	write-back	cache)	–	but	for	the	time	being	we’ll	be	
concerned	only	about	having	some	kind	of	an	in-memory	state	(the	one	which	goes	beyond	
simple	read	cache).	
	
We’ll	be	comparing	Stateless	vs	In-Memory-State-Based	systems	from	several	different	
angles;	in	particular	–	we’ll	be	concerned	with	(i)	performance,	(ii)	durability,	and	(iii)	
scalability.	
	

Performance	Perspective	
	
As	noted	above,	in	case	of	Stateless	Server-Side	Apps,	we’re	bound	to	store	everything	to	
the	DB.	And	for	a	vast	majority	of	game-like	systems,	this	is	going	to	be	prohibitively	
expensive.	A	few	examples	from	different	genres:	
	

• For	a	virtual	world	simulation,	writing	everything	to	the	database	is	going	to	be	a	
non-starter;	as	the	state	of	each	player	usually	changes	20	times	per	second,	making	
this	much	transactions	per	player	is	going	to	kill	the	whole	thing	even	for	a	very	

modest	number	of	players.	NB:	I’ve	got	quite	a	few	comments	saying	that	that	
nobody	in	a	sane	state	of	mind	will	ever	try	using	Stateless	approach	for	a	simulation;	
while	I	agree	that	doing	so	would	be	outright	crazy,	I	still	have	to	list	it	here	at	least	
for	the	sake	of	completeness.	

• For	a	casino-like	game	such	as	poker,	we’ll	need	to	write	every	single	player	action	to	
DB.	This	means	making	on	average	about	20	DB	transactions	per	hand.	NB:	for	
casino-like	games,	I	have	seen	Stateless	approach	being	tried	A	LOT	–	and	most	of	
the	time,	the	results	were	devastating	as	the	game	grew.	

• Even	for	a	social	farming	game,	we	could	easily	end	up	with	several	dozens	of	clicks	
per	player-currently-using-farm,	per	minute.	

Let’s	compare	it	to	the	In-Memory-State-Based	system,	the	one	which	writes	changes	to	
Game	World	State	to	DB	only	at	the	end	of	the	Game	Event	(as	was	discussed	at	length	in	In-
Memory	Game	World	States:	a	Natural	Fit	for	‘No	Bugs’	Rule	of	Thumb	section	above):	

• For	a	virtual	world	simulation,	we	can	write	changes	to	player	state,	only	at	the	end	
of	Game	Events	such	as	fights	(conversations	having	consequences,	etc.).	It	will	often	
allow	us	to	write	things	to	DB	once-per-minute	or	so	(which	is	a	1200x(!)	
improvement	compared	to	the	stateless	approach	above).	

• For	a	poker	game,	we’ll	need	to	write	only	the	outcome	of	each	hand	to	DB,	
corresponding	to	approximately	20x	savings	compared	to	naïve	stateless	approach.	

• For	a	farming	game,	most	of	the	time	we	can	make	an	artificial	Game	Event	(which	
ends	either	on	a	Really	Important	Achievement™,	or	after	a	certain	timeout).	In	
practice	–	we	can	easily	save	up	to	10x	DB-activity-wise	(compared	to	the	stateless	
app).	

	
As	we	can	see	–	

In-Memory	State	can	easily	reduce	our	database	load	by	a	factor	of	10x-
1000x.	

	
Moreover,	as	it	is	DB	which	is	usually	The	Bottleneck™	–	it	
means	that	we’re	saving	this	enormous	amount	of	load,	
exactly	where	it	really	matters.	
	
BTW,	this	observation	goes	far	beyond	traditional	games.	
Some	of	us	remember	that	epic	migration	of	Uber	first	from	
MySQL	to	PostgreSQL	in	2013	(Klitzke,	Migrating	Uber	from	
MySQL	to	PostgreSQL	2013),	only	to	migrate	back	to	
MySQL	(with	a	custom	extension)	3	years	later	(Klitzke,	
Why	Uber	Engineering	switched	from	Postgres	to	MySQL	
2016).	
	
While	I	didn’t	follow	this	story	too	closely	myself,	I	heard	an	
opinion	that	Uber	would	fare	much	better	if	they’d	avoided	
the	supposedly	perfectly-scalable	stateless-app	
architecture,	and	kept	the	most	common	update	(the	same	source	has	reported	it	as	storing	
“current	position	of	the	car”)	as	mostly-in-memory	only	(writing	to	DB	at	large	intervals,	like	
“write	the	whole	history	of	the	car	positions	once	per	hour	per	car”)	–	pretty	much	along	

	
it	is	DB	which	is	usually	
The	Bottleneck™	–	it	
means	that	we’re	
saving	this	enormous	
amount	of	load,	exactly	
where	it	really	matters.	

the	lines	discussed	above.	32	Sure,	all	the	completed	trips	still	need	to	be	saved	immediately	
(they	have	direct	financial	implications,	and	do	need	to	be	durable	even	if	the	Server-Side	
App	crashes),	but	with	mere	1	million	trips	per	day	which	Uber	has	(that’s	just	30	
transactions/second	even	accounting	for	intra-day	load	variations)	–	writing	it	down	is	trivial	
even	for	a	single-writing-DB-connection	OLTP	system	(in	fact	–	the	single-writing-DB-
connection	was	seen	handling	50M+	real-world	transactions/day33;	for	details	–	see	Vol.	VI’s	
chapter	on	Databases).	
	
Sure,	as	I	didn’t	make	this	analysis	myself	–	I	cannot	really	vouch	for	it,	but	I	have	to	say	that	
given	the	numbers	above	–	it	looks	quite	plausible.	Moreover,	I	did	see	a	large	real-world	
game	(which	I	unfortunately	cannot	name	here),	which	experienced	exactly	this	kind	of	
problems	(and	the	problems	happened	exactly	due	to	making	everything	stateless,	
effectively	increasing	database	load	10x+-fold,	and	causing	lots	of	trouble	for	the	database,	
DBAs,	and	ultimately	–	for	end-users).	
	

Durability	Perspective	
	
Of	course,	these	performance	benefits	of	In-Memory	State	don’t	come	for	free	(nothing	
does).	The	currency	we’ll	be	paying	with	for	this	drastically	improved	performance,	is	Lack	
of	Durability.	In	other	words	–	if	our	App-which-handles-In-Memory-State	crashes34,	we’ll	
lose	all	the	state	which	haven’t	been	saved	yet	to	the	DB.	
	
On	the	first	glance	this	may	look	Really	Bad™,	but	on	the	
other	hand,	for	most	of	MOGs	–	it	is	exactly	the	behavior	
we	want	(see	the	[[TODO]]	section	above	for	discussion).	
Moreover,	even	for	a	non-gaming	interactive	systems	such	
as	Uber,	going	along	these	lines	is	perfectly	acceptable	at	
least	for	some	of	the	data.	Using	Uber	data	as	an	example	–	
if	in	case	of	App	crash	we	lose	trips	–	it	would	be	a	
significant	problem,	but	losing	half	an	hour	of	historical	
data	about	historical	positions	of	the	cars	won’t	be	
noticeable	(as	these	historical	data	is	used	only	for	
statistical	purposes	–	losing	a	very	minor	random	portion	of	
it	won’t	change	the	stats).	
	
Alternatively	–	there	is	a	possibility	to	make	our	App-which-
handles-In-Memory-State	Fault-Tolerant	(for	a	relevant	
discussion	–	see	Chapter	10).	Still,	to	be	honest,	as	Fault	
Tolerance	doesn’t	prevent	from	software-bug-induced	crashes	–	for	fast-changing	business-	
and	game-like	apps	I’d	rather	not	risk	to	rely	on	it	(in	other	words	–	in	business	world,35	

																																																								
32	using	our	terminology	–	it	would	mean	creating	an	artificial	Game	Event	once	per	hour	
33	and	BTW,	transactions	were	significantly	more	complicated	than	writing	the	trip	down	
34	depending	on	the	specifics,	it	can	be	either	Stateful	Server-Side	App,	or	the	app	which	
handles	Write-Back	Cache	
35	I	am	certainly	not	speaking	about	nuclear	reactors	or	medical	devices	

	
On	the	first	glance	this	
lack	of	Durability	may	
look	Really	Bad™,	but	
on	the	other	hand,	for	
most	of	MOGs	–	it	is	
exactly	the	behavior	we	
want	

crash	costs	and	crash	prevention	costs	are	balanced	in	a	way	that	implies	that	sooner	or	
later,	crashes	will	happen).	
	

Scaling	Perspective	
	

[Bart]	–	Well,	you’re	damned	if	you	do,	
[Chorus]	–	Deep,	deep	trouble.	

[Bart]	–	Well,	you’re	damned	if	you	do,	
And	you’re	damned	if	you	don’t.	

—	The	Simpsons	
	
As	already	noted	above,	performance	!=	scaling,	so	let’s	take	a	look	at	our	Stateless	vs	In-
Memory-State-Based	systems	from	scaling	perspective	too.	Actually,	at	this	point	we’ll	
become	more	specific	than	merely	deciding	on	“should	we	use	In-Memory	State	or	not”,	
and	will	recognize	four	distinct	scaling	models.		
	
Scaling	Stateless	System	
	
As	discussed	above,	when	speaking	about	a	system	based	on	Stateless	Apps,	scalability	is	
trivially	achievable:	we	just	need	to	create	new	(or	use	an	existing)	instance	of	our	Stateless	
App	–	and	bingo!	–	we	got	our	scalability.	
	
A	very	high-level	diagram	of	this	approach	is	shown	on	Fig	8.1:	
	

	
	
[[TODO/Fig	8.1-8.4:	decide	how	to	show	“cool”	and	“hot”]	
	
It	all	looks	very	simple:	after	Clients	come	to	our	Load	Balancer,	asking	for	a	service	from	
App	1	–	they’re	randomly	directed	to	one	of	the	instances	of	App	1	(these	instances	may	run	
on	one	Server	Box	or	can	be	spread	over	several	different	ones);	exactly	the	same	happens	
for	App	2	(or	any	other	type	of	App).	
	

In	this	model,	all	the	Apps	are	perfectly	stateless	(i.e.	they	
carry	no	meaningful	state	between	requests),	and	
therefore	they	can	be	created/destroyed	as	necessary	
(i.e.	in	Docker-speak,	they’re	ephemeral).	From	the	point	
of	view	of	scaling	Apps	–	it	is	a	perfect	scenario.	
	
On	the	other	hand,	as	discussed	above,	the	real-world	
task	is	never	formulated	in	terms	of	scaling	only	apps;	
instead	–	we	need	to	scale	the	whole	system;	and	in	this	
regard	Stateless-App-based	systems	exhibit	significant	
problems.	
	
In	particular,	as	discussed	above,	for	Stateless-App-based	
architectures,	all	the	scalability	work	is	pushed	down	to	
the	database.	Of	course,	for	some	of	Server-Side	
developers	it	means	merely	pushing	the	responsibility	to	
somebody-else	with	relief,	but	we’re	currently	wearing	
our	architectural	hat,	so	assuming	that	“somebody	will	do	
it	for	us”	(without	an	understanding	how	it	will	be	done)	
is	not	really	an	option.	
	
Moreover,	in	practice,	in	the	model	shown	of	Fig.	8.1,	DB	(which	needs	to	handle	all	the	
state	updates	merely	because	there	is	no	other	place	to	store	them)	becomes	an	extremely	
bad	white-hot	bottleneck	<sad-face	/>.	Once,	a	DBA	of	such	a	system	told	me	about	a	
nightmare	he	had	–	it	was	about	the	servers	which	got	so	hot	that	they	started	melting.	
Fortunately,	I	never	found	myself	in	such	position	–	but	I	can	understand	him	perfectly;	all	
the	associated	nightmares	are	happening	because	
pushing	unnecessary	stuff	to	DB-which-is-already-The-Bottleneck,	is	a	Pretty	

Bad	Idea™.	
	
As	discussed	above	–	scaling	DBs	is	a	very	well-known	huuuuge	headache	(a.k.a.	Deep	
Trouble™);	achieving	even	1000	real-world	transactions36	per	second	(which	–	taking	into	
account	usual	MOG-like	load	patterns	–	corresponds	to	about	30M	transactions/day,	or	10	
billion	transactions/year)	is	already	pretty	difficult;	going	above	this	number	has	several	
very	unpleasant	consequences:	

• Non-trivial	solutions	are	required.	
• Costs	go	through	the	roof,	but	as	the	dependency	between	load	and	costs	is	highly	

non-linear,	spending	more	doesn’t	help	much.37	
• job	of	DBAs	becomes	extremely	difficult.	

																																																								
36	NB:	we’re	not	speaking	of	highly	artificial	tests	such	as	TPC-C,	but	about	real	stuff	
37	BTW,	make	sure	not	to	trust	benchmarks-by-DB-vendors	which	tell	you	enormous	
numbers	such	as	millions	transactions/second;	in	short	–	all	such	benchmarks	I’ve	seen,	
were	having	at	least	one	Really	Big	Issue™	which	made	them	completely	inapplicable	to	
real-world	cases	(at	least	those	cases	which	are	somehow	related	to	MOGs	and	OLTP	DBs	in	
general).	

	
as	discussed	above,	the	
real-world	task	is	
always	about	scaling	
the	whole	system,	
including	database;	and	
in	this	regard	Stateless-
App-based	systems	
exhibit	significant	
problems.	

• overall	reliability	suffers,	starting	from	a	very	simple	observation:	the	more	DB	
Server	Boxes	you	need	to	run	–	the	higher	chances	are	that	at	least	one	of	them	
crashes.	

o [[TODO:wiki	MTBF]]	This,	in	turn,	leads	to	convoluted	fault	tolerant	systems	
(with	fault	tolerance	further	taking	its	toll	both	in	terms	of	bugs	and	in	terms	
of	reduced	performance).	For	example,	if	our	stateless	system	causes	10x	
more	DB	load	–	for	larger	loads	it	often	means	that	we’ll	need	about	30x-50x	
server	boxes	instead	of	one38	-	and	unless	we’re	taking	special	measures,	it	
will	bring	MTBF	of	our	DB	down	from	rather	comfortable	“one	DB	failure	in	5	
years”39	into	disastrous	“one	DB	failure	every	month”.		

§ As	a	result	–	we’ll	need	to	deploy	some	kind	of	fault	tolerance	for	our	
DB	(which	will	result	in	huuuge	increase	of	complexity	and	associated	
costs40).	

	
Of	course,	in	some	cases	simple	sharding	will	do	the	trick;	in	particular	–	for	most	of	the	
single-player	games	sharding	is	trivial	(each	player	sits	in	her	own	
shard,	with	no	interactions	between	the	shards).	However,	as	
we’re	speaking	about	multiplayer	games	(where	it	is	usually	
impossible	to	restrict	“which	players	are	allowed	to	interact	with	
each	other”	–	see	also	discussion	on	it	in	Vol.	I’s	chapter	on	GDD)	
–	sharding	will	rarely	work	(at	least	not	without	significant	help	
from	the	app	level).	
	
While	(as	we’ll	discuss	it	in	the	Vol.	VI’s	chapter	on	Databases)	it	
is	usually	possible	to	scale	an	MOG	OLTP	DB	to	10B	DB	
transactions/year	and	probably	beyond	–	it	is	a	very	significant	
effort,	which	requires	lots	of	complicated	work	(and	while	it	
seems	having	no	apparent	scalability	problems	–	I	didn’t	see	it	scaling	beyond	10B	DB	
transactions/year,	so	I	cannot	really	vouch	for	it).	
	
As	a	result:	

• I	am	usually	suggesting	to	postpone	DB	scaling	as	long	as	feasible	
o First,	such	a	postponing	significantly	speeds	up	initial	development	

(improving	all-important	Time	to	Market)	
o Second,	by	the	time	when	we	do	need	DB	scaling,	we’ll	know	much	more	

about	specifics	of	our	game,	and	will	be	able	to	make	much	more	informed	
decisions.	

o That	being	said	–	it	is	of	paramount	importance	for	keeping	the	door	for	such	
scaling	open	(so	when	it	is	necessary	–	we	can	do	it).	To	achieve	this	–	at	least	

																																																								
38	In	spite	of	what	your	DB	vendor	will	tell	you,	you’ll	most	likely	find	that	for	ACID	
transactions	over	the	game-like	tables	(where	everybody	can	interact	with	everybody)	
things	very	rarely	scale	in	linear	manner.	
39	While	not	exactly	perfect,	for	most	of	the	games	it	is	acceptable.	
40	If	using	commercial	RDBMS,	then	license	for	a	fault-tolerant	DBs	will	cost	you	arm	and	leg	
outright,	but	even	if	you’re	using	free	DBMS,	costs	of	hardware	and	administration	of	a	
fault-tolerant	DB	are	going	to	be	very	high.	

	
for	multiplayer	games,	
simplistic	sharding	will	
rarely	work	

we	need	to	keep	interactions	between	our	Game	Servers	and	our	DB	Server,	
to	a	very-well-defined	DB	Server	API,	with	this	API	expressed	in	terms	of	
Game	Servers	(and	NOT	in	terms	of	SQL);	more	on	it	in	Chapter	9.	

• And	to	postpone	the	scaling	as	far	as	possible	–	reducing	DB	load	by	factor	of	10x	
helps	a	lot.	

	
If	trying	to	look	at	the	issue	of	DB	load	from	a	different	perspective	of	“how	we	want	to	see	
our	system	when	we	finally	need	to	scale“	–	then	we’ll	certainly	want	to	keep	our	system	
leaner	(cheaper	to	maintain,	less	complicated,	etc.),	so	reducing	DB	load	also	comes	handy.	
	
Overall,	from	whatever	angle	we’ll	look	at	it,	we	come	to	the	same	conclusion:	
If	we	can	reduce	DB	load	by	factor	of	10x-100x	–	we	should	do	it	(even	if	it	

comes	at	cost	of	using	an	In-Memory	State).	
	
Note	that	I	am	not	arguing	for	pursuing	optimizations-which-save-mere-20%-or-so	at	
architectural	stage;	these	are	usually	too	small41	to	shift	the	balance	from	one	architecture	
to	another	one;	however,	a	10x	performance	improvement	due	to	better	architecture,	most	
of	the	time	does	qualify	as	a	game	changer	(pun	intended).	
	
Scaling	Stateful-App-Based	System	
	
Very	often,	this	10x+	reduction	in	DB	load	can	be	achieved	by	using	Stateful	Apps	
(IMPORTANT:	this	is	possible	ONLY	if	our	business	logic/GDD	is	ok	with	relaxed	Durability	
guarantees	for	the	data	which	we	decide	to	keep	in-memory	only).	
	
A	corresponding	diagram	is	shown	in	Fig	8.2:	
	

	
	
Compared	to	Stateless-Based	approach	shown	on	Fig	8.1,	we	can	see	the	following	
differences:	

• Our	Apps	got	In-Memory	state.	In	turn,	it	means	that:	

																																																								
41	well,	unless	you	find	15	of	such	optimizations,	each	providing	20%	gain	and	being	
independent	–	but	it	rarely	happens	

o This	In-Memory	State	is	not	durable,	and	can	be	lost	(as	discussed	above,	this	
is	exactly	the	behavior	we	want	while	Game	Event	is	in	progress)	

o Achieving	balance	between	different	Apps	is	not	that	trivial	(in	practice,	I’ve	
never	seen	imbalance	to	be	a	significant	problem,	but	I	do	know	scenarios	
when	it	may	happen42).	

• As	our	Apps	are	now	Stateful,	it	means	that	(unlike	with	stateless	web	apps),	there	
are	potentially	two	separate	aspects	for	our	Load	Balancing:	

o First,	we	need	to	make	sure	that	server-box-which-carries-our-state,	has	
enough	CPU	power;	in	other	words	–	we	need	to	Load-Balance	our	Stateful	
Apps	between	different	Server	Boxes.	

§ Most	of	the	time,	this	balancing	will	be	less	perfect	than	Load	
Balancing	of	Stateless	Apps;	from	what	I’ve	seen	–	it	is	possible	to	
keep	these	discrepancies	in	check,	but	in	certain	cases	it	may	become	
a	rather	significant	headache.	

§ For	more	discussion	on	such	Worlds-to-Servers	Load	Balancing,	see	
[[TODO]]	section	below.	

o Second	–	we	may	need	to	balance	incoming	players	(or	requests)	among	the	
Servers.	While	usually	it	is	not	a	problem	(as	each	of	the	Apps	tends	to	serve	
about	the	same	number	of	players)	–	in	cases	when	we’re	broadcasting	some	
Very	Important	Game™	(like	some	big	final)	to	
everybody-who-wants-it,	this	MAY	start	causing	
significant	trouble.	For	an	example	of	a	solution	
–	see	discussion	about	Front-End	Servers	in	
Chapter	9.	

• The	main	advantage	of	this	approach	is	about	reduced	
DB	load.	This,	in	turn,	is	achieved	by	writing	to	DB	only	
at	the	end	of	Game	Events.	

o In	turn,	it	means	that	we	need	to	identify	those	
Game	Events	which	allow/require	writing	to	
DB43,	and	to	understand	implications	of	rolling	
back	to	the	beginning	of	the	Game	Event	in	case	
of	crash.	

	
Overall,	from	what	I’ve	seen	in	the	wild,	Stateful-App-Based	systems	tend	to	both	perform	
and	scale	much	much	better	than	Stateless-App-Based	ones.	On	the	other	hand	-	of	course,	
if	Durability	for	each	action	taken	is	a	firm	requirement,	these	architectures	won’t	fly	(at	
least	without	ensuring	fault	tolerance	for	the	Apps,	preserving	their	In-Memory	State).	
	
Scaling	System	Based	on	Stateless-App	plus	In-Memory	Write-Back	Cache	
	
At	this	point,	we	have	to	note	that	strictly	speaking,	having	an	In-Memory	State	somewhere	
in	the	system	does	NOT	necessarily	imply	that	it	is	our	Apps	which	need	to	be	Stateful.	
																																																								
42	in	practice,	if	(a)	the	number	of	App	instances	running	on	a	single	server,	is	high,	and	(b)	
the	load	is	restricted	by	number-of-players	(opposed	to	number-of-observers)	–	achieving	
reasonable	balance	is	going	to	be	pretty	simple.	
43	or	create	them	artificially,	as	mentioned	above	for	social	farming	games,	and	for	Uber	

	
The	main	advantage	of	
this	approach	is	about	
reduced	DB	load	

	
Instead	of	using	Stateful	Apps,	to	save	on	the	DB	load	while	keeping	our	Apps	stateless,	we	
can	have	a	centralized	In-Memory	write-back(!)	cache	sitting	between	our	apps	and	DB,	as	
shown	on	Fig	8.3:	
	

	
	
From	the	point	of	view	of	scaling,	this	model	is	a	kind	of	“hybrid”	between	the	Stateless-App	
and	Stateful-App	models.	In	particular,	with	such	a	Stateless-App-plus-In-Memory-Write-
Back-Cache	model:	

• Like	with	Stateful-Apps,	we	do	reduce	DB	load	a	lot.	
o As	discussed	above,	this	simplifies	scaling	DB	greatly	

• Like	with	Stateful-Apps,	we	do	need	to	identify	our	Game	Events,	and	to	ensure	DB	
writes	at	the	end	of	Game	Events	(though	with	In-Memory	Cache,	it	will	be	done	by	
write-back	cache	on	instructions	of	our	App)	

• Like	with	Stateful-Apps,	we	do	sacrifice	Durability	between	Game	Events	(i.e.	crash	
of	Write-Back	Cache	kills	all	the	stuff	which	wasn’t	written	to	DB	yet)	

• Like	with	Stateless-Apps,	we	can	Load-Balance	only	the	incoming	requests	(or	
players)	–	and	there	is	no	need	to	Load-Balance	the	Stateful-Apps.	

o Scaling	In-Memory	Cache	is	rarely	a	problem.	
	
This	approach	tends	to	work	pretty	well	at	least	for	social	
games	(in	particular,	those	using	Web-Based	Deployment	
Architecture,	which	we’ll	discuss	in	Chapter	9)	–	and	may	
work	for	medium-paced	games	such	as	casino	games	too.	On	
the	other	hand,	for	really	fast-paced	games	(especially	
simulations)	this	model	won’t	really	work	because	of	(a)	
latencies	to	retrieve	the	state,	and	(b)	because	of	enormous	
traffic	between	Stateless	Apps	and	In-Memory	Cache.	
	
Scaling	System	Based	on	Disposable-Stateful-Apps	
	
As	mentioned	above,	in	some	cases	(in	particular,	for	stock	
exchanges)	there	is	a	firm	requirement	to	have	all	the	
modifications	to	the	state	of	our	system	Durable	(which	
means	that	all	modifications	should	go	to	DB,	there	is	no	way	
around	it).	
	
In	such	cases,	and	if	the	latencies	are	important	–	a	kind	of	“Disposable-Stateful-Apps”	can	
be	used.	The	point	here	is	to	have	a	more-or-less	usual	Stateful	App,	but	in	this	case	our	
Stateful	App	will	be	merely	serving	as	a	read-only	cache	for	DB	information;	as	a	result	–	in	a	
case	of	crash	it	becomes	trivial	to	restore	the	data	from	DB	(which	in	turn	makes	such	
Stateful	Apps	disposable	(in	Docker-speak	–	ephemeral)).	
	
An	example	of	such	a	system	is	shown	in	Fig	8.4:	

	
	
This	approach	is	very	similar	to	the	one	shown	in	Fig	8.1	(the	one	for	Stateless	Apps)	–	
except	that	Apps	are	no	longer	stateless	<wink	/>.	However,	while	Apps	in	Fig	8.4	are	
Stateful	–	their	state	is	merely	a	read-only	app-level	cache,	so	in	case	of	App	crash	(or	App		
relocation/creation)	the	state	can	be	easily	reconstructed	from	the	Database.	While	this	
approach	does	not	reduce	DB	load	compared	to	purely	Stateless	Apps	<sad-face	/>,	it	does	
improve	latencies	significantly	(which	can	be	a	Big	Plus	for	stock	exchanges	etc.).	
	

	
This	approach	tends	to	
work	pretty	well	at	
least	for	social	games	in	
Web-Based	
Deployment	
Architecture	–	and	may	
work	for	medium-
paced	games	such	as	
casino	games	too.	

BTW,	in	a	certain	sense	this	approach	shares	some	ideas	with	Front-End	Servers	as	
discussed	in	Chapter	9	(in	a	sense,	Front-End	Servers	can	be	seen	as	read-only	caches	of	
“master”	state	published	by	the	source,	too).	
	
From	scaling	point	of	view,	this	model	can	be	seen	as	an	another	“hybrid”	between	the	
Stateless-App	and	Stateful-App	models.	In	particular,	with	such	a	Stateless-App-plus-In-
Memory-Cache	model:	

• Like	with	Stateless-Apps,	we	cannot	reduce	DB	load	<sad-face	/>	
• Like	with	Stateful-Apps,	we	do	reduce	latencies	
• Like	with	Stateless-Apps,	we	do	NOT	sacrifice	Durability.	
• Like	with	Stateless-Apps,	we	can	Load-Balance	only	the	incoming	requests	(or	

players)	–	and	there	is	no	need	to	Load-Balance	the	Stateful-Apps	(they’re	both	
disposable	and	interchangeable).	

	

Choosing	Stateful	vs	Stateless	
	
With	all	the	different	scalability	models	discussed	above,	and	-	as	we	have	observed	-	each	
of	them	has	its	own	niche	when	it	is	The	Right	Thing	To	Do™,	it	would	be	nice	to	have	a	
simple	guideline	to	know	where	to	start.	Not	pretending	that	I	have	a	definite	answer	which	
will	work	in	all	the	scenarios,	from	my	experience,	I’d	say	that	the	following	qualifies	as	a	
reasonably	good	starting	point	for	your	analysis:	
	

• If	limitations	to	Durability	are	not	a	concern,	and	we	
can	save	at	least	3-5x	of	DB	load	by	using	In-Memory	
State	–	we	should	go	for	it!	For	anywhere	sizeable	
project,	headaches	related	to	scaling	DB	under	
unnecessary	load,	are	the	worst	ones	you	will	have,	so	
reducing	the	load	by	factor	of	3-5x	(and	as	we’ve	seen	
above	–	it	can	easily	go	all	the	way	to	10x-1000x)	is	an	
Extremely	Good	Thing™.	

o One	obvious	solution	in	this	direction	is	to	use	
Stateful	Apps.	This	approach	does	work	–	but	
has	quite	a	few	complications	

§ In	a	sense	–	when	moving	from	
Stateless	Apps	to	Stateful	Apps,	we’re	
trading	DB	scaling	complications	
(which	are	typical	for	Stateless	Apps)	
for	App	scaling	complications	(typical	
for	Stateful	Apps).	From	my	experience,	such	a	trade-off	is	well-worth	
it.	

o On	the	other	hand,	as	discussed	above,	in	some	cases	(in	particular,	if	the	
game	is	not	too	fast)	we	can	both	reduce	DB	load,	and	avoid	Stateful	Apps	
(via	using	an	In-Memory	Write-Back	Cache).	Still,	it	is	not	a	silver	bullet	(and	
won’t	really	work	for	most	of	fast-paced	games	such	as	simulations)	

• If	100%	Durability	is	a	requirement	(such	as	for	stock	exchanges)	–	then	the	choice	
becomes	less	obvious.	

	
If	limitations	to	
Durability	are	not	a	
concern,	and	we	can	
save	at	least	3-5x	of	DB	
load	by	using	In-
Memory	State	–	we	
should	go	for	it!	

o If	optimizing	latency	is	a	requirement	–	some	kind	of	Disposable-Stateful-
Apps	is	likely	to	be	necessary.	Personally,	I’ve	co-architected	a	stock	
exchange	on	top	of	such	Disposable-Stateful-Apps	(which	can	be	seen	as	
being	along	the	lines	of	a	usual	game,	but	with	DB	commits	on	each	trader	
action)	–	and	with	a	very	significant	success	too	

o If	optimizing	latencies	is	not	really	needed	(which	includes	pretty	much	all	
polling	architectures)	–	then	a	classical	Client-Server	web	architecture	(the	
one	with	Stateless	Apps)	will	do.	

	

Scalable	Components	for	the	Scalable	System	
	
One	thing	to	keep	in	mind,	is	that	all	those	beautiful	architectures	on	Fig.	8.1-8.4,	are	only	
potentially	scalable;	to	make	them	really	scalable	–	we	need	to	make	sure	that	all	their	
components	are	scalable.		
	
In	this	Chapter,	we	won’t	go	into	too	many	details	of	scaling	individual	components,	but	
instead	will	give	a	very	high-level	overview,	with	pointers	to	additional	discussions.		
	
As	it	was	noted	in	the	What	to	Scale?	section	above,	in	an	MOG	there	are	two	traditional	
entities	which	need	scaling	–	(a)	Game	Worlds,	and	(b)	database.	Let’s	take	a	very	cursory	
look	at	each	of	them.	
	

Scaling	Game	Worlds	
	
When	speaking	about	scaling	Game	Worlds	–	making	them	scalable	depends	on	two	factors:	
(a)	nature	of	the	game,	and	(b)	which	of	scalability	approaches	shown	on	Fig.	8.1-8.4	is	used.	
	
First,	let’s	consider	those	games	which	consist	of	many	rather	small	and	well-isolated	
matches	(areas,	…);	examples	of	such	games	include	many	of	First-Person	Shooters	and	
MOBAs.	For	such	games,	as	a	rule	of	thumb,	the	game	will	be	naturally	scalable	even	if	
we’re	forced	to	use	one	of	Stateful	approaches	(the	one	on	Fig.	8.2).	For	such	games,	the	
smaller	the	matches	are	–	the	easier	it	will	be	to	Load-Balance	the	whole	thing;	however,	
with	an	“average”	game	being	able	to	handle	about	1000	players	per	server	box	(~=100	
players/core),	and	typical	match/area	being	limited	to	10	players	or	so	–	gives	us	a	hundred	
of	causing-mostly-the-same-load-matches,	and	under	these	circumstances	Load-Balancing	
rarely	causes	any	trouble.	
	
When	this	“rather	small	and	well-isolated”	requirement	doesn’t	stand	(which	is	almost-
universally	the	case	for	“seamless”	MMOs)	–	we’ll	likely	need	to	have	Stateful	processing	
too.	As	a	result	-	we’ll	likely	need	to	do	some	advanced	Load	Balancing	(see,	for	example,	
discussion	in	Vol.	I’s	chapter	on	Communications,	[TODO:	Baryshnikov],	and	
[TODO:Beardsley]	for	discussion	on	scaling	of	such	“seamless	Game	Worlds”).	
	

Scaling	Matchmaking	Server	
	

In	some	cases	(=”if	we	managed	to	become	Really	Large™”	<smile	/>),	we	may	need	to	scale	
our	Matchmaking	Server	too.	From	what	I’ve	seen	in	this	regard	–	it	really	becomes	too	big	
of	a	problem,	but	–	unfortunately,	solutions	tend	to	be	way	too	game-specific	to	discuss	
them	in	a	general	way.	
	

Scaling	Database	
	
The	second	big	thing	we’ll	need	to	scale	–	is	database.	We’ll	discuss	scaling	DB	in	nauseating	
detail	in	Vol.	VI’s	chapter	on	Databases,	so	here	I’ll	provide	only	a	very	high-level	outline:	

• The	only	part	of	the	DB	which	needs	to	be	ACID-compliant	–	is	OLTP	DB	(the	one	
where	all	the	operational	decisions	are	made).	

o As	a	rule	of	thumb,	one	single	instance	it	can	be	scaled	up	to	100	
transactions/second	fairly	easily,	and	up	to	1000	transactions/second	–	with	
a	significant-but-doable	effort.		

o If	going	beyond	(very	roughly)	1000	real-world	writing	ACID	
transactions/second	–	as	a	rule	of	thumb,	we	will	need	to	take	significant	
effort	to	ensure	scalability.	In	Vol.	VI,	we’ll	discuss	how	it	can	be	achieved	in	a	
perfectly-linear-scalable	Shared-Nothing	manner	(very	briefly	–	it	will	be	
based	on	Inter-DB	Asynchronous	Transfer	algorithm	discussed	in	Vol.	I’s	
chapter	on	Communications);	we’ll	also	discuss	a	way	to	perform	gradual	
migration	from	simple	single-write-connection	DB	to	a	full-scale	perfectly-
scalable	multi-node	one	(and	it	worked	like	a	charm	in	practice	too).	

• As	for	the	tons	of	non-operational	read-only	requests	to	the	database	(including	
both	reports-for-support	and	all	kinds	of	analytics)	-	they	can	and	should	be	satisfied	
from	asynchronous	replicas.44	While	organizing	such	replicas	(especially	
heterogeneous	ones)	is	quite	a	headache	–	it	is	perfectly	doable;	more	on	it	in	Vol.	
VI.	

o And	for	read-only	requests	–	they	scale	really	trivially,	just	by	adding	yet	
another	replica	when	it	becomes	necessary;	once	again	–	this	is	Shared-
Nothing	scaling,	so	the	system	scales	in	an	almost-linear	manner.	

	
And	as	soon	as	we	scaled	both	OLTP	DB	and	replicas	–	we	have	our	whole	DB	perfectly	
scalable;	moreover,	we	made	it	a	perfectly-scalable	Shared-Nothing	manner	<sic!	/>.	
	

Load	Balancing	
	
One	topic	which	is	very	closely	related	to	scalability,	is	load	balancing.	Even	if	our	game	is	
scalable,	it	only	means	an	ability	to	scale.	To	make	sure	that	our	system	exercises	this	ability	
–	we	usually	need	to	distribute/balance	the	load	across	the	different	cores/server	
boxes/datacenters.	This	(not	really	surprisingly)	is	known	as	Load	Balancing.	
	

																																																								
44	ideally	–	heterogeneous	replicas,	as	some	of	requests	are	better	performed	from	
traditional	RDBMS,	and	some	–	from	NoSQL	

Two	flavors	of	Load	Balancing	
	
In	web	world,	Load	Balancing	is	usually	understood	just	as	“how	to	distribute	Clients	across	
web	servers”.	For	multiplayer	games,	this	kind	of	balancing	may	also	be	present;	in	
particular	–	the	architectures	shown	on	Fig.	8.1,	Fig	8.3,	and	Fig	8.4	include	Load	Balancing.45	
Moreover,	as	we’ll	see	in	Chapter	9	(section	on	Front-End	Servers),	for	the	architectures	
such	as	the	one	shown	on	Fig.	8.2,	such	Clients-to-Servers	Load	Balancing	may	also	be	
necessary	(in	particular,	if	you	want	to	allow	spectating,	and	spectators	are	distributed	
unevenly	across	your	Game	Worlds).		
	
For	Stateless	(more	precisely	–	ephemeral)	request	handlers,	Clients-to-Servers	Load	
Balancing	is	all	we’ll	ever	need.	However,	as	we	already	briefly	noted	above,	soon	as	we	
introduce	Stateful	Objects,	we’ll	be	facing	a	very	different	flavor	of	Load	Balancing	–	namely	
“how	to	distribute	Game	Worlds	across	different	Server	boxes/CPU	cores”.		
	
Such	Worlds-to-Servers	Load	balancing	arises	because	we	need	to	distribute	our	Game	
World	Server	across	CPU	cores/Server	boxes/etc.	–	and,	our	objects	being	Stateful,	we	
cannot	move	them	as	easily	between	cores/boxes	as	we’d	like	to.	Worlds-to-Servers	Load	
Balancing	is	ubiquitous	for	games	–	and	is	conceptually	significantly	different	from	Clients-
to-Servers	Load	Balancing.	
	
Let’s	take	a	closer	look	at	both	of	these	different	flavors	of	Load	Balancing.	
	

Load	Balancing	of	Stateful	Objects.	Worlds-to-Servers	
Balancing	
	
As	noted	above,	Worlds-to-Servers	Load	Balancing	becomes	necessary	for	Stateful	
architectures	(such	as	the	one	shown	on	Fig	8.2).	Most	of	the	time,	Worlds-to-Servers	Load	
Balancing,	while	being	quite	unusual	(especially	for	those	coming	from	web	background),	is	
not	too	difficult.		
	
In	fact,	for	quite	a	few	games	out	there,	it	is	performed	by	Matchmaking	Server.	If	our	game	
is	essentially	a	series	of	independent	matches	(or	some	other	independent	encounters)	–	
then	our	Matchmaking	Server	can:	

• Keep	track	of	the	load	on	different	Server	boxes	
o In	the	simplest	case,	this	can	be	a	number	of	currently	running	matches	on	

different	Server	boxes.	Moreover,	however	naïve	this	approach	may	look	-	
I’ve	seen	it	to	work	in	real-world;	actually	it	is	not	too	bad	as	long	as	all	the	
matches	consume	about	the	same	amount	of	CPU	and	RAM,	which	is	often	
the	case.	

																																																								
45	note,	however,	that	“Load	Balancer”	box	on	these	Figures	is	optional;	as	we’ll	discuss	in	
[[TODO]]	section	below	–	Load	Balancer	as	a	box-sitting-before-our-Servers	is	just	one	of	the	
ways	to	implement	Load	Balancing	(and	usually	is	not	my	favorite	one)	

§ Note	that	for	this	to	work,	you’ll	need	to	report	when	the	match	ends,	
back	to	the	Matchmaking	Server	(while	creation	of	the	match	is	
known	to	Matchmaking	by	definition,	the	end	of	the	match	is	not	that	
obvious).	

§ This	method	tends	to	work	well	as	long	as	all	Game	Worlds	are	
inherently	similar,	and	number	of	Game	Worlds	is	large	(i.e.	at	least	
several	dozens	of	them	running	per	Server)	

o In	a	more	elaborate	case,	we	can	make	our	
Server	boxes	(or	more	precisely	–	some	kind	of	
agent	running	on	the	Server	boxes)	report	
back	to	Matchmaking	Server	with	data	about	
CPU	etc.	In	practice,	these	systems	are	
somewhat	more	difficult	to	manage	than	
simpler	ones	based	on	number-of-Worlds.	This	
happens,	in	particular,	due	to	an	inherent	
delay	between	action	(Game	World	creation)	
and	reaction	(an	update	on	CPU	load)	in	such	
systems,	we	need	to	be	careful	to	avoid	self-
induced	oscillations	(which,	in	theory,	may	lead	us	all	the	way	up	to	the	
stability	analysis	according	to	Nyquist	Stability	Criterion	–	though	usually	
reducing	the	delay	by	more	frequent	reporting	of	the	load	is	sufficient	for	
Load	Balancing	purposes).		

• When	creating	a	new	instance	of	the	Game	World,	Matchmaking	Server	can	take	this	
per-Server-box	load	into	account,	with	the	possible	actions	being	at	least	the	
following:	

o Create	new	Game	World	on	the	least	loaded	Server	box	
o If	all	the	Server	boxes	are	loaded	–	requesting	a	new	Server	box	from	cloud	

provider.	
§ When	time	of	procurement	of	the	new	Server	box	is	long	enough	

(which	is	especially	the	case	for	“baremetal	servers”,	which	are	
required	for	fast-paced	games,	more	on	it	in	Vol.	VII’s	chapter	on	
Preparing	to	Launch)	–	we’ll	need	to	request	the	Server	anticipating	
the	growth	of	the	load;	in	practice	–	keeping	one	“spare”	server	box	
at	all	times	is	usually	enough,	but	YMMV.	

o In	extreme	cases	–	suspending/delaying	creation	of	less	important	games	
(while	this	should	not	normally	happen,	“never	say	never”	adage	applies	to	
real-world	deployments	in	spades).	

	
A	completely	separate	Load	Balancer	(which	may	include	moving	Game	World	instances	
around)	–	is	also	possible.	Such	schemas	are	of	particular	importance	for	Load	Balancing	of	
“seamless”	MMO	worlds	(for	a	brief	discussion	on	seamless	worlds	–	Vol.	I’s	chapter	on	
Communications,	and	also	[TODO:Beardsley]	and	[TODO:Baryshnikov]).	
	

Clients-to-Servers	Load	Balancing	
	

Nyquist	Stability	
Criterion	
https://en.wikipedia.org/wiki/Nyquist_stability_criterion
In	control	theory	and	
stability	theory,	Nyquist	
stability	criterion	is	a	
graphical	technique	for	
determining	the	
stability	of	a	dynamical	
system.	

As	mentioned	above,	Clients-to-Servers	Load	Balancing	is	necessary	for	Stateless	and	kinda-
Stateless	architectures	(such	as	those	on	Fig	8.1,	Fig	8.3,	and	Fig	8.4).	
	
In	addition,	Clients-to-Servers	may	be	introduced	for	really	Stateful	architectures	(such	as	
the	one	on	Fig.	8.2)	–	for	example,	via	Front-End	Servers	(more	on	them	in	Chapter	9).	For	
configurations	of	Stateful	objects	combined	with	Front-End	Servers	–	we	need	both	Worlds-
to-Servers	Load	Balancing	and	Clients-to-Servers	Load	Balancing;	however	–	in	spite	of	
additional	complexity,	such	things	can	solve	a	problem	or	three	in	quite	a	few	real-world	
scenarios	(including,	but	not	limited	to,	inherently	better	resilience	to	DDoS,	and	better	
handling	of	spectating	with	unpredicted	spectating	patterns	–	more	on	benefits	of	Front-End	
Servers	in	Chapter	9).	
	
Clients-to-Servers	Load	balancing	in	general	is	quite	a	big	topic	at	least	over	last	20	years.	
Three	most	common	and	distinct	techniques	out	there	are	the	following:	DNS	Round-Robin,	
Client-Side	Random	Balancing,	and	Server-Side	(usually	hardware-based)	Load	Balancer	
Appliances.	With	the	industry	producing	those	Load	Balancer	Appliances	making	good	
money	on	them	-	there	is	no	wonder	that	they	will	keep	explaining	that	it	is	The	Only	Viable	
Option™	(and	they	succeeded	with	convincing	most	of	IT	industry	about	it	too).	Still,	let's	
take	a	closer	look	at	available	load	balancing	solutions.	
	
DNS	Round-Robin	
	
DNS	Round-Robin	is	based	on	a	traditional	DNS	requests.		
	
First,	a	very	short	intro	into	DNS.	Regardless	of	any	DNS	Round-Robin	in	place,	whenever	a	
Client	requests	address	frontend.yoursite.com	to	be	resolved	into	IP	address,	Client’s	PC	
(console,	etc.)	sends	DNS	request46	to	your	(or	"your	DNS	provider's")	DNS	server.	Your	DNS	
server	translates	frontend.yoursite.com	into	IP	address	–	and	sends	it	back	to	the	Client;	
now	Client	has	an	IP	address	which	can	be	used	for	further	communication.	
	
Enter	DNS	round-robin.	If	your	DNS	server	is	configured	for	DNS	round-robin,	it	simply	
returns	different	IP	addresses	to	different	DNS	requests,	in	a	round-robin	fashion47	hence	
the	name.	
	

																																																								
46	this	happens	with	or	without	DNS	round-robin	
47	strictly	speaking,	it	is	a	little	bit	more	complicated	than	that,	as	DNS	packets	contain	a	list	
of	servers.	However,	last	time	I’ve	checked	-	virtually	everybody	out	there	ignored	all	the	
entries	in	returned	packet	except	for	the	very	first	one,	so	it	became	more	or	less	equivalent	
to	returning	only	one	IP	per	request	-	that	is,	unless	you	have	your	own	Client	which	can	do	
the	choice	itself,	see	"Client-Side	Balancing"	

It	all	looks	very	simple	and	nice	on	paper	–	but	in	practice	DNS	
Round-Robin	suffers	from	two	major	problems.	First,	there	is	a	
problem	with	caching	DNS	servers	along	the	path	of	the	
request	(and	DNS	caching	happens	all	the	time).	That	is,	even	if	
your	DNS	server	is	faithfully	returning	all	your	IPs	in	a	round	
robin	fashion,	one	of	these	returned	IPs	can	get	cached	by	a	
Big	Fat	DNS	server	(think	Comcast	or	AT&T),	and	then	get	
distributed	to	many	thousands	of	your	Clients;	in	this	case	
distribution	of	your	Clients	across	your	Servers	will	be	skewed	
towards	that	"lucky"	IP	which	got	cached	by	the	Big	Fat	DNS	
server	<sad-face	/>.	The	second	big	problem	of	DNS	Round-
Robin,	is	that	it	lacks	server	fault	tolerance;	in	other	words	-	if	
one	of	your	servers	is	down,	a	Client	which	relies	purely	on	
DNS	Round-Robin	(such	as	web	browser),	won't	try	another	
server	on	the	list,	leading	to	a	service	interruption	for	at	least	

some	of	your	players	<sad-face	/>.	
	
Fortunately,	as	for	MOGs	we	DO	have	our	own	Client	(and	usually	do	not	need	to	rely	on	
functionality	of	the	web	browser),	we	can	solve	both	these	problems	quite	easily.	Moreover,	
these	techniques	will	also	work	for	your	browser-based	games	(that	is,	after	you've	got	your	
JS	loaded	and	it	started	execution).	Enter	Client-Side	Random	Balancing.	
	
Client-Side	Random	Balancing	
	
To	improve	on	DNS	Round-Robin,	a	very	simple	approach	can	be	used:	

• We	won't	rotate/round-robin	anything	on	the	Server-Side;	instead,	we	will	distribute	
exactly	the	same	list	of	Server	IP	addresses	to	all	the	Clients.		

o This	list	may	be	hardcoded	into	your	Clients	(and	that's	what	I've	used	
personally	with	big	success),	or	the	list	can	be	distributed	via	DNS	as	a	simple	
list	of	IPs	for	desired	name	(and	retrieved	on	client	via	getaddrinfo()	or	
equivalent).	Which	way	to	use	-	doesn't	matter	much	to	us	now,	but	we'll	
discuss	“DNS-vs-hardcoded-IPs”	in	Vol.	VII’s	chapter	on	Preparing	to	Launch	

• 	As	soon	as	the	Client	gets	the	list	of	IPs,	everything	is	
very	simple.	Client	simply	takes	random	item	from	the	
IP	list,	and	tries	connecting	to	this	randomly	chosen	
IP.	If	connection	attempt	is	unsuccessful	(and	
whenever	connection	is	lost,	etc.)	-	Client	gets	
another	random	IP	from	the	list	and	tries	connecting	
again.	

	
One	note	of	caution	-	while	you	don't	really	need	a	
cryptographic-quality	random	generator	to	choose	the	IP	
from	the	list,	you	DO	want	to	avoid	situations	when	your	
random	number	generator	(the	one	used	for	this	purpose)	is	
essentially	just	some	function	of	coarse-grained	time.	One	
Really	Bad	example	would	be	something	like	
	

	
one	of	these	returned	
IPs	can	get	cached	by	a	
Big	Fat	DNS	server,	and	
then	get	distributed	to	
many	thousands	of	
Clients	

	
Client	simply	takes	a	
random	item	from	the	
IP	list,	and	tries	
connecting	to	this	
randomly	chosen	IP.	

int myrand() {//DON'T DO THIS!
 srand(time(0));
 //NOTE: crypto PRNG seeded with time(0) at this point
 // will NOT be an improvement!
 return rand();
}
	
In	such	a	case,	if	you	get	mass	disconnect	(and	as	a	result	all	your	players	will	attempt	to	
reconnect	at	about	the	same	time),	your	IP	distribution	will	likely	get	skewed	due	to	too	few	
differences	between	the	Clients	trying	to	choose	their	IP	addresses	based	on	myrand()	
function;	if	all	the	Clients	attempt	to	re-connect	within	5	seconds	after	the	disconnect,	with	
such	a	bad	myrand()	function	you'll	get	merely	5	different	IPs.	Other	than	such	extremely	
bad	cases,	pretty	much	any	RNG	should	be	fine	for	this	purpose.	Even	a	trivial	and	very-poor	
linear	congruential	generator	such	as	srand(),	48	seeded	with	time(0)	at	the	moment	when	
the	program	was	launched	(but	NOT	at	the	moment	of	request,	as	in	example	above),	
should	do	in	practice,	though	adding	some	kind	of	milliseconds	or	some	other	Client-specific	
data	to	the	mix	is	advisable	"just	in	case".	
	
Client-Side	Random	Balancing:	a	Law	of	Large	Numbers,	and	comparison	with	DNS	Round-
Robin	
	
Unlike	DNS	round-robin	(which	in	theory	provides	"ideal"	
balancing,	though	in	practice	it	fails	badly	due	to	Big	Fat	
DNS	caches),	Client-Side	Random	Balancing	relies	on	the	
statistical	Law	of	Large	Numbers	to	achieve	flat	distribution	
of	Clients	between	the	Front-End	Servers.	What	the	law	
basically	says	is	that	for	independent	measurements,	the	
more	experiments	you're	performing	-	the	more	flat	
distribution	you'll	get.		
	
More	formally,	probability	distribution	of	Server	load	for	
Client-Side	Random	Balancing	is	binomial;	among	other	
things,	it	means	that	standard	deviation	of	this	distribution	
is	proportional	to	 𝑁,	and	relative	standard	deviation	is	proportional	to	1/ 𝑁.	In	other	
words,	if	we	multiply	number	of	Clients	by	100	–	then	standard	deviation	increases	10-fold,	
but	relative	standard	deviation	decreases	by	factor	of	10.	For	example,	if	we	have	100	
Clients	randomly	balanced	to	10	Servers,	we’ll	get	10 ± 3	Clients	per	Server	(which	means	
that	imbalance	of	load	between	Servers	is	of	the	order	of	30%);	however,	if	we	have	10000	
Clients	randomly	balanced	to	the	same	10	Servers	–	we	get	1000 ± 30	Clients	per	Server,	
reducing	imbalance	of	the	load	between	Servers	to	much	more	acceptable	3%.	
	
In	practice,	despite	being	"non-ideal"	in	theory,	Client-Side	Random	Balancing	achieves	
much	more	flat	distribution	than	DNS	Round-Robin	one.	The	reason	for	it	is	two-fold.	First,	
as	discussed	above,	as	soon	as	the	number	of	Clients	is	large	(at	least	a	few	hundred),	Client-

																																																								
48	honestly,	I	prefer	NOT	to	use	srand()	and	linear	congruential	at	all	–	preferring	simple	
crypto-PRNGs	such	as	AES-CTR	across	the	board	–	but	here	it	is	beyond	the	point.	

Law	of	Large	
Numbers	

https://en.wikipedia.org/wiki/Law_of_large_numbers
According	to	the	law,	
the	average	of	the	
results	obtained	from	a	
large	number	of	trials	
should	be	close	to	the	
expected	value,	and	
will	tend	to	become	
closer	as	more	trials	are	
performed.	

Side	random	balancing	becomes	sufficiently	flat	for	practical	purposes	(and	if	your	system	is	
provisioned	for	thousands	of	players,	and	only	a	few	have	came	yet	-	the	distribution	won't	
be	too	flat,	but	the	inequality	involved	won't	be	able	to	hurt,	and	the	balance	will	improve	
as	the	number	grows).	On	the	positive	side,	however,	Client-Side	Random	Balancing	doesn't	
suffer	from	DNS	caching	issue	described	above.	Even	if	you're	using	DNS	to	distribute	IP	lists	
(and	this	list	gets	cached)	-	with	Client-Side	Balancing	all	the	IP	lists	circulating	in	the	system	
are	identical	by	design,	so	any	valid	caching	(unlike	with	DNS	Round-Robin)	doesn't	change	
Client	distribution	at	all.	
	
Also	we	need	to	mention	that	in	contrast	to	DNS	Round-Robin,	Client-Side	Random	
Balancing	can	be	easily	made	fault-tolerant	(with	respect	to	failures	of	balanced	Servers):	
whenever	Client	detects	that	Server	is	down	(for	discussion	on	how	to	do	it	-	see	Vol.	IV’s	
chapter	on	Network	Programming)	–	then	Client	merely	reconnects,	using	a	different	
random	IP	from	the	list	it	has.	
	
To	summarize:	personally,	I	would	not	use	DNS	Round-Robin	for	production	Load	Balancing	
(in	particular,	because	of	lack	of	fault	tolerance).		On	the	other	hand,	I've	seen	Client-Side	
Random	Balancing	to	work	extremely	well	for	a	game	which	grew	from	a	few	hundreds	of	
simultaneous	players	into	hundreds	of	thousands;	it	worked	without	any	problems	
whatsoever,	providing	almost-perfect	balancing	all	the	time.	That	is,	if	the	average	load	
across	the	board	was	50%,	you	could	find	some	servers	at	48%	and	some	at	52%,	but	not	
more	than	that.49	
	
Server-Side	Load	Balancer	Appliances	
	
An	approach	which	is	very	different	from	both	Round-Robin	DNS	and	Client-Side	Random	
Balancing,	is	to	use	Server-Side	Load	Balancer	Appliances.	Load	Balancer	Appliance	is	usually	
an	additional	box,	sitting	in	front	of	your	servers,	and	doing,	as	advertised,	Load	Balancing.	
	
Server-Side	Load	Balancer	Appliances	do	have	significantly	more	balancing	capabilities	with	
regards	to	scenarios	when	different	Clients	cause	very	different	loads	(so	that	Server-Side	
balancers	can	work	even	if	the	Law	of	Large	Numbers	doesn't	work	anymore).		
	
In	addition	(similar	to	Client-Side	Load	Balancing),	Server-Side	Load	Balancer	Appliances	do	
provide	fault	tolerance	with	regards	to	the	balanced	Servers.	On	the	other	hand,	being	a	
Single	Point	Of	Failure	(SPOF)50	–	they	need	to	be	fault	tolerant	themselves,	and	fault	
tolerance	at	this	level	is	well-known	to	cause	quite	a	bit	of	trouble	<sad-face	/>.	In	
particular,	all	the	discussion	in	Chapter	10	with	respect	to	failure	of	heartbeat	link	–	applies	
to	Server-Side	Load	Balancer	Appliances	in	spades	(and	from	what	I’ve	seen,	these	appliance	
boxes	tend	to	be	negligent	when	it	comes	to	analysis	of	such	failures,	which	–	alongside	

																																																								
49	this,	of	course,	stands	only	when	you	have	run	your	servers	identically	for	sufficient	time;	
if	one	of	the	servers	has	just	entered	service,	it	will	take	some	hours	until	it	reaches	the	
same	load	level	than	the	others.	If	really	necessary,	this	effect	can	be	mitigated,	though	
mitigation	is	rather	ugly	and	I	didn’t	see	it	necessary	in	practice	
50	NB:	with	Client-Side	Load	Balancing,	there	is	no	SPOF	at	all(!)	

with	infamous	“misconfigured	failover	scripts”	-	tend	to	cause	a	lion	share	of	failures	in	real-
world	supposedly-fault-tolerant	systems).		
	
Now	let’s	compare	Server-Side	Load	Balancer	Appliances	with	the	Client-Side	Random	
Balancing.	As	noted	above	–	the	list	of	disadvantages	of	Load	Balancer	appliances	is	pretty	
long:	

(a) pricing	(these	boxes	tend	to	be	Damn	Expensive	–	that	is,	unless	you’re	using	
HAProxy,	but	see	below	about	it	itself	becoming	a	bottleneck),51	

(b) such	an	Appliance	is	an	inherent	Single	Point	of	Failure	a.k.a.	SPOF;	this	means	that	it	
itself	needs	to	be	made	fault-tolerant	(and	fault-tolerance	is	rarely	handled	good	
enough	with	these	boxes,	see	above)	

(c) configuration	and	operational	issues	with	these	boxes	(especially	“failover	scripts”,	
see	above)	tend	to	be	significant.	

(d) Last	but	certainly	not	least	-	as	all	the	relevant	traffic	needs	to	go	via	such	an	
appliance	–	the	load-balancing	appliance	itself	can	potentially	become	a	bottleneck	
(and	then	the	only	way	to	scale	will	be	scaling	up,	which	is	not	really	feasible).	While	
this	doesn’t	look	too	likely,	it	can	happen:	while	such	appliances	can	easily	handle	
multiple	gigabits/second	–	their	ability	to	handle	tons	of	small	packets	is	usually	
significantly	lower	(in	other	words	–	when	speaking	about	games,	you	should	look	
for	packets/sec	or	requests/sec	rather	than	for	GBit/sec).	And	while	HAProxy’s	
reported	100K	requests/second	may	sound	as	a	lot	for	a	website	–	for	a	500K-
simultaneous-players	game	it	is	pretty	much	nothing.	Moreover,	while	Scaling	Out	by	
adding	a	few	other	servers	won’t	usually	be	a	problem	for	such	a	game	–	Scaling	Up	
your	Load	Balancer	by	finding	more	powerful	one	can	become	Really	Nasty	<sad-face	
/>	(see	Scaling	Up	–	Doesn’t	Help	Much	for	Game	World	Servers	section	above	for	a	
discussion	–	exactly	the	same	logic	applies	to	Load	Balancer	Appliances	too).	For	
highly-loaded	games,	if	using	Load	Balancer	appliances	–	your	best	bet	will	be	ASIC-
based	ones,	but	while	they	will	provide	you	with	necessary	performance	and	
reliability	(with	a	lower	latency	on	top)	–	they	will	cost	you	arm	and	leg	(and	
probably	even	more);	while	if	your	monetization	is	good	–	the	cost	of	the	order	of	
quarter	a	million	dollars	for	a	pair	of	such	boxes	isn’t	likely	to	kill	your	game,	but	IMO	
it	is	still	much	nicer	to	save	them	for	your	company	(and	maybe	even	get	a	bit	of	
bonus	for	doing	it	<wink	/>).	

																																																								
51	BTW	-	when	speaking	about	redundancy	and	the	cost	of	their	boxes,	quite	a	few	hardware	
manufacturers	will	tell	you	"hey,	you	can	use	our	balancer	in	active/active	configuration,	so	
you	won't	waste	anything!".	Well,	while	you	can	indeed	use	many	Server-Side	Load	Balancer	
Appliances	in	an	active/active	configuration,	you	still	MUST	have	at	least	one	redundant	box	
to	handle	the	load	if	one	of	those	boxes	fails.	In	other	words,	if	all	you	have	is	two	boxes	in	
an	active/active	configuration,	then	you	still	need	to	have	100%	redundancy	to	be	able	to	
cope	with	the	load	if	one	of	them	fails	<sad-face	/>	

	
On	the	pro	side	for	Server-Side	Load	Balancer	Appliances,	
there	are	better	load	balancing	capabilities	(i.e.	beyond	
relying	on	the	Law	of	Big	Numbers).	However,	from	what	I’ve	
seen,	these	additional	balancing	capabilities	are	usually	
unnecessary	for	games	(where	Law	of	Large	Numbers	tends	
to	stand	very	firmly).	This	makes	these	four	cons	above	a	
deciding	factor	why	I	usually	recommend	to	stay	away	from	
Load	Balancer	Appliances	–	at	least	in	the	context	of	games.	
	
To	summarize:	for	game	load-balancing	purposes	I	didn’t	see	
practical	use	cases	for	Server-Side	Load	Balancer	Appliances	
(as	always,	YMMV	and	batteries	are	not	included).	One	
exception:	if	you're	using	Web-Based	Deployment	
Architecture	(in	the	way	described	above)	–	then	HAProxy	
MIGHT	be	able	to	shift	the	balance	towards	HAProxy-based	
Load	Balancer	Appliances.	First	-	HAProxy	is	free	software	
running	on	commodity	server	boxes,	which	removes	the	
“damn	expensive”	argument.	Second,	while	for	already-loaded	JS	code	it	is	perfectly	
possible	to	use	Client-Side	Random	Load	Balancing,	it	is	not	the	case	for	original	HTML+JS	–	
and	HAProxy	will	address	this	problem	too.	Still,	even	for	Web-Based	architectures	I’d	
seriously	consider	using	HAProxy	for	static	content	(=”to	load	initial	HTML+JS”),	and	Client-
Side	Random	Balancing	for	game	traffic	(in	particular,	because	of	significant	problems	of	
naïve	heartbeat-based	fault	tolerance	configurations,	see	discussion	above)	–	but	this	choice	
admittedly	is	not	as	clear	as	for	non-web-based	(and	especially	UDP-based)	games.		
	
Load	Balancing	Summary	
	
From	my	experience,	Client-Side	Random	Balancing	worked	really	good,	and	I	didn’t	see	any	
reasons	to	use	something	different.	Round-Robin	DNS	is	almost	universally	inferior	to	Client-
Side	Balancing,	and	hardware-based	Server-Side	Load	Balancer	Appliances	are	too	
complicated	and	expensive,	usually	without	any	real	reason	to	use	them	at	least	in	MOG	
environment.	As	noted	above,	one	exception	when	you	MAY	need	Server-Side	Balancers,	is	
if	you're	using	Web-Based	Deployment	Architecture,	but	beyond	purely	static	content	even	
this	is	debatable.	
	
And	one	last	word	about	Load	Balancing:	it	is	possible	to	use	more	than	one	of	the	methods	
listed	here	(and	it	might	even	work	for	you);	however,	implications	of	such	combined	use	of	
more	than	one	method	of	Load	Balancing,	are	way	too	convoluted	and	way	too	game-
specific	to	discuss	them	in	this	book.	
	
	

Bibliography	
Baryshnikov,	Maksim.	n.d.	"Engineering	Decisions	Behind	World	of	Tanks	Server."	

	
Additional	balancing	
capabilities	provided	by	
Load	Balancer	
Appliances,	are	usually	
unnecessary	for	games	
(where	Law	of	Large	
Numbers	tends	to	
stand	very	firmly)	

Beardsley,	Jason.	n.d.	"Seamless	Servers:	The	Case	For	and	Against."	In	Massively	
Multiplayer	Game	Development.	

Bray,	Brandon.	n.d.	The	.NET	Framework	4.5	includes	new	garbage	collector	enhancements	
for	client	and	server	apps.	
https://blogs.msdn.microsoft.com/dotnet/2012/07/20/the-net-framework-4-5-
includes-new-garbage-collector-enhancements-for-client-and-server-apps/.	

Corbet,	Jonathan.	n.d.	"NUMA	scheduling	progress".	https://lwn.net/Articles/568870/.	
Cybersource.	n.d.	"Linux	vs	Windows.	Total	Cost	of	Ownership	Comparison".	

https://static.lwn.net/images/pdf/cybersource-tco-study.pdf.	
n.d.	DPDK.	http://dpdk.org.	
Duquette,	Patrick.	n.d.	"6.2	Implementing	a	Seamless	World	Server."	In	Game	Programming	

Gems	5.	
IDC.	n.d.	"Windows	2000	Versus	Linux	in	Enterprise	Computing".	

https://www.cetic.be/IMG/pdf/TCO.pdf.	
n.d.	Introduction	to	Receive	Side	Scaling.	https://msdn.microsoft.com/en-

us/windows/hardware/drivers/network/introduction-to-receive-side-scaling.	
Klitzke,	Evan.	2013.	Migrating	Uber	from	MySQL	to	PostgreSQL.	

https://www.yumpu.com/en/document/view/53683323/migrating-uber-from-
mysql-to-postgresql.	

—.	2016.	Why	Uber	Engineering	switched	from	Postgres	to	MySQL.	
https://eng.uber.com/mysql-migration/.	

Lameter,	Christoph.	n.d.	"NUMA	(Non-Uniform	Memory	Access):	An	Overview".	
https://queue.acm.org/detail.cfm?id=2513149.	

Lightstreamer.	n.d.	http://www.lightstreamer.com/.	
Ligoum,	Dmitry.	n.d.	"private	communications	with."		
n.d.	London	Stock	Exchange	gets	the	facts	and	dumps	Windows	for	Linux.	

http://www.itwire.com/opinion-and-analysis/the-linux-distillery/28359-london-
stock-exchange-gets-the-facts-and-dumps-windows-for-linux.	

n.d.	netmap	-	the	fast	packet	I/O	framework.	http://info.iet.unipi.it/~luigi/netmap/.	
n.d.	New	techniques	to	develop	low-latency	network	apps.	

https://channel9.msdn.com/Events/Build/BUILD2011/SAC-593T.	
'No	Bugs'	Hare.	n.d.	"Memory	Leaks	and	Memory	Leaks".	http://ithare.com/memory-leaks-

and-memory-leaks/.	
Noyes,	Katherine.	n.d.	"Five	Reasons	Linux	Beats	Windows	for	Servers".	

http://www.pcworld.com/article/204423/why_linux_beats_windows_for_servers.ht
ml.	

n.d.	Predicting	the	Performance	of	Virtual	Machine	Migration.	
https://www.cl.cam.ac.uk/~sa497/akoush-mascots10.pdf.	

Redis.CAS.	n.d.	http://redis.io/topics/transactions#cas.	
RFG.	n.d.	"TCO	for	Application	Servers:	Comparing	Linux	with	Windows	and	Solaris".	

http://www-
03.ibm.com/linux/whitepapers/robertFrancesGroupLinuxTCOAnalysis05.pdf.	

n.d.	Scaling	in	the	Linux	Networking	Stack.	
https://www.kernel.org/doc/Documentation/networking/scaling.txt.	

StackOverflow.C#LambdaLoop.	n.d.	"Captured	variable	in	a	loop	in	C#"	
where="StackOverflow".	http://stackoverflow.com/questions/271440/captured-
variable-in-a-loop-in-c-sharp.	

StackOverflow.PythonLambdaLoop.	n.d.	"What	do	(lambda)	function	closures	capture	in	
Python?".	http://stackoverflow.com/questions/2295290/what-do-lambda-function-
closures-capture-in-python.	

Steen	Larsen,	Parthasarathy	Sarangam,	Ram	Huggahalli.	n.d.	"Architectural	Breakdown	of	
End-to-End	Latency	in	a	TCP/IP	Network."	

Verma,	Abhishek.	2016.	Cassandra	on	Mesos	Across	Multiple	Datacenters	at	Uber	(Abhishek	
Verma).	C*	Summit	2016.	https://www.slideshare.net/DataStax/cassandra-on-
mesos-across-multiple-datacenters-at-uber-abhishek-verma-c-summit-2016.	

Wikipedia.	2017.	Cluster	Launch	Failure.	
https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure.	

Zubek,	Robert.	n.d.	"Engineering	Scalable	Social	Games".	
http://gdcvault.com/play/1012230/Engineering-Scalable-Social.	

—.	n.d.	"Private	communications	with".		
	
	

	 	

Chapter	9.	Server-Side	Architecture	
After	we’re	done	with	discussing	Scalability	(and	closely	related	issues	of	In-Memory	State),	
we	can	start	drawing	our	architectural	diagrams	for	the	Server-Side.	And	the	very	first	thing	
we	need	to	do	in	this	direction,	is	to	start	thinking	in	terms	of		

“how	we're	going	to	deploy	our	Servers,	when	our	game	is	ready?”		
	
Yes,	I	really	mean	it	–	overall	architecture	starts	certainly	not	in	terms	of	classes,	and	for	the	
Server-Side	–	not	even	in	terms	of	processes	or	(Re)Actors.	Rather,	it	starts	with	the	highest-
level	meaningful	diagram	we	can	draw,	and	for	the	Server-Side	this	is	a	deployment	diagram	
with	Servers	being	its	main	building	blocks.52	If	deploying	to	cloud,	these	may	be	virtual	
Servers,	but	a	concept	of	“Server”	which	is	a	“more	or	less	self-contained	box	running	our	
Server-side	Software”,	still	remains	very	central	to	the	Server-Side.	If	not	thinking	about	
clear	separation	between	the	pieces	of	your	software,	you	can	easily	end	up	with	a	Server-
Side	architecture	that	looks	nicely	while	you	program	it,	but	falls	apart	on	the	third	day	after	
deployment,	exactly	when	you're	starting	to	think	that	your	game	is	a	big	success.		
	
Worst	of	all,	there	are	lots	of	reasons	why	your	Server-Side	can	fail	badly	(including	such	
very	different	things	as	poor	Scalability,	lack	of	database	coherency,	failing	PCI	DSS	audit,	
being	wide-open	to	cheaters,	and	poor	code	maintainability)	–	and	it	is	our	job	as	architects	
to	make	sure	that	all	the	potential	caveats	are	accounted	for;	sure,	it	is	not	always	possible	
to	handle	all	the	troubles	in	advance	(it	is	especially	true	as	we’re	time-pressed	by	
definition)	–	but	at	least	we	should	try.	
	

																																																								
52	Strictly	speaking,	for	larger	games	–	there	is	even-higher-level	diagram,	the	diagram	
showing	interactions	between	different	datacenters;	however	–	until	Vol.	IX	we’re	not	there	
yet,	so	for	the	time	being	we’ll	keep	our	deployment	datagrams	to	single	datacenter	only.	

	
	
Last	thing	before	we	start:	let’s	note	that	for	your	very	first	deployment,	you	may	have	
much	less	physical/virtual	Server	boxes	than	shown	on	the	diagrams	below;	in	practice	–	
you’re	likely	to	combine	apps	from	quite	a	few	of	these	Server	boxes	together.	On	the	other	
hand,	you	should	be	able	to	increase	the	number	of	your	Servers	quickly,	so	you	need	to	
have	the	software	which	is	able	to	work	in	the	deployment-architectures-shown-below,	
from	the	very	beginning.	This	is	important,	as	demand	for	increase	in	number	of	Servers	can	
develop	very	quickly	if	you're	successful.	As	for	details	of	your	very	first	deployment	–	we’ll	
discuss	them	in	Vol.	VII’s	chapter	on	Preparing	for	Deployment.	
	
Now,	we	can	start	our	discussion	about	different	deployment	architectures;	more	
specifically	-	we’ll	start	with	a	deployment	architecture	you	SHOULD	NOT	aim	for.	
	

Don't	Do	It:	Naïve	Game	Deployment	Architecture	
	
Quite	often,	when	faced	with	development	of	their	very	first	multi-player	game,	developers	
start	with	something	like	the	following	Fig	9.1:	
	

	

[[TODO/fig:	VII.1	->	9.1]]	
	
It	is	dead	simple:	there	is	a	Game	World	Server,	and	there	is	a	database	to	store	persistent	
state.	However,	there	is	a	ticking	bomb	within	this	simplistic	(and	admittedly	extremely	
straightforward)	approach.		
	
Later	on,	as	one	single	Game	World	server	proves	to	be	insufficient	to	run	all	the	players	–	
the	architecture	above	often	naturally	evolves	into	something	like	the	diagram	on	Fig	9.2:	
	

	
[[TODO/fig:	VII.2	->	9.2;	add	“DON’T	DO	THIS	EITHER!”]]	
	
Here,	in	a	naïve	attempt	to	scale	out	a	simplistic	architecture	shown	on	the	diagram	on	Fig	
9.1,	each	of	the	Game	World	Servers	is	just	cloned	(including	its	own	database(!)).	It	means	
that	we	have	several	Game	World	Servers,	each	with	its	own	database	(completely	
independent	from	all	the	other	databases),	and	each	of	the	players	get	permanently	
assigned	to	one	of	Game	World	Servers.	To	handle	these	assignments	–	often	(though	not	
universally)	an	Account	Balancing	Server	may	be	added.	
	
If	it	is	present,	the	logic	of	Account	Balancing	Server	in	such	naïve-and-NOT-recommended	
architectures	usually	works	as	follows:	

• First	time	players	come	to	Account	Balancing	Server	–	which	simply	forwards	them	
to	a	Game	World	Server.		

o There	are	different	ways	to	do	it	–	but	give	or	take,	it	is	usually	some	kind	of	
“sharding”.	Whether	you’re	merely	pushing	all	new	accounts	to	each	new	
Server	until	it	becomes	full,	or	are	using	real	sharding	such	as	the	one	based	
on	a	hash	of	user-ID	–	doesn’t	matter	much	for	our	discussion	now.	

• From	this	point	on53	–	player	becomes	permanently	assigned	to	the	respective	Game	
World	Server	(and	all	the	player’s	data	is	stored	within	Game	World	Server’s	DB).	

																																																								
53	Actually	–	the	assignment	actually	happened	even	earlier,	as	soon	as	the	player	decided	
on	his	user-ID.		

o In	particular,	it	means	that	the	player	cannot	possibly	play	with	anybody-
except-for-those-who-happened-to-be-assigned-to-the-same-Game-World-
Server(!)	

	
My	word	of	advice	about	such	naïve	deployment	architectures:	

DON'T	DO	THIS!	
	
In	the	long	run,	such	a	naïve	approach	won't	work	well	for	most	of	the	games	out	there;	
moreover,	even	if	it	works	at	first	–	more	likely	than	not,	it	will	create	severe	obstacles	to	
your	marketing/monetization	efforts	later.		
	
To	demonstrate	problems	which	are	inherent	to	such	simplistic	architectures	–	let’s	start	
with	an	all-important	observation:	
You	game	will	need	inter-player	interaction	just	because	two	players	decided	

they	want	to	play	together.	If	not	now,	then	a	bit	later.		
We	already	discussed	this	issue	in	Vol.	I’s	chapter	on	GDD,	so	I’ll	provide	only	a	quick	recap	
here.	The	point	here	is	that	(a)	most	of	multiplayer	games	require	at	least	some	kind	of	
socializing	with	real-world	people,	and	(b)	as	soon	as	we	need	real-world	socializing	–	even	
the	simplest	“I	want	to	play	with	my	Facebook	friend”	feature	means	that	more	often	than	
not,	players	will	want	to	play	with	each	other	just	because	they	feel	like	it.	
	
To	implement	this	inter-player	interaction	just-because-players-feel-like-it	–	the	
architecture	on	Fig	9.2	is	woefully	inadequate;	in	short	–	you	just	won’t	be	able	to	
implement	it,	plain	and	simple.	With	an	architecture	on	Fig	9.2,	when54	you	need	to	
implement	even	that	simplest	feature	of	letting	player	to	play	with	her	Facebook	friends	–	
you	will	end	up	in	producing	all	kinds	of	really	weird	solutions,	including,	but	not	limited	to:	
(a)	restricting	arbitrary	inter-player	interactions,	replacing	real-world	interactions	with	the	
inter-Server	pseudo-communities	(which	in	turn	makes	“invite	Facebook	friend”	feature	
pretty	much	useless,	with	all	the	potential	social	viral	effects	going	out	of	the	window);	(b)	
inter-Server	player	transfers	(doesn’t	help	much	as	soon	as	more	than	two	players	are	
involved	–	not	to	mention	ID	collisions	and	all	kinds	of	weird	things	on	the	way);	and	(c)	
trying	to	guess	which	players	are	likely	to	play	together	(which	is	a	pretty	much	a	non-
starter,	but	those	guys	were	really	desperate	in	trying	to	save	their	naïve-and-unworkable	
architecture).		
	
The	problem	here	lies	in	an	observation	that	as	soon	as	it	is	players	who	decide	who	they	
want	to	play	with,	(a)	players	and	(b)	Game	Worlds	MUST	NOT	be	hard-tied	together	
(otherwise	choosing	who-I-want-to-play-with	right	now,	won’t	be	possible).	As	a	result	-	any	
simplification	which	forces	these	two	very	different	things	together	–	more	often	than	not,	
becomes	a	surefire	way	to	a	disaster.	I’ve	seen	such	naïve	architectures	causing	significant	
problems	even	for	a	farm-like	game	(and	farming	games	on	the	first	glance	seem	to	be	a	
very	natural	fit	to	such	simplistic	architectures)	–	and	it	only	gets	worse	for	any	other	game	
genre.	
	

																																																								
54	Not	“if”!	

However,	while	taking	a	firm	stand	against	Naïve	Architectures,	I	need	to	make	two	all-
important	clarifications:	

• The	problem	with	the	naïve	approach	shown	on	the	diagrams	above,	is	all	about	
having	completely	separate	user	DBs	(which	essentially	tie	your	players	to	Game	
Worlds).	If	you	change	Naive	Architecture	to	have	not	only	a	per-server	DB,	but	also	
a	centralized	player	DB	-	say,	with	per-Server	DB	storing	Game	World	State	of	the	
players	which	are	currently	residing	in	this	Game	World,	and	with	centralized	player	
DB	storing	all	the	players	-	you	can	get	a	rather	viable	architecture;	more	on	it	in	
“Semi-Naïve	Deployment	Architecture”	section	right	below.	

• If	your	game	calls	for	natural	restrictions	on	the	Server/Datacenter	locations	(for	
example,	due	to	latencies	you’re	going	to	have	separate	“NY	Server”,	“LA	Server”,	
“London	Server”,	and	so	on)	–	you	MAY	have	completely	separate	user	DBs	per	
location/Datacenter	(as	players	from	different	locations	cannot	play	with	each	other	
by	design).		

o However,	in	this	case	–	user	database	SHOULD	NOT	be	per-Server-box,	but	
rather	SHOULD	be	per-location/Datacenter	(and	each	location/Datacenter,	in	
spite	of	being	colloquially	named	“Server”,	will	have	at	least	a	few	dozens	of	
physical	Server	boxes);	the	point	is	that	having	a	separate	user	DB	per	each	
such	Server	box	is	a	Bad	Thing™.	In	other	words	–	in	such	cases,	we’re	
essentially	speaking	about	having	Classical	(or	at	least	Semi-Naïve)	
Deployment	Architecture	within	each	of	Datacenters	–	and	cloned	for	each	of	
the	Datacenters	involved.	

o In	addition,	even	in	this	case,	you	SHOULD	take	an	effort	to	ensure	that	at	
least	userIDs	are	guaranteed	to	be	unique	across	different	DBs.	This	is	not	a	
problem	for	internal	IDs	(as	we	can	always	say	that	globally-unique-ID	is	a	
tuple	(Datacenter_ID,userID_within_Datacenter)),	but	if	your	game	relies	on	
players	being	able	to	identify	each	other	by	their	visible	ID/name	–	then	
enforcing	such	a	globally-unique-ID	can	become	a	significant	headache.	

	

Semi-Naïve	Deployment	Architecture	
	
As	noted	above	–	the	main	problem	with	Naïve	architectures	is	related	to	creation	of	a	
permanent	bond	between	player	and	Game	World.	This	can	be	avoided	by	using	the	
following	“Semi-Naïve”	architecture	is	shown	on	Fig	9.3:		
	

	
[[TODO/fig:	VII.3	->	9.3]]	
	
Here,	the	only	apparent	difference	from	Fig	9.2,	is	that	Account	Balancing	Server	gets	its	
own	“Player	DB”.	However,	this	seemingly	small	difference	will	cause	a	lot	of	changes	at	all	
the	levels	of	your	system	–	and	more	importantly,	unlike	Naïve	Architecture	shown	on	Fig	
9.2,	it	does	allow	to	build	viable	and	scalable	games.		
	
In	the	Semi-Naïve	Architecture	shown	on	Fig	9.3,	the	idea	is	to	keep	our	players	in	“Player	
DB”	–	and	move	them	(or	more	strictly	–	some	of	their	attributes,	such	as	“in-game	money”	
or	“health”,	but	usually	not	attributes	such	as	“payment	history”)	only	temporarily	to	that	
Game-World-DB	where	the	player	is	currently	playing.55	NB:	when	speaking	about	“moving”	
the	attributes	to	Game-World-DB	–	usually,	we’ll	be	actually	copying	them,	while	marking	
them	as	“allocated”	in	main	Player	DB;	this	will	allow	to	recover	(at	least	to	some	extent)	if	
one	of	the	Game	World	DBs	crashes.	
	
While	I	am	still	advising	against	such	Semi-Naïve	Architectures	(preferring	instead	a	separate	
DB	Server	as	discussed	below	in	“Classical	Game	Deployment	Architecture”	section)	–	I	have	
to	say	that	Semi-Naïve	architectures	such	as	shown	on	Fig	9.3	(and	unlike	naïve	ones	
discussed	in	“Don't	Do	It:	Naïve	Game	Deployment	Architecture”	section	above)	MAY	be	
made	viable.	
	
In	particular	–	Semi-Naïve	architectures	look	conceptually	very	similar	to	the	perfectly-viable	
(and	highly	recommended	in	the	longer	run)	Shared-Nothing	DB	Scaling	discussed	in	detail	
in	Vol.	VI’s	chapter	on	Databases;	however	–	there	is	a	significant	difference	between	the	
two.	For	those	perfectly-viable	Shared-Nothing	DB	Scaling	architectures	discussed	in	Vol.	VI	
–	there	is	usually	much	more	than	one	“Game	World	Server”	for	each	of	“Game	World	DBs”;	
in	fact	–	according	to	Vol.	VI,	the	whole	process	of	separating	DBs	should	start	only	when	
the	need	arises	(and,	if	you	do	things	properly,	this	is	not	going	to	happen	until	you	have	at	
least	100K	simultaneous	players).	On	the	other	hand,	having	a	separate	DB	for	each	of	

																																																								
55	Note	that	for	some	games	(think	casino),	player	can	play	in	several	Game	Worlds	
simultaneously;	in	such	cases	–	only	a	part	of	the	player’s	account	(as	in	“$50-which-he-
wants-to-play”)	is	moved	to	a	specific	table.	

physical	boxes,	while	theoretically	possible,	happens	to	be	too	much	trouble	in	practice:	
Server-boxes-which-run-DBs	tend	to	be	much	more	critical	than	no-DB	Server	boxes,	they	
have	to	be	backed	up,	you	should	have	a	non-trivial	plan	of	“what	to	do	if	the	DB	Server	box	
fails”,	and	so	on.	As	a	result	–	I	still	to	NOT	recommend	going	exactly	along	the	lines	of	Fig.	
9.3	from	the	very	beginning.	
	
Let’s	take	another	look	at	the	same	thing	from	a	bit	different	angle.	Overall,	a	Semi-Naïve	
Architecture	on	Fig	9.3	is	a	Shared-Nothing	system	–	and	I’m	consistently	arguing	for	
Shared-Nothing	architectures.	It	just	so	happens	that	Classical	Deployment	Architecture	also	
can	be	split	into	Shared-Nothing	boxes	(along	the	lines	discussed	in	Vol.	VI’s	chapter	on	
Databases)	–	but	at	the	same	time	Classical	one	tends	to	provide	better	layering	and	better	
evolution	path	(dealing	with	problems	as	they	start	to	bite,	not	earlier).	Also	-	usually,	when	
using	Share-Nothing	DB	architectures,	it	still	happens	to	be	better56	to	have	several	Game	
World	Servers	per	one	non-user-DB-Server	(and	that’s	what	we’ll	get	when	a	Classical	
Deployment	Architecture	evolves	along	the	lines	discussed	in	Vol.	VI’s	chapter	on	
Databases),	but	in	theory	even	1:1	relation	(as	with	a	Semi-Naïve	Architecture	shown	on	Fig.	
9.3)	can	potentially	fly	–	that	is,	as	long	as	you	have	that	centralized	Player	DB.	
	
Bottom	line	on	Semi-Naïve	Deployment	Architectures:	

• Unlike	Naïve	one	–	Semi-Naïve	Deployment	Architecture	MAY	work	
o One	all-important	thing	in	making	it	work	is	to	keep	centralized	user/player	

DB	(which	can	be	sharded	if	necessary),	and	avoid	assigning	players	to	Game	
Worlds	on	the	permanent	basis	

• I	am	still	not	a	big	fan	of	Semi-Naïve	Deployment	Architecture	(preferring	Classical	
Deployment	Architecture	instead).	In	particular,	Classical	Deployment	Architecture	
will	usually	provide:	

o better	layering		
o better	separation	of	concerns	(including	better	separation	between	different	

teams)	
o more	natural	evolution	path	(with	solving	problems	after	they	start	to	be	felt	

–	which	in	turn	helps	to	solve	them	much	better)	
o better	performance	

	

Web-Based	Game	Deployment	Architecture	(Web	
Stack)	
	
Naïve	and	Semi-Naïve	Architectures	Aside	–	we	can	get	to	the	real	stuff.	If	your	game	
satisfies	two	conditions:	
	

• first,	it	is	on	the	slow-paced	side	of	things	(in	other	words,	it	is	not	an	MMOFPS)	
and/or	"asynchronous"	(as	defined	in	Vol.	I’s	chapter	on	GDD,	i.e.	it	doesn't	need	
players	to	be	present	simultaneously),	

	

																																																								
56	Performance-wise,	and	more	importantly,	maintainability-wise	

• and	second,	it	has	little	interaction	between	players	(think	farming-like	games	with	
only	occasional	inter-player	interaction),	

	
then	you	might	be	able	to	get	away	with	Web-Based	Server-Side	architecture;	a	simple	
example	of	it	is	shown	on	Fig	9.4:	

	
	 	
This	diagram	looks	more	or	less	as	your	usual	web	app,	with	a	few	added	caches;	this	
directly	corresponds	to	“Web	stack”	as	described	in	(Zubek,	"Engineering	Scalable	Social	
Games"	n.d.).		
	

Web-Based	Deployment	Architecture:	How	It	Works	
	
As	we	can	see,	the	diagram	on	Fig	9.4	looks	pretty	much	alongside	the	lines	of	a	heavily-
loaded	web	app	-	with	lots	of	caching,	both	at	front-end	(to	cache	pages),	and	at	a	back-end	
(to	cache	results	of	DB	requests).	However,	if	we	take	a	closer	look	at	it,	we’ll	find	that	there	
are	also	significant	differences	from	classical	web	apps	(special	thanks	to	Robert	Zubek	for	
sharing	his	experiences	in	this	regard,	(Zubek,	"Private	communications	with"	n.d.)).	
	
Peculiarities	of	the	Web-Based	Game	architectures	are	mostly	related	to	caching.		
	

Caching,	More	Caching,	and	Even	More	Caching	
	
To	make	the	game	perform	well	under	anywhere-significant	load,	caching	needs	to	be	
rather	elaborated.		
	
First	of	all,	we	can	see	that	in	Web-Based	Game	Architecture	shown	on	Fig	8.4,	both	front-
end	caching	and	back-end	caching	is	used.	Front-end	caching	is	pretty	much	your	usual	page	
caching	(like	nginx	in	reverse-proxy	mode,	or	even	a	CDN);	however,	there	is	a	game-specific	
caveat	even	here.	As	your	current-game-data	changes	very	frequently,	you	normally	don't	
want	to	cache	it,	so	you	need	to	take	an	effort	and	clearly	separate	two	different	things	
(Zubek,	"Engineering	Scalable	Social	Games"	n.d.):		

a. your	static	assets	(.SWFs,	CSS,	JS,	etc.	etc.)	which	almost-never	change,	and	can	(and	
should)	be	cached	in	a	Front-End	Cache,	and	

b. dynamic	pages	(or	AJAX)	with	current	game	state	data	which	changes	too	frequently	
to	bother	about	caching	it	(and	which	will	likely	go	directly	from	your	web	servers).	

	
At	the	back-end,	the	situation	is	significantly	more	complicated.	For	games,	you	will	often	
want	not	only	to	use	your	Back-End	Cache	as	a	cache	to	reduce	number	of	DB	reads	(which	
is	common	for	usual	web	apps),	but	also	will	want	to	make	your	Back-End	Cache	a	write-
back	cache	(!),	to	reduce	the	number	of	DB	writes.		
	
Such	a	write-back	cache	can	be	implemented	either	manually	over	memcached	(with	web	
servers	writing	to	memcached	only,	and	a	separate	daemon	writing	'dirty'	pages	from	
memcached	to	DB),	or	a	product	such	as	Redis	or	Couchbase	(formerly	Membase)	can	be	
used	(Zubek,	"Private	communications	with"	n.d.).	
	

Taming	DB	Load:	Write-Back	Caches	and	In-Memory	States	
	
One	Big	Advantage™	of	having	write-back	cache	(and	of	the	in-
memory	states	in	general)	is	related	to	the	huge	reduction	in	
number	of	DB	writes,	and	as	it	was	discussed	in	Chapter	8,	DB	
writes	usually	represent	The	Biggest	Obstacle™	on	the	way	to	
achieving	scalability.	
	
For	example,	if	we'd	need	to	save	each	and	every	click	on	the	
simulated	farm	with	25M	daily	users	(each	coming	twice	a	day	
and	doing	50	modifying-farm-state	clicks	each	time	in	a	5-
minute	session),	we	could	easily	end	up	with	2.5	billion	DB	
transactions/day	(which	is	infeasible,	or	at	least	non-
affordable).	On	the	other	hand,	if	we're	keeping	write-back	
cache,	we	can	write	the	cache	into	DB	only	once	per	10	
minutes,	we'd	reduce	the	number	of	DB	transactions	50-fold,	
bringing	it	to	much	more	manageable	50	million/day.	
	
For	faster-paced	games	(usually	implemented	as	a	Classical	
Architecture	described	below,	but	facing	the	same	challenge	of	
DB	being	overloaded),	the	problem	surfaces	even	earlier.	For	example,	to	write	each	and	
every	movement	of	every	character	in	an	MMORPG,	we'd	have	a	flow	of	updates	of	the	
order	of	10	DB-transactions/sec/player	(i.e.	for	10'000	simultaneous	players	we'd	have	
100'000	DB	transactions/second,	or	around	10	billion	DB	transactions/day,	once	again	
making	it	infeasible,	or	at	the	very	least	non-affordable).	On	the	other	hand,	with	in-
memory	states	stored	in-memory-only	(and	saving	to	DB	only	major	events	such	as	changing	
zones,	or	obtaining	level)	-	we	can	reduce	the	number	of	DB	transactions	by	3-4	orders	of	
magnitude,	bringing	it	down	to	much	more	manageable	1M-10M	transactions/day.	
	
And	given	that	from	the	point	of	view	of	recovery	from	server	failures	and	behavior	which	is	
usually	required	by	players,	write-back	caches	and	in-memory	states	also	tend	to	work	very	
well	(see	discussion	on	“’No	Bugs’	Rule	of	Thumb”	in	Chapter	8)	–	I	don’t	see	any	reasons	
not	to	use	them	<smile	/>.	
	

	
One	Big	Advantage™	of	
having	write-back	
cache	(and	of	the	in-
memory	state	of	
Classical	deployment	
architecture	described	
below)	is	related	to	the	
huge	reduction	in	
number	of	DB	updates.	

Write-Back	Caches:	When	to	Write	Back?	
	
From	the	point	of	view	of	Web-Based	Architectures,	In-Memory	States	discussed	in	Chapter	
8,	are	implemented	as	write-back	caches.	On	the	other	hand,	to	be	consistent	with	the	logic	
discussed	in	Chapter	8	(and	to	provide	good	recovery	from	server	crashes),	
It	is	important	not	just	to	have	write-back	caches	with	some	kind	of	“lazy	
writes”	–	but	to	have	write-backs	synchronized	with	the	end	of	your	“game	

events”.		
	
One	important	benefit	of	such	write-back	caches	(the	ones	where	you	control	write	times	
yourself)	is	that	they	tend	to	play	well	with	handling	server	failures	(that	is,	as	long	as	your	
game	is	one	of	those	which	require	rollback	in	case	if	“game	event”	is	disrupted).		
	

Write-Back	Caches:	Locking	
	
Ok,	so	we’ve	established	that	in-memory	states	in	general	and	write-back	cache	in	
particular,	are	Good	Things™.	Now	it’s	time	to	discuss	how	to	implement	these	write-back	
caches	for	the	Web-Based	Architecture	we’re	currently	considering.		
	
As	always,	having	a	write-back	cache	has	some	very	serious	implications,	and	will	cause	lots	
of	problems	whenever	two	of	your	players	try	to	interact	with	the	same	cached	object.	To	
deal	with	it,	there	are	three	main	(and	well-known)	approaches:	"optimistic	locking",	
"pessimistic	locking",	and	transactions.	Let's	consider	them	one	by	one.	
	
Optimistic	Locking	
	
Optimistic	locking	(as	well	as	pretty	much	anything	out	there)	
can	be	implemented	in	different	ways;	however,	here	we’ll	
discuss	a	specific	implementation	based	on	memcached's	
CAS	operation.57	The	idea	of	using	CAS	for	optimistic	locking	
goes	along	the	following	lines.		
	
Classical	CAS	(Compare-And-Swap	a.k.a.	Check-And-Set)	is	an	
atomic	operation	taking	two	parameters	for	a	specific	
variable	X:	an	“old”	value	and	a	“new”	value.	Then,	CAS	
operation	does	the	following:	

• it	Compares	current	value	of	the	variable	X	with	the	
“old”	value	supplied,	and	sees	whether	“old”	value	is	
the	same	as	“current”	one.	Alternatively,	we	can	say	
that	it	Checks	that	current-X	==	old-X	

																																																								
57	a	supposedly	equivalent	optimistic	locking	for	Redis	is	described	in	(Redis.CAS	
http://redis.io/topics/transactions#cas),	but	in	general,	optimistic	locking	doesn’t	
necessarily	require	CAS	

CAS	
https://en.wikipedia.org/wiki/Compare-and-swap
Compare-And-Swap	is	
an	atomic	instruction	
used	in	multithreading	
to	achieve	
synchronization.	It	
compares	the	contents	
of	a	memory	location	to	
a	given	value	and,	only	
if	they	are	the	same,	
modifies	the	contents	
of	that	memory	
location	to	a	given	new	
value.	

• if	“current”	was	found	to	be	equal	to	“old”,	then	it	Sets	“current”	value	of	X	to	be	
equal	the	“new”	one	(in	academy	circles,	it	is	also	commonly	referred	to	as	Swap).	

• And	last	but	not	least,	it	tells	the	caller	whether	the	assignment	has	happened.	
	
The	key	point	of	CAS	is	that	it	performs	all	these	things	atomically.	In	other	words,	nothing	
can	possibly	happen	between	the	comparison/check,	and	assignment.	This	simple	
guarantee	allows	to	implement	lots	of	different	synchronization	algorithms	(in	particular,	all	
the	critical	section/no-locking	algorithms	in	multi-threading	are	CAS-based);	however,	from	
our	current	perspective,	we	will	consider	only	one	thing:	how	to	implement	optimistic	
locking	based	on.		
	
In	memcached,	CAS	has	an	API	which	is	a	bit	different	from	classical	CAS,	while	the	idea	is	
still	the	same.	With	memcached	CAS,	to	update	our	variable	X	(identified	by	its	key)	in	an	
atomic	manner,	we	need	first	to	get	the	tuple	of	(data,	cas_token)	–	usually	this	done	by	
gets	command;	here	cas_token	is	merely	an	opaque	thing	supplied	by	memcached	(though	
it	can	be	considered	as	a	kind	of	“version	number”	for	our	data).	Then,	we	can	issue	cas	
command,	supplying	a	tuple	of	(new_data,	cas_token).	Memcached	will	compare	cas_token	
coming	from	the	cas	command,	with	the	current	value	of	cas_token	associated	with	our	
piece	of	data,	and	will	update	the	data	(and	increment	associated	cas_token	too)	if	and	only	
if	the	value	of	current	cas_token	associated	with	our	data,	is	the	same	as	the	value	of	
cas_token	supplied	in	the	cas	command.	On	the	other	hand,	if	somebody	has	modified	the	
data	since	you	read	it	–	the	data	will	have	different	cas_token	associated,	so	then	our	
memcached	transaction	will	fail	(indicating	that	a	“mid-air	collision”	has	occurred).	
	
Then,	our	CAS-based	implementation	of	the	optimistic	locking	will	go	along	the	following	
lines.	To	process	some	incoming	request,	our	Web	Server	will	do	the	following:	
	

• receive	the	incoming	request	and	realize	which	of	Game	Worlds	it	should	go	to.	
• read	whole	Game	World	State	as	a	single	blob	from	memcached,	alongside	with	

cas_token.		
• As	it	follows	from	the	name	of	“optimistic	locking”,	we're	optimists	(for	the	time	

being	that	is	<wink	/>)!	As	a	result,	our	Web	Server	processes	incoming	request	
ignoring	possibility	that	some	other	Web	Server	also	got	the	same	Game	World	and	
is	working	on	it	

• IMPORTANT:	at	this	point,	our	Web	Server	is	NOT	allowed	to	send	any	kind	of	reply	
back	to	player	(yet).	Actually,	under	optimistic	locking,	Web	Server	is	NOT	allowed	to	
send	out	ANY	results	of	its	processing	at	this	point.		

o It	is	a	requirement,	because	with	optimistic	locking	we	cannot	be	sure	that	
another	Web	Server	doesn’t	process	another	request	at	the	same	time.	While	
both	Web	Servers	can	prepare	their	replies,	only	one	of	their	replies	may	be	
valid.	For	example,	if	both	players	are	competing	for	the	same	resource	–	
only	one	such	request	can	be	satisfied,	so	only	one	player	should	receive	a	
reply	“you’ve	got	it!”	–	and	at	this	point	we	do	not	know	yet	which	of	Web	
Servers	will	win	the	race.		

• Now,	Web	Server	issues	CAS	operation	with	both	new-value-of-Game-World-blob,	
and	the	same	cas_token	which	it	has	received	when	it	read	Game	World	State	

• if	cas_token	is	still	valid	(i.e.	nobody	has	written	to	the	blob	since	current	Web	
Server	has	read	it),	memcached	writes	new	value,	and	returns	ok.	

o At	this	point	(due	to	atomicity	which	is	guaranteed	by	memcached),	our	Web	
Server	can	be	100%	sure	that	no	one	else	has	won	the	race	for	updating	our	
Game	World	State.	

o As	a	result,	it	is	only	at	this	point	when	our	Web	Server	is	allowed	to	send	
reply	back	to	the	player	(or	whoever-else-who-requested-the-operation)	

• if,	however,	there	was	a	second	Web	Server	which	has	managed	to	write	since	we've	
read	our	blob	(i.e.	our	cas_token	is	“stale”)	-	memcached	will	return	a	special	error	
(indicating	a	“mid-air	collision”)	

o in	this	case,	our	Web	Server	MUST	discard	all	the	prepared	replies	
o in	addition,	it	MAY	(and	actually	SHOULD)	read	new	value	of	Game	World	

State	(with	new	cas_token),	and	try	to	re-apply	incoming	request	to	this	new	
value	of	Game	World	State	

§ let’s	note	that	such	a	treatment	is	perfectly	valid:	it	is	just	"as	if"	
incoming	request	has	come	a	little	bit	later	(which	can	always	
happen).	Let’s	also	note	that	new	reply	can	very	well	be	completely	
different	from	the	reply	which	we’ve	prepared	when	we	processed	
the	request	for	the	first	time	(and	that’s	exactly	why	we	needed	to	
refrain	from	sending	original	reply	back).	For	example,	if	two	players	
were	competing	for	the	same	resource	at	about	the	same	time	–	two	
Web	Servers	might	have	got	the	same	Game	World	State	and	prepare	
“you	got	it!”	replies,	but	then	only	one	of	them	will	win	the	race	to	
supply	their	version	of	the	Game	World	first	–	and	the	second	one	will	
be	forced	to	retry	the	operation	again	(with	the	new	version	of	the	
Game	World	State,	which	already	says	that	the	resource	is	not	
available).	

	
Optimistic	locking	is	simple,	is	lock-less	(which	is	important,	see	below	why),	and	has	only	
one	significant	drawback	for	our	purposes.	Optimistic	locking	works	fine	as	long	as	collision	
probability	(i.e.	two	Web	Servers	working	on	the	same	Game	World	at	the	same	time)	is	
low.	However,	as	soon	as	collision	probability	grows	(beyond,	say	single-digit	percents)	-	we	
will	start	getting	a	significant	performance	hit	(for	processing	the	same	incoming	message	
twice,	three	times,	and	so	on	and	so	forth).	For	slow-paced	asynchronous	games	it	is	quite	
unlikely	to	become	a	problem,	and	therefore	by	default	I'd	recommend	optimistic	locking	as	
a	starting	point	for	web-based	asynchronous	games,	but	you	still	need	to	understand	
limitations	of	the	technology	before	using	it.	
	
Pessimistic	Locking	
	
Pessimistic	locking	is	conceptually	very	close	to	a	classical	multi-threaded	mutex-based	
locking,	applied	to	our	"how	to	handle	two	concurrent	actions	from	two	different	Web	
Servers	over	the	same	"game	world"	problem.	Oh,	and	Web	mutex	can	be	implemented	on	
top	of	memached	CAS	pretty	much	the	same	way	critical	section	(or	userland	mutex)	is	
implemented	based	on	CPU	CAS	operation	–	and	there	are	libraries	out	there	which	do	it	for	
you	too.	
	

In	case	of	pessimistic	locking,	Game	World	State	(once	again,	usually	stored	as	a	whole	in	a	
blob)	is	protected	by	a	Web	mutex	(so	that	two	web	servers	cannot	access	it	concurrently).	
When	using	pessimistic	locking,	Web	Server	acts	as	follows:	

• obtains	lock	on	mutex,	associated	with	our	Game	World	(as	it	says	on	the	tin,	with	
Pessimistic	Locking	we're	pessimists	<sad-face	/>,	so	we	need	to	be	100%	sure	
before	processing,	that	we're	not	processing	in	vain).	

o if	mutex	cannot	be	obtained	-	Web	Server	MAY	try	again	after	waiting	a	bit	
• reads	Game	World	State	blob	
• processes	it	
• writes	Game	World	State	blob	
• releases	lock	on	mutex	

	
This	is	a	classical	mutex-based	schema	and	it	is	very	robust	when	applied	to	classical	multi-
thread	synchronization.	However,	when	applying	it	to	Web	Servers	and	memcached,	there	is	
a	pretty	bad	caveat	<sad-face	/>.		
	
Let’s	consider	the	following	scenario.	We	have	dozens	of	Web	Servers	(which	we	usually	
have),	and	each	is	operating	along	the	lines	outlined	above.	Everything	works	perfectly,	
unless	(more	precisely	–	until)	one	of	our	Web	Servers	(or	processes	running	there)	crashes	
after	obtaining	mutex	lock,	and	before	releasing	it	<sad-face	/>.	In	such	a	scenario,	all	future	
interactions	with	the	object	which	is	protected	by	such	a	mutex,	will	be	blocked	forever-and-
ever	<very-sad-face	/>.58	
	
For	practical	purposes,	such	a	problem	can	be	resolved	via	timeouts,	effectively	breaking	
the	lock	on	mutex	(so	that	if	original	mutex-owner	of	the	broken	mutex-lock	comes	later	to	
modify	the	object,	he	just	gets	an	error).	However,	allowing	to	break	mutex-locks	on	
timeouts,	in	turn,	has	significant	further	implications,	which	are	not	typical	for	usual	mutex-
based	inter-thread	synchronizations:	

• first,	if	we're	breaking	mutex	on	timeout	-	there	is	a	problem	of	choosing	the	
timeout.	Have	it	too	low,	and	we	can	end	up	with	fake	timeouts,	and	having	it	too	
high	will	cause	frustrated	users.	

• second,	our	Web	Server	MUST	NOT	send	any	replies	back	while	it	holds	the	lock	(it	
still	may	prepare	them,	but	they	should	be	delayed	until	later);	instead	–	it	should	
prepare	the	replies	and	hold	them	for	the	time	being.	Only	after	the	lock	is	released	
(more	strictly	–	after	the	last	write	is	successfully	completed),	Web	Server	is	allowed	
to	send	out	replies.	The	logic	here	is	pretty	much	the	same	as	for	optimistic	locking:	
until	we	know	for	sure	that	our	mutex	transaction	succeeded	–	we	cannot	let	any	
information	out,	as	it	still	MIGHT	change.	

• third,	we	need	to	handle	scenario	when	mutex-lock	just	got	broken	on	timeout	–	and	
then	that	server	who	previously	hold	the	lock,	comes	back	to	life	(for	example,	it	
didn’t	crash,	but	was	merely	affected	by	temporary	heavy	swapping).	To	deal	with	it,	
whenever	owner	of	the	broken	mutex-lock	comes	back,	our	mutex	need	to	detect	
such	mutex-lock-got-broken	cases	and	report	them	back	to	the	server-whose-lock-

																																																								
58		this,	BTW,	reminds	me	of	the	nasty	problems	from	the	early-90ish	pre-SQL	FoxPro-like	
file-lock-based	databases.	To	deal	with	these	Really	Bad	Problems™,	the	whole	concept	
needed	to	be	changed	from	file-lock-based	stuff	into	modern	DB	Servers.	

was-broken	as	an	error.	On	receiving	such	an	error	–	the	Web	Server	App	needs	to	
discard	all	the	prepared	replies,	and	to	retry	the	whole	thing	(obtaining	lock	–	
processing	–	releasing	lock	–	sending	replies).	

• fourth,	it	implies	that	we're	working	EXACTLY	according	to	the	pattern	above.	In	
particular:	

o having	more	than	one	memcached	object	per	Game	World	is	not	allowed	
o "partially	correct"	writes	of	Game	World	State	are	not	allowed	either,	even	if	

they're	intended	to	be	replaced	"very	soon"	under	the	same	lock	(while	this	
is	fine	with	usual	inter-thread	mutexes	where	locks	are	never	broken,	it	is	not	
acceptable	under	breakable-lock	paradigm).	

	
In	practice,	these	issues	are	certainly	solvable,	so	memcached	can	be	used	for	mutex-based	
pessimistic	locking.	On	the	other	hand,	as	for	memcached	we'd	need	to	simulate	mutex	over	
CAS,	I	still	suggest	using	optimistic	locking	(just	because	it	is	simpler	and	causes	less	
memcached	interactions)	–	at	least	as	a	first	implementation	until	collisions	grow	too	high.		
	

Caches	and	Transactions	
	
Classical	DB	transactions	are	extremely	useful,	but	dealing	with	concurrent	transactions	is	
really	messy.	All	those	transaction	isolation	levels	(with	interpretations	subtly	different	
across	different	databases),	locks,	and	deadlocks	are	not	a	thing	which	you	really	want	to	
think	about	while	developing	your	Game	Logic	(how	to	avoid	these	issues	for	databases	-	
will	be	discussed	in	Vol.	VI’s	chapter	on,	well,	Databases).	
	
However,	there	is	a	very	different	type	of	transactions	out	there,	it	is	cache-level	
transactions	(currently	the	only	implementation	of	such	transactions	I	know	about,	is	the	
one	by	Redis,	but	the	concept	is	not	restricted	to	Redis	for	sure).	
	
Redis	transactions	are	completely	unlike	classical	DB	transactions	and	are	coming	without	all	
the	burden	described	above.	In	fact,	Redis	transaction	is	merely	a	sequence	of	operations	
which	are	executed	atomically;	compared	to	memcached	CAS	–	it	provides	a	significantly	
wider	spectrum	of	the	potential	interactions.	On	the	other	hand,	I'd	rather	suggest	to	stay	
away	from	this	additional	complexity	as	long	as	possible,	using	Redis	transactions	only	as	
means	of	optimistic	locking	as	described	in	(Redis.CAS)	–	that	is,	until	you	realize	that	you	
DO	need	something	more	complicated	than	that.	
	
Examples	of	using	Redis	transactions	beyond	memcached-style	CAS,	include	such	things	as:	

• transactions	over	multiple	objects	using	optimistic	locking	and	cas-tokens.	
• Multiple-mutex	all-or-nothing	locks	(which	is	different	from	locking	several	mutexes	

in	sequence).	
o One	Big	Advantage™	of	such	atomic	multiple-mutex	locks	is	that	they	(unlike	

locking	of	several	mutexes	in	sequence)	are	inherently	immune	to	deadlocks	
(that	is,	IF	you	always	get	not	more	than	one	lock	at	a	time,	whether	it	is	a	
multiple-mutex	one	or	a	single-mutex	one).		

	

Handling	Timers	
	
In	addition	to	caches,	one	thing	which	is	not-that-obvious	for	Web-Based	Architectures,	is	
handling	timed	events.	As	HTTP	as	such	is	a	request-response	protocol	(and	even	if	we	take	
into	account	push	protocols	such	as	WebSockets,	Web	Servers	App	are	still	operating	only	
when	there	is	a	client	on	the	other	side)	–	events-happening-while-there-is-nobody-to-see-
them	can	be	a	nuisance.	In	this	regard,	there	are	two	general	approaches:	

• an	obvious	one.	Let’s	have	a	separate	entity	which	calls	timed	events.	In	the	simplest	
case,	it	can	be	something	like	cron,	but	usually	it	is	significantly	more	elaborated	for	
games	(with	timed	events	for	different	objects	written	to	the	database,	our	own	
daemon	reading	the	database	and	invoking	those	events	for	relevant	objects,	and	so	
on).	

• Apparently,	there	is	an	alternative	approach.	As	the	whole	problem	occurs	only	
when	there	is	nobody	there	to	see	the	result	–	we	can	ignore	all	the	timed	events	
while	there	is	nobody	to	see	them	–	and	to	recalculate	(and	reapply)	all	of	them	as	
soon	as	the	Game-World-where-the-event-should-have-happened,	is	accessed	(and	
at	this	point	–	we	DO	have	a	Web	Server	App	running).		

o If	your	Game	Worlds	are	deterministic	(as	discussed	in	Vol.	II’s	chapter	on	
(Re)Actors)	–	such	re-calculation	and	re-applying	of	the	events	can	be	done	
entirely	at	infrastructure	level	(i.e.	completely	transparently	for	your	Web	
Server	Apps),	and	becomes	trivial.	

o One	potential	caveat	on	this	way	is	that	if	your	CSRs	need	to	run	certain	
reports	–	this	approach	won’t	show	them	the	latest	greatest	data;	however	–	
from	what	I’ve	seen,	it	is	more	of	theoretical	concern	than	a	practical	one.	

	
Web-Based	Deployment	Architecture:	(Re)Actors	
	
Looking	at	the	title	of	this	section,	you	may	ask:	how	(Re)Actors	(which	we’ve	discussed	in	
Vol.	II’s	chapter	on	(Re)Actors	in	nauseating	detail,	and	which	are	usually	associated	with	
game	loops,	simulation	loops,	and	UI-driven	apps)	can	possibly	be	related	to	the	web-based	
Server-Side	stuff?	They	seem	to	be	different	as	night	and	day,	don't	they?	
	
Actually,	Web-Based	Apps	and	(Re)Actors	are	not	as	different	as	they	look	on	the	first	
glance.	In	particular,	if	we	take	a	look	at	both	optimistic	and	pessimistic	locking	above,	we’ll	
see	that	processing	our	Game	World	State	under	these	schemas	consists	of	three	steps:	(a)	
taking	the	whole	Game	World	State,	(b)	generating	new	Game	World	State	out	of	current	
one	based	on	some	input,	and	(c)	storing	this	new	Game	World	State.		
	
Also,	we	can	observe	that	out	of	these	3	steps	–	(a)	and	(c)	are	the	same	for	all	the	games	
involved,	and	it	is	only	step	(b)	which	has	some	substantial	app-specific	logic.		
	
Now,	a	flash	back	to	(Re)Actors	from	Vol.	II.	Even	a	very	cursory	look	at	it	will	show	that	step	
(b)	above	exactly	corresponds	to	our	(Re)Actor::react()	function;	moreover	–	steps	(a)	and	
(c)	can	be	seen	as	an	implementation	detail	of	our	Infrastructure	Code	(the	one	which	
supports	our	(Re)Actor	and	calls	(Re)Actor::react()).	Bingo!	If	we	have	a	proper	(Re)Actor	–	
we	can	easily	run	it	even	in	such	an	exotic	environment	as	within	a	Web-Based	Architecture	

(and	without	any	changes);	moreover	–	the	choice	between	Optimistic	Locking	and	
Pessimistic	one	becomes	a	deployment-time	choice	(and	can	be	made	without	any	changes	
to	the	Game	Logic	which	sits	within	(Re)Actor::react()).	This	comes	in	addition	to	an	option	
to	use	exactly	the	same	(Re)Actor	for	a	Classical	Deployment	Architecture.	
	
In	other	words,	even	for	a	Web-Based	Architecture,	we	can	(and	IMHO	often	SHOULD)	
implement	our	processing	in	an	event-driven	manner,	essentially	taking	current	Game	
World	State	and	incoming	events	as	inputs,	and	producing	resulting	Game	World	State	and	
issuing	replies	as	outputs.	
	
Note	that	even	in	this	case,	our	(Re)Actors,	in	spite	of	being	run	from	different	threads	(or	
even	on	different	computers),	will	still	have	a	monopoly	over	the	Game	World	State–	and	
therefore	can	still	be	seen	“as	if”	they’re	running	within	one	single	thread;	in	other	words	–	
we	still	do	NOT	need	any	inter-thread	synchronization	within	our	(Re)Actors.59	
	
Overall,	(Re)Actors	can	(and	SHOULD)	be	implemented	with	absolutely	no	knowledge	of	
implementation	details	of	the	surrounding	infrastructure.	And		
as	soon	as	we	have	such	an	infrastructure-agnostic	(Re)Actor	–	we	can	easily	
switch	not	only	between	pessimistic	and	optimistic	locking,	but	also	between	

Web-Based	Deployment	Architecture	and	a	Classical	One	–	all	without	
changing	a	single	line	of	our	(Re)Actor	code!60		

	
Such	an	ability	to	re-deploy	your	game	in	a	different	configuration	(without	rewriting	Game	
Logic)	tends	to	come	very	handy	in	large-scale	projects;	while	you’re	developing	your	game	
–	you	never	know	what	kind	of	issues	you	will	run	into	when	deploying	it,	and	when	you’re	
already	at	the	deployment	stage	–	you	don’t	have	an	option	to	rewrite	your	code.	So,	
keeping	your	options	wide	open,	as	a	rule	of	thumb,	qualifies	as	a	Really	Good	Idea™.	
	

Web	Deployment	Architecture:	Scaling	and	Load	Balancing	
	
From	the	point	of	view	of	Scalability	-	Web	Deployment	Architecture	shown	on	Fig	9.4,	
directly	corresponds	to	Stateless-Apps-plus-In-Memory-Cache	discussed	in	Chapter	8.	While	
it	is	also	possible	to	run	a	Web	Deployment	Architecture	as	Stateless-Apps	without	In-
Memory-Cache	–	as	discussed	in	Chapter	8,	it	is	rarely	a	good	idea	besides	scenarios	when	
we	both	need	Durability	and	don’t	care	about	latencies	(which	is	a	very	unusual	
combination	for	games).		
	
As	it	was	discussed	in	Chapter	8,	such	Stateless-Apps-plus-In-Memory-Cache	architectures	
are	not	too	difficult	to	scale.	In	particular,	as	each	request	is	handled	on	the	Web	Server	

																																																								
59	And	this,	as	it	was	discussed	at	length	in	Vol.	II,	is	a	major	advantage	for	writing	Game	
Logic	
60	BTW,	to	have	this	property	your	(Re)Actor	doesn’t	even	need	to	be	non-blocking	or	
deterministic	–	as	a	matter	of	fact,	strictly	speaking,	it	doesn’t	even	need	to	be	a	(Re)Actor	
<wink	/>,	though	(Re)Actor-style	interface	tends	to	simplify	such	infrastructure-agnostic	
coding	greatly	

where	it	comes	(and	the	requests	are	pretty	much	independent)	–	we	already	got	a	scaling	
which	is	very	close	to	linear	one.	Keep	in	mind	though	that	this	near-perfect	scalability	
stands	only	as	long	as	collisions	between	different	requests	(when	they’re	retrieving	the	
Game	World	State	from	Back-End	Cache)	are	almost	non-existent;	if	such	collisions	become	
frequent	–	you	may	need	to	give	up	Web	Deployment	Architecture	partially	or	completely,	
switching	into	a	“hybrid”	Web-Based+Classical	architecture	(briefly	discussed	in	[[TODO]]		
section	below)	or	into	“Classical”	Deployment	architecture.	Fortunately,	if	you	were	using	
(Re)Actors	for	your	development	–	such	migrations	can	be	done	without	rewriting	the	
whole	thing.		
	
As	for	scaling	database	for	Web-Based	Deployment	Architectures	–	it	is	also	not	that	much	
of	a	trouble;	the	key	here	is	that	if	we’re	using	that	write-back	Back-End	Cache	–	we’re	
reducing	DB	multiple-fold	(with	numbers	such	as	10x-100x	being	pretty	normal),	so	it	is	
usually	possible	to	avoid	dealing	with	scaling	for	a	while	(note,	however,	that	if	scaling	does	
rear	its	ugly	head	–	it	is	MUCH	simpler	to	implement	if	we	have	a	DB	Server	App,	as	
discussed	in	[[TODO]]	section	below).		
	
When	it	comes	to	the	Load	Balancing	–	it	also	tends	to	be	very	simple	for	Web	Deployment	
Architecture.	As	we	do	NOT	bind	Game	World	state	to	a	single	core/thread/server	box/…	
(and	instead	just	pull	Game	World	state	wherever	the	request	comes	in)	–	Web	Deployment	
Architecture	described	above	scales	pretty	much	as	any	other	web	application	(and	can	be	
Load	Balanced	in	a	pretty	much	the	same	manner	too).	In	terms	we’ve	defined	in	Chapter	8	
section	above	–	Web	Deployment	Architecture	requires	only	Clients-to-Servers	Load	
Balancing	(and	doesn’t	need	Worlds-to-Servers	Load	Balancing).	
	
On	the	other	hand,	for	the	purposes	of	Clients-to-Servers	Load	Balancing	in	the	context	of	
Web	Deployment	Architecture	–	we’re	not	really	restricted	to	usual	Server-Side	Load	
Balancer	Appliances	(neither	to	DNS	Round-Robin,	phew).	Rather	–	we	have	an	option	to	
use	any	of	the	Client	Load	Balancing	methods	discussed	in	Chapter	8;	this	includes	my	
personal	favorite	“Client-Side	Random	Balancing”.	
	

On	Specific	Web	Servers	
	
As	we’re	speaking	about	web	servers,	we	should	answer	the	question	of	“which	web	server	
is	better	for	our	purposes?”,	with	a	potential	to	run	into	a	deathly	debate	of	Apache-vs-
nginx-vs-lighttpd.	However,	I	don’t	want	to	risk	entering	such	a	risky	waters,	and	instead	will	
just	say	that		
if	you’ve	implemented	your	game	properly61	–	then	most	likely,	choice	of	

specific	web	server	doesn’t	matter	too	much	
	
There	is,	however,	one	potential	exception	in	this	regard.	There	exists	an	interesting	and	
not-so-well-known	web	server,	which	took	an	extra	mile	to	improve	communications	in	
game-like	environments.	I'm	speaking	about	Lightstreamer	((Lightstreamer)).	I	didn't	try	it	
myself,	so	I	cannot	really	vouch	for	it,	but	what	they're	doing	with	regards	to	improving	

																																																								
61	=”as	described	above”	<wink	/>	

interactivity	over	TCP,	is	really	interesting	(we've	already	discussed	some	of	their	tricks	in	
Vol.	I’s	chapter	on	Communications).	As	usual,	YMMV	(and	keep	in	mind	that	if	you’re	using	
their	specific	latency-oriented	features,	you’ll	become	Locked-In	to	them),	but	IMO	it	is	
certainly	worth	considering.	
	
Other	than	that	–	to	run	your	game	processing	code,	feel	free	to	choose	Apache,	or	nginx,	or	
lighttpd,	and	it	is	rather	unlikely	that	you	will	see	much	difference	for	handling	your	game	
traffic	(mostly	because	most	of	the	work	will	be	done	in	your	processing	code	anyway).	
However,	when	serving	static	data	–	things	are	different,	and	usually	nginx	or	lighttpd	come	
out	comfortably	on	top	for	serving	static	pages/images/etc.62	
	

Enter	DB	Server	App	
	
Up	to	now,	we	discussed	“traditional”	Web-Based	Deployment	model	shown	on	Fig	9.4.	As	
discussed	above	–	it	might	work	(and	has	been	seen	working	in	practice)	–	but	IMNSHO,	it	
has	one	significant	weak	point:	it	is	that	those	request	handlers	which	run	on	Web	Servers,	
are	running	SQL	directly.	This,	in	turn,	means	that	our	Web	Server	Apps	(those	handling	
HTTP	requests)	become	tightly	coupled	to	database	(and	to	its	structure).	
	
From	what	I	seen,	this	approach	(which	corresponds	to	20-years-old	client-server	
architecture)	very	severely	limits	our	options	for	optimizing/scaling	DB	side	later,	when	we	
reach	decent	amounts	of	players	(as	it	was	mentioned	in	Chapter	8,	very	roughly	–	hundreds	
of	thousands	of	simultaneous	players	is	a	point	when	it	will	likely	become	necessary).	Even	
earlier	we’re	likely	to	observe	that	such	a	tight	coupling	tends	to	have	shared	responsibility	
for	our	database	to	performing	well	–	and	with	“everybody”	responsible	for	DB	
performance,	it	almost-universally	leads	to	nobody	being	responsible	for	it	<sad-face	/>,	so	
your	DB	is	likely	to	choke	(forcing	you	to	undertake	severe	scalability/optimization	efforts)	
much	earlier	than	necessary.	
	
To	avoid	this	kind	of	problems	(and	to	ensure	proper	decoupling	from	the	very	beginning)	–	
I	am	advocating	for	a	separate	DB	Server	App,	which	is	responsible	for	taking	incoming	
requests	over	DB	Server	API	(which	MUST	be	expressed	in	terms	of	game	logic,	without	any	
SQL),	and	performing	all	the	manipulations	with	DB	(this	includes	converting	requests	into	
SQL	or	NoSQL	requests,	issuing	transactions	etc.	etc.),	as	shown	in	Fig	9.5:	

																																																								
62	BTW,	both	nginx	and	lighttpd	use	event-driven	processing	model	which	is	actually	the	
same	as	(Re)Actors	–	the	model	which	I’m	trying	to	push	ahead	throughout	this	book.	
Moreover,	performance-related	advantages	of	our	(Re)Actors	over	massively	multithreaded	
stuff	are	of	the	same	nature	as	the	advantage	which	nginx/lighttpd	holds	over	Apache.	

	
	
	
	As	we’ll	see	in	[[TODO]]	section	below,	such	a	separated	DB	Server	App	provides	many	
advantages,	including,	but	not	limited	to	such	things	as	ability	to	change	DB	structure	(use	
of	caches,	even	switch	some	parts	from	SQL	to	NoSQL	and	vice	versa)	completely	
transparently	for	Web	Servers,	better	separation	of	concerns,	better	specialization	of	the	
teams	(Web	Server	App	team	doesn’t	need	to	care	about	SQL,	and	DB	Team	can	take	full	
responsibility	for	the	DB),	and	so	on.		
	
If	DB	Server	App	ever	becomes	a	bottleneck	–	it	can	be	changed	to	behave	as	a	simple	
“proxy”	for	incoming	requests,	which	simply	forwards	requests	to	“real”	DB	Server	Apps	
sitting	behind	it;	as	such	a	“proxy”	DB	Server	App	can	be	made	to	handle	at	least	100K	
requests/second63,	overloading	it	becomes	quite	difficult	to	put	it	mildly.	
	
One	further	elaboration	occurs	when	we	want	to	simulate	In-Memory	States	for	Web-Based	
Architectures	(which	is	consistent	to	the	Optimistic/Pessimistic	Locking	schemas	discussed	
above).	In	many	of	such	cases	–	storage	of	the	Game	State	is	not	really	related	to	our	main	
database,	but	rather	acts	as	a	temporary	and	separated	storage,	as	shown	on	Fig	9.6:	

																																																								
63	taking	typical	load	curves,	it	roughly	corresponds	to	1500	billion(!)	transactions/year,	
which	is	very	well	beyond	anything	I	ever	heard	of	(except,	maybe,	for	a	post-2007	
NASDAQ)	

	
	
As	we	can	see,	in	this	case	–	we	don’t	really	need	to	store	all	the	temporary	Game	World	
States	in	our	main	DB,	but	instead	can	delegate	this	very	limited	and	very-well	defined	task	
to	a	completely	separate	path,	so	it	doesn’t	interfere	with	main	DB	(and	sharding	game	
states	is	trivial	by	design).		
	

Web-Based	Deployment	Architecture:	Merits	
	
Phew,	we’ve	spent	quite	a	bit	of	time	discussing	the	Web-Based	Deployment	Architecture,	
so	now	we	need	a	short	summary	of	its	pros	and	cons.	
	
First	of	all,	unlike	the	naïve	approach	above,	Web-Based	systems	may	work	(for	relatively	
slow-paced	games,	that	is).	Their	obvious	advantage	(especially	if	you	have	a	bunch	of	
experienced	web	developers	on	your	team)	is	that	it	uses	familiar	and	readily-available	
technologies.	Other	benefits	are	also	available,	such	as:	

• easy-to-find	developers	
• simplicity	and	being	relatively	obvious	(that	is,	until	you	need	to	deal	with	locks,	see	

above)	
• web	servers	are	stateless	(except	for	caching,	see	above),	so	failure	analysis	is	trivial:	

if	one	of	your	web	servers	goes	down,	it	can	be	simply	replaced	
• can	be	easily	used	both	for	the	games	with	downloadable	client	and	for	browser-

based	ones	
	
Web-Based	Architecture64,	of	course,	also	has	downsides,	though	they	may	or	may	not	
matter	depending	on	your	game	(and	also	note	that	quite	a	few	of	these	downsides	do	not	
apply	if	you’re	using	(Re)Actors	as	I	advocate	above):	

• Unless	you’re	doing	it	(Re)Actor	way	(see	above),	there	is	no	way	out	of	web-based	
architecture;	once	you're	in	-	switching	to	any	other	one	will	be	impossible.	Might	be	
not	that	important	for	you,	but	keep	it	in	mind.	NB:	this	downside	is	NOT	applicable	

																																																								
64		as	well	as	any	other	one	for	that	matter	

if	your	Web	Server	App	is	(Re)Actor-Based	(because	you	can	re-use	exactly	the	same	
(Re)Actors	for	Classical	Deployment	Architecture)	

• it	is	pretty	much	HTTP-only	(with	an	option	to	use	Websockets);	migration	to	plain	
TCP/UDP	is	generally	rather	complicated	(that	is,	unless	you’re	(Re)Actor-Based	from	
the	very	beginning).	NB:	it	is	NOT	that	much	of	a	problem	if	your	Web	Server	App	is	
(Re)Actor-Based	for	the	same	reason	as	above;	while	migration	to	a	different	
protocol	MAY	require	changes	in	marshalling	–	they’re	usually	not	as	drastic	as	
“rewriting	the	whole	thing”	

• as	the	number	of	interactions	between	players	and	Game	World	grows,	Web-Based	
Architecture	becomes	less	and	less	efficient	(as	neither	optimistic	locking,	nor	
distributed-mutex-locked	accesses	to	retrieve	whole	Game	World	State	from	the	
back-end	cache	and	write	it	back	as	a	whole,	scales	well).	Even	medium-paced	
"synchronous"	games	such	as	casino	multi-players,	are	usually	not	good	candidates	
for	Web-Based	Architecture.	NB:	if	(Re)Actor-based	approach	is	used,	this	can	be	
addressed	by	migrating	your	game	to	Classical	Deployment	Architecture	when/if	the	
need	arises.	

• you	need	to	remember	to	keep	all	the	accesses	to	any	shared	states	synchronized;	if	
you	miss	one	-	it	will	work	for	a	while,	but	will	cause	very	strange-looking	bugs	under	
heavier	load.	NB:	in	(Re)Actor-based	approach,	it	can	be	implemented	within	
“infrastructure	code”	and	outside	your	Game	Logic,	ensuring	consistency.	

• you'll	need	to	spend	A	LOT	of	time	meditating	over	your	caching	strategy.	As	the	
number	of	player	grows,	you're	very	likely	to	need	a	LOT	of	caching,	so	start	
designing	your	caching	strategies	ASAP.	See	above	about	peculiarities	of	caching	
when	applied	to	games	(especially	on	locking),	and	make	your	own	research.	

	
In	spite	of	these	issues,		
	
if	your	game	is	relatively	slow/asynchronous	and	inter-player	interactions	

are	simple	and	rather	infrequent,	Web-Based	Architecture	may	be	the	way	to	
go	

	
This	is	especially	true	if	you’re	using	(Re)Actors	to	implement	your	Web-Based	stuff;	in	
particular,	using	(Re)Actors	often	allows	to	postpone	making	decision	on	“what	we’ll	use	–	
Web-Based	Deployment	or	Classical	one”	–	until	you	know	your	actual	requirements	much	
better.	
	
While	Classical	Architecture	described	below	can	also	be	used	for	slower-paced	games,	
implementing	it	yourself	just	for	this	purpose	is	a	Really	Big	Headache™	and	might	be	easily	
not	worth	the	trouble	if	you	can	get	away	with	Web-Based	one.	On	the	other	hand,	
	
even	for	medium-paced	synchronous	multi-player	games	(such	as	casino-like	
multi-player	games)	Web-Based	Architecture	is	usually	not	a	good	candidate	
	
For	medium-paced	synchronous	kind	of	games,	usually	the	costs	of	keeping	stuff	in	a	single	
cache	and	transferring	it	back	and	forth	between	Back-End	Cache	servers	and	Web	Servers,	

ends	up	to	be	higher	than	costs	of	just	keeping	our	state	in-memory.	And	the	faster	the	
game	–	the	higher	the	cost	of	Web-Based	Architecture	grows	<sad-face	/>.	
	
Which	leads	us	to	what	I	call	“Classical	Game	Deployment	Architecture”.	
	

Classical	Game	Deployment	Architecture	
	
Fig	9.7	shows	the	way	how	most	of	the	faster-paced	games	are	deployed	these	days.	Let’s	
name	it	a	“Classical	Game	Deployment”	diagram.	

	
	
In	Classical	Deployment	Architecture,	Clients	are	connected	to	Game	Servers	directly,	and	
Game	Servers	are	connected	to	a	single	DB,	which	hosts	system-wide	persistent	state.	Each	
of	Game	Servers	MIGHT	(or	might	not)	have	its	own	database	(or	other	persistent	storage)	
depending	on	the	needs	of	your	specific	game;	however,	usually	Game	Servers	store	only	In-
Memory	States	with	all	the	persistent	storage	going	into	a	single	database.	
	

Game	Servers	
	
Game	Servers	are	traditionally	divided	according	to	their	functionality,	and	while	you	can	
combine	different	types	of	functionality	on	the	same	box,	there	are	often	good	reasons	to	
avoid	combining	too	many	different	things	together.	
	

Usually,	different	types	of	Game	Servers	(more	strictly	–	different	types	of	functionality	
hosted	on	Game	Servers)	should	correspond	to	the	entities	on	your	Entities&Relationships	
Diagram	described	in	Vol.	I’s	chapter	on	GDD.	As	game	entities	vary	from	one	game	to	
another	one	–	so	do	Game	Servers.	As	an	example,	let’s	take	a	look	at	a	few	of	typical	Game	
Servers	which	roughly	correspond	to	some	of	the	game	entities	we’ve	discussed	in	Vol.	I’s	
chapter	on	GDD	(while	as	always,	YMMV,	these	ones	are	likely	to	be	present	for	quite	a	few	
games):	

• Game	World	Servers.	Your	game	worlds	are	running	on	Game	World	Servers,	plain	
and	simple.	Note	that	“Game	World”	here	doesn’t	necessarily	mean	a	“3D	game	
world	with	simulated	physics	etc.”.	Taking	a	page	from	a	casino-like	games	book,	
“Game	World”	can	be	a	casino	table;	going	even	further	into	realm	of	stock	
exchanges,	“Game	World”	may	be	a	stock	exchange	floor.	Surprisingly,	from	a	
50’000-feet	architectural	point	of	view,	all	these	seemingly	different	things	are	very	
similar.	All	of	them	represent	a	certain	State	(we	usually	
name	it	Game	World	State)	which	is	affected	by	player’s	
actions	in	real	time,	and	changes	to	this	Game	World	
State	are	shown	to	all	the	players.65	

o One	potential	type	of	Game	Servers	which	is	
closely	related	to	Game	World	Servers,	is	AI	
Servers.	As	a	rule	of	thumb	(noted	in	Vol.	I’s	
chapter	on	Communications),	if	your	game	has	
non-trivial	AI,	it	is	better	to	separate	AI	into	
separate	processes/threads/(Re)Actors;	it	will	
allow	to	keep	things	clean	(and	allow	to	split	
load	to	different	boxes	more	easily).	In	case	of	
AI	processes	–	they	can	run	on	the	same	server	
boxes	as	Game	World	Servers	–	or	on	different	
ones,	becoming	AI	Servers.	

• Matchmaking	Servers.	Usually,	when	a	player	launches	her	Client	app,	the	Client	by	
default	connects	to	one	of	Matchmaking	Servers.	In	general,	Matchmaking	Servers	
are	responsible	for	assigning	players	to	one	of	your	multiple	Game	Worlds.	In	
practice,	Matchmaking	Servers	can	be	pretty	much	anything:	from	lobbies	where	
players	can	join	teams	or	select	Game	Worlds,	to	completely	automated	
matchmaking	(LoL-style	or	something).	Usually	it	is	Matchmaking	Servers	that	are	
responsible	for	creating	new	Game	Worlds,	and	placing	them	on	the	physical	boxes	
(and	sometimes	even	creating	new	server	instances	in	cloud	environments).	

																																																								
65	restrictions	may	apply	to	which	parts	of	the	state	are	shown	to	which	players.	One	such	
example	is	a	Server-Side	fog-of-war	(and	more	generally	–	all	kinds	of	Interest	
Management),	as	it	was	discussed	in	Vol.	I’s	chapter	on	Communications	

	
Usually,	when	a	player	
launches	her	client	app,	
the	Client	by	default	
connects	to	one	of	
Matchmaking	Servers.	

• Tournament	Servers.	Not	always,	but	quite	often	your	game	will	include	certain	
types	of	“tournaments”,	which	can	be	defined	as	game-related	entities	that	have	
their	own	life	span	and	may	create	multiple	Game	World	instances	during	this	life	
span.	Technically,	these	are	usually	reminiscent	of	Matchmaking	Servers	(they	need	
to	communicate	with	players,	they	need	to	create	
Game	Worlds,	they	tend	to	use	about	the	same	
generic	protocol	synchronization	mechanics,	and	so	
on),	but	of	course,	Tournament	Servers	need	to	
implement	tournament	rules	of	the	specific	
tournament	etc.	etc.	

• Payment	Server	and	Social	Gateway	Server.	These	
are	necessary	to	provide	interaction	of	your	game	
with	the	real	world.	While	these	servers	might	look	
an	“optional	thing	nobody	should	care	about”,	
they’re	usually	playing	an	all-important	role	in	
increasing	popularity	of	your	game	and	
monetization,	so	you’d	better	to	account	for	them	
from	the	very	beginning.	

o As	noted	above,	the	very	nature	of	Payment	
Servers	and	Social	Gateway	Server	is	to	be	
“gateways	to	the	real	world”,	so	they’re	usually	exactly	what	is	written	on	the	
tin:	gateways.	It	means	that	their	primary	function	is	usually	to	get	some	kind	
of	input	from	the	player	and/or	other	Game	Servers,	write	something	to	DB	
(via	DB	Server	–	or	they	can	have	their	own	DB),	and	make	some	request	
according	to	some-external-protocol	(defined	by	payment	provider	or	by	
social	network).	On	the	other	hand,	implementing	them	when	you	need	to	
support	multiple	payment/social	providers	(each	with	their	own	peculiarities,	
you	can	count	on	it)	–	is	quite	a	challenge;	also	they	tend	to	change	a	lot	due	
to	requirements	coming	from	business	and	marketing,	changes	in	provider’s	
APIs,	need	to	support	new	providers	etc.	And	of	course,	at	least	for	Payment	
Servers,	there	are	questions	of	distributed	transactions	between	your	DB	and	
payment-provider	DB,	with	all	the	associated	issues	of	recovery	from	
“unknown-state”	transactions,	and	semi-manual	reconciliation	of	reports	at	
the	end	of	month.	As	a	result,	these	two	seemingly	irrelevant-to-gameplay	
servers	tend	to	have	their	own	teams	after	deployment;	more	details	on	
Payment	Servers	will	be	discussed	in	Vol.	VI’s	chapter	on	Payment	Processing.	

o One	of	the	things	these	servers	should	do,	is	isolating	Game	World	Servers	
and	preferably	Matchmaking	Servers	from	the	intimate	details	about	
specifics	of	the	payment	providers	and	social	networks.	In	other	words,	Game	
World	Servers	shouldn’t	generally	know	about	such	things	as	“a	guy	has	
made	a	post	of	Facebook,	so	we	need	to	give	him	bonus	of	25%	extra	
experience	for	2	days”.	Instead,	this	functionality	should	be	split	in	two:	
Social	Gateway	Server	should	say	“this	guy	has	earned	bonus	X”	(with	an	
explanation	in	DB	why	he’s	got	the	bonus,	for	audit	purposes),	and	Game	
World	Server	should	take	“this	guy	has	bonus	X”	statement	and	translate	it	
into	25%	extra	experience	(without	any	knowledge	of	how	the	bonus	was	
earned).	

	
Payment	Server	and	
Social	Gateway	Server	
are	necessary	to	
provide	interaction	of	
your	game	with	the	real	
world.	

	
We	need	to	note	that	while	in	Classical	Deployment	Architecture,	different	Game	Servers	
are	usually	meant	as	“server	boxes”	–	it	is	neither	an	exact	requirement,	nor	a	universal	
rule.	I’ve	seen	very	different	mix-n-match	configurations	of	different	Game	Servers	
distributed	over	available	server	boxes;	what	we	should	aim	for	when	developing	our	
software	–	is	to	allow	different	deployment	configurations	without	changing	code.	In	
particular,	we	SHOULD	NOT	write	software	which	assumes	that	two	different	Game	Servers	
run	on	the	same	box	–	and	neither	we	should	write	software	which	assumes	that	two	
different	Game	Servers	run	on	different	boxes.	These	things	should	be	deployment-time	
decisions,	not	development-time	ones.	
		

Implementing	Game	Servers	under	(Re)Actor-fest	architecture	
	
In	general,	Game	Servers	can	be	implemented	in	whatever	way	you	prefer.	In	practice,	
however,	I	strongly	suggest	to	have	at	least	Game	Logic	implemented	under	(Re)Actor-fest	
model	described	in	Vol.	II’s	chapter	on	(Re)Actors.	Among	the	other	things,	(Re)Actors:	

• provide	very	clean	separation	between	different	modules	
• enable	replay-based	debug	and	production	post-factum	analysis	
• allow	for	different	deployment	scenarios	without	changing	the	(Re)Actor	code	(this	

one	becomes	really	important	for	the	Server	Side),	and	
• completely	avoids	all	those	pesky	inter-thread	synchronization	problems	at	logical	

level	
• for	further	discussion	of	(Re)Actor	benefits	–	see	Vol.	II.	

	
Before	delving	into	a	more	detailed	discussion	of	(Re)Actor-fest	architecture,	let’s	recap	
some	basic	points	from	Vol.	II:	

• under	(Re)Actor-fest	paradigm,	all	the	logic	(such	as	Game	Logic)	resides	in	
(Re)Actors.	

o Each	(Re)Actor	is	just	an	event-processing	machine,	with	Reactor::react()	
function	taking	and	processing	incoming	events	

o (Re)Actors	do	NOT	deal	with	thread	sync	–	and	all	calls	to	Reactor::react()	
function	are	serialized	

o I	am	arguing	for	having	(logic)	(Re)Actors:	
§ deterministic	(at	least	exhibiting	Same-Executable	Determinism	as	

defined	in	Vol.	II)	
§ mostly-non-blocking	(i.e.	non-blocking	to	a	reasonable	extent,	see	Vol.	

II’s	chapter	on	(Re)Actors	for	further	discussion).	At	least	–	all	
communications	over	the	Internet	MUST	be	non-blocking.	While	
communications	over	LAN	SHOULD	be	non-blocking,	and	disk/DB	
accesses	MAY	be	kept	blocking	in	certain	cases	(in	particular,	when	
we	cannot	do	anything	useful	while	waiting	for	reply,	anyway).	

• Besides	(Re)Actors,	there	is	so-called	Infrastructure	Code.	Very	simply,	it	is	a	thing	
which	feeds	incoming	events	to	Reactor::react()	function	of	our	(Re)Actors	–	and	
provides	facilities	to	communicate	with	the	outside	world	(to	send	replies	and	other	
messages,	to	write	to	DB,	etc.	etc.).	

o One	of	the	major	benefits	of	(Re)Actors	is	that	the	same	(Re)Actor	can	work	
with	any	valid	infrastructure	code;	for	example	–	exactly	the	same	Game	
Logic	(Re)Actor	can	work	either	under	Web	Deployment	Architecture	–	and	
under	Classical	Deployment	Architecture	(and	without	(Re)Actor	noticing	any	
difference	too).	

	
Minimal	(Re)Actor-fest	
	
As	noted	above,	when	implementing	Game	Servers	via	(Re)Actor-fest	architecture,	we	
should	at	least	implement	Game	Logic	(such	as	Game	World	Logic)	within	(Re)Actors:	
	

	
[[TODO/fig:	VII.6	->	9.8;	rename	Reactor->(Re)Actor]]	
	
With	a	“minimal”	(Re)Actor-fest	architecture	shown	on	Fig	9.8,	we	do	not	specify	how	to	
implement	that	Infrastructure	Code	which	feeds	events	to	our	Logic	(Re)Actors.	In	this	
regard,	there	are	many	options;	in	some	cases,	infrastructure	code	can	be	(Re)Actor-based	
(as	discussed	in	[[TODO]]	section	below),	but	in	some	examples	–	it	can	be	multi-threaded,	
using	classical	mutexes	etc.	etc.	for	inter-thread	synchronization	(that	is,	as	long	as	mutexes	
and	threads	are	used	for	Infrastructure	Code	only,	and	we’re	NOT	allowing	to	use	mutexes	
and	other	thread	sync	mechanisms	from	within	(Re)Actors).		
	
While	personally	I	don’t	like	multi-threaded	code	in	Infrastructure	Code	either	–	still,	I	have	
to	admit	that	

Infrastructure	Code	is	very	much	an	implementation	detail,	and	how	to	
implement	it	-	is	orders	of	magnitude	less	important	than	having	your	Game	

Server	Logic	implemented	as	a	(Re)Actor.	

	
In	other	words,	as	soon	as	you	made	your	Game	Server	Logic	a	(Re)Actor	–	everything	else	is	
not	that	important;	after	all,	you	can	rewrite	all	your	Infrastructure	Code	without	rewriting	
the	Game	Server	Logic	quite	easily.		
	
What	is	also	important,	is	that	even	with	“Minimal”	(Re)Actor-fest	architecture,	we	will	be	
able	to	get	ALL	the	benefits	from	our	(Re)Actors	(that	is,	with	respect	to	the	logic	within	
(Re)Actors,	but	most	of	the	time	it	is	this	logic	which	changes	frequently	and	requires	lots	of	
maintenance);	in	particular,	as	long	as	your	Game	Logic	is	a	(Re)Actor	–	you	can	use	
production	post-factum	analysis,	and	can	run	replay-based	regression	tests.		
	
Now	let’s	consider	those	two	all-important	(Re)Actors	which	are	present	on	the	diagram	on	
Fig	9.8.	
	
Logic	(Re)Actor	
	
The	core	of	the	game	itself	is	Logic	(Re)Actors.	Specifics	of	those	Logic	(Re)Actors	are	
different	for	different	Game	Servers	you	have,	and	can	vary	from	“Game	World	(Re)Actor”	
to	“Payment	Processing	(Re)Actor”,	with	anything-else-you-need	in	between.		
	
It	is	worth	noting	that	while	for	most	Logic	(Re)Actors	you	won’t	need	any	communications	
with	the	outside	world	except	for	sending/receiving	messages	(as	shown	on	the	diagram),	
there	may	be	gateway-style	(Re)Actors	(such	as	Payment	(Re)Actor	or	Social	Gateway	
(Re)Actor)	where	you	will	need	some	kind	of	external	API	(most	of	the	time	they	go	over	
outgoing	HTTP,	though	I’ve	seen	quite	strange	things,	all	the	way	up	to	X.25-over-IP).	
	
(Re)Actors	using	External	Blocking	APIs	
	
These	external	APIs,	when	present,	don’t	change	the	nature	of	those	gateway-style	
(Re)Actors	too	much,	and	you	will	still	have	all	the	(Re)Actor	goodies	(as	long	as	you	“wrap”	
all	the	calls	to	that	external	API,	see	Vol.	II’s	chapter	on	(Re)Actors	for	details).	On	the	other	
hand,	depending	on	the	specific	libraries	you’re	using	for	these	external	interfaces,	you	
might	need	to	deviate	from	purely	non-blocking	(Re)Actors	(while	you	still	SHOULD	aim	for	
making	them	entirely	deterministic);	for	gateway-style	(Re)Actors	blocking	calls	are	usually	
ok,	as	long	as:	

• you	have	a	dedicated	thread	(either	created	on-demand,	or	used	from	the	thread	
pool)	for	each	instance	of	your	non-blocking	(Re)Actor.	While	you	CAN	run	multiple	
instances	of	purely-non-blocking	(Re)Actors	within	the	same	thread	–	gateway	
(Re)Actors	are	usually	blocking,	so	you	don’t	really	have	this	luxury	anymore	<sad-
face	/>	

• you	keep	the	number	of	such	(Re)Actors	which	can	run	simultaneously	(and	
therefore	–	the	number	of	threads),	low.	Overall,	only	a	very	few	systems	I’ve	seen,	
required	more	than	one	gateway	(Re)Actor	per	payment	provider,	and	all	the	
systems	were	fine	with	a	total	of	a-few-dozens	of	separate	gateway	(Re)Actors	per	
social	system	you’re	interacting	with,	but	as	with	anything	else,	YMMV.		

o If	you	cannot	handle	all	the	requests	to	a	certain	gateway	within	one	
(Re)Actor	–	make	sure	to	simply	use	multiple	(Re)Actors	for	the	job	(usually	–	

it	will	be	one	“proxy”	(Re)Actor	dispatching	requests	to	“worker”	(Re)Actors,	
it	is	indeed	this	simple)	

	
Logic	Factory	
	
In	addition	to	obvious	Logic	(Re)Actors,	on	Fig	9.8	we	can	also	see	a	Logic	Factory	(Re)Actor.	
It	is	necessary	to	create	new	instances	of	Logic	(Re)Actors	(and	if	necessary,	new	threads	or	
even	processes)	when	demand	for	them	arises.		
	
For	example,	when	our	Matchmaking	Server	needs	to	create	a	new	Game	World	on	server	

X,	it	sends	a	request	(such	as	a	message	or	a	non-blocking	RPC	
call)	to	the	Logic	Factory	(Re)Actor	which	resides	on	the	server	
X,	and	this	Logic	Factory	(Re)Actor	creates	a	Game	World	
(Re)Actor	with	requested	parameters.		
	
Deployment-wise,	usually	there	is	only	one	instance	of	the	
Game	Logic	Factory	per	physical	(or	virtual)	server,	but	
technically	there	is	no	such	strict	requirement.	
	
Full-Scale	(Re)Actor-fest	
	
As	discussed	above	–	the	only	thing	which	really	matters,	is	to	
have	your	Game	Logic	implemented	as	(Re)Actors.	On	the	other	
hand,	if	you	want	to	be	completely	faithful	to	the	idea	of	
(Re)Actors66	–	you	can	implement	your	Infrastructure	Code	as	
(Re)Actors	too,	as	outlined	below.		
	
With	such	a	Full-Scale	(Re)Actor-fest,	you’ll	be	able	to	get	all	the	
(Re)Actor-related	goodies	(this	includes	replay	testing,	
production	post-mortem	etc.)	not	only	for	Logic	(Re)Actors,	but	
also	for	all	your	(Re)Actors	which	implement	infrastructure	

code.	In	certain	cases,	you	might	need	some	(hopefully	minor)	deviations	from	pure	
(Re)Actors	for	your	infrastructure	code	–	and	it	is	ok,	as	long	as	your	Game	Logic	is	
separated	from	your	infrastructure	code	by	an	extremely	clean	and	very	straightforward	
(Re)Actor	APIs.		
	
The	following	Fig	9.9	shows	a	(much	more	detailed)	diagram	with	an	implementation	of	the	
whole	generic	Game	Server	under	(Re)Actor-fest	model	(this	includes	Infrastructure	Code	
implemented	as	(Re)Actors):	
	

																																																								
66	as	I	am	usually	want	-	guilty	as	charged	<wink	/>	

	
When	our	
Matchmaking	server	
needs	to	create	a	new	
game	world	on	server	
X,	it	sends	a	request	to	
the	Logic	Factory	
(Re)Actor	which	resides	
on	the	server	X,	and	
Logic	Factory	(Re)Actor	
creates	a	Game	World	
(Re)Actor	with	
requested	parameters.	

	
[[TODO/fig:	VII.7	->	9.9,	all	Reactor->(Re)Actor]]	
	
If	it	looks	complicated	at	the	first	glance	–	well,	it	should;	task	of	creating	scalable	servers	is	
never	simple.	That	being	said,	let’s	note	that	the	diagram	represents	quite	a	generic	case,	
and	for	your	specific	game	you	may	not	need	all	of	that	stuff	–	at	least	for	first	stages	of	
deployment;	we’ll	briefly	discuss	a	way	to	start	development	without	the	need	to	
implement	all	of	these	(Re)Actors,	in	the	Starting	Small	section	below.	
	
Now	let’s	take	a	closer	look	at	those	(Re)Actors	which	were	added	to	the	diagram	on	Fig	9.9	
(compared	to	Fig.	9.8).	As	it	is	shown	on	Fig	9.9	-	it	is	just	TCP-related	(Re)Actors	and	UDP-
related	ones	which	were	added;	however,	pretty	much	any	protocol	can	be	handled	in	a	
manner	similar	to	one	of	these	two	protocols,	see,	for	example,	“Websocket-related	
(Re)Actors	and	HTTP-related	(Re)Actors	(not	shown)”	section	below.	
	
TCP	Sockets	(Re)Actors	and	TCP	Accept	(Re)Actor	
	

In	Fig.	9.9,	TCP-related	stuff	is	represented	by	TCP	Socket	(Re)Actors/Threads	and	Accept	
(Re)Actor(s)/Thread(s).67	Here	the	things	are	relatively	simple:	we	have	classical	accept()	
thread,	that	listens	on	the	socket,	accepts	incoming	sockets,	and	passes	them	to	TCP	Socket	
Threads	(creating	TCP	Socket	Threads	as	it	becomes	necessary).	
	
We’ll	discuss	specifics	of	working	with	TCP	sockets	in	Vol.	IV’s	chapter	on	Network	
Programming;	the	only	really	important	thing	to	be	mentioned	here	is	that	each	TCP	Socket	
Thread68	SHOULD	normally	handle	more	than	one	TCP	socket	–	and	to	do	it,	sockets	MUST	
be	in	non-blocking	mode.	Usually	number	of	TCP	sockets	per	thread	for	a	typical	game	
server	should	be	somewhere	between	16	and	128	(or	“somewhere	between	10	and	100”	if	
you	prefer	decimal	notation	to	hex).	On	Windows,	if	you’re	using	
WaitForMultipleObjects(),69	you’re	likely	to	hit	the	wall	at	around	30	sockets	per	thread	(see	
also	discussion	in	Vol.	IV),	and	this	has	been	observed	to	work	perfectly	fine.	Having	one	
thread	(even	worse	–	two,	one	for	recv()	and	another	one	for	send())	per	socket	on	the	
Server-Side	is	generally	not	advisable,	as	threads	have	substantial	associated	overhead	
(both	in	terms	of	resources,	and	in	terms	of	thread	context	switches).	In	theory,	multiple	
sockets	per	thread	may	cause	additional	latencies	and	jitter,	but	in	practice	for	a	reasonably	
well	written	code	running	on	a	modern	non-overloaded70	server	I	wouldn’t	expect	
additional	latencies	and	jitter	of	more	than	double-digit	microseconds,	which	should	be	
non-observable	even	for	the	most	fast-paced	games.	
		
UDP-related	(Re)Actors	
	
From	scalability	point	of	view,	UDP	is	quite	a	weird	beast;	in	many	cases,	you	can	use	really	
simple	things	to	get	UDP	working,	but	to	get	to	high-performance	scalable	implementations,	
you	may	need	to	resort	to	some	trickery	–	or	to	quite	heavy	solutions	to	achieve	scalability.	
The	solution	on	Fig	9.9	is	on	the	simpler	side,	so	you	MIGHT	need	to	get	into	more	
complicated	things	to	achieve	performance/scalability	(more	on	it	below).	
	
Let’s	start	explaining	UDP-related	stuff	from	Fig	9.9.	One	problem	which	you	[almost?]	
universally	will	have	when	using	UDP,	is	that	you	will	need	to	know	whether	your	player	is	
connected	or	not;	at	the	very	least,	we	will	need	it	to	know	where	to	send	all	those	updates	
happening	within	our	Game	World	State.	And	as	soon	as	you	have	a	concept	of	“UDP	
connection”	(for	example,	provided	by	your	“reliable	UDP”	library),	you	have	some	kind	of	
connection	state/context	that	needs	to	be	stored	somewhere.	
	

																																																								
67	of	course,	if	your	game	is	UDP-only,	you	can	skip	it,	but	more	often	than	not,	at	least	
some	of	the	Game	Servers	do	have	some	TCP	–	at	least	for	inter-server	communication	(as	it	
was	noted	in	Vol.	I’s	chapter	on	Communications	–	usually,	TCP	is	preferred	for	Server-2-
Server	interactions).	
68	and	accordingly,	Socket	(Re)Actor	(unless	you’re	hosting	multiple	Socket	(Re)Actors	per	
Socket	Thread,	which	is	also	possible)	
69	which	IMHO	provides	the	best	balance	between	performance	and	implementation	
complexity	(that	is,	if	you	need	to	run	your	servers	on	Windows)	
70	=	“having	at	least	one	idle	core	at	all	times”	

This	is	where	those	“Connected	UDP	(Re)Actors”	come	in;	while	
they’re	not	exactly	the	best	start	from	KISS	point	of	view,	but	at	
least	we	know	what	we	need	them	for.	As	for	the	number	of	
those	(Re)Actors	and	associated	threads	–	as	with	TCP,	we	
should	limit	the	number	of	UDP	connections	per	Connected	
UDP	Thread;	as	a	starting	point,	we	can	use	the	same	ballpark	
numbers	of	UDP	connections	per	thread	as	we	were	using	for	
TCP	sockets	per	thread:	that	is,	of	the	order	of	16-128	UDP	

connections	per	thread.	
	
On	the	other	hand,	even	128	UDP	connections	won’t	be	enough	for	your	Server.	To	deal	
with	it,	the	simplest	(and	very	popular	too)	way	is	to	say	that:	

• your	server	uses	multiple	UDP	ports	
• each	of	Connected	UDP	Threads	is	assigned	one	single	UDP	port	

o as	a	result,	it	has	its	own	UDP	socket,	and	waits	for	it	
• to	balance	players	to	different	threads	–	Matchmaker	just	gives	them	different	ports	

on	the	Server	
• Bingo!	We	have	a	Share-Nothing	architecture,	and	it	is	perfectly	scalable	too.	

o Each	of	ports/sockets	is	dedicated	per-thread,	so	there	is	no	contention	
there	

• On	the	negative	side	for	this	approach,	I	can	list	only	the	following:	
o It	doesn’t	allow	for	easy	moving	users	from	one	thread	to	another	one.	In	

some	(admittedly	rather	rare)	scenarios	it	can	affect	how	well	the	balancing	
can	be	performed.		

o It	exposes	implementation	details	(threads)	to	the	Client.	This	exposure	can	
potentially	have	some	strange	security	implications	–	though	I’ve	never	
heard	of	any	practical	schema	abusing	it.71	

	
IMO,	for	quite	a	few	games	out	there,	positives	of	the	“port-
per-thread”	approach	above	outweigh	the	negatives.	On	the	
other	hand,	if	for	whatever	reason	you	don’t	like	it	–	a	few	
other	approaches	can	be	possible:	

• An	additional	UDP	Handler	Thread	reading	our	single	
UDP	socket	–	and	dispatching	the	packets	to	an	
appropriate	Connection	UDP	Thread.	The	downside	of	
this	approach	is	that	this	single	thread	can	easily	
become	a	bottleneck	<sad-face	/>.	

• Using	multiple	threads	to	recvfrom()/sendto()	from/to	
the	same	UDP	socket;	in	this	case	–	scalability	is	back	
(and	without	exposing	ports	and	allowing	to	move	users	
between	the	threads	too).	However,	implementation	
complexity	can	be	substantial.	Most	importantly,	as	we	still	need	to	access	the	state	
of	our	UDP	connection	–	it	means	that	we	either	need	to	pull	this	state	from	some	
common	pool	(which	has	to	be	a	mutex-synchronized	container	–	with	lots	of	
contention,	ouch!),	or	(in	a	true	(Re)Actor	spirit)	to	pass	the	incoming	UDP	packet	to	

																																																								
71	yet	to	see	such	an	abuse?	

KISS	principle	
https://en.wikipedia.org/wiki/KISS_principle	

KISS	is	an	acronym	for	
'Keep	it	simple,	stupid'	
as	a	design	principle	
noted	by	the	U.S.	Navy	
in	1960	

	
The	downside	of	this	
approach	is	that	this	
UDP	Handler	Thread	
can	easily	become	a	
bottleneck	<sad-face	
/>.	

the	thread	which	has	corresponding	state.	In	this	latter	case,	answering	a	question	
“where	to	store	the	mapping	of	incoming-packet-IP/port-pairs	to	threads”,	is	not	
that	trivial;	shared	states	(inviting	potential	contention	<sad-face	/>)	are	not	really	
desirable,	so	the	message-exchange-based	solutions	similar	to	that	of	Routing&Data	
Factory	(Re)Actor	(described	in	“Routing&Data	Factories”	section	below),	might	be	
necessary.	

	
NB:	of	course,	for	most/all	of	these	models,	platform-specific	UDP	optimizations	can	be	
applied	(one	popular	example	being	recvmmsg());	however,	for	the	time	being,	we’re	not	
going	to	discuss	socket	peculiarities,	postponing	this	discussion	until	Vol.	IV’s	chapter	on	
Network	Programming.	
		
Websocket-related	(Re)Actors	and	HTTP-related	(Re)Actors	(not	shown)	
	
If	you	need	to	support	Websocket	clients	(or,	Stevens	forbid,	HTTP	clients)	in	addition	to	(or	
instead	of)	TCP	or	UDP,	this	can	be	implemented	quite	easily.	Basic	Websocket	protocol	is	
very	simple	(with	basic	HTTP	being	even	simpler),	so	you	can	use	pretty	much	the	same	
(Re)Actors	as	for	TCP,	but	implementing	additional	header	parsing	and	frame	logic	within	
your	Websocket	(Re)Actors.		
	

BTW,	if	you	think	you	need	to	support	pure	HTTP	(i.e.	without	
Websockets)	even	for	a	medium-paced	synchronous	game	such	
a	casino	one	–	think	again.	While	implementing	interactive	
communications	over	request-response	HTTP	is	possible	(in	
particular,	using	“long	polling”)	–	it	is	notoriously	difficult	to	get	
it	work	reliably,	and	tends	to	cause	lots	of	unnecessary	server	
load.	As	a	result	-	Websockets	are	generally	preferable	over	
HTTP	for	synchronous	games	and	are	providing	about-the-same	
(though	not	identical)	benefits	in	terms	of	browser	support	and	
being	firewall	friendly;	see	further	discussion	on	these	protocols	
in	Vol.	IV’s	chapter	on	Network	Programming.	On	the	other	

hand,	for	asynchronous	and/or	rrreeeeaaallllyyyy-sssslloooowwww	games,	real-time	push	is	
not	required,	so	HTTP	(with	simple	polling)	MAY	be	a	reasonable	choice.	
	

Long	polling	
https://en.wikipedia.org/wiki/Push_technology#Long_polli
ng	

With	long	polling,	the	
client	requests	
information	from	the	
server	exactly	as	in	
normal	polling,	but	
with	the	expectation	
the	server	may	not	
respond	immediately.	

GPGPU	(Re)Actor	(not	shown)	
	
If	your	Game	Worlds	require	simulation	which	is	very	
computationally	heavy,	you	may	want	to	use	your	Game	World	
servers	with	CUDA	(or	OpenCL/Phi)	hardware,	and	to	add	
another	(Re)Actor	(not	shown	on	Fig	9.9)	to	communicate	with	
your	CUDA/OpenCL/Phi	GPGPU.	A	few	things	to	note	in	this	
regard:	

• We	won’t	discuss	how	to	apply	GPGPU	to	your	
simulation;	this	is	your	game	and	a	question	“how	to	
use	massively	parallel	computations	for	your	specific	
simulation”	is	utterly	out	of	scope	of	the	present	book.	

• Implementing	determinism	for	GPGPU	(Re)Actors,	as	a	
rule	of	thumb,	is	not	trivial,	especially	if	inter-thread	
interactions	are	involved	(which	is	usually	the	case	for	
GPGPUs).	For	example,	a	simple	change	in	the	order	of	
floating-point	additions	may	easily	lead	to	rounding-
related	differences	in	the	last	digit	(with	both	results	
being	practically	the	same,	but	technically	different).	
However,	as	it	was	discussed	in	Vol.	II’s	chapter	on	
(Re)Actors	(and	in	“DIY	Fault	Tolerance	in	case	of	Almost-Determinism”	section	
below),	even	such	almost-determinism	has	some	practical	uses	(albeit	much	less	of	
them	than	real	determinism);	one	of	such	uses	is	discussed	in	the	“DIY	Fault	
Tolerance	in	case	of	Almost-Determinism”	section	below.	

• Normally,	you’re	not	going	to	ship	your	game	servers	to	your	datacenter.	Well,	if	the	
life	of	your	game	depends	on	it,	you	might,	but	this	is	a	huuuge	headache	(see	
below,	as	well	as	Vol.	VII’s	chapter	on	Preparing	to	Launch,	for	further	discussion)	

o As	soon	as	you	agree	that	it	is	not	your	servers,	
but	leased	ones	or	cloud	ones	(see	also	Vol.	VII),	
it	means	that	you’re	completely	dependent	on	
your	server	ISP/CSP	on	supporting	whatever	you	
need.	

o Most	likely,	with	3rd-party	ISP/CSP	it	will	be	
Tesla	or	GRID	GPU	(both	by	NVidia),	so	as	a	rule	
of	thumb,	you	should	be	ok	with	CUDA	rather	
than	OpenCL.	

o The	choice	of	such	ISPs	which	can	lease	you	GPUs,	is	limited,	and	they	tend	to	
be	on	an	expensive	side	<sad-face	/>.	As	of	the	mid-2017,	the	best	I	was	able	
to	find	was	a	server	with	2x	Tesla	M60	GPUs	(i.e.	2x	4096	CUDA	cores)	rented	
at	~$1500/month	(that’s	for	17TFLOPs	or	so).	With	cloud-based	GPUs,	things	
weren’t	any	better,	and	started	from	around	$500/month	per	Tesla	K80	(the	
one	with	2496	total	cores).	<ouch!	/>	

§ One	interesting	exception	at	that	time	was	an	offering	from	
ovh.co.uk;	they	seemed	to	offer	a	server	including	4x	GTX1070	(4x	
2048	cores,	around	23TFLOPs)	for	mere	GBP565/month	(+VAT).	While	
not	directly	comparable	to	Teslas	(in	particular,	double-precision	is	
traditionally	MUCH	slower	on	GTX	line,	but	chances	are	that	you	

GPGPU	
https://en.wikipedia.org/wiki/General-
purpose_computing_on_graphics_processing_units	

General-purpose	
computing	on	graphics	
processing	units	
(GPGPU,	rarely	GPGP	or	
GP²U)	is	the	use	of	a	
graphics	processing	unit	
(GPU),	which	typically	
handles	computation	
only	for	computer	
graphics,	to	perform	
computation	in	
applications	
traditionally	handled	by	
the	central	processing	
unit	(CPU).	

CSP	
https://www.sdxcentral.com/cloud/definitions/what-are-
cloud-service-providers/	

Cloud	service	providers	
(CSP)	are	companies	
that	offers	network	
services,	infrastructure,	
or	business	applications	
in	the	cloud.	

won’t	need	double	precision	for	games	anyway)	–	it	looks	very	
interesting,	as	it	is	about	7x	more	price-efficient72	than	the	M60-
based	ones	mentioned	above	(YMMV,	batteries	not	included	–	and	
make	sure	to	ask	ovh	folks	how	many	of	such	servers	they	can	
provide).	

• If	you	are	going	to	co-locate	your	servers	instead	of	
leasing	them	from	ISP,73	you	should	still	realize	that	
server-oriented	NVidia	Tesla	GPUs	(as	well	as	AMD	
FirePro	S	designated	for	servers)	are	damn	expensive.	
For	example,	as	of	the	mid-2017,	Tesla	M60	costs	
around	$3500(!);	at	this	price,	you	get	2xGM204	cores,	
16GB	RAM@5GHz,	clock	of	930/1180MHz,	and	2x2048	
CUDA	cores	–	resulting	in	overall	single-precision	
performance	of	9.6TFLOPS.	At	the	same	time,	desktop-
class	GeForce	Titan	X	Pascal	is	available	for	about	
$1200,	has	a	newer	GP102	core,	12GB	RAM,	clock	of	
1417/1531MHz,	and	3584	CUDA	cores	–	resulting	in	
single-precision	11TFLOPS.	In	short	–	for	single-
precision	calculations	Titan	X	Pascal	gets	you	even	more	
power	than	Teslas	M60/P100	at	less	than	30%	of	the	
price.	It	might	look	as	a	no-brainer	to	use	desktop-class	
GPUs,	but	there	are	several	significant	things	to	keep	in	
mind:	

o the	numbers	above	are	not	directly	comparable;	
make	sure	to	test	your	specific	simulation	with	different	cards	before	making	
a	decision.	In	particular,	differences	due	to	RAM	size	and	double-precision	
math	can	be	very	nasty	depending	on	specifics	of	your	code	

o even	if	you’re	assembling	your	servers	yourself,	you	are	still	going	to	place	
your	servers	into	a	3rd-party	datacenter;	hosting	stuff	within	your	office	is	
almost-never	a	viable	option	(see	Vol.	VII’s	chapter	on	Preparing	to	Launch)	

o space	in	datacenters	costs,	and	costs	a	lot.	It	means	that	tower	servers,	even	
if	allowed,	are	damn	expensive.	In	turn,	it	usually	means	that	you	need	a	
“rack”	server.	

o Usually,	you	cannot	just	push	a	desktop-class	GPU	card	(especially	a	card	
such	as	Titan	X)	into	your	usual	1U/2U	“rack”	server;	even	if	it	fits	physically,	
in	most	cases	it	won’t	be	able	to	run	properly	because	of	overheating.	Feel	
free	to	try,	and	maybe	you	will	find	the	card	which	runs	ok,	but	don’t	expect	
it	to	be	the-latest-greatest	one;	thermal	conditions	within	“rack”	servers	
(especially	those	1U	ones)	are	extremely	tight,	and	air	flows	are	traditionally	
very	different	from	the	desktops,	so	throwing	in	additional	250W	or	so	with	a	
desktop-oriented	air	flow	to	a	non-GPU-optimized	server	isn’t	likely	to	work	
without	throttling	for	more	than	a	few	minutes.	

																																																								
72	For	single	precision,	i.e.	for	4-byte	floats	
73	this	potentially	includes	even	assembling	them	yourself,	but	I	generally	don’t	recommend	
it	

	
In	short	–	Titan	X	gets	
you	more	or	less	
comparable	
performance	
parameters	(except	for	
RAM	size	and	double-
precision	calculations)	
at	less	than	30%	of	the	
price	of	Tesla	K80.	

o IMVHO,	your	best	bet	would	be	to	buy	rack	servers	which	are	specially	
designated	as	“GPU-optimized”,	and	ideally	–	explicitly	supporting	those	
GPUs	that	you’re	going	to	use.	Unfortunately,	I	don’t	know	of	any	major	
vendor	which	is	officially	supporting	desktop-class-GPGPUs-in-servers	(and	
those	few	medium-class	vendors	which	did	support	desktop-class	GPGPUs	–	
are	now	Tesla-	and	GRID-only,	and	priced	accordingly	<sad-face	/>).		Feel	free	
to	try	whichever-vendor-you-can-find,	but	don’t	hold	your	breath	over	it.	At	
the	very	least,	make	sure	to	rent/buy	one	such	a	
box	ASAP	and	run	it	for	a	month	24x7	under	top	
load	to	see	whether	it	copes	well	with	load	and	
cooling	(and	ideally	–	you	should	run	it	in	the	
datacenter	where	cooling	conditions	can	differ	
from	those	in	your	office);	also	make	sure	to	
double-check	if	your	colocation	provider	is	ready	
to	host	these	not-so-mainstream	boxes	(some	of	
them	are	rather	non-standard,	including	non-
standard	height74).	

o Alternatively	–	you	can	keep	trying	combinations	
of	standard	rack	servers	with	desktop	cards,	
hoping	to	find	a	combination	which	works	for	
you.	On	this	way,	I’d	rather	try	larger	rack	boxes	
(at	least	2U	ones,	better	4U	ones)	–	but	my	wild	
guess	is	that	you’re	going	to	spend	LOTS	of	time	
until	you	find	some	server+desktop-GPU	
combination	which	can	work	for	many	days	
without	overheating.	

	
To	summarize:	if	your	game	cannot	survive	without	Server-Side	GPGPU	simulations	–	it	can	
be	done,	but	be	prepared	to	pay	a	lot	more	than	you	would	expect	based	on	desktop	GPU	
prices,	and	keep	in	mind	that	deploying	GPGPU	on	servers	will	take	much	more	effort	than	
simply	making	your	software	run	on	your	local	Titan	X	or	GTX1080	<sad-face	/>.	Also	–	make	
sure	to	start	testing	on	real	server	rack-based	hardware	as	early	as	possible,	you	do	need	to	
know	ASAP	whether	hardware	of	your	choice	has	any	pitfalls.	
		
Starting	Small	
	
Taking	another	look	at	the	diagram	on	Fig	9.9,	it	becomes	obvious	that	if	your	server	doesn’t	
need	to	support	UDP	or	TCP	–	of	course,	you	won’t	need	corresponding	threads	and	
(Re)Actors.	However,	keep	in	mind	that	usually	your	connection	to	other	servers	(such	as	DB	
Server	App)	SHOULD	be	TCP	(see	“On	Inter-Server	Communications”	section	below),	so	if	
your	client-to-server	communication	is	UDP,	you’ll	usually	need	to	implement	both	(one	
exception	is	if	you’re	using	an	already-working	3rd-party	“reliable	UDP”	library;	in	this	case,	
you	can	have	the	whole	thing	UDP-only	without	spending	lots	of	time	on	figuring	out	UDP-
related	bugs	over	Server-2-Server	connections).		

																																																								
74	I’ve	seen	4.75U	box	(with	8	GPGPUs),	it	is	indeed	very	strange	–	though	it	should	fit	into	
the	standard	rack,	so	your	colo	ISP	might	allow	it.	

	
If	your	game	cannot	
survive	without	server-
side	GPGPU	simulations	
–	it	can	be	done,	but	be	
prepared	to	pay	a	lot	
more	than	you	would	
expect	based	on	
desktop	GPU	prices	

	
On	the	other	hand,	our	(Re)Actor-fest	architecture	provides	a	very	good	separation	between	
protocols	and	logic,	so	usually	you	can	safely	start75	with	a	TCP-only	server	even	for	a	really	
fast-paced	game.	This	will	almost-certainly	be	enough	to	test	your	game	intra-LAN	(where	
packet	losses	and	latencies	are	negligible),	and	implement	UDP	support	later	(and	without	
the	need	to	change	your	Game	Logic	(Re)Actors).	Still,	make	sure	that	you	implement	UDP	
layer	ASAP	–	there	will	be	quite	a	few	of	nasty	caveats	for	sure.	
	
Strictly	speaking,	it	is	also	possible	to	start	with	a	UDP-only	server	to	add	TCP	later	–	but	as	
implementing	reliable	inter-server	connections	is	a	headache	for	UDP,	this	is	rarely	the	best	
option.76		
	
(Re)Actor-Fest	Architecture	on	the	Server	Side:	Flexibility	and	Deployment-
Time/Run-Time	Options	
	
When	it	comes	to	the	available	deployment	options,	(Re)Actor-fest	is	an	extremely	flexible	
architecture.	We	already	briefly	mentioned	this	flexibility	in	Vol.	II’s	chapter	on	(Re)Actors;	
however,	in	Vol.	II	our	discussion	was	more	about	(Re)Actors	in	general.	Now,	we’re	going	
to	discuss	your	deployment	and	run-time	options	provided	by	(Re)Actor-fest	on	the	Server-
Side	(note	that	these	goodies	come	in	addition	to	generic	(Re)Actor	benefits	discussed	in	
Vol.	II,	including	such	beauties	as	production	post-mortem	and	replay	regression	testing	
using	real-world	data).	
	
On	Importance	of	Flexibility	
	
Quite	often	we	don’t	realize	how	important	flexibility	is.	Actually,	we	rarely	realize	how	
important	it	is	until	we	run	into	the	wall	because	of	lack	of	flexibility.	In	just	one	example,	
I’ve	seen	people	almost-running	into	the	wall	trying	to	identify	which	of	the	(Re)Actors	
causes	memory	corruption	–	and	stopping	short	just	inches	before	the	wall,	due	to	ability	to	
run	(Re)Actor	in	a	separate	process	(identifying	the	problem	very	nicely).		
	
In	general,	Deterministic	(Re)Actors	provide	a	lot	of	flexibility	(as	well	as	other	goodies	such	
as	post-mortem)	at	a	relatively	low	development	cost.	That’s	one	of	the	reasons	why	I	am	
positively	in	love	with	them.	
	
Philosophical	ranting	aside	–	let’s	take	a	more	practical	look	at	the	very	practical	benefits	of	
the	(Re)Actors	on	the	Server-Side.	

																																																								
75	As	a	Really	Big	Fat	Rule	of	Thumb™,	we	SHOULD	NOT	intend	to	use	TCP	in	production	for	
fast-paced	games	such	as	FPS	or	MOBAs	–	it	will	turn	out	to	be	a	suicide	much	more	often	
than	not.	However,	for	a	very	preliminary	over-the-LAN	testing	it	will	work.	
76	once	again	–	unless	you’re	using	a	RUDP	library	which	already	works.	

	
Threads	and	Processes	
	
First	of	all,	you	can	have	your	(Re)Actors	deployed	in	different	
configurations	depending	on	your	needs.	In	particular,	
(Re)Actors	can	be	deployed	as	multiple-(Re)Actors-per-thread,	
one-(Re)Actor-per-thread-multiple-threads-per-process,	or	
one-(Re)Actor-per-process	configurations	(all	this	without	
changing	your	(Re)Actor	code	at	all).77	
	
One	real-world	example.	In	one	real-world	system	with	
hundreds	of	thousands	simultaneous	players	but	lightweight	
processing	on	the	Server-Side	and	rather	high	acceptable	
latencies,	they’ve	decided	to	have	some	of	Game	Worlds	
(those	for	novice	players)	deployed	as	multiple-(Re)Actors-per-
thread,	another	bunch	of	Game	Worlds	(intended	for	mature	
players)	–	deployed	as	a	single-(Re)Actor-per-thread	(improving	
latencies	a	bit,	and	providing	an	option	to	raise	thread	priority	
for	these	(Re)Actors),	and	those	Game	Worlds	for	pro	players	–	
as	a	single-(Re)Actor-per-process	(additionally	improving	
memory	isolation	in	case	of	problems,	and	improving	memory	locality	and	therefore	
performance	a	further	tiny	bit);	all	these	(Re)Actors	were	using	absolutely	very	same	
(Re)Actor	code,	but	it	was	compiled	into	different	executables	(which	were	using	different	
Infrastructure	Code)	to	provide	slightly	different	performance	properties.	
	
Moreover,	in	really	extreme	cases	(like	“we’re	running	a	
Tournament	of	the	Year	with	live	players”),	you	may	even	have	
this	(Re)Actor	to	a	dedicated	thread,	and	then	pin	this	thread	
to	a	single	core	(preferably	the	same	where	interrupts	from	
you	NIC	come	on	this	specific	server	box)	and	pin	other	
processes	to	other	cores,	keeping	your	latencies	to	the	
absolute	minimum.78	
	
Underlying	Communication	Protocol	as	an	Implementation	
Detail	
	
With	(Re)Actor-fest	architecture,	exact-communication-
protocols-you’re-using	become	an	implementation	detail	
(which	can	be	delegated	to	your	Network	Team).	For	example,	you	can	have	the	same	Game	
Logic	(Re)Actor	to	serve	both	TCP	and	UDP	connections.	Not	only	it	comes	handy	for	testing	

																																																								
77	Restrictions	apply,	batteries	not	included.	If	you	have	blocking	calls	from	within	your	
(Re)Actor,	which	is	common	for	DB-style	(Re)Actors	and	some	of	gateway-style	(Re)Actors,	
you	shouldn’t	deploy	multiple-(Re)Actors-per-thread	
78	this	will	further	reduce	latencies	in	addition	to	any	benefits	obtained	by	simple	increase	of	
thread	priority,	because	of	per-core	caches	not	being	evicted	by	threads	accidentally	
running	on	the	same	core	

	
(Re)Actors	can	be	
deployed	as	multiple-
(Re)Actors-per-thread,	
one-(Re)Actor-per-
thread-multiple-
threads-per-process,	or	
one-(Re)Actor-per-
process	configurations	
(all	this	without	
changing	your	
(Re)Actor	code	at	all)	

CPU	pinning	
https://en.wikipedia.org/wiki/Processor_affinity	

Processor	affinity,	or	
CPU	pinning,	enables	
the	binding	and	
unbinding	of	a	process	
or	a	thread	to	a	central	
processing	unit	(CPU)	or	
a	range	of	CPUs,	so	that	
the	process	or	thread	
will	execute	only	on	the	
designated	CPU	or	CPUs	
rather	than	any	CPU.	

purposes	(as	mentioned	in	the	Starting	Small	section	above,	but	it	also	may	enable	some	of	
your	players	(those	who	cannot	access	your	servers	via	UDP	due	to	firewalls/weird	
routers/using-web-client	etc.)	to	play	over	TCP79,	while	the	rest	are	playing	over	UDP.	
Whether	you	want	this	capability	(and	whether	you	want	to	match	TCP	players	only	with	
TCP	players	to	make	sure	nobody	has	an	unfair	advantage)	is	up	to	you,	but	at	least	
(Re)Actor-fest	architecture	does	provide	you	with	such	an	option	at	a	very	limited	cost.	
	
Moving	Game	Worlds	Around	(at	the	cost	of	Client	reconnect)	
	
Yet	another	flexibility	option	which	is	specific	to	Server-Side	(Re)Actor-fest	architecture,	is	to	
allow	moving	your	Game	Worlds	(or	more	generally	–	(Re)Actors)	from	one	server	to	
another	one	(though	with	some	additional	headache,	and	a	bit	of	additional	latencies).		
	
One	simple	way	to	do	it,	is	to:	

• We	have	our	(Re)Actor	with	serialization	
• Whenever	need	to	migrate	(Re)Actor	arises	–	we:	

o Stop	processing	messages	in	the	(Re)Actor	
o serialize	your	(Re)Actor	on	source	server	(see	Vol.	II’s	chapter	on	(Re)Actors	

for	a	brief	discussion	on	serializing	(Re)Actors)	
o transfer	serialized	state	to	a	target	server’s	Game	Logic	Factory,	and	to		
o deserialize	our	(Re)Actor	there.		
o Resume	processing	messages	in	the	(Re)Actor	

	
Bingo!	Your	(Re)Actor	now	runs	on	the	target	server	right	from	the	same	logical	moment	
where	it	stopped	running	on	the	source	server.	In	practice,	however,	moving	(Re)Actors	
around	is	not	that	easy,	as	you’ll	also	need	to	notify	your	clients	about	changed	address	
where	this	moved	(Re)Actor	can	be	reached,	but	despite	being	an	additional	chunk	of	work,	
this	is	also	perfectly	doable	if	you	really	want	it.		
	
In	this	regard,	the	most	obvious	way	is	to	notify	your	Clients	about	IP/port	change	of	your	
(Re)Actor	(so	that	Clients	can	reconnect	to	this	new	IP/port).	On	the	other	hand,	IF	you’re	
using	Front-End	Servers	(as	discussed	in	[[TODO]]	section	below)	–	it	is	perfectly	possible	to	
handle	this	movement-of-(Re)Actor	without	Clients	realizing	it,	so	all	the	changes	are	limited	
to	communications	between	Front-End	Servers	and	Game	Servers.	For	more	details	–	see	
also	discussion	on	“re-connecting	at	source”	in	Chapter	10.	
	
Low-latency	(Re)Actor	Migration	
	
While	simplistic	serialize-then-deserialize	approach	discussed	above,	does	work	–	it	has	a	
potentially	significant	drawback:	latency.	In	the	model	above,	while	we’re	serializing-
transferring-deserializing,	there	is	no	chance	to	process	any	messages	(plus	after	
deserialization,	we’ll	have	that	cost	of	“re-connecting	at	source”	or	equivalent).	In	general,	it	
is	possible	to	improve	latencies	for	(Re)Actor	migrations,	making	such	migration	very	fast	
																																																								
79	BTW,	in	Vol.	IV’s	chapter	on	Network	Programming	we’ll	discuss	how	to	make	TCP	almost-
as-responsive	as	UDP	–	while	it	is	not	a	picnic,	and	causes	quite	a	bit	of	server	load,	it	seems	
to	be	doable.	

(bringing	observable	migration	times	below	1ms);	unfortunately,	it	comes	at	a	cost	of	
significant	complication	of	the	migration	process:	

• We	have	our	(Re)Actor	with	serialization	
o In	addition,	our	(Re)Actor	is	deterministic	

• Whenever	need	to	migrate	(Re)Actor	arises	–	we:	
o Do	NOT	stop	accepting	and	processing	incoming	messages	(yet)	
o Serialize	the	state	of	our	(Re)Actor	(if	necessary	–	it	can	be	even	done	in	an	

incremental	manner)	
o Transfer	serialized	state	to	the	target	Server	Box	–	and	start	duplicating	to	

the	same	Server	Box	all	the	input	messages	coming	to	the	source	(Re)Actor,	
to	the	target	(Re)Actor80	

o On	the	target	Server	Box	–	deserialize	received	state,	creating	a	target	
(Re)Actor,	and	start	feeding	it	all	the	duplicated	input	messages.	At	this	point,	
target	(Re)Actor	works	in	a	“rollforward”	mode,	ignoring	all	the	direct	inputs	
from	the	Clients,	and	processing	only	duplicated	input	messages	coming	from	
the	source	(Re)Actor.		

o Instruct	all	the	Clients	(which	are	connected	to	the	source	(Re)Actor)	to	
create	another	connection	to	the	target	(Re)Actor;	in	this	mode	–	Clients	are	
sending	all	their	data	to	both	source	and	target	(Re)Actors,	and	processing	
replies	from	any	of	them	

o After	all	(or	almost-all)	the	Clients	have	both	connections	–	source	(Re)Actor	
is	deactivated,	and	then	the	target	(Re)Actor	is	switched	from	“slave”	mode	
to	normal	mode	of	operation.	This	delay	–	from	disabling	source	(Re)Actor	to	
enabling	target	(Re)Actor	–	is	the	only	delay	which	is	visible	to	the	Clients	in	
this	process;81	as	such	–	it	can	be	easily	brought	to	below-1ms	range.	

o Now,	we	can	say	Clients	to	switch	back	to	a	single-connection	mode	(using	
only	target	(Re)Actor	now).	

	
As	we	can	see	–	this	process,	while	being	significantly	more	involved,	does	allow	to	reduce	
latencies;	whether	its	benefits	are	worth	it	for	you	–	depends	on	your	specifics.	
	
Online	Upgrades	with	(Almost-)Zero	Downtime	
	
Yet	another	two	options	provided	by	(Re)Actor-fest	architecture,	enable	Server-Side	
software	upgrades	while	your	system	is	running,	without	stopping	the	server.	
	
The	first	of	these	options	is	just	to	start	creating	new	Game	Worlds	using	new	Game	Logic	
(Re)Actors	(while	existing	(Re)Actors	are	still	running	with	the	old	code).	This	works	as	long	
as	changes	within	(Re)Actors	are	minor	enough	so	that	all	external	inter-(Re)Actor	interfaces	
are	100%	backward	compatible,	and	the	life	time	of	each	(Re)Actor	is	naturally	limited	(so	
that	at	some	point	you’re	able	to	say	that	migration	from	the	old	code	is	complete).	This	
technique	is	reminiscent	of	good	ol’	Blue-Green	deployments,	though	(unlike	traditional	

																																																								
80	in	case	of	incremental	serialization	–	input	messages	usually	have	to	be	duplicated	after	
the	very	first	portion	of	the	serialized	state	is	sent.	
81	Actually,	as	we	run	target	(Re)Actor	for	a	while	before	switching	to	it	–	even	cache	
population	latencies	don’t	apply	in	this	model.	

Blue-Green	techniques)	it	works	on	a	per-(Re)Actor	basis	which	
in	turn	enables	gradual	migration	(as	opposed	than	all-or-
nothing	migration	typical	for	traditional	Blue-Green	
environments);	in	other	words	–	during	migration,	while	some	
of	our	already-running	Game	Worlds	are	still	“Blue”,	newly	
creates	ones	are	already	“Green”.	
	
When	implementing	this	Blue-Green-like	gradual	upgrades,	we	
DO	need	to	ensure	compatibility	of	our	Game	Worlds	with	all	
the	dependencies;	usually,	the	most	critical	dependency	is	our	
DB	Server	App.	On	the	other	hand,	most	of	the	time,	
functionality	of	DB	Server	App	is	not	changed,	but	rather	it	is	
extended;	in	all	such	cases,	it	becomes	possible	to	upgrade	DB	
Server	App	first	–	and	to	upgrade	Game	World	Apps	in	Blue-
Green-like	manner	later;	as	new	DB	Server	App	(the	one	with	
extended	functionality)	should	be	compatible	with	both	“old”	
and	“new”	Game	World	Apps	–	this	migration	path	will	work	
quite	smoothly.	
	

The	second	of	the	online-upgrade	options	allows	to	upgrade	(Re)Actors	while	the	Game	
World	is	still	running.	The	idea	behind	it	goes	the	route	of	serialization	(Re)Actor’s	state	–	
replacing	the	code	–	deserialization	of	(Re)Actor’s	state.	This	serialize-replace-deserialize	
option,	however,	tends	to	be	much	more	risky	than	the	first	one,	and	potential	migration	
problems	may	be	difficult	to	identify	and/or	to	test.	Formally	–	for	the	second	option	to	
work,	we	need	to	guarantee	(a)	that	serialization	and	deserialization	(which	in	this	case	are	
performed	between	inherently	different	executables),	are	perfectly	compatible,	and	(b)	that	
regardless	of	the	point	where	we	serialize-replace-deserialize	–	the	behavior	will	be	sane.		
	
In	practice	–	unless	we’re	using	IDL-with-backward-compatibility-support	(which	we	should,	
but	rarely	do;	more	on	it	in	Vol.	I’s	chapter	on	Communications)	-	even	(a)	often	becomes	an	
insurmountable	problem.	Worse	than	that,	testing	for	all	the	potential	switch	points	in	(b)	is	
rarely	feasible	(and	predicting	which	of	the	points	are	of	potential	interest,	is	very	difficult	
for	a	generic	upgrade).	Therefore,	if	you	cannot	rely	on	Blue-Green-like	deployments	and	
need	to	go	serialize-replace-deserialize	route	–	the	following	precautions	are	advisable:	

• Make	sure	to	use	IDL	with	an	explicit	support	for	backward	compatibility.	As	
discussed	in	Vol.	I	–	there	are	many	reasons	to	do	it	anyway,	but	if	you	want	to	
migrate	via	serialization	–	it	instantly	becomes	a	must-have.	

o Make	sure	to	enforce	backward	compatibility	for	serialization	of	your	
(Re)Actor’s	state	

• Try	to	limit	the	number	of	potential	states	where	migration	can	occur.	Quite	often,	it	
is	better	to	wait	with	migration	for	a	few	minutes	(until	(Re)Actor	reaches	a	“stable”	
state)	than	try	to	test	all	the	potential	migration	points	

• Make	sure	to	use	severe	automated	testing	specifically	for	the	migration.	In	
particular	–	make	sure	to	use	“replay”	technique	(also	provided	by	(Re)Actor,	see	
Vol.	II’s	chapter	on	(Re)Actors	for	details)	to	test	randomly-happening	migration.	
Such	testing	should	use	big	chunks	of	the	real-world	data,	and	should	simulate	
online	upgrades	at	the	random	moments	of	the	replay.	

Blue/green	
deployment	
http://searchitoperations.techtarget.com/definition/blue-
green-deployment	

A	blue/green	
deployment	is	
a	software	
deployment	strategy	
that	relies	on	two	
identical	production	
configurations	that	
alternate	between	
active	and	inactive.	One	
environment	is	referred	
to	as	blue,	and	the	
duplicate	environment	
is	dubbed	green.	

--	TechTarget	

	
	

Implementing	Infrastructure	Code	for	Server-Side	(Re)Actor-fest	
	
Coming	back	to	our	diagrams	on	Fig	9.8	and	Fig	9.9,	we	can	see	that	from	implementation	
point	of	view	–	all	our	(Re)Actor	threads	are	always	the	same:	

• Each	thread82	have	exactly	one	queue	to	wait	on	
• They	wait	on	this	queue,	then	whenever	something	comes	into	the	queue	–	they	

process	this	something	–	and	go	back	to	waiting	on	the	queue.	
	
As	a	result,	the	main	question	for	implementing	Infrastructure	Code	at	least	on	the	Server-
Side	–	becomes	“how	to	implement	this	queue”.		
	
*nix:	sockets	and	pipes,	that’s	it	
	
Fortunately	enough,	on	*nix	even	the	most	straightforward	implementation	tends	to	work	
very	well	in	practice.	The	very	basic	idea	goes	along	the	following	lines:	

• For	TCP/UDP	communications	–	use	good	ol’	Berkeley	sockets	
• For	inter-(Re)Actor	communications	–	use	anonymous	pipes		
• Implement	each	of	our	queues	as	a	set	of	sockets/pipe	handles	
• Implement	waiting	on	a	queue	as	waiting	for	something	to	happen	on	these	

sockets/pipe	handles	(using	select(),	poll(),	epoll(),	or	kqueue()83)	–	then	we	get	both	
“just	queue”	and	“queue	which	can	also	wait	for	socket”	very	easily.	

o As	we	can	see	from	Fig	9.9,	even	for	a	full-scale	(Re)Actor-fest,	these	two	
queues	are	all	we	will	probably	need.	While	strictly	speaking,	for	100%	non-
blocking	processing,	there	can	also	be	data	coming	from	the	disk	or	from	DB	
–	but	in	practice,	under	our	mostly-non-blocking	paradigm,	disk	and/or	DB	
operations	rarely	need	to	be	handled	in	a	non-blocking	manner84,	so	waiting	
for	sockets	and	pipes	happens	to	be	sufficient.	

	
That’s	it,	we’re	quite	unlikely	to	need	anything	else	under	*nix.	
	
Windows:	WaitForMultipleObjects()	vs	IOCP	

"Ave,	Imperator,	morituri	te	salutant"	
(“Hail,	Emperor,	those	who	are	about	to	die	salute	you”)	

--	quoted	in	Suetonius,	“The	Twelve	Caesars”,	121	AD	
	

																																																								
82	if	there	are	multiple	(Re)Actors	per	threads,	it	is	still	exactly	one	queue	per	thread	
83	discussion	on	“which	of	these	functions	is	better”,	is	beyond	this	Chapter,	and	belongs	to	
Vol.	IV’s	chapter	on	Network	Programming	
84	moreover,	often	it	doesn’t	make	any	sense	to	handle	disk	or	DB	operations	as	non-
blocking;	this	routinely	happens	whenever	we	cannot	handle	any	new	operations	while	
we’re	waiting	for	the	result	of	the	current	one.	

I	know	for	sure	that	I	will	be	beaten	Really	Hard™	by	hardcore	zealots	of	IOCP	
(=”Input/Output	Completion	Ports”)	on	MS	Windows,	but	being	honest	with	myself	and	you,	
I	have	to	say	that	
At	least	for	(Re)Actor-like	load85,	“traditional”	uses	of	IOCP	tend	to	behave	

worse	than	WaitForMultipleObjects()	
	
Yes,	I	am	arguing	to	build	Infrastructure	Code	not	along	the	lines	of	ubiquitous-on-Windows	
IOCP	(traditionally	used	with	multiple	reading	threads	per	queue),	but	along	exactly	the	
same	lines	as	on	*nix.	Sure,	implementation	details	are	going	to	be	very	different	(on	
Windows,	we’ll	need	to	wait	using	WaitForMultipleObjects()	on	OVERLAPPED	events	instead	
of	waiting	for	file	handles	using	epoll()/etc.	under	*nix),	but	overall	idea	still	remains	the	
same:	to	specify	set	of	events	we’re	waiting	for86	–	and	to	wait	for	them,	it	is	this	simple.	
	
Moreover,	I	am	not	just	arguing	to	do	it	–	I	also	done	it	myself,	and	this	architecture-I-
wrote-over-15-years-ago,	is	still	in	use,	and	is	still	working	like	a	charm	for	a	billion-dollar-
company	(beating	any	major	competitor	at	least	10-fold	on	players/server	metric).	To	make	
it	even	more	compelling	–	I	can	say	that	at	some	point,	they	tried	to	rewrite	this	simplistic	
architecture	into	multiple-threaded	IOCP;	and	guess	what?	–	IOCP-based	architecture	
performed	worse	than	original	one87.	
	
The	reason	for	it	is	rather	simple.	For	(Re)Actors,	the	processing	is	inherently	stateful	–	so	
we	DO	need	to	access	the	state	of	our	(Re)Actor.	On	the	other	hand,	with	traditional	uses	of	
IOCP	–	we	have	multiple	threads	waiting	on	the	same	IOCP	queue	(i.e.	we’re	using	IOCP	
queue	as	a	Multiple-Writers-Multiple-Readers	queue	a.k.a.	MWMR	queue)	–	and	essentially	
let	IOCP	decide	which	thread	will	execute	after	the	operation	is	completed.		It	means	that	to	
process	the	request	while	accessing	the	state	of	our	(Re)Actor,	we’ll	still	need	to	
synchronize	on	the	state	of	(Re)Actor	(for	example,	using	mutex),	and	then	to	call	
Reactor::react()	while	the	state	is	protected	by	our	lock	on	mutex.		
	
Apparently,	this	approach	is	severely	sub-optimal.	First,	synchronizing	on	mutex	creates	a	
potential	for	contention,	which	in	turn	will	cause	extra	thread	context	switches	(and	as	
context	switch	can	take	up	to	1M	CPU	cycles	[TODO:	ref	to	the	article]	–	we	don’t	really	
want	to	have	any	unnecessary	ones);	moreover,	this	contention	tends	to	behave	worse	as	
the	load	increases	(causing	pretty	bad	non-linear	behavior	exactly	when	it	matters	most).	
Second	–	even	in	the	case	of	no-contention,	CPU-randomly-selected-by-IOCP-to-run-the-
request	will	still	need	to	“pull”	the	state	of	our	(Re)Actor	into	caches	of	the	current	CPU	
core;	this,	in	turn,	more	often	than	not,	will	cause	an	observable	performance	hit	(after	all,	
with	modern	CPUs,	each	memory	read	from	main	RAM	can	cost	up	to	several	hundred	CPU	
cycles;	even	reads	from	shared	L3	cache	are	around	40	cycles).	To	make	things	even	worse	–	
we	need	to	keep	in	mind	that	at	least	for	last	20	years,	vast	majority	of	the	production-level	
server	boxes	are	in	fact	multi-socket	NUMA	boxes,	so	randomized	access	patterns	typical	for	
																																																								
85	Actually,	it	is	pretty	much	any	stateful	processing	
86	for	all	the	(Re)Actors	residing	within	the	thread	
87	The	difference	was	admittedly	marginal,	but	it	was	perfectly	clear	that	IOCP	is	at	least	not	
performing	better	(and	is	probably	performing	worse)	than	original	implementation	based	
on	WaitForMultipleObjects().	

“traditional”	MWMR-style	IOCP,	will	routinely	cause	one	CPU	socket	to	access	the	memory	
of	another	CPU	socket	via	HyperTransport/QPI,	raising	the	cost	of	“pulling”	the	state	into	
caches	on	current	CPU	core	even	further.88		
	
For	stateful	(Re)Actor-like	processing,	the	only	tangible	disadvantage	of	
WaitForMultipleObjects()	compared	to	IOCP,	is	a	limit	on	the	number	of	the	sockets	you	can	
wait	for	in	one	call	to	WaitForMultipleObjects();	this,	in	turn,	limits	the	number	of	the	
sockets	per	thread	to	about	MAXIMUM_WAIT_OBJECTS/2	(last	time	I	checked,	
MAXIMUM_WAIT_OBJECTS	was	still	64,	so	you	won’t	be	able	to	handle	more	than	32	
sockets	per	thread;	however	–	as	mentioned	above,	32	sockets/thread	is	very	close	to	what-
we-usually-want	anyway).		
	
Last	but	certainly	not	least:	
Criticism	of	IOCP	above	applies	ONLY	if	we’re	using	IOCP	in	a	“usual”	way	–	
i.e.	handling	incoming	requests	in	MULTIPLE	threads	(i.e.	using	IOCP	as	an	

MWMR	queue).	
On	the	other	hand,	if	we’re	using	IOCP	is	a	manner	which	is	ideologically	similar	to	MWSR89-
like	WaitForMultipleObjects()	(i.e.	with	only	ONE	thread	which	can	handle	the	request	–	and	
it	is	exactly	that	thread	where	our	(Re)Actor	runs,	so	once	again	we	don’t	need	any	thread	
sync)	–	the	whole	thing	will	become	much	more	similar	to	MWSR-like	
WaitForMultipleObjects()	than	to	“usual”	MWMR-like	IOCP.	TBH,	I	didn’t	try	this	IOCP-as-
MWSR	approach	myself	–	but	my	educated	guess	is	that	it	will	probably	work	pretty	well	(in	
particular,	it	MAY	allow	to	lift	that	32-sockets-per-thread	limitation	mentioned	above).	
	
Bottom	line	on	IOCP:	

• Feel	free	to	try	it	
• If	using	IOCP	in	traditional	MWMR-like	mode	-	do	NOT	expect	miracles;	most	of	the	

time,	for	stateful	loads,	multiple-threaded	IOCP	will	lose	to	WaitForMultipleObjects()	
(that	is,	assuming	that	implementation	based	on	WaitForMultipleObjects()	is	a	
reasonably	good	one)	

o One	potential	exception	may	occur	if	you	have	LOTS	of	(Re)Actors	with	LOTS	
of	blocking	operations.	However	–	for	Game	World	(Re)Actors	there	
shouldn’t	be	anything	blocking	at	all,	and	for	those-(Re)Actors-which-do-
have-blocking	(such	as	DB	(Re)Actor)	–	you	won’t	have	too	many	of	them	
anyway.		

• On	the	other	hand,	MWSR-like	uses	of	IOCP	(i.e.	with	a	hard	limitation	of	“only	one	
specific	thread	–	the	one	containing	the	target	(Re)Actor	-	is	allowed	to	processing	
requests	in	each	of	IOCP	queues”)	MIGHT	be	perfectly	viable.	

o Note	that	in	this	case,	the	whole	architecture	will	become	significantly	more	
involved	(and	much	more	similar	to	WaitForMultipleObjects()-based	one)	
than	usual	MWMR-based	IOCP	systems.	In	particular	–	we’ll	need	to	maintain	
multiple	IOCP	queues	(exactly	as	with	WaitForMultipleObjects(),	there	will	be	

																																																								
88	In	contrast,	for	a	system	based	on	WaitForMultipleObjects()	–	we’ll	have	extremely	good	
locality	(both	temporal	and	spatial)	coming	without	any	additional	efforts	from	our	side.		
89	=”Multiple	Writers	Single	Reader”	

exactly	one	queue	per	thread),	and	we’ll	need	to	know	in	advance	where	
exactly	any	of	the	requests	should	go.	

To	further	summarize	it	in	one	phrase	–		
For	(Re)Actor-like	stateful	processing,	you	SHOULD	concentrate	on	MWSR	
queues,	as	they	tend	to	beat	MWMR	ones	performance-wise;	which	system	
API	to	use	to	implement	an	MWSR	queue	–	you’ll	need	to	find	yourself90.	

	
This	is	consistent	with	my	inherent	dislike	to	use	any	of	the	MWMR-like	techniques	
(including,	but	not	limited	to,	all	the	techniques	using	thread	pooling,	Smartfox	server,	and	
DarkRift)	for	stateful	processing.	I	have	to	admit	that	most	of	the	time,	this	performance	
difference	is	not	fatal	(and,	depending	on	your	game,	can	be	negligible);	still,	whenever	I	
have	a	choice	–	I	certainly	prefer	to	avoid	unnecessary	mutexes	and	unnecessary	context	
switches	(which,	BTW,	is	exactly	why	nginx	outperforms	Apache	-	not	fatally,	but	
sustantially).	
	
On	libevent/libev/libuv	on	the	Server-Side	
	
In	addition	to	good	plain	old	sockets,	there	are	several	event-driven	libraries	out	there,	such	
as	libevent/libev/libuv.	One	thing	I	want	to	note	is	that	while	on	the	Client-Side	(that	is,	
unless	you’re	using	big	3rd-party	engines)	these	libraries	tend	to	be	very	useful,	on	the	
Server-Side	I	am	not	sure	whether	they	are	necessary.	Let	me	explain:	

• The	main	strength	of	these	libs	is	to	bring	all	the	events	of	interest	in	the	system	
together,	and	to	wait	for	any	of	them	happening	under	one	single	call.	This	is	exactly	
what	we	needed	(and	achieved)	above	from	socket+pipe	queues	(and	their	
reasonable	facsimile	on	Windows).	

o In	general,	events	of	interest	include	such	things	as	arriving	network	packets,	
user	input,	app-level	events,	and	so	on.	

• On	the	other	hand,	on	the	Server-Side,	we	don’t	have	the	variety	of	events	that	are	
present	on	the	Client.	In	fact,	pretty	much	everything	we’ll	ever	be	speaking	about	
on	the	Server-Side	is	(a)	network	packets,	(b)	timer	events,	and	(c)	app-level	inter-
(Re)Actor	messages.	And	as	we’ve	seen	above	-	all	these	three	things	can	easily	be	
handled	without	any	intermediary	libraries,	both	under	*nix	and	under	Windows.		

• As	for	disk	I/O	(which	doesn’t	fit	into	poll()/epoll()91)	–	it	is	fairly	rare	to	have	direct	
disk	I/O	on	the	Server-Side	(most	of	the	storage	goes	to	DB	anyway),	so	that	it	is	
rarely	an	issue.	Moreover,	even	when	disk	access	is	necessary	(for	example,	for	local	
logging),	for	local	disks	–	it	usually	can	be	done	in	a	blocking	manner	(see	discussion	
on	mostly-non-blocking	processing	in	Chapter	5).	

	
As	long	as	these	observations	stand	(and	I	didn’t	see	any	Server-Side	system	where	they	
didn’t),	I	don’t	really	feel	that	intermediary	event	libs	are	necessary	or	even	convenient	on	
the	Server-Side;	after	all,	poll()/epoll()	and	WaitForMultipleObjects()	are	(a)	better	
documented,	and	(b)	will	perform	at	least	a	bit	better	(and	if	by	any	chance	lib*	chooses	to	

																																																								
90	on	the	other	hand	–	if	doing	things	correctly,	you	cannot	go	too	wrong	with	pretty	much	
any	system-level	MWSR.	
91	BTW,	*BSD’s	kqueue()	is	better	in	this	regard	

simulate	a	non-blocking	call	via	blocking	one	–	really	non-blocking	implementation	will	
perform	MUCH	better).	
	
In	other	words:	I	admire	the	work	done	by	authors	of	these	libs	(especially	libuv),	but	I	don’t	
feel	that	they	will	provide	substantial	simplification	when	used	on	the	Server-Side;	after	all	–	
if	we’re	using	(Re)Actors,	all	this	code	belongs	to	written-once	Infrastructure	Code	(so	we’ll	
be	isolated	from	the	platform	specifics	anyway).	
	

DB	Server	App	for	Classical	Deployment	Architecture	
	
While	we	were	discussing	Web-Based	Deployment	Architectures	–	I	was	insisting	on	
separating	DB	logic	into	a	separate	DB	Server	App,	which	should	be	the	only	entity	speaking	
directly	to	the	database	and	knowing	about	SQL92.	For	Classical	Deployment	Architectures,	I	
insist	on	exactly	the	same	thing,	so	our	architecture	diagram	from	Fig	9.7	becomes	similar	to	
the	following	Fig	9.10:	

	
	
The	idea	here	is	exactly	the	same	as	the	idea	behind	separation	of	the	DB	Server	App	for	a	
Web-Based	Architecture.	In	short	–	we’re	aiming	to	eliminate	too-tight	coupling,	to	isolate	
game	logic	from	SQL,	and	to	make	DB	structure	an	implementation	detail	of	the	DB	Server	
App.	In	turn,	it	will	allow	us	to	have	a	very	efficient	DB	Team,	which	will	be	able	to	optimize	
DB	structure	without	affecting	our	other	Apps	–	and,	as	a	result,	will	be	able	to	take	
responsibility	for	the	whole	database.	For	more	discussion	on	the	benefits	of	the	separated	
DB	Server	App	–	see	the	Enter	DB	Server	App	section	above.	
	
An	all-important	reminder:	for	this	approach	to	work	as	intended,		

																																																								
92	the	only	exception	to	this	rule	MAY	be	read-only	reports.	

DB	Server	API	(the	one	rest-of-the-world	uses	to	communicate	to	DB	Server	
App),	MUST	be	expressed	in	terms	of	game	logic	(with	no	SQL/NoSQL	in	

sight)	
Given	that	the	whole	point	of	DB	Server	App	is	to	isolate	our	game	logic	from	the	database	
implementation	details,	the	requirement	above	should	be	quite	obvious	–	however,	in	
practice	it	can	be	forgotten	way	too	easily	(which,	in	turn,	would	lead	to	re-instatement	of	
the	tight	coupling	which	we’re	trying	to	deal	with	in	the	first	place).	
	

Classical	Deployment	Architecture:	Scaling	and	Load	Balancing	
	
To	scale	a	very	generic	Classical	Deployment	Architecture	–	we’ll	need	to	scale	all	our	Game	
Servers	plus	a	DB	Server	App.		
	
For	the	time	being,	we’ll	concentrate	only	on	scaling	Game	Servers;	scaling	of	DB	Server	App	
is	a	completely	different	story	–	but	it	is	more	local	problem	(i.e.	it	can	be	seen	as	an	
implementation	detail	of	the	DB	Server	App)	–	so	we’re	able	to	postpone	discussions	on	DB	
Server	Scalability	until	Vol.	VI’s	chapter	on	Databases.	
	
Scaling	Game	World	Servers	-	Natural	Linear	Scalability	(except	for	seamless	
MMOs)	
	
For	most	of	the	games	out	there,	scaling	Game	World	Servers	is	not	difficult.	Indeed,	if	our	
Game	Worlds	are	small	enough	–	we	won’t	have	problems	to	handle	each	of	them	with	one	
single	thread	(if	using	(Re)Actor-fest	architecture	–	with	one	single	(Re)Actor),	and	then	we	
can	just	instantiate	as	many	of	them	as	we	need.	For	example,	if	your	game	is	a	battle	arena	
consisting	of	matches	(each	match	having	like	10	players)	–	this	very	simple	approach	will	
allow	for	trivial	scaling.	
	
For	such	games,	our	diagram	on	Fig	9.10	corresponds	to	Stateful-App-Based	System	
discussed	in	Chapter	8	(the	one	relying	on	In-Memory	State).	It	means	inheriting	all	the	
properties	of	Stateful-App-Based	Systems	discussed	in	Chapter	8;	let’s	take	a	closer	look	at	
them,	and	see	how	these	properties	interplay	with	specifics	of	MOG	and	Game	Servers:	

• DB	load	is	greatly	reduced	compared	to	simple	Stateless-Apps	(compared	to	
Stateless-Apps	without	Write-Back	Caches).	In	practice,	this	helps	A	LOT	to	scale	DB	
to	those	numbers	which	we	might	need.	

• Stateful-App-Based	Systems	have	In-Memory	State	which	is	inherently	non-
durable93.	It	means	that	if	our	Game	World	Server	crashes	–	we’ll	lose	this	In-
Memory	State.	On	the	other	hand	–	as	discussed	in	Chapter	8,	for	most	of	MOGs	out	
there,	in	case	of	crash	rolling-back-to-the-start-of-Game-Event	is	exactly	what	we	
want	anyway.	

																																																								
93	At	least	unless	we’re	going	into	fully	fault-tolerant	systems,	which	are	usually	not	really	
realistic	for	MOG	Game	World	Servers.	

• Load	Balancing	can	be	not-so-trivial.	Moreover	–	as	discussed	in	Chapter	8,	for	
Stateful-Apps	there	are	two	different	kinds	of	Load	Balancing:	Worlds-to-Servers	
Load	Balancing,	and	Clients-to-Servers	Load	Balancing.	

	
Let’s	discuss	Load	Balancing	for	Classical-Architecture-as-shown-on-Fig-9.10,	in	more	detail.	
Actually,	for	the	architecture	shown	on	Fig	9.10,	we	don’t	have	any	ability	to	balance	
Clients-to-Servers	(all	the	Clients	who	are	playing/viewing	at	specific	Game	World,	have	to	
be	processed	by	that	specific	Game	World,	that’s	it).	This	can	be	acceptable	for	quite	a	few	
games	out	there,	but	–	if	you	want	to	have	spectators,	and	some	games	will	have	LOTS	of	
such	spectators	–	you’ll	be	in	trouble;	this	can	be	addressed	by	adding	Front-End	Servers	
(more	on	them	in	[[TODO]]	section	below).	
	
As	for	the	Worlds-to-Servers	Load	Balancing	–	it	is	usually	achieved	by	measuring	the	load	of	
each	of	the	Server	Boxes,	and	reporting	it	to	the	Matchmaking	Server.	And	whenever	
Matchmaking	Server	decides	to	create	a	new	instance	of	Game	World	–	it	does	in	on	the	
least-loaded	Server	Box	(potentially	allocating	new	Server	Box	from	the	cloud	if	such	an	
ability	exists).	Ways	to	measure	Server	Box	load	vary	from	counting	number	of	Game	
Worlds	per	Server	Box,	to	real	CPU	load	measurements	(BTW,	the	latter	is	not	necessarily	
“better”	than	the	former,	due	to	phase	shifts	and	potential	for	positive	feedback	loops	and	
oscillation);	for	more	detailed	discussion	on	it	–	see	Chapter	8.	
	
Moving	Game	Worlds	Around	
	
Up	to	now,	we	were	speaking	about	balancing	load	by	creating	an	instance	of	Game	World	
(such	as	Game	World	(Re)Actor)	on	a	specific	Server	box.	On	the	other	hand,	in	some	cases	
it	may	be	necessary	to	move	already-created	Game	World	instances	around	to	address	
imbalance	which	may	occur	after	we	already	created	all	our	Game	World	instances.		
	
This	is	possible	–	however,	from	what	I’ve	seen	in	practice,	for	Game	World	instances	it	is	
rarely	necessary	as	long	as	(a)	all	your	servers	are	rented	on	per-month	basis,	and	(b)	each	
Game	World	is	small	enough,	and	(c)	lifetime	of	Game	Worlds	is	limited.	If,	however,	any	of	
these	requirements	doesn’t	stand	for	your	game	–	you’ll	likely	want	to	move	your	Game	
Worlds	around.	In	particular,	if	you’re	renting	some	of	your	cloud	servers	on	per-minute	
basis	–	you	will	want	to	consolidate	your	Game	Worlds	onto	as-few-rented-servers-as-
possible	as	soon	as	the	load	allows	it.	
	
And,	if	you	need	to	move	your	Game	Worlds	–	at	least	with	VMs	and/or	(Re)Actors	it	is	
perfectly	doable.	
	
For	VMs,	Game	World	relocation	is	going	to	take	a	while;	for	example,	(Predicting	the	
Performance	of	Virtual	Machine	Migration	n.d.)	gives	VM	migration	times	of	the	order	of	
single-digit	seconds(!);	still,	as	it	is	a	one-time	latency	–	even	this	can	be	bearable	for	quite	a	
few	games	slow-	and	medium-paced	games	out	there.	
	
For	(Re)Actors,	this	relocation	latency	can	be	reduced	to	single-digit	milliseconds,	making	it			
viable	even	for	the	most-latency-critical	games	out	there.	For	a	brief	discussion	of	

implementation	details	for	such	low-latency	(Re)Actor	relocations	–	see	the	Moving	Game	
Worlds	Around	(at	the	cost	of	Client	reconnect)	section	above.		
	
MMOGs	and	Seamless	Game	World	Servers	
	
For	our	Scalability	analysis	above,	there	was	an	all-important	assumption94	–	it	is	that	our	
Game	Worlds	are	small.	This	immediately	leads	us	to	a	question	–	what	to	do	if	our	game	is	
one	single	and	seamless	Game	World	with	tens	of	thousands	of	players	in	it?	
	
Of	course,	if	we	can	easily	split	our	large	Game	World	into	smaller	“zones”	(with	no	ability	to	
see	to	a	different	zone	–	such	as	in	most	of	RPGs	out	there	where	each	house/city/…	is	a	
separate	zone)	–	we’ll	be	fine	with	just	minor	additions	to	the	model	above.	But	what	if	
we’re	not	(i.e.	if	our	Game	World	is	large	enough	and	seamless	too)?	
	
As	we’ve	already	mentioned	in	Vol.	I’s	chapter	on	Communications,	probably	the	most	
popular	way	of	scaling	MMOGs	with	seamless	Game	Worlds	goes	along	the	following	lines:	

• We’re	splitting	our	One	Big	MMOG	into	many	“zones”	
• We’re	saying	that	on	“zone”	boundaries	there	is	an	overlapping	area	(large	enough	

to	be	able	to	show	the	player	who	resides	on	the	edge	of	this	overlapping	area,	all	
the	potentially	movable	objects	within	his	field	of	view)	

o Moving	objects	(such	as	PC/NPCs/…)	within	this	overlapping	area	are	
simulated	TWICE	–	once	in	each	of	zones.	However,	only	one	of	the	copies	is	
authoritative,	so	that	there	is	a	constant	re-synchronization	going	on	
between	the	overlapping	“zones”	–	with	non-authoritative	copies	being	
adjusted	to	correspond	to	the	authoritative	one.		

§ This	adjustment	is	roughly	similar	to	that	of	described	in	Vol.	I	with	
respect	to	Client-Side	Prediction.	In	other	words	–	we	can	think	that	
simulation	of	the	non-authoritative	copy	is	just	a	prediction	(made	by	
a	Server).	

o At	some	point,	authority	over	an	object	which	crosses	the	boundary	between	
zones,	is	transferred	from	one	Zone	Server	to	another	one.	After	authority	
transfer,	both	Zone	Servers	still	continue	to	simulate	the	object	–	but	a	
different	Zone	Server	becomes	authoritative.		

• As	soon	as	we’re	done	with	“Zone	Servers”,	we	can	treat	them	more	or	less	the	
same	as	our	usual	Game	World	Servers	which	we	discussed	above.	

o NB:	unlike	usual	Game	World	Servers,	Zone	Servers	do	need	to	communicate	
to	each	other;	while	rarely	being	a	problem	when	all	your	Zone	Servers	run	
from	one	single	datacenter	–	it	can	have	important	ramifications	when	
spreading	over	different	datacenters,	so	your	Load	Balancing	algorithms	will	
likely	need	to	keep	it	in	mind.	

	
For	much	more	detailed	discussion	about	this	approach	–	see,	for	example,	(Beardsley	n.d.),	
(Duquette	n.d.),	and	(Baryshnikov	n.d.).	
	

																																																								
94	And,	as	all	of	us	experienced	multiple	times,	any	assumption	is	a	potential	source	of	
screw-ups	

Scaling	Matchmaking	Server	
	
Another	Game	Logic	Server	which	can	cause	scalability	issues	–	is	your	Matchmaking	Server.	
In	its	regard,	unfortunately,	I	can	offer	only	two	considerations:	

• As	a	rule	of	thumb,	Matchmaking	Server	is	relatively	rarely	accessed;	also	it	is	usually	
simple	enough	and	fast	enough.	As	a	result,	you	can	usually	avoid	dealing	with	
scalability	for	a	long	while	(usually	-	up	to	100K	simultaneous	players	and	more).	

o As	always,	YMMV	and	batteries	not	included	<sad-face	/>	
o It	will	even	work	from	one	single	thread/(Re)Actor	for	a	long	while	

• When	handling	matchmaking	from	one	single	thread	becomes	a	problem	–	it	is	
usually	possible	to	split	it	so	you	can	handle	necessary	load;	however,	the	ways	of	
splitting	which	I’ve	seen,	were	too	game-specific	and	I	am	not	able	to	generalize	
them	into	anything	universally-usable	at	the	moment.	In	other	words	–	while	I	am	
sure	that	achieving	scalability	for	your	Matchmaking	Server	is	certainly	doable,	I	
cannot	provide	any	non-game-specific	advice	how	to	do	it,	so	you’ll	to	think	about	it	
yourself	<sad-face	/>.	

	
Scaling	Other	Game	Servers	
	
As	for	other	Game	Servers	–	they	usually	either	scale	similar	to	the	Game	World	Servers	
above	(one	example	of	these	is	Tournament	Servers),	or	they	don’t	need	to	scale	at	all	(i.e.	
all	needed	things	can	be	handled	by	one	(Re)Actor),	or	they’re	trivially	scalable	via	some	
kind	of	balancing	proxy.		
	
Let’s	discuss	the	last	one	(scaling	by	proxy)	by	an	example.	Let’s	say	that	we	have	a	Social	
Gateway	Server	which	needs	to	send	LOTS	of	Facebook	updates	(of	course,	by	player’s	
request	–	but	number	of	these	requests	happens	to	be	huge	for	our	game).	First,	we	had	it	
implemented	as	one	(Re)Actor;	however,	at	some	point	we	found	that	one	thread	cannot	
handle	all	the	load.	At	this	point,	we	can	just	create	a	kind	of	balancing	proxy	–	which	will	
have	an	interface	exactly	as	our	usual	Social	Gateway	Server,	and	several	instances	of	Social	
Gateway	Server	behind	the	proxy.	All	requests	from	the	rest	of	our	system	go	to	this	Social	
Gateway	Proxy,	which	merely	forwards	the	request	to	one	of	the	instances	of	Social	
Gateway	Server	sitting	behind	it.	This	schema	tends	to	work	pretty	well	–	in	particular:	

• proxy	can	be	inserted	at	later	stages	without	any	change	to	the	rest	of	the	system,	
• I’ve	never	seen	balancing	proxy	to	become	overloaded.	Indeed,	with	a	single	thread	

able	to	proxy	around	100’000	messages	per	second	–	overloading	such	a	proxy	
becomes	a	very	difficult	task	(just	to	put	it	into	perspective	–	the	whole	Twitter	on	
average	has	only	6’000	tweets/second).	

• The	only	major	caveat	with	such	proxies	is	that	they	imply	that	the	Game	Server	
being	proxied,	is	essentially	stateless	–	otherwise	this	kind	of	proxying	wouldn’t	
work;	on	the	other	hand,	surprisingly	large	number	of	those-other-Servers-which-
need-scaling,	are	indeed	stateless.	Overall,	I	didn’t	see	a	need	to	scale	some	of	the	
“other”	(i.e.	non-Game-World	and	non-Matchmaking)	Game	Servers	beyond	
balancing	proxy.		

	

Classical	Game	Deployment	Architecture:	Summary	
	
To	summarize	our	discussion	above	about	Classical	Game	Deployment	Architecture:	

• It	works	even	for	most	fast-paced	games	out	there	<smile	/>	
o In	fact,	for	fast-paced	games	it	is	the	only	viable	option	

• It	can	and	often	should	be	implemented	using	(Re)Actor-fest	model	with	
deterministic	(Re)Actors,	see	discussion	above	for	details	

o Deterministic	(Re)Actors	provide	LOTS	of	benefits,	from	production	post-
mortem	to	replay	testing	using	real-world	data,	and	so	on,	and	so	forth	

o (Re)Actor-wise,	I	Very	Strongly	suggest	to	write	your	Game	Logic	as	(Re)Actor	
o Writing	your	infrastructure-level	code	as	a	(Re)Actor,	while	certainly	possible	

(as	described	above)	and	I	suggest	to	do	it	too	–	is	not	that	important	as	
implementing	your	Game	Logic	as	a	(Re)Actor.	

• As	a	rule	of	thumb,	for	stateful	processing	(which	is	inherent	to	Classical	Deployment	
Architectures)	MWSR-based	architectures	tend	to	beat	MWMR-based	ones	(the	
latter	include	thread	pools).	

• DB	Server	App	(with	DB	Server	API	expressed	in	terms	of	game	logic	–	and	without	
any	SQL/NoSQL	details)	–	is	highly	desirable	not	only	for	Web-Based	Deployment	
Architecture,	but	also	for	Classical	Deployment	Architecture.	

• Under	Classical	Deployment	Architecture,	scaling	of	Game	World	Servers	is	usually	
trivial	

o One	exception	is	“seamless	worlds”,	but	methods	of	scaling	seamless	worlds	
are	known	too.	

• Classical	Deployment	Architecture	as	such	addresses	only	Worlds-to-Servers	Load	
Balancing;	for	Clients-to-Servers	Load	Balancing	–	we’ll	need	to	add	Front-End	
Servers	(discussed	in	[[TODO]]	section	below).	

	

“Hybrid”	Web+Classical	Architecture	(Mixed	Stack)	
	
As	it	was	already	noted	above	–	it	is	possible	to	combine	Classical	Deployment	Architecture	
with	a	Web-Based	one.	In	this	case,	traditionally	a	deployment	diagram	looks	along	the	lines	
on	the	following	Fig.	9.11:	

	
	
As	we	can	see,	“hybrid”	architecture	on	Fig	9.11	is	nothing	but	a	merge	between	“Web-
Based	Architecture”	from	Fig	9.4,	and	“Classical	Architecture”	from	Fig	9.7.	Such	“hybrid”	
architectures	directly	correspond	to	“Mixed	Stack”	from	(Zubek,	"Engineering	Scalable	Social	
Games"	n.d.).	Overall,	I	am	not	going	to	spend	too	much	time	describing	such	hybrid	(or	
“Mixed-Stack”)	architectures;	as	discussed	in	(Zubek,	"Engineering	Scalable	Social	Games"	
n.d.),	they	surely	have	their	merits,	but	these	merits	directly	follow	from	description	of	Web	
Servers	described	under	Web-Based	Deployment	Architecture,	and	from	”Classical”	Servers	
being	an	incarnation	of	Game	Servers	described	under	Classical	Deployment	Architecture.	
Very	shortly	–	yes,	you	can	combine	Web-Based	and	Classical	Deployment	Architectures	in	
one	game,	and	you’ll	obtain	Fig	9.11	<smile	/>.	
	
For	such	“hybrid”	architectures,	implementing	Server-Side	is	rather	straightforward	(just	
implement	web-based	part	along	the	lines	of	Web-Based	Architecture,	and	classical	part	-	
along	the	lines	of	Classical	Architecture	as	discussed	above).	However,	there	are	two	
important	notes	to	keep	in	mind	while	combining	these	different	approaches	together:	

• Both	parts	of	the	stack	MUST	speak	to	the	same	database	behind.	It	should	be	quite	
obvious	–	but	let’s	state	it	explicitly	just	in	case.	

o The	only	exception-I-know	to	this	rule,	occurs	when	we	want	to	save	Game	
States	into	the	database	–	in	such	cases,	it	is	ok	to	have	separate	dedicated	
DBs	specifically	for	Game	States	(in	a	manner	similar	to	Fig	9.6	above).	

• Your	Client	will	need	to	work	with	both	of	these	quite	separated	stacks.	As	a	result	–	
Really	Ugly™	solutions	(with	effectively	two	separate	Clients	–	one	downloadable	for	
play,	and	one	browser-based	for	everything-else)	are	often	used	on	the	Client-Side.	
In	Vol.	II’s	chapter	on	Client-Side	Architectures	I	already	bashed	these	dual-Client	
solutions	(at	the	very	least,	(a)	they’re	ugly	from	player	perspective,	and	(b)	they	
make	password	phishing	easier).	On	the	other	hand,	it	is	only	a	Client-Side	issue;	
moreover	-	it	is	possible	to	get	browser	integrated	into	downloadable	Client	(or,	in	
some	cases	-	to	get	gameplay	integrated	into	browser-based	app);	see	Vol.	II’s	
chapter	on	Client-Side	Architecture	for	a	relevant	discussion.	

	
Overall,	personally	I	am	not	really	a	big	fan	of	such	hybrid	architectures;	the	reason	for	it	is	
mostly	because	keeping	too	many	different	technology	stacks	together	–	and	making	them	
cooperate	too	(especially	on	the	Client-Side)	-	can	easily	become	more	cumbersome	than	
DIY.	On	the	other	hand,	as	my	concerns	are	relatively	mild,	and	as	I	know	for	sure	that	such	
“hybrid”	deployments	worked	in	Quite	Large™	social	game	deployments	(ok,	as	it	was	Zynga	
–	I	have	to	admit	it	was	Really	Large™	<smile	/>),	it	means	that	if	you	will	insist	on	
implementing	your	game	this	way	–	I	won’t	jump	too	high	<wink	/>.	
	

DB	Server	App	for	Mixed	Stack	
	
While,	as	mentioned	above,	I	agree	that	in	quite	a	few	cases,	such	“hybrid”	(Mixed	Stack)	
architectures	may	be	viable	–	there	is	one	thing	I	have	to	insist	on	if	you	decide	to	go	this	
way.	As	you	may	already	have	guessed	<wink	/>	-	it	is	using	a	DB	Server	App	instead	of	
allowing	all	the	web	servers,	and	all	Game	Servers	to	issue	SQL	statements	directly	(also,	DB	
Server	App	will	take	over	functions	of	the	Back-End	Cache).	Such	an	architecture	is	shown	
on	Fig	9.12:	
	

	
	
	
	
This	approach	is	a	hybrid	of	previously	discussed	ones,	so	I	won’t	spend	too	much	time	on	it,	
merely	re-iterating	the	most	import	points:	

• All	entities	SHOULD	speak	to	the	same	DB	Server	App	(with	the	only	potential	
exception-I-know	being	separate	Game	State	DBs,	along	the	lines	of	Fig	9.6).	

• DB	Server	API	MUST	be	expressed	in	terms	of	Game	Logic	(and	not	in	terms	of	
SQL/NoSQL).	

• As	discussed	in	Vol.	II’s	chapter	on	Client-Side	Architecture	–	your	Client	SHOULD	
NOT	look	as	being	split	into	“downloadable”	and	“web-based”;	integrating	these	
parts	of	the	Client	is	important	for	your	bottom	line	(especially	if	competition	is	
significant).	

	

Enter	Front-End	Servers	
	

[Enter	Juliet]	
Hamlet:	Thou	art	as	sweet	as	the	sum	of	the	sum	of	Romeo	and	his	horse	and	his	black	cat!	

Speak	thy	mind!	
[Exit	Juliet]	

–a	sample	program	in	Shakespeare	Programming	Language–	
	

	
	
Our	Classical	Deployment	Architecture	on	Fig	9.10	is	certainly	not	bad,	and	it	will	work,	but	
there	is	still	quite	a	bit	of	room	for	improvement	for	quite	a	few	games	out	there.	More	
specifically,	we	can	add	another	row	of	servers	in	front	of	the	Game	Servers,95	as	shown	on	
Fig	9.13:	

	

																																																								
95	BTW,	we	can	easily	do	it	for	“hybrid”	Web+Classical	Architectures	too	

As	you	see,	compared	to	the	Classical	Deployment	Architecture	(as	shown	on	Fig	9.10	
above)	we've	just	added	a	row	of	Front-End	Servers	in	front	of	our	Game	Servers.	These	
additional	Front-End	Servers	are	intended	to	deal	with	all	the	communication	stuff	when	it	
comes	from	the	Clients.	All	those	pesky	“whether	the	player	is	connected	or	not”	questions	
(including	different	kinds	of	keep-alives	where	applicable,	see	Vol.IV’s	chapter	on	Network	
Programming	for	details	on	keep-alives),	all	that	Client-to-Server	encryption	(if	applicable),	
with	all	those	keys	etc.,	all	those	rather	more-or-less	strange	reliable-UDP	protocols	(again,	
if	applicable),	and	of	course,	routing	messages	between	the	Clients	and	different	Game	
Servers	–	all	the	communication	with	Clients	is	handled	here.	
	
We'll	discuss	the	implementation	of	our	Front-End	servers	a	bit	later,	but	for	now	let's	note	
that	most	importantly,	

Front-End	Servers	MUST	be	easily	replaceable	without	significant	
inconveniences	to	players	

	
That	is,	if	any	of	Front-End	Servers	fails	for	whatever	reason	–	the	most	a	player	should	see,	
is	a	disconnect	for	a	few	seconds.	While	still	disruptive,	it	is	very	much	better	than	scenarios	
such	as	“the	whole	Game	World	went	down	and	we	need	to	restore	it	from	backup”.	In	
other	words,	whenever	Front-End	server	crashes	for	whatever	reason,	all	the	Clients	who	
were	connected	there,	need	to	detect	the	crash	(or	even	worse,	“black	hole”)	and	
automagically	reconnect	to	some	other	Front-End	server;	in	this	case	all	the	player	can	see,	
is	a	momentarily	disconnect	(which	is	also	a	nuisance,	but	is	orders	of	magnitude	better	
than	to	see	your	game	hang).	
	

Front-End	Servers	as	Concentrators	
	
In	addition,	these	Front-End	Servers	can	store	a	copy	of	
relevant	Game	Worlds	when	it	is	necessary,	acting	as	
“concentrators”	for	the	Game	World	updates;	i.e.	even	if	a	
Game	Server	has	100'000	people	watching	some	game	(like	
final	of	some	Tournament	of	the	Year	or	something),	it	will	
need	to	send	updates	only	to	a	few	Front-End	Servers,	and	
Front-End	Servers	will	take	care	of	data	distribution	to	all	the	
100'000	people.		
	
This	ability	comes	really	handy	when	you	have	some	kind	of	Big	
Final	game,	with	tens	of	thousand	people	willing	to	watch	it;	
most	of	the	time	–	for	marketing/monetization	purposes	you’ll	
want	to	broadcast	it	both	as	a	video	stream	(for	those	who	
don’t	have	your	Client	yet)	–	and	as	a	game	data	stream	
residing	with	your	Client	(so	in	your	video	stream	you	can	say	
“hey,	if	you	want	to	see	it	in	real	3D	–	please	download	our	Client”,96	not	to	mention	it	being	

																																																								
96	and	whenever	you	can	provide	a	compelling	reason	to	download	your	Client	–	you’re	
getting	more	players,	it	is	this	simple.	

	
In	addition,	usually	
these	Front-End	servers	
store	a	copy	of	relevant	
Game	Worlds	when	it	is	
necessary,	and	are	
acting	as	
“concentrators”	for	the	
game	world	updates	

more	convenient	to	existing	players,	and	game-data	broadcast	using	much	less	traffic	and	
being	much	less	expensive	as	a	result97).		
	
As	for	the	protocols	for	these	Front-End-Servers-acting-asconcentrators	–	they	can	be	
implemented	based	pretty	much	on	the	same	protocols	which	were	discussed	in	Vol.	I’s	
chapter	on	Communications.	In	particular:	

• “concentrator”	can	act	as	if	it	is	a	“Client”,	subscribing	to	Game	World	Updates	and	
keeping	its	own	eventually-consistent	copy	of	the	Game	World	

• when	a	new	Client	comes	to	concentrator	–		
o concentrator	feeds	the	Client	with	an	(almost-)up-to-date	information	from	

its	own	copy	of	the	Game	World,	and	
o concentrator	adds	the	Client	to	the	list	of	downstream	subscribers	

• on	receiving	any	Game	World	update	from	its	own	upstream	provider	–	
concentrator:	

o updates	its	own	copy	of	the	Game	World,	and	
o sends	the	update	to	all	its	downstream	subscribers		

	
Bingo!	We’ve	got	our	“concentrator”	to	serve	thousands	of	subscribers	–	and	without	
loading	its	upstream	at	all.		
	

Front-End	Servers:	Benefits	
	
Whenever	we're	adding	another	layer	of	complexity,	there	is	always	a	question	“Do	we	
really	need	it?”	From	what	I've	seen,	having	easily	replaceable	Front-End	Servers	in	front	of	
your	Game	Servers	is	very	valuable	and	provides	quite	a	few	benefits.	More	specifically:	
	

• having	a	copy	of	relevant	Game	World(s)	on	your	Front-End	Servers	(i.e.	with	Front-
End	Servers	acting	as	“concentrators”)	allows	to	replicate	your	Game	World	State	to	
a	virtually	unlimited	number	of	observers/spectators.	This	comes	handy	in	at	least	
two	common	scenarios:	(a)	broadcast	of	your	Big	Final	Game™	(with	hundreds	of	
thousands	who	want	to	watch	it	in	real	time),	and	(b)	broadcasting	lists	of	available	
games	(for	players	to	select	which	game	they	want	to	join)	–	and	these	can	become	
quite	large	as	soon	as	you’re	allowing	to	select	your	opponents	directly.	Best	of	all,	
any	such	broadcast	will	happen	without	affecting	Game	Server's	performance	(and	
this	is	the	last	thing	you	want	to	happen	to	your	Big	Final	Game™).	Moreover,	with	
Front-End	Servers	usually	you	won't	need	to	organize	anything	special	for	your	Big	
Final	Game™,	and	the	system	(if	built	properly)	can	take	care	of	it	itself,	in	(roughly)	
the	following	manner:	

o whenever	somebody	comes	to	watch	a	certain	game,	his	Client	requests	this	
game	from	the	Front-End	Server	

																																																								
97	For	video	stream	–	we’re	speaking	about	at	least	3Mbit/s	to	get	anywhere-decent	image;	
with	game	data	stream	–	it	is	more	like	100kBit/s	to	get	absolutely	perfect	picture	(plus	an	
ability	to	change	angles,	etc.	etc.).	So,	from	the	players’	point	of	view	(and	players	don’t	
caere	about	complexity	of	Front-End	Servers,)	–	the	choice	is	a	no-brainer.	

o if	Front-End	Server	doesn't	have	a	copy	of	the	requested	game,	it	requests	it	
from	the	relevant	Game	Server,	alongside	with	updates	to	the	Game	World	
State	

o from	this	point	on,	Front-End	Server	will	keep	an	“in-sync”	copy	of	the	game	
world,	providing	it	(with	updates)	to	all	the	Clients	which	have	requested	it	

o it	means	that	from	this	point	on,	even	if	you	have	1’000’000	observers	
watching	some	specific	game	on	this	Game	Server,	all	the	additional	load	is	
spread	onto	your	Front-End	Servers,	without	affecting	your	Game	Server	

• Front-End	Servers	take	some	load	off	your	Game	Servers,	while	being	easily	
replaceable	

o it	means	that	you	can	have	fewer	Game	Servers	
o this,	combined	with	the	observation	that	Front-End	Servers	are	easily	

replaceable,	means	that	you	improve	reliability	of	your	site	as	a	whole	–	that	
is,	without	cumbersome	fault-tolerant	stuff	discussed	in	Chapter	10.	In	other	
words	–	with	Front-End	Servers,	instances	when	some	of	your	Game	World	
Servers	go	down,	will	occur	more	rarely	(!)	

§ in	particular,	it	means	that	you	can	use	really	cheap	boxes	for	your	
Front-End	Servers;	strictly	speaking,	you	don't	even	need	ECC	and	
RAID	for	them	(and	you	almost-certainly	do	need	them	for	your	Game	
Servers	–	at	least	unless	you’re	into	real	fault	tolerant	solutions	
described	in	Chapter	10).	If	you're	going	to	deploy	into	the	cloud	–	it	
means	that	you	may	want	to	consider	cheaper	offers	for	your	Front-
End	Servers	(even	if	they're	coming	from	different	CSP).98	

§ Note	that	to	get	this	benefit	from	Front-End	Servers,	it	is	necessary	to	
ensure	that	if	one	of	Front-End	Servers	goes	down	–	its	load	should	be	
automagically	redistributed	among	the	others	(in	practice,	Client-Side	
Random	Load	Balancing,	as	discussed	in	Chapter	8,	was	seen	to	work	
extremely	well	with	Front-End-Servers).		

o Let’s	note	that	positive	effect	from	reducing	the	number	of	Game	Servers	
depends	on	the	portion	of	the	load	which	is	took	by	communications	
compared	to	the	Game	World	logic.	In	particular,	for	simulation	games	–	the	
gain	is	likely	to	be	rather	negligible.	

• they	allow	your	Client	to	have	a	single	connection	point	to	the	whole	site	(or	at	least	
to	minimize	the	number	of	such	connection	points);	benefits	of	this	approach	
include:	

o better	control	over	player's	“last	mile”	so	that	priorities	between	different	
data	streams	can	be	controlled	

o eliminating	difficult-to-analyze	“partial	connections”	
o hiding	more	implementation	details	of	your	site	from	the	hostile	world	

outside.		
o More	on	it	in	Vol.	IV’s	chapter	on	Network	Programming	

• Front-End	Servers	allow	for	better	security,	in	particular:		
o they	can	be	separated	in	a	kind	of	DMZ,	see	further	discussion	in	Vol.	IX’s	

chapter	on	Security,	Take	2).	

																																																								
98	keep	in	mind	that	you	still	need	top-notch	connectivity	

o To	attack	your	Front-End-based	system	(the	one	which	also	uses	Client-Side	
Random	Balancing)	with	a	DDoS,	it	is	necessary	to	overload	all	your	Front-End	
Servers	simultaneously.	While	this	is	certainly	possible	–	I’ve	seen	lots	of	
DDoS	attacks	being	unable	to	get	the	game,	exactly	because	of	overloading	
just	one	Front-End	Server.	

§ Most	of	the	time,	you’ll	still	need	another	layer	of	DDoS	protection	
(such	as	BGP-based	one	–	more	on	it	in	Vol.	IX),	but	Front-End	Servers	
will	help	you	to	avoid	activating	BGP-based	protection	more-often-
than-otherwise-necessary.	As	each	such	activation	is	disruptive	to	
your	players	for	sure	(and	having	too	many	of	such	activations	may	
become	expensive)	–	having	to	use	such	protection	less	frequently	is	
certainly	a	Good	Thing™.	

	

Front-End	Servers:	Drawbacks	and	Issues	to	Solve	
	
As	for	the	potential	negative	sides	of	having	Front	End	Servers,	there	are	quite	a	few	of	
them	too	(nothing	in	this	world	comes	for	free,	sigh);	we’ll	discuss	them	in	more	detail	so	
you’ll	be	able	to	decide	whether	they	apply	to	your	specific	game	–	and	how	to	deal	with	
them.	
	

Latencies	and	Latency	Differences	
	
The	most	obvious	potential	drawback	of	Front-End	Servers	is	additional	latency.	More	
specifically,	we're	speaking	about	the	time	which	is	necessary	for	the	packet	incoming	from	
a	Client	at	application	layer,	to	get	deserialized	from	Ethernet	wire	by	the	NIC	of	the	Front-
End	Server,	to	generate	hardware	interrupt,	for	OS	kernel	to	receive	and	process	this	
interrupt,	for	kernel	thread	to	pick	up	results	of	interrupt	processing	and	to	get	the	packet	
through	IP	stack	all	the	way	to	app	level	(this	includes	kernel->user	level	transition),	to	be	
processed	by	your	Front	End	Server	app-level,	to	go	back	into	TCP	stack99	on	Front-End	
Server	side	(this	includes	user->kernel	transition),	to	be	sent	to	NIC	and	then	to	be	serialized	
to	the	Ethernet	wire	(plus	the	time	necessary	to	go	in	the	opposite	direction).	
	

																																																								
99	as	it	was	discussed	in	Vol.	I’s	chapter	on	Communications,	I'm	usually	arguing	for	TCP	
connections	for	inter-server	communications	in	most	cases.	On	the	other	hand,	UDP	is	also	
possible	if	you	really	really	prefer	it	

It	may	sound	scary,	but	let's	take	a	closer	look	at	this	additional	
latency.	For	a	100-byte	packet	transmitted	at	1GBit/s,	
serialization/deserialization	times	will	be	around	1	
microsecond;	for	NIC-interrupt	interactions	(both	transmit	and	
receive	combined),	(Steen	Larsen	n.d.)	gives	an	estimate	of	
around	8	µs;	their	measurements,	however,	don’t	include	
kernel-to-user	switches	and	back;	these	may	cost	us	several	
additional	thousands	of	CPU	clock	cycles,	which	corresponds	to	
another	several	microseconds	(in	some	cases	this	can	be	
improved	BTW,	see	brief	reference	to	netmap/DPDK	RIO	in	
“Network	Processing”	section	below,	and	more	detailed	
discussion	in	Vol.	IV’s	chapter	on	Network	Programming).	And	
processing	within	the	app-level	of	the	Front-End	Server	can	be	
usually	brought	down	to	double-digit	microseconds.100	Finally,	
we	need	to	multiply	all	these	delays	by	two	to	get	to	RTT.		
	
Still,	if	we	do	all	the	math,	we’ll	find	that	we’re	speaking	about	
these	additional-latencies-due-to-	below	100	µs;	in	practice,	I’ve	seen	it	a	bit	higher	–	at	
200-500	µs,	but	it	was	well	below	1ms	anyway.		
	
Let’s	note	though	that	if	you’re	using	an	inefficient	library	(which	does	happen,	especially	
with	not-so-mainstream	libraries,	and	even	worse	–	with	not-so-mainstream	programming	
languages)	–	the	latency	can	be	MUCH	higher.	While	I	am	comfortable	to	say	that	on	a	x64	
box	running	Windows	or	Linux,	it	is	possible	to	achieve	delays	which	are	well-below	1ms	
using	plain	C	on	top	of	OS	calls	–	I	cannot	vouch	for	doing	it	with	each	and	every	
communication	library	out	there;	all	3rd-party	libraries	need	to	be	tested	in	close-to-real-life	
tests	to	be	sure	<sad-face	/>.	
	
Another	latency-related	potential	issue	with	having	Front-End	Servers	would	arise	if	some	of	
your	Front-End	Servers	are	overloaded	(or	they're	running	using	significantly	different	
hardware),	so	those	players	connected	to	less-loaded	Front-End	Servers,	will	have	lower	
latencies,	and	therefore	will	have	an	advantage.	
	
On	the	one	hand,	I	didn't	see	situations	where	it	makes	any	practical	difference	in	real-world	
deployments	(i.e.	with	reasonably	good	Load	Balancing	–	and	as	I've	seen	it	in	practice	-	if	
one	of	the	Front-End	Servers	is	overloaded,	it	means	that	most	of	the	other	ones	are	already	
at	90%+	of	capacity,	which	you	should	avoid	anyway;	see	also	Chapter	8	for	discussion	of	
the	ways	to	implement	Load	Balancing).	On	the	other	hand,	YMMV	and	in	theory	you	might	
get	hit	by	such	an	effect	(though	I	certainly	don't	see	it	coming	into	play	for	anything	but	
maybe	MMOFPS).	
	
To	summarize:	

																																																								
100	note	that	this	might	become	a	non-trivial	exercise;	on	the	other	hand,	I've	done	it	myself	
(reaching	as	little	as	5	µs	for	some	classes	of	traffic),	so	it	is	certainly	doable	at	least	in	some	
practical	cases.	On	the	other	hand,	YMMV	depending	on	the	processing	involved.	

	
we’re	speaking	about	
the	additional	latencies	
below	100	µs;	in	
practice,	I’ve	seen	it	a	
bit	higher	–	at	200-500	
µs,	but	it	was	well	
below	1ms	anyway.		

• if	additional	latency	of	around	1	millisecond	is	ok	for	you	–	don't	worry	too	much	
about	additional	latencies	and	go	for	Front-End	Servers;	this	certainly	covers	all	
genres	with	the	only	potential	exception	being	MMOFPS	

• still,	make	sure	to	test	additional	latencies	for	your	own	libraries	before	committing	
to	Front-End	Servers;	while	achieving	1	millisecond	is	certainly	possible	–	you	may	
run	into	problems	with	your	communication	library;	during	my	career	I’ve	seen	
Really	Weird™	performance-related	things	done	even	by	popular	libraries.	

• if	additional	latency	you	can	live	with,	is	well	below	1	millisecond	(which	is	difficult	
for	me	to	imagine	as	it	is	still	over	an	order	of	magnitude	less	that	1/60	sec	frame	
update	time,	but	in	a	MMOFPS	world	pretty	much	anything	can	happen)	-	think	
about	it	a	bit	more	–	and	experiment	more	too.	My	guess	is	that	you	should	still	be	
able	to	reach	even	hundreds-of-microseconds	range	for	Front-End	Servers	–	but	
don’t	rely	on	it	until	you	see	it	with	your	eyes	in	a	well-conducted	experiment	
(ideally	–	by	measuring	RTT	with	and	without	your	Front-End	Server,	all	other	
measurements	can	mislead	way	too	easily).		

	

Discussion	on	Scalability	of	Front-End	Servers	and	Dealing	with	“N-
squared”.	Server	Groups	
	
Another	concern	with	regards	to	Front-End	Servers	is	that	as	your	whole	game	grows,	your	
inter-server	traffic	and	RAM	usage	across	all	the	Front-End	Servers	will	grow	as	N2,	so	
whenever	we’re	increasing	capacity	by	a	factor	of	two,	they	will	grow	by	a	factor	of	4.		
	
While	it	is	a	theoretically	valid	argument	(and	a	popular	one	among	the	serious	gamedevs	
too),	I	used	Front-End	Servers	in	a	quite	big	project,	and	didn’t	see	this	“N-squared	
problem”	starting	to	play	any	role	in	practice.	Moreover,	if	“N-squared	dependency”	ever	
becomes	an	issue,	it	is	certainly	possible	to	avoid	N2	completely	–	by	effectively	splitting	
your	site	into	several	“server	groups”	of	N	Front-End	Servers	by	M	Game	World	Servers,	and	
balancing	your	Clients	across	these	N	Front-End	Servers.		
	
In	the	extreme	case	(and	this	is	what	quite	a	few	guys	from	the	industry	are	arguing	for)	–	
you	can	reduce	these	NxM	server	groups	into	1xM	server	groups	(i.e.	with	one	Front-End	
Server	per	“server	group”).	However	–	personally	I	am	a	rather	strong	advocate	of	NxM	
approach	with	N	being	around	3-5	(and	if	not	causing	too	much	trouble	–	raising	N	up	to	10-
20;	BTW,	from	my	experience	-	a	single	group	with	N~=20	has	good	chances	to	cover	your	
whole	game,	even	if	it	runs	a	hundred	of	thousands	of	simultaneous	players).	
	
Let’s	do	some	very	basic	math	(of	course,	for	your	game	the	numbers	will	be	different	–	and	
make	sure	that	you	repeat	the	calculation	using	your	own	numbers,	but	the	idea–	though	
not	necessarily	results	-	will	stay	more	or	less	the	same).	Let’s	say	your	game	is	an	arena	
with	100K	simultaneous	players	distributed	over	10K	Game	Worlds,	which	Game	Worlds	are	
dispersed	over	100	10-core	Game	World	Servers101.	Also,	let’s	say	we	have	10	Front-End	
Servers	to	handle	all	this	traffic	(10K	players/Front-End	Server	is	a	reasonably	good	ballpark	

																																																								
101		as	of	2017,	100	players/core	or	1000	players/2S	server	is	more	or	less	a	“de-facto	
industry	standard	number”	observed	across	a	wide	range	of	simulation-related	games	

starting	number).	Let’s	further	assume	that	each	of	Game	World	Publishable	States	takes	
100K	of	RAM	(BTW,	when	speaking	about	Publishable	States	–	as	defined	in	Vol.	I’s	Chapter	
on	Communications	-	this	is	quite	a	generous	number),	and	generates	50	bytes	per	PC	per	
network	tick	(with	network	ticks	coming	20	times	per	second),	plus	it	has	100	NPCs	which	
are	much	less	mobile	and	generate	on	average	10	bytes	per	network	tick	each.	
	
This	makes	each	of	Game	Worlds	to	generate	50	bytes/PC/tick	*	10	PCs/GameWorld	*	20	
ticks/second	+	10	bytes/NPC/tick	*	100	NPCs/GameWorld	*	20	ticks/second	=	
30Kbytes/second/GameWorld	of	traffic.	With	our	NxM	matrix	being	actually	10	Front-End	
Servers	by	100	Game	World	Servers	–	these	30Kbytes/second	need	to	be	sent	to	10	of	our	
Front-End	Servers,	making	it	300Kbytes/second	per	Game	World,	or	
300Kbytes/second/GameWorld	*	10K	GameWorlds	=	3GByte/second	of	total	traffic	
between	our	Game	World	Servers	and	Front-End	Servers.	While	this	traffic	is	not	going	to	
leave	boundaries	of	the	datacenter	(and	you’re	not	going	to	pay	for	it	as	for	the	traffic)	-	this	
is	still	quite	a	large	number	and	indeed	sounds	scary.	However,	we	need	to	keep	in	mind	
that	it	is	a	total	traffic,	and	that	no	server	in	the	system	will	ever	see	this	much:	in	particular,	
each	of	100	Game	World	Servers	will	send	only	1/100th	of	it	(i.e.	30MByte/s	or	300Mbit/s),	
and	each	of	Front-End	Servers	will	receive	only	1/10th	of	this	traffic	(i.e.	300Mbytes/s	or	
around	3Gbit/s	–	rather	high,	but	can	be	handled	by	10GBit/s	interfaces	which	are	already	
pretty	much	standard	as	of	2017	on	“Workhorse”	1U/2-socket	boxes102).	The	only	entity	in	
the	system	which	will	experience	this	1GByte/s	=	10GBit/s	traffic,	is	your	Ethernet	switch,	
but	as	of	2017,	if	you	have	a	128-or-so-port	switch	(to	connect	all	those	server	boxes)	–	
you’ll	usually	get	much	more	than	10GBit/s	switching	capacity	anyway.		
	
From	the	point	of	view	of	RAM	–	in	the	absolutely	worst	case,	we’ll	use	10K	worlds*100K	
bytes/world=1Gbyte	RAM	to	store	each	all	those	100K	Game	World	Publishable	States	on	
each	of	our	Front-End	Servers;	as	1G	is	not	much	to	worry	about	by	today’s	standards,	it	
means	that	again,	we	don’t	have	much	to	worry	about	in	practice.	
	
As	a	result,	I	don’t	envision	any	problems	if	for	the	game	like	the	one	we’ve	just	discussed,	
we’re	using	NxM	matrix	of	10	Front-End	Servers	x	100	Game	World	Servers	to	handle	100K	
simultaneous	players.	And	let’s	keep	in	mind	that	we’ve	got	a	fairly	large	game	to	start	with	
(100K	of	simultaneous	players	is	nothing	to	be	ashamed	about	even	these	days).		
	
On	the	other	hand,	if	we’ll	extend	this	game	to	handle	a	million	of	simultaneous	players	–	
probably	the	most	cost-efficient	way	would	be	to	avoid	dealing	with	too	much	of	N2	
dependencies,	and	to	have	10	of	such	10x100	server	groups.		
	
One	may	ask	–	if	having	server	groups	too	large	causes	all	this	overhead,	why	can’t	we	have	
just	1xM	server	groups?	(and	as	I	noted	above	–	it	is	an	approach	which	is	rather	popular	
within	the	industry).	The	reason	why	I	am	arguing	for	having	more	than	one	Front-End	
Server	in	an	NxM	server	group	–	is	to	have	redundancy,	fault	tolerance,	and	resilience-to-
naïve-DDoS-attacks	between	these	N	Front-End	Servers.	To	have	this	kind	of	redundancy	–	

																																																								
102	If	your	Front-End	servers	happen	not	to	have	10GBit/s	interfaces	–	you	can	always	
increase	the	number	of	your	Front-End	Servers	or	to	use	smaller	server	groups	as	described	
below;	in	any	case,	this	problem	is	not	fatal	

we	need	at	least	two	Front-End	Servers	(i.e.	2xM	server	group),	but	then	each	of	them	will	
need	to	be	able	to	handle	all	the	traffic	of	the	whole	server	group,	which	leads	to	the	need	
for	100%	redundancy	and	not-so-efficient	configurations;	if	we	have	at	least	5	Front-End	
Servers	–	we	can	keep	reserves	within	much	more	reasonable	25%,	while	having	the	
redundancy/fault	tolerance	–	and	also	Load	Balancing	without	any	Server-Side	Load	
Balancing	boxes	too.	In	addition,	if	you’re	about	to	broadcast	one	single	game	(whether	at	
real-time,	with	some	delay,	or	recorded)	to	a	large	chunk	of	your	players,	it	is	usually	better	
to	balance	this	load	across	as	many	Front-End	servers	as	possible	(which	calls	for	larger	
server	groups);	on	the	other	hand,	if	the	need	arises,	the	same	Front-End	Servers	can	
simultaneously	participate	both	in	smaller	server	groups	(for	usual	traffic),	and	in	larger	
server	groups	(for	broadcast	traffic).		
	
An	example	of	such	deployment	is	shown	on	Fig.	9.14:	
	

	
	
On	Fig	9.14,	we	have	3	groups	of	Game	World	Servers	(#1,	#2,	and	#3),	and	four	bunches	of	
Front-End	Servers	(A,B,C,D).	Each	of	groups	of	Game	World	Servers	is	using	one	bunch	of	
Front-End	Servers;	Payment	Servers	and	Social	Gateway	Servers	are	using	dedicated	bunch	
D	of	Front-End	Servers.	This	allows	to	have	some	balance	of	the	load	between	the	Front-End	
Servers.	However,	there	are	two	Game	Servers	in	this	system,	which	are	(by	the	nature	of	
the	game)	broadcasted	to	pretty	much	all	the	players	–	these	are	The	Big	One	Game	Server	
(running	a	Match	of	the	Year	or	something	else	which	everybody	wants	to	watch),	and	

Matchmaking	Servers	(which	for	this	game	may	publish	the	matchmaking	data,	allowing	
players	to	select	games-in-the-process-of-planning	themselves);		these	servers	are	
connected	to	all	the	Front-End-Servers.	
	
This	whole	deployment	architecture	allows	to	achieve	two	things:	first,	it	balances	things-
which-are-of-interest-to-everybody,	across	all	the	available	Front-End	Servers;	second	–	it	
avoids	N2	problem	(as	both	broadcasted	events	and	Game	Server	Groups	are	O(N)	–	the	
latter	as	soon	as	we	put	a	hard	limit	on	number	of	Game	Servers	and	Front-End	Servers	
within	one	group).		
	
Overall,	the	number	N	of	Front-End	Servers	within	each	server	group	qualifies	as	a	
deployment-time	implementation	detail;	however,	our	job	as	developers	is	to	make	sure	
that	this	implementation	detail	can	be	changed	as	desired	(and	on	per-published-State	basis	
too)	without	any	code	rewriting.		
	

Game-Server-to-Front-End-Server	Affinity	
	
	“Server	groups”	can	be	further	generalized	into	what	can	be	called	“Game	Server	to	Front-
End	Server	Affinity”.	In	this	case,	players	which	need	to	connect	to	certain	Game	Servers,	
can	use	only	a	subset	of	the	Front-End	Servers	(reducing	or	completely	eliminating	the	N2	
effects).	In	a	very	generic	case	(covering	pretty	much	everything	you	may	possibly	want),	it	
could	work	as	follows:103	

• there	is	a	way	for	the	game	Client	to	get	list	of	IPs	of	Front-End	Servers	(the	list	can	
be	either	embedded	into	the	Client,	or	obtainable	via	DNS	etc.)	

• to	connect	to	the	Matchmaking	Game	Server,	Client	can	go	to	any	of	the	Front-End	
Servers	in	the	list	(and	request	connection	to	Matchmaking	Game	Server	by	a	well-
known	ID).	

• when	matchmaking	is	done	–	Client	receives	ID	of	the	Game	Server	where	it	needs	to	
connect,	PLUS	a	list	of	IP	addresses	of	Front-End	Servers	(or	a	DNS	name	which	maps	
to	such	a	list,	see	on	DNS	Round-Robin	Balancing	below)	which	can	handle	such	a	
connection.		

o At	this	point,	Matchmaking	Game	Server	can	balance	not	only	Game	World	
instances	between	different	Game	World	Servers	(named	Worlds-to-Servers	
balancing	in	Chapter	8),	but	also	Clients	between	different	Front-End	Servers	
(implementing	Clients-to-Servers	Balancing	discussed	in	Chapter	8).	

o It	should	be	noted	that	in	this	schema,	I	still	insist	on	providing	a	list	of	IPs,	
with	at	least	3-5	different	Front-End	Servers	on	this	list	(=”at	each	point,	
Client	having	at	least	3-5	different	Front-End	Servers	to	select	from”);	this	is	
still	necessary	to	speed	up	dealing	with	Front-End	Server	failures,	to	deal	with	
“point”	DDoS	attacks,	etc.	

• Then,	Client	connects	to	one	of	the	Front-End	Servers	from	the	list	(randomly,	see	
discussion	in	“Client-Side	Random	Balancing”	section	in	Chapter	8),	and	requests	

																																																								
103	that	is,	if	Client-Side	Random	Load	Balancing	or	DNS	Round-Robin	Balancing	is	used;	for	
Server-Side	Appliance	Balancing,	pretty	much	the	same	logic	can	be	performed	by	the	
balancing	appliance	

Front-End	Server	to	connect	to	(or	to	subscribe	to	the	information	published	by)	
Game	Server	by	its	ID.	

• If	the	player	just	wants	to	observe	–	her	Client	can	request	a	list	of	the	games	in	
progress	(from	Matchmaking	Game	Server	or	a	separate	Game	Server	set	up	just	for	
this	purpose)	–	and	can	receive	the	same	(Game-Server-ID,list-of-Front-Server-IPs)	
tuple	for	each	of	the	games.	Once	again,	balancing	of	Clients	between	different	
Front-End	Servers	can	happen	here,	allowing	for	broadcasts	to	all	of	your	100K	
players	(and	without	introducing	N2	problems).	

	
Also	let’s	note	when	we're	speaking	about	Game-Server-to-Front-End-Server	Affinity,	this	
“affinity”	is	quite	different	from	classical	web-like	affinity	(usually	referred	to	as	
“persistence”	or	“stickiness”)	as	used	on	Load	Balancer	Appliances	for	web	servers.	In	the	
web	world,	affinity/persistence/stickiness	is	all	about	having	the	same	Client	coming	to	the	
same	Server-sitting-behind-the-Load-Balancer-Appliance	(to	deal	with	sessions	and	per-
client	caches).	For	our	Front-End	Servers,	however,	affinity	is	very	different:	we	do	not	care	
about	the	same	Client	coming	to	the	same	Server,	but	rather	about	the	Clients-which-are-
playing-in-the-same-Game-World,	coming	to	the	same	Front-End	Server	(to	eliminate	N2	
effects).	
	
Overall,	full-scale	Game-Server-to-Front-End-Server	Affinity	is	usually	an	overkill,	but	well	–	I	
believe	that	there	are	cases	when	it	can	save	your	bacon104.	Implementation-wise	(assuming	
that	additional	latency	of	Front-End	Servers	is	not	a	problem),	I’d	suggest	to	start	with	a	
software	which	can	handle	Server	Groups	(though	not	generic	affinity);	moreover	–	I’d	
suggest	to	deploy	with	one	single	Server	Group.	More	often	than	not,	you’ll	have	enough	
time	to	implement	affinity	later	(and	changes	to	your	app	level	to	do	it	will	be	rather	
minimal).	
	

Front-End	Servers:	Implementation	
	
Now,	let's	discuss	ways	how	our	Front-End	Servers	can	be	implemented.	As	mentioned	
above,	the	key	property	of	our	Front-End	Servers	is	that	they're	easily	replaceable	in	case	of	
failure.	To	achieve	this	behavior,	
you	MUST	ensure	that	there	is	NO	authoritative	Game	World	State	on	any	of	

your	Front-End	Servers105	
	
In	other	words,	Front-End	Servers	should	have	only	a	replica	of	the	original	Game	World	
State,	with	the	original	(authoritative)	Game	World	State	kept	by	Game	Servers;	it	means	
that	in	case	of	failure	of	any	of	the	Front-End	Servers,	it	can	be	easily	replaced	without	too	
much	inconvenience	for	your	players.	
	
There	is	no	need	to	worry	too	much	about	this	restriction	if	you're	using	a	generic	
subscriber/publisher	(or	state	replication)	paradigm,	but	you	have	to	be	extremely	careful	if	

																																																								
104	though	I	have	to	admit	that	I	didn’t	see	such	cases	myself	
105	however,	non-authoritative	copies	of	Game	World	State	–	such	as	those	one	used	by	
concentrators	-	are	perfectly	fine	

you're	introducing	any	custom	logic	to	your	Front-End	Servers,	because	you	may	lose	the	all-
important	“easily	replaceable”	property	above.		
	

Front-End	Servers:	(Re)Actor-fest	Implementation	
	
Front-End	Servers	are	essentially	a	part	of	our	infrastructure	(and	not	a	part	of	our	Game	
Logic),	so	even	if	you’re	using	(Re)Actor-fest	architecture,	they	may	be	implemented	in	
various	ways	without	violating	minimal	(Re)Actor-fest	requirements.	In	other	words	–	as	
with	all	the	Infrastructure	Code,	it	doesn’t	matter	too	much	how	you	implement	Front-End	
Servers	–	via	(Re)Actors	or	using	multi-threaded	stuff	with	thread	sync.	That	being	said,	
personally	I	am	still	leaning	towards	pure	(Re)Actor-based	implementations,	and	we’ll	
discuss	one	such	implementation	right	below.	
	
One	implementation	of	the	Front-End	Server	implemented	under	pure	(Re)Actor-fest	
architecture	(see	Vol.	II’s	chapter	on	(Re)Actors	for	details	on	(Re)Actor-fest,	(Re)Actors,	and	
queues)	is	shown	on	Fig	9.15:	
	

	
[[TODO/fig:	VII.10	->	9.15,	rename	all	Reactor->(Re)Actor]]	
	
Here,	we	have	TCP-	and	UDP-related	threads	similar	to	those	described	in	“Implementing	
Game	Servers	under	(Re)Actor-fest	architecture”	section	above	with	regards	to	Game	
Servers,	and	one	or	more	of	Routing&Data	Threads	(with	each	containing	at	least	one	
Routing&Data	(Re)Actors),	which	are	responsible	for	routing	of	all	the	packets,	and	for	
caching	the	data	(such	as	Game	World	State).	Let's	discuss	these	routing-related	(Re)Actors	
in	a	bit	more	detail.	
	

Routing&Data	(Re)Actors	
	
Each	of	Routing&Data	(Re)Actors	has	its	own	data	that	it	handles	(and	updates	if	
applicable).	For	example,	one	such	Routing&Data	(Re)Actor	may	contain	a	state	of	one	
Game	World	(or	several/all	Game	Worlds).	Other	Routing&Data	(Re)Actors	may	handle	
routing	of	the	point-to-point	packets	from	players	to	(and	from)	one	specific	Game	Server.	
In	general,	there	will	be	three	different	types	of	Routing&Data	(Re)Actors:	

• generic	connection	handlers	(to	handle	point-to-point	communications	including	
player	input	and	server-to-server	connections)	

• generic	publisher/subscriber	handlers	(to	cache	and	handle	generic	but	structured	
data	such	as	a	list	of	available	games,	if	players	are	allowed	to	select	the	game)	

• specific	Game	World	handlers	(to	cache	and	handle	game	world	data	if	the	required	
functionality	doesn't	fit	into	generic	handler).	In	many	cases	you'll	be	able	to	live	
without	specific	Game	World	handlers,	but	if	you	want	to	implement	some	kind	of	
server-side	filtering,	such	as	Interest	Management	discussed	in	Vol.	I’s	chapter	on	
Communications	to	avoid	sending	data	to	those	players	who	shouldn't	see	it	(so	no	
hack	of	the	Client	can	possibly	do	maphack	or	wallhack,	and	to	save	on	game	traffic	
too)	–	specific	Game	World	handlers	become	a	necessity.	

	
It	is	possible	(and	often	advisable)	to	have	more	than	one	
Routing&Data	(Re)Actor	within	single	Routing&Data	Thread	to	
reduce	unnecessary	load	due	to	an	exceedingly	high	number	of	
threads	(and	unnecessary	thread	context	switches).	How	to	
combine	those	Routing&Data	(Re)Actors	into	specific	threads	–	
depends	on	your	game	significantly,	but	usually	generic	
connection	handlers	are	extremely	fast	and	often	all	of	them	
can	be	combined	in	one	thread.	As	for	generic	
publisher/subscriber	and	specific	Game	World	handlers,	their	
distribution	into	different	threads	should	take	into	account	
typical	load	and	allowed	latencies.	The	rule	of	thumb	is	(as	
usual)	the	following:	the	more	(Re)Actors	per	thread	–	the	
more	latency	and	the	less	thread-related	overhead	we’ll	have;	
unfortunately,	the	rest	depends	too	much	on	specifics	of	your	
game	to	discuss	it	here.	
	
Routing&Data	Factories	
	
On	the	diagram	on	Fig	9.15,	Routing&Data	Factory	Thread	is	responsible	for	creating	
Routing&Data	Threads	(and	Routing&Data	(Re)Actors),	according	to	requests	coming	from	
TCP/UDP	threads.	A	typical	life	cycle	of	Routing&Data	(Re)Actor	may	look	as	follows:	
	

• One	of	TCP/UDP	(Re)Actors	needs	to	route	some	message	(or	to	provide	
synchronization	to	some	Game	World	State),	and	realizes	that	it	has	no	data	about	
Routing&Data	(Re)Actor,	where	it	needs	to	route	the	message	to,	in	its	own	cache.	

• TCP/UDP	(Re)Actor	sends	a	request	to	Routing&Data	Factory	(Re)Actor	

	
It	is	possible	(and	often	
advisable)	to	have	
more	than	one	
Routing&Data		
(Re)Actor	within		
a	single	Routing&Data	
Thread	

• Routing&Data	Factory	(Re)Actor	creates	Routing&Data	Thread	(with	an	appropriate	
Routing&Data	(Re)Actor)	

o As	any	other	thread-hosting-(Re)Actors,	Routing&Data	thread	will	have	its	
own	queue	

• Routing&Data	Factory	(Re)Actor	reports	ID	(pointer,	etc.)	of	the	Routing&Data	
thread’s	queue,	back	to	the	requesting	TCP/UDP	Thread	

• TCP/UDP	(Re)Actor	(the	one	mentioned	above)	recived	ID/pointer	of	the	queue	–	
and	sends	the	message	to	the	queue	

o In	addition,	it	may	cache	ID/pointer	of	the	queue,	so	in	the	future	it	knows	
where	to	send	such	messages	

• Whenever	the	Routing&Data	(Re)Actor	is	no	longer	necessary	for	its	purposes,	
TCP/UDP	(Re)Actor	reports	it	to	the	Factory	(Re)Actor	

• if	it	was	the	last	TCP/UDP	(Re)Actor	which	needs	this	Routing&Data	(Re)Actor,	
Routing&Data	Factory	(Re)Actor	may	instruct	appropriate	Routing&Data	Thread	to	
destroy	the	Routing&Data	(Re)Actor	

	
Phew.	This	looks	rather	cumbersome	–	but	in	fact,	it	is	fairly	easy	to	implement	(and	more	
importantly,	debug).	And	as	soon	as	such	implementation	is	in	place	–	it	will	work	extremely	
well	performance-wise	and	scalability-wise	(as	it	is	pure	(Re)Actor-based	system	–	it	is	
inherently	Shared-Nothing	one,	and	such	systems	tend	to	scale	extremely	well).	
	
Routing&Data	(Re)Actors	in	Game	Servers	and	Clients	
	
I	have	to	confess	that	personally	I	am	positively	in	love	these	Routing&Data	(Re)Actors.	I	
love	them	so	much	that	I	am	usually	arguing	for	having	them	not	only	on	Front-End	Servers,	
but	also	on	Game	Servers,	and	on	Clients	too;	while	they're	not	strictly	necessary	there	(and	
are	not	shown	on	appropriate	diagrams	to	avoid	unnecessary	clutter),	they	did	help	me	to	
simplify	things	quite	a	bit,	making	all	the	communications	very	uniform.	Still,	it	is	pretty	
much	your	choice	if	you	want	to	have	Routing&Data	(Re)Actor	stuff	on	your	Game	Servers	
and/or	Clients.	
	

Front-End	Servers	Summary	
	
To	summarize	the	section	on	Front-End	Servers:	

• For	quite	a	few	games,	Front-End	Servers	are	a	Good	
Thing™.	In	particular:	

o they	take	the	load	off	your	Game	Servers	
§ which	in	turn	may	improve	overall	

system	reliability	(as	Front-End	Servers	
are	easily	replaceable)	

o they	allow	to	handle	100'000+	observers	for	
your	Big	Event	easily	(actually,	while	I	didn’t	see	more	that	200K	of	observers	
at	the	same	time,	at	least	in	theory	the	sky	is	the	limit);	this	also	applies	to	
easy	handling	of	any	broadcasted	information	(such	as	list	of	available	games	
which	is	necessary	if	your	matchmaking	algorithm	allows	manual	selection).	

	
More	often	than	not,	
Front-End	Servers	are	a	
Good	Thing™	

o they	facilitate	single	Client	connection	(which	is	generally	a	good	thing	to	
have,	see	Vol.	IV’s	chapter	on	Network	Programming	for	further	discussion)	–	
or	at	least	limits	the	number	of	connections	Client	needs	to	keep	

o they	facilitate	Random	Client-Side	Load	Balancing,	and	as	it	was	discussed	in	
Chapter	8,	I	prefer	this	kind	of	balancing	to	any	other	Load	Balancing	of	the	
Clients	

o their	drawbacks	are	pretty	much	limited	to	the	additional	latency	and	
additional	complexity	

§ additional	latency	can	be	brought	to	sub-millisecond	range	
• Front-End	Servers	can	be	implemented	under	(Re)Actor-fest	architecture,	as	

described	above;	this	is	my	personal	preference	most	of	the	time,	though	YMMV.	
	

Regional	Datacenters	to	Reduce	Latencies	
	
[[TODO:	pullquote	capt.	Obvious]]As	we’ve	already	mentioned	in	Vol.	I’s	chapter	on	GDD	
(and	what	immediately	follows	from	geography	and	speed	of	light),	for	latency-critical	
games	it	is	often	beneficial	to	have	some	of	servers	closer	to	your	players;	in	quite	a	few	
cases,	it	allows	to	reduce	latencies.	This,	in	turn,	leads	to	having	different	locations	for	
game’s	server	boxes	(for	example,	one	location	on	each	of	US	coasts,	one	for	Western	
Europe,	and	so	on);	these	locations	are	often	referred	to	as	“Servers”,	but	as	the	term	
“Server”	is	already	badly	overloaded	(and	as	each	of	these	locations	tends	to	have	LOTS	of	
server	boxes)	–	we’ll	call	them	“Regional	Datacenters”.	
	
There	are	several	different	architectures	to	support	Regional	Datacenters	(which	we’ll	start	
discussing	in	a	jiffy);	however	–	first	let’s	mention	a	few	things	to	be	kept	in	mind	about	
multi-Datacenter	deployments	regardless	of	exact	schema	used:	

• Most	of	the	time,	even	if	your	game	is	rather	latency-sensitive,	only	a	few	
Datacenters	are	maintained	per	continent.	

o For	example,	if	you	have	“East	Coast”	Datacenter	in	NY	and	“West	Coast”	one	
in	SF,	you	should	be	able	to	limit	“round-trip	times”	of	all	your	US	players	to	
50ms	or	so;106	for	detailed	discussion	on	RTT,	see	Vol.	I’s	chapter	on	
Communications.	

o Going	into	more	fine-grained	locations	for	your	Datacenters,	while	possible,	
is	rarely	worth	the	trouble	(except,	maybe,	for	first-person	shooters,	which	
are	by	far	the	most	latency-critical	games	out	there).		

• you	MUST	have	very	good	connectivity	between	your	Datacenters.		
o Having	at	least	two	independent	connections	for	each	Datacenter-to-

Datacenter	connection	is	highly	advised.	
§ At	the	very	least,	you	should	have	two	different	inter-ISP	connections	

(with	different	routing(!))	
• Having	peering	for	these	specific	inter-ISP	connections	

explicitly	set	by	both	of	your	ISPs	(to	each	other)	to	ensure	the	
best	data	flow	for	this	critical	path,	is	highly	advisable	too	

																																																								
106	not	accounting	for	“player’s	last	mile”	

o Alternatives	(actually,	significantly	better	alternatives)	to	one	of	those	
independent	over-the-Internet	connections,	include	such	things	as	end-to-
end	inter-datacenter	non-routable	links	(such	as	Frame	Relay	or	MPLS);	
without	routing,	they	are	much	less	likely	to	fail	(and	have	observably	smaller	
latencies	too).		

§ On	the	negative	side	–	such	point-to-point	connections	are	
outrageously	expensive;	on	the	other	hand	–	at	dozens	of	thousands	
of	dollars	per	month	for	a	100Mbit	inter-Datacenter	trans-atlantic	
point-to-point	link107	-	for	certain	games	they’re	not	that	much	
outrageously	expensive.	As	a	result,	for,	say,	stock	exchanges	it	
MIGHT	be	not	too	expensive	compared	to	the	risks	of	the	whole	thing	
going	down.		

§ If	you’re	planning	to	use	such	a	thing	–	keep	in	mind	that	non-
routable	links	may	still	fail	(though	much	less	frequently	than	Internet	
connections),	so	make	sure	to	use	at	least	your	regular	Internet	
connection	as	a	backup.	

§ When	estimating	costs	of	such	solution,	keep	in	mind	that	traffic	over	
Inter-Datacenter	links	can	be	an	order	(or	even	two)	of	magnitude	
lower	than	traffic-which-goes-to-the-Clients;	this	happens	due	to	
Front-End	Servers	acting	as	"concentrators"	

• If	migrating	from	single-Datacenter	deployment	to	a	multi-Datacenter	deployment,	
keep	in	mind	that	Server-2-Server	interactions	between	Datacenters	tend	to	be	VERY	
different	from	intra-Datacenter	ones:	

o While	for	intra-Datacenter	communications	you	can	get	away	with	relying	on	
inter-Server	connectivity	to	be	non-disruptible,108	for	intra-Datacenter	
communications	it	won’t	fly	<sad-face	/>.		

§ It	means	that	you	DO	need	to	have	a	policy	(and	a	code	which	
implements	this	policy)	on	“what	we’re	doing	if	inter-Datacenter	
connectivity	is	down”.	As	a	rule	of	thumb,	inter-Datacenter	
connectivity	won’t	go	down	for	more	than	5	minutes,	but	transient	
failures	1.5-2	minutes	long	(corresponding	to	average	BGP	
convergence	time)	will	happen	on	a	regular	basis	(very	roughly	-	a	
dozen	times	per	year,	give	or	take	an	order	of	magnitude).	Also	for	
inter-Datacenter	communications	we	cannot	rule	out	rogue	packets	
disrupting	our	inter-Datacenter	TCP	connections,	etc.	

o Security	is	a	real	issue	for	inter-Datacenter	communications.	This	means	that	
you	need	both	to	encrypt	your	data109,	and	to	think	about	protecting	your	
inter-Datacenter	communications	from	DDoS	attacks.	More	on	it	in	Vol.	IX,	
chapter	on	Security	Take	2.	

	

																																																								
107	BTW,	the	price	didn’t	change	too	much	over	last	10	years,	so	don’t	expect	any	sharp	
price	drops	soon	
108	Well,	strictly	speaking,	intra-Datacenter	connectivity	failures	do	happen,	but	with	a	good	
provider	(and	reasonably	good	hardware)	they’re	so	few	and	far	between,	that	not	
accounting	for	them	isn’t	likely	to	lower	your	overall	MTBF	in	a	significant	manner	
109	at	least	whatever-data-which-goes-over-the-Internet	

Naïve	Approach	–	Completely	Separate	Datacenter	DBs	
	
Now,	let’s	start	discussing	those	different	architectures	supporting	Regional	Datacenters.		
	
In	a	simplistic	case	–	you	can	run	a	copy	of	your	system	(such	as	the	one	shown	on	Fig	9.5	or	
on	Fig	9.7)	in	each	of	your	Datacenters.	This	approach	is	frequently	used	in	practice,	though	
as	discussed	in	the	Don't	Do	It:	Naïve	Game	Deployment	Architecture	section	above,	I	am	
against	such	naïve	approaches	even	in	case	of	multiple	Datacenters;	in	general	-	am	arguing	
for	at	least	player	DB	to	be	centralized	and/or	shared	between	different	Datacenters,	as	
discussed	below	(otherwise	–	the	whole	thing	will	become	a	nightmare	at	least	for	your	
support/monetization/security	teams).	While	for	multiple	Datacenters	having	completely-
separate	DBs	is	not	that	absolutely-fatal	as	for	using	them	merely	to	scale	your	system110	-	I	
am	still	arguing	against	completely	unsynchronized	player	DBs.	
	

Semi-Naïve	Approach	–	Mergeable	Datacenter	DBs	with	Player	
Migration	
	
While	I	am	arguing	against	naïve	approach	mentioned	above	–	I	have	to	mention	that	it	can	
be	brought	to	the	usable	shape	fairly	easily.	With	separate	Regional	Datacenter	having	their	
separate	DBs	–	the	main	problem	is	that	there	is	no	single	player	identifier	across	DBs.	
	
Technically,	this	problem	is	easily	solvable:	we	can	simply	say	that	global	player	ID	is	a	tuple	
of	(Datacenter_ID,	player_ID_within_Datacenter),	that’s	it.	This	approach	(which	will	need	
to	be	repeated	for	all	the	other	DB	tables)	will	already	allow	us	to	merge	player	DBs	into	one	
single	reporting	DB	for	reporting	purposes.		
	
However,	there	is	still	a	remaining	caveat.	We	DO	want	to	allow	the	same	player	to	play	on	
different	Regional	Datacenters	–	or	at	the	very	least	to	MOVE	the	player	between	them	
(otherwise	–	to	bypass	this	restriction,	players	will	create	separate	accounts	etc.	which	will	
cause	significant	trouble	in	the	long	run).	
	
To	implement	it	–	we’ll	need	to	keep	global	player	ID	explicitly	in	all	the	DBs.	In	other	words	
–	we	cannot	just	imply	that	Datacenter_ID	is	present	in	all	the	records	of	the	Datacenter	DB	
(adding	it	only	when	we’re	merging	data	within	the	replica,	but	need	to	store	it	at	least	for	
PLAYERS	table.	In	this	case	Datacenter_ID	in	(Datacenter_ID,	player_ID_within_Datacenter)	
effectively	becomes	an	ID-of-the-Datacenter-where-player-was-created.	BTW,	most	often,	
this	requirement	to	store	Datacenter_ID	explicitly	applies	(almost-)exclusively	to	PLAYERS	
(as	vast	majority	of	other	entities	don’t	need	to	be	migrated	from	one	Datacenter	to	
another	one).	
	

																																																								
110	in	particular,	because	player’s	ability	to	play	on	the	same	server	is	naturally	limited	by	
their	location	–	so	you	can	explain	your	player	“why	he	cannot	play	with	his	Facebook	friend	
X”	

And	as	soon	as	we	have	global	player	ID	explicitly	in	all	DBs	–	we	can	migrate	players	
between	DBs	rather	easily.	For	example,	we	can	take	player	with	all	her	belongings	–	and	
transfer	her	using	Inter-DB	Async	Transfer	protocol111	to	another	Datacenter.	
	
Such	an	architecture	is	shown	on	Fig	9.16:	

		
	
Notes:	

• Front-End	Servers	are	optional	
• for	the	time	being,	we	don’t	discuss	exact	mechanisms	of	implementing	replicas	(it	

can	be	at	DB	level	or	at	DB	Server	App	level);	for	more	discussion	on	replication	–	
please	see	Vol.	VI’s	chapter	on	Databases.		

o what	matters	is	that	replicas	are	(a)	asynchronous	and	(b)	are	guaranteed	to	
be	conflict-free.	In	other	words	–	with	ID	spaces	for	different	DBs	guaranteed	
to	be	different,	there	is	no	chance	of	the	same	record	to	be	modified	by	
different	datacenters	(though	keep	in	mind	that	due	to	player	transfers	also	
being	asynchronous,	there	might	be	an	occasional	and	temporary	perception	
of	the	conflict	on	the	receiving	side	of	the	replication,	so	you	need	to	make	
sure	that	such	occurrences	don’t	break	your	replication).	

																																																								
111	described	in	Vol.	I’s	chapter	on	Communications	

o BTW,	as	we	are	guaranteed	to	be	conflict-free	–	we	do	NOT	really	need	
“merge	replication”112.	

	
Overall,	such	semi-naïve	architectures	are	known	to	work	in	practice	–	though	still	cause	
their	fair	share	of	troubles.	In	particular,	if	your	game	relies	on	the	visible-player-ID	to	
identify	player	in	a	unique	way	–	then	guaranteeing	absence	of	collisions	between	visible-
player-IDs	becomes	impossible	under	this	model.113	
	

Datacenter	DBs+Centralized	DB	of	Player	IDs	
	
Going	one	step	further	into	direction	of	the	centralizing	at	least	some	data	–	we	get	to	the	
idea	of	the	centralized	DB	of	Player	IDs	(and	only	IDs).	In	this	case:	

• We	have	a	centralized	DB	which	lists	all	the	player	IDs	(and	probably	their	
visible_IDs,	but	pretty	much	nothing	else).	

• Whenever	player	tries	to	create	a	new	account	(or	to	change	their	ID	or	visible_ID)	–	
Regional	Datacenter	sends	a	request	to	the	centralized-DB-of-player-IDs.	By	doing	
so,	our	centralized	PlayerID-DB	can	guarantee	that	our	player	IDs	are	globally	unique	

• Except	for	the	creating	new	PlayerID	or	changing	an	old	one	–	our	Datacenters	are	
still	perfectly	autonomous.		

	
An	example	of	such	an	architecture	is	shown	in	Fig	9.17:	

																																																								
112	we	may	still	use	it	as	an	underlying	mechanism,	but	this	is	a	completely	different	story	
113	technically,	there	is	always	an	option	to	say	that	player-outside-of-his-home-server	is	
always	prefixed	with	ID	of	datacenter	(i.e.	if	my	account	NoBugs	belongs	to	USW	
Datacenter,	then	when	playing	at	this	Datacenter,	I	am	shown	as	NoBugs,	but	whenever		I	
am	playing	on	another	Datacenter	–	I	am	shown	as	USW.NoBugs),	but	to	do	it	–	first,	we	
need	to	know	that	players	won’t	object	to	this	approach	too	much,	and	second	–	we	need	
to	prevent	dots	in	player	visible-IDs	(or	otherwise	prevent	collisions	between	names	from	
different	Datacenters)	from	the	very	beginning.	

	
	
The	beauty	of	this	approach	is	that	while	it	does	guarantee	PlayerIDs	to	be	perfectly	unique	
–	it	doesn’t	introduce	too	much	inter-Datacenter	dependencies.	In	particular	–	even	if	inter-
Datacenter	link	is	temporarily	down,	players	are	still	able	to	play.	Actually,	the	only	two	
things	players	cannot	do	while	the	link	is	down	–	is	to	register	new	account,	and	to	change	
ID	of	an	existing	one	–	and	neither	of	these	operations	is	too	time-critical	(if	during	2-minute	
link	downtime,	200	of	your	new	players	weren’t	able	to	register	–	it	does	qualify	as	an	issue;	
however,	comparing	to	making-your-200’000-existing-players	disconnect	in	the	middle	of	
their	match	–	it	is	pretty	much	nothing).	
	

Datacenter	DBs+Centralized	Player	DB	
	
Going	a	bit	further	in	direction	of	data	centralization	–	we	arrive	at	the	model	where	player	
DB	is	centralized,	but	players	are	temporarily	moved	to	the	Regional	Datacenters.	Such	an	
architecture	is	shown	in	Fig	9.18:	

	
	
While	on	the	first	glance,	it	visually	looks	very	similar	to	the	Fig	9.17,	there	are	several	
important	differences:	

• PlayerDB	is	no	longer	merely	a	supplementary	thing	to	avoid	ID	collisions,	it	is	a	real	
DB	with	real	(and	critical)	data	in	it.	

o As	a	result	–	we	DO	need	to	include	this	data	into	Replica	DB.	
o As	an	interesting	side	effect	–	as	we’re	moving	more	and	more	data	from	

Datacenter	DBs	to	centralized	Player	DB,	replication	from	Datacenter	DBs	will	
become	optional	

• Interactions	with	PlayerDB	are	no	longer	mere	request-response,	they’re	full-scale	
Inter-DB	Asynchronous	Transfers.	

o As	a	side	effect	–	usually,	ALL	the	Inter-DB	Async	Transfers	will	be	between	
central	PlayerDB	and	Datacenter	DB	(and	not	between	Datacenter	DBs	
directly)	

	
As	far	as	I	know,	this	model	is	not	too	popular	in	the	wild	–	but	it	does	have	significant	(IMO	
very	significant)	merits.	In	particular,	architecture	on	Fig	9.18	is	very-well-suited	for	

scenarios	when	players	can	easily	switch	between	different	Datacenters.	Also	–	it	can	be	
made	better	resilient	to	Datacenter	DB	failures;	in	case	of	such	a	failure	–	a	rollback	to	last-
known-player-state	to	the	state-within-central-DB	can	be	made	(and	while	such	a	rollback	is	
certainly	not	a	picnic,	it	is	still	orders	of	magnitude	better	than	losing	the	whole	Datacenter	
DB	completely).	On	the	negative	side	–	this	model	has	a	bit	more	tightly	coupling	that	
previously-discused	PlayerID	Database;	on	the	other	hand	(and	most	importantly)	-	we	can	
still	be	sure	that	even	while	inter-Datacenter	connectivity	is	down,	players	can	still	play	
<phew	/>.	
	
Implementation-wise,	this	model	is	very	similar	to	the	Shared-Nothing	model	I’m	arguing	for	
to	ensure	database	scalability	(which	will	be	discussed	in	Vol.	VI’s	chapter	on	Databases)	–	
so	you	may	need	most	of	the	relevant	machinery	anyway	(!).	
	

Only	Game	Servers	in	Datacenters	(No	Datacenter	DBs)	
	
Going	even	further	towards	centralization	of	our	database	(a	move	which	is	going	to	be	
appreciated	by	your	DBAs	for	sure114)	–	we	can	use	a	model	shown	on	Fig	9.19:	

	
	
Here,	we're	keeping	the	most	time-critical	stuff	(which	is	usually	your	Game	World	Servers)	
close	to	the	player	–	while	keeping	all	the	databases	completely	centralized.		
	
On	the	positive	side	–	we	can	easily	see	that	Fig	9.19	is	much	simpler	than	Fig	9.18	(the	one	
with	both	Datacenter	DBs	and	centralized	DB).		

																																																								
114	Although	as	for	the	rest	of	your	teams	–	it	is	not	so	clear,	see	further	discussion	

	
On	the	negative	side,	such	infrastructure	is	IMO	too-tightly-coupled	for	its	own	good.	In	
particular	–	unless	we’re	extremely	careful,	this	model	may	exhibit	problems	(such	as	
slowing	gameplay	down	or	even	completely	stopping	it)	whenever	the	inter-Datacenter	
connectivity	is	broken	–	and	in	practice,	such	failures	have	been	seen	to	happen	on	rather	
regular	basis	(once	per	several	months)	for	inter-Datacenter	links	<sad-face	/>.	
	

Front-End	Servers	as	a	kinda-CDN	
	
In	our	last	model	(the	one	on	Fig	9.19,	without	per-Datacenter	
DBs)	we	moved	pretty	far	towards	centralization;	however,	there	
is	still	room	to	make	the	system	even	more	centralized.	
Specifically	–	we	can	use	our	Front-End	Servers	as	a	kinda-CDN,	
while	keeping	all	the	processing	(and	Game	Servers)	to	one	
central	location,	as	shown	in	Fig	9.20:	

	
	
The	idea	here	is	pretty	much	like	the	one	behind	classical	CDN:	to	use	Primary	Datacenter	to	
process	all	the	data	–	and	then	to	add	Secondary	Datacenters	(Datacenter	1	and	Datacenter	
2	on	Fig	9.20)	to	reduce	latencies	for	end-users.	While	this	approach	has	some	merit,	we	
need	to	note	that	

CDN	
https://en.wikipedia.org/wiki/Content_delivery_network
A	content	delivery	
network	or	content	
distribution	network	
(CDN)	is	a	globally	
distributed	network	of	
proxy	servers	deployed	
in	multiple	data	centers	

unlike	classical	CDN,	the	content	with	our	game-sorta-CDN	is	not	static,	so	
gain	in	latencies	is	possible	only	because	of	better	
peering,	with	gains	usually	being	in	single-digit	

milliseconds	
	
When	comparing	our	game-kinda-CDN	to	a	classical	web-
oriented	CDN,	we’ll	see	that	as	the	data	within	classical	web-
oriented	CDN	is	(almost-)static,	web-oriented	CDN	can	avoid	
round-trip	to	an	authoritative	server	holding	the	(almost-
)static	data	(by	serving	the	data	from	its	own	cache	instead).	In	
contrast,	as	the	game	traffic	is	as	non-static	as	it	gets	–	
whenever	we’re	doing	something,	round-trip	to	the	
authoritative	Game	Server	becomes	pretty	much	inevitable115.		
	
Still,	CDN-like	arrangements	of	Front-End	Servers	similar	to	
that	of	on	the	Fig	9.20,	may	save	some	of	your	players	a	few	
milliseconds	in	latency	(that	is,	if	you	have	a	really	good	
connection	between	datacenters	–	but	you	usually	will	get	it	

without	much	additional	efforts);	this,	in	turn,	may	allow	to	level	the	field	a	bit	with	regards	
to	latency.	From	my	admittedly	limited	experience	with	such	deployments,	using	such	CDN-
like	Front-End-Server-based	deployments	was	hardly	worth	the	trouble	latency-wise	(as	
discussed	above	-	unlike	with	real	CDNs,	you	cannot	really	improve	MUCH	in	terms	of	
latency,	as	the	packets	still	need	to	go	all	the	way	to	the	Game	Server	and	back),	but	it	still	
might	make	sense	even	given	rather	limited	latency	gains	–	especially	for	eSports,	where	
fairness	is	of	paramount	importance.		
	
In	addition,	there	are	other	(admittedly	minor)	reasons	to	use	such	deployment	
architectures.	First,	they	help	to	survive	Internet	connectivity	loss	in	your	primary	
Datacenter	(provided	that	"Inter-Datacenter	Connectivity"	on	Fig	9.20	survives).	In	practice,	
however,	if	you	run	your	Servers	from	a	decent	multi-homed	datacenter,	long	connectivity	
losses	are	rather	rare	(of	the	order	of	once-per-month	or	so);	on	the	other	hand	-	your	
datacenter	WILL	experience	transient	connectivity	faults	of	around	1.5-2	minutes	long	
(typical	BGP	convergence	time)	on	regular	basis,	so	if	you're	looking	for	excuses	to	use	this	
nice	diagram	on	Fig	9.20	and	your	Client	can	detect	the	fault	and	redirect	to	a	different	
datacenter	significantly	faster	than	that,	it	MAY	make	some	difference	to	your	players	(that	
is,	provided	that	your	inter-Datacenter	connectivity	is	completely	independent	from	your	
Internet	connectivity	so	they	won’t	fail	at	the	same	time).	Second,	such	an	approach	MAY	
allow	to	survive	quite	a	few	of	the	DDoS	attacks	(though	relying	on	it	as	the	only	DDoS	
protection	is	probably	still	too	risky,	and	currently	I	tend	to	prefer	BGP-based	DDoS	
protection	with	a	3rd-party	provider,	though	YMMV).		

																																																								
115	well,	it	is	theoretically	possible	to	run	Client-Side	Prediction	on	Front-End	Servers,	saving	
round-trip	at	the	cost	of	providing	approximate	non-authoritative	data,	but	I	didn’t	hear	of	
any	such	experiments	(and	don’t	even	realize	why	they	might	be	necessary	–	especially	as	
running	the	same	Client-Side	Prediction	on	the	Client	will	provide	to	improve	latency	even	
further	–	and	much	cheaper	for	us	too).	

	
CDN-like	arrangements	
of	Front-End	Servers	
MAY	save	some	of	your	
players	a	few	
milliseconds	in	latency.	
From	my	experience,	it	
was	hardly	worth	the	
trouble	

	
Last	but	not	least,	architectures	similar	to	Fig	9.20,	may	come	handy	in	some	quite	strange	
scenarios	when	you're	legally	required	to	keep	your	Game	Servers	in	a	strange	location	(hey	
casino	guys!)	where	you	simply	don't	have	enough	bandwidth	to	serve	your	Clients	directly	
–	or	your	connectivity	options	are	limited	and	traffic	crosses	certain	Datacenters	anyway,	so	
it	might	make	sense	to	put	your	Front-End	Servers	(working	as	concentrators)	there.	
	
Implementation-wise,	the	biggest	problem	with	such	CDN-like	multi-datacenter	Front-End	
Server	configurations,	is	that	as	usual	for	multi-Datacenter	deployments,	we	MUST	account	
for	a	possibility	that	our	secondary	Datacenter	goes	down	(in	particular,	in	case	of	inter-
datacenter	connectivity	going	down)	–	but	for	the	case	of	such	CDN-like	deployments,	it	
becomes	a	Big	Headache™	more	often	than	not.	If	we	cannot	stop	playing	upon	a	failure	of	
the	secondary	Datacenter	–	we	have	to	reconnect	our	Clients	elsewhere;	the	simplest	way	
to	deal	with	it	is	to	have	enough	capacity	in	your	primary	Datacenter	(both	traffic-wise	and	
CPU-wise)	to	handle	all	of	your	Clients,	but	this	tends	to	be	expensive.	As	an	alternative,	
shutting	down	some	non-critical	activities	in	case	of	such	a	failure	might	be	possible	
depending	on	specifics	of	your	game.	
	

Regional	Datacenters	Summary	
	
After	going	through	all	those	options	(from	completely	separated	Datacenter	DBs,	via	
Mergeable-DBs,	Centralized	PlayerID-DB,	and	Centralized	PlayerDB,	to	completely-
centralized	DBs	and	completely-centralized	Game	Servers)	we	can	see	that	all	these	
approaches	represent	more	or	less	continuous	spectrum	going	from	“completely	isolated	
Datacenters”	via	“Datacenters	which	are	more-or-less-loosely-coupled	to	Central	DB”	
towards	“completely	centralized	DB	and	even	centralized	processing”.	
	
Which	of	these	approaches	to	choose	–	depends	on	specifics	of	your	game,	but	in	general	–	I	
would	stay	away	from	extremes	on	this	spectrum.	Specifically,	completely	unrelated	DBs	
tend	to	be	too	difficult	to	deal	with	on	the	DB	side,	and	too-tightly-coupled	processing	tends	
to	be	too	sensitive	to	an	occasional	connectivity	loss	between	your	Datacenters.	As	a	result	
–	I	feel	that	most	of	the	time,	the	optimum	solution	lies	somewhere	between	Centralized	
PlayerID-DB,	and	Centralized	DB	(the	one	without	Datacenter	DBs).	And	for	quite	a	few	
games,	the	middle	of	this	range	(Datacenter	DBs+Centralized	Player	DB)	often	becomes	the	
best	choice	(and	as	a	side	bonus	–	the	same	mechanics	will	allow	you	to	scale	your	DB	to	
hundreds	of	thousands	of	simultaneous	players,	more	on	it	in	Vol.	VI’s	chapter	on	
Databases).	
	

DB	Server	App	
	
For	pretty	much	all	the	games	out	there,	there	is	a	need	to	store	some	data	in	the	database;	
as	a	result	–	there	should	be	a	way	to	access	the	database.	In	practice,	database	access	can	
be	implemented	using	one	of	several	very	different	approaches.	

	
The	most	obvious	way	to	access	your	database	is	also	the	worst	
one.	While	it	is	certainly	possible	to	use	your	usual	ODBC-style	
calls	(with	SQL	statements	right	within	them)	to	your	database	
right	from	your	Game	Servers	(i.e.	without	a	separate	DB	
Server	App),	do	yourself	a	favor	and	skip	this	option.	It	will	
have	several	significant	drawbacks	which	will	become	obvious	
in	the	medium-run,	and	extremely	annoying	in	the	long	run.	
These	problems	range	from	too	tight	coupling	between	your	
Game	Servers	and	your	DB,	to	significantly	worse	contention	
due	to	longer	locks;	even	worse	–	this	approach	will	effectively	
enforce	a	concurrent-request	processing	model	(without	
leaving	a	chance	to	go	no-concurrent,	which	has	significant	
benefits	–	more	on	it	in	the	Single-Writing-DB-Connection	
section	below).	In	short	–	I	don’t	know	any	game-with-more-
than-100K	lines	of	code,	where	going	directly	to	the	database	
from	your	Game	Servers	is	appropriate.	
	

DB	Server	API	
	
A	much	better	alternative	(which	I’m	arguing	for,	and	which	was	mentioned	several	times	
above)	is	to	have	a	separate	DB	Server	App	running	on	your	DB	server	box,	and	to	have	your	
very	own	message-based	DB	Server	API	(expressed	in	terms	of	messages	or	non-blocking	
RPC	calls)	for	your	Game	Servers	to	communicate	with	this	DB	Server	App.		
	
This	will	keep	all	DB-related	work	where	it	belongs	–	on	DB	Server	box,	within	appropriate	
DB	Server	App(s).	An	additional	benefit	of	such	a	separation	is	that	you	shouldn’t	be	a	DB	
guru	to	write	your	Game	Worlds,	but	you	can	easily	have	a	DB	guru	(who’s	not	a	Game	Logic	
guru)	writing	your	DB	Server	App(s);	the	interface	between	the	two	development	spaces	
(Game	World	Team	and	DB	Team)	becomes	very	straightforward,	with	a	very	clear	
separation	of	concerns	(in	particular,	all	the	worries	about	DB	integrity	in	all	possible	senses,	
go	to	the	DB	Team).		
	
[[TODO:	wikiquote	Conway’s	Law]]In	a	sense	–	we	can	say	that	this	separation	is	pretty	
much	dictated	by	Conway’s	Law	(already	mentioned	in	Vol.	II’s	chapter	on	(Re)Actors):	to	
separate	Game	Logic	Team	and	Database	Team	(which	is	certainly	a	Good	Thing™	pretty	
much	universally)	–	we	have	our	architecture	to	reflect	this	separation-which-exists-in-
organizational	structure.116	
	

																																																								
116	While	usually,	Conway’s	Law	is	used	to	argue	to	change	organizational	structure	to	follow	
design	–	it	actually	works	both	ways;	what	really	matters	is	that	“You	may	see	tensions	in	
your	own	organizations	where	your	structure	and	software	are	not	in	alignment”	
[[https://www.thoughtworks.com/insights/blog/demystifying-conways-law]];	as	in	our	case	
changing	organizational	structure	(=”having	people	who	know	very	well	both	database	and	
Game	Logic”)	is	not	realistic	–	we	should	change	design	to	avoid	the	tensions.	

	
While	in	theory,	it	is	
possible	to	use	your	
usual	ODBC-style	
blocking	calls	to	your	
database	right	from	
your	Game	Server	
(Re)Actors,	do	yourself	
a	favor	and	skip	this	
option.	

To	achieve	this	clean	separation,	DB	Server	API	exposed	by	DB	Server’s	App(s),	SHOULD	NOT	
contain	any	SQL	(this	would	defeat	all	the	decoupling	we’re	after).	Instead,	your	DB	Server	
API	SHOULD	be	specific	to	your	game,	and	(just	like	with	Logic-to-Graphics	Layer	discussed	
in	Vol.	II’s	chapter	on	Client-Side	Architecture)	SHOULD	be	expressed	in	game	terms	such	as	
“take	PC	Z	and	place	her	(with	all	her	gear)	into	Game	World	#NN”.	All	the	logic	to	
implement	this	request	(including	pre-checking	that	PC	doesn’t	currently	belong	to	any	
other	Game	World,	modifying	PC’s	row	in	table	of	PCs	to	reflect	the	number	of	the	world	
where	she	currently	resides,	and	reading	all	PC	attributes	and	gear	to	pass	it	back)	should	be	
done	by	your	DB	Server	App(s).	
	
In	addition,	all	the	requests	in	DB	Server	API	MUST	be	atomic	–	i.e.	should	be	executed	
within	one	single	ACID	transaction;	no	things	such	as	“open	cursor	and	return	it	back,	so	I	
can	iterate	on	it	later”	or	“start	transaction	and	do	something	but	don’t	commit	yet”	are	
ever	allowed	in	your	DB	Server	API	(neither	you	will	really	need	such	things,	this	stands	in	
spite	of	whatever-your-DB-guru-may-tell-you).	This	doesn’t	mean	that	implementation	of	
your	DB	Server	is	not	allowed	to	use	multi-statement	transactions	(in	fact,	it	will	need	them	
pretty	much	for	sure);	however,	all	the	requests	processed	by	your	DB	Server,	MUST	start	
an	ACID	transaction	with	your	DBMS,	process	everything	within,	and	commit/rollback	the	
transaction	–	all	while	processing	one	single	incoming	event/request;	in	other	words,	
transactions	MUST	NOT	be	allowed	to	span	different	DB	Server	API	events.	
	
Having	non-atomic	interactions	between	with	your	Game	World	Servers	and	your	DB	Server	
tends	to	cause	way	too	much	trouble	in	real	world	to	be	acceptable.	In	practice,	three	things	
are	the	most	annoying	with	such	non-atomic	interactions	(and	I’m	not	sure	which	one	is	
worse,	but	IMO	any	of	them	is	bad	enough	to	give	up	non-atomics	completely).	First,	non-
atomic	interactions	tend	to	expose	internals	of	the	database	to	the	Game	Server	(which	is	
not	good	from	clean	separation	point	of	view,	and	will	cause	you	lots	of	trouble	as	your	
game	grows).	Second,	non-atomic	interactions	are	inevitably	concurrent	(and	worse	–	
they’re	arbitrarily	long	concurrent),	which	can	easily	cause	lots	of	trouble	with	consistency	–
and	dealing	with	these	concurrency-issues-causing-bad-inconsistency-once-in-a-blue-moon	
requires	very	deep	understanding	of	such	obscure	and	DB-dependent	things	as	transaction	
isolation	levels	(see	also	the	Concurrency	Issues.	Transaction	Isolation,	Deadlocks,	etc.	
section	below).	Last	but	not	least,	such	non-atomic	requests	usually	leave	locks	in	DB	(see	
the	same	discussion	about	implementation	of	transaction	levels)	–	and	these	locks	are	held	
for	long	times,	which	tends	to	cause	all	kinds	of	trouble	(from	significantly	reduced	
performance	to	highly	increased	chances	of	deadlocks).		
	
With	this	in	mind,	you’re	going	to	have	quite	a	few	different	types	of	requests	coming	from	
your	Game	World	Servers	to	your	DB	Server	App.	In	particular,	instead	of	two	requests	“add	
money	to	player’s	account”	and	“remove	money	from	player’s	account”,	there	MUST	be	
several	higher-level	interactions	defined	in	your	DB	Server	API	such	as	“move	money	from	
one	player’s	account	to	another	player’s	account”,	“move	money	from	player’s	account	to	
our	account”,	or	“move	money	from	player’s	account	to	‘outgoing	payments’	table”.	On	the	
other	hand,	as	soon	as	you	have	this	nice	and	clean	DB	API	tailored	for	Game	World	Server	
(or	whatever-other-Game-Server)	needs,	you	can	proceed	with	writing	your	Game	World	
Servers	without	worrying	about	exact	implementation	of	your	DB	Server(s),	and	proceed	
with	writing	your	DB	Server(s)	–	without	worrying	about	exact	implementation	of	your	

Game	World	Servers.	Of	course,	there	will	be	new	requests	added	to	the	DB	Server	API	as	
your	game	grows,	but	level	of	decoupling	offered	by	this	kind	of	API	is	the	best	we	can	hope	
for	–	and	has	been	seen	working	very	well	in	real-world	games	processing	billions	real-world	
DB	transactions	per	year.	
	
One	last	word	of	caution	with	regards	to	DB	Server	API.	While	it	is	possible	to	maintain	
transactional	integrity	by	creating	“compound”	messages	(with	these	“compound”	
messages	containing	a	list	of	things	to	be	done,	each	of	these	things	processed	by	DB	Server	
App	separately	but	within	the	same	ACID	transaction)	–	I	am	generally	against	this	
approach.	If	we	allow	to	have	a	“compound”	message	with	separate	instructions	such	as	
“add	money	to	player’s	account”	and	“remove	money	from	player’s	account”	–	then,	while	
transactional	integrity	will	be	ensured,	we	will	still	have	a	problem	that	Game	World	
developer	will	be	able	to	break	certain	very-high-level	integrity	constraints	within	the	
database	(such	as	“sum	of	all	the	money	in	the	database	doesn’t	change”).	And	as	soon	as	
there	are	multiple-people-from-different-teams	who’re	responsible	for	enforcing	such	a	
constraint	–	it	will	be	enforced	by	nobody	(and	will	be	broken	much	more	frequently	than	
we’d	like	it	to).	In	contrast,	with	messages	in	DB	Server	API	being	of	the	kind	of	“move	
money	from	player’s	account	to	our	account”	–	all	the	responsibility	for	enforcing	this	
constraint	lies	with	DB	Team	(exactly	where	it	belongs),	and	I’ve	seen	such	constraints	to	be	
enforced	very	successfully	in	real-world	systems	–	by	a	DB	Team,	that	is.	
	

Meanwhile,	at	the	King’s	Castle…	Implementing	DB	Server	
App,	Take	1	
	
As	soon	as	we	have	this	really	nice	separation	between	Game	Servers	and	DB	Server	App	via	
our	very	own	message-based	DB	Server	API,	in	a	sense,	the	implementation	of	DB	Server	
App	becomes	an	implementation	detail.	Still,	let’s	discuss	how	this	not-so-small	and	
extremely-important	detail	can	be	implemented.	Within	this	Chapter,	we’ll	discuss	
implementation	of	the	DB	Server	App	very	very	briefly;	for	any	further	details	of	DB	Server	
App	implementation	(as	well	as	for	all	the	further	improvements	of	the	DB	Server	App)	–	see	
Vol.	VI’s	chapter	on	Databases.	
	

Concurrent	Transactions	(=”Multiple	Connections”)	
	
Historically,	the	most	popular	way	of	handling	database	access,	is	to	have	multiple	
connections	to	the	database,	with	incoming	requests	processed	concurrently	by	the	
database.	While	(as	we’ll	see	below)	this	approach	has	significant	drawbacks	–	let’s	discuss	
it	first.		
	
Let’s	take	a	look	at	the	following	Fig	9.21:	
	

	
	
Here,	we	have	a	rather	traditional	multi-threaded	DB	Server	App;	it	has	a	“Proxy”	thread	–	
which	takes	incoming	requests,	and	merely	passes	them	to	one	of	several	“Worker”	
threads;	“worker”	threads	simply	take	these	requests	and	process	them	one	by	one	using	
traditional	blocking	ODBC/JDBC/libmysqlclient/whatever-else	calls	to	our	DBMS.		
	
It	is	important	that	the	number	of	“Worker”	threads	should	be	limited	(i.e.	independent	
from	number	of	requests,	and	defined	in	relation	to	capabilities	of	the	system,	such	as	
number	of	cores	on	our	database	box);	this	is	necessary	because	having	too	many	requests	
processed	in	parallel,	will	thrash	the	system,	significantly	reducing	overall	throughput.	From	
this	perspective	–	our	system	on	Fig	9.21	works	pretty	much	as	a	DIY	“transaction	monitor”,	
limiting	number	of	concurrent	requests	to	the	DB	to	keep	the	system	alive.	As	for	the	
number	of	the	“Worker”	threads	-	usually	2*number-of-cores-on-DBMS-box	is	not	bad	
starting	number.		
	
If	you	wonder	whether	our	Proxy	Thread	can	become	a	bottleneck	–	well,	it	is	extremely	
unlikely	(except	maybe	for	some	very	strange	edge	cases).	It	is	perfectly	feasible	(and	
actually	very	far	from	being	a	rocket	science)	for	such	a	Proxy	Thread	to	process	up	to	100K	
requests/second	–	and	having	even	100K	DB	transactions/second	qualifies	as	an	Extremely	
High	Number	for	real-world	transactional	databases.117		
	
Overall,	this	concurrent	multi-connection	processing	model	is	very	similar	to	classical	
massively	multi-connection	DB	processing.	Sure,	we	effectively	implement	transaction	
monitor	ourselves	(instead	of	somebody	else	doing	it	for	us),	but	other	than	that	–	the	
whole	thing	is	pretty	much	the	same	as	usual.	And	in	return	for	this	additional	effort	of	
implementing	DB	Proxy	logic,	we	manage	to	keep	our	own	DB	(Re)Actor	API	as	an	extremely	
clean	separation	layer	between	DBMS	and	our	Game	Servers,	which	tends	to	help	a	Damn	
Lot™	even	in	the	medium	run.		
	
Implementing	Multiple-DB-Connections	using	(Re)Actors	
	

																																																								
117	Some	years	ago,	when	asking	about	a	DB	with	1K	transactions/second,	I	was	told	by	guys	
from	Toronto	DB/2	team	that	it	is	the	most	loaded	DB/2	instance	on	Windows	they	know	
about;	while	things	have	changed	since	–	still,	100K	of	DB	transactions	per	second	is	an	
extremely	decent	number	even	in	2017	(to	put	it	into	perspective	–	the	whole	Twitter	has	
only	6K	tweets/second	on	average).	

If	we	want	to	follow	(Re)Actor-fest	model	while	implementing	multi-connection	DB	Server	
App	–	then	implementing	the	same	multi-connection	approach	on	top	of	(Re)Actors,	is	also	
very	straightforward:	
	

	
	
Here,	compared	to	previous	diagram	on	Fig	9.21,	we’re	merely	specifying	how	to	implement	
those	“Proxy”	and	“Worker”	threads	discussed	above,	nothing	else.	In	this	model	(and	as	it	
stands	usually	with	(Re)Actors)–	it	doesn’t	really	matter	whether	our	(Re)Actors	run	within	
the	same	process,	or	within	different	processes;	the	only	thing	which	is	important	–	is	that	
each	of	these	(Re)Actors	gets	its	own	thread	(this	is	necessary	because	our	ODBC/etc.	calls	
to	the	database	are	usually	blocking).	
	

Multiple	Connections:	Pros	and	Cons	
	
Now,	let’s	discuss	pros	and	cons	of	this	concurrent/multi-connection	approach.		
The	main	(and	extremely	highly	touted)	upside	of	such	concurrent	processing	schemas	is	
that	it	is	inherently	somewhat-scalable;	however	–	that’s	about	it	for	the	list	of	pros.		
	
Downsides,	however,	are	numerous.		
	
Concurrency	Issues.	Transaction	Isolation,	Deadlocks,	etc.	
	
First,	let’s	observe	that	as	soon	as	we’re	into	concurrent	transactions,	we	MUST	understand	
things	such	as	locks,	transaction	isolation	levels,	and	deadlocks.	Way	too	often	these	issues	
are	ignored	–	with	really	devastating	results	as	soon	as	load	on	the	system	grows.	In	this	
Chapter,	we	won’t	discuss	these	issues	in	detail	(for	some	discussion	of	these	–	please	refer	
to	Vol.	VI’s	chapter	on	Databases)	–	but	will	rather	will	provide	an	overview	of	related	
complexities.	
	
IMO	the	worst	thing	about	using	multiple	DB	connections,	is	that	whatever-we’re-doing,118	
those	concurrent	DB	transactions	going	over	these	multiple	DB	connections	cannot	possibly	
be	made	deterministic,	period.119		

																																																								
118	This	includes	having	using	perfectly	deterministic	(Re)Actors	everywhere	
119	Yes,	it	stands	even	for	SERIALIZABLE	isolation	level	

It	means	that	our	system	may	work	perfectly	under	test,	but	will	fail	in	
production	while	processing	exactly	the	same	sequence	of	requests.120	

	
Worse	than	that,		

there	is	a	strong	tendency	for	concurrency-related	bugs	to	manifest	
themselves	only	under	heavy	load.	

	
As	a	result,	you	can	easily	live	with	a	concurrency-related	bug	(for	example,	using	SELECT	
instead	of	SELECT	FOR	UPDATE)	quietly	sitting	in,	and	without	manifesting	itself.	And	then,	
when	your	Big	Day	(such	as	Tournament	of	The	Year)	comes	-	this	bug	crashes	your	site.121	
Believe	me,	you	really	don’t	find	yourself	in	such	a	situation,	it	can	be	really	(and	I	mean	
really)	unpleasant.	
	
In	general,	there	are	approaches	which	provide	reasonably	good	assurances	for	ensuring	
concurrent	transactions	to	work;	one	such	approach	goes	along	the	lines	of	(a)	using	SELECT	
FOR	UPDATE	for	all	the	data	you	ever	read	in	a	transaction	–	and	(b)	always	following	
exactly	the	same	pre-defined	order	(the	one	written	in	blood	on	the	wall	of	DB	department)	
for	all	the	UPDATEs	and	SELECT	FOR	UPDATEs	(this	is	necessary	to	avoid	deadlocks).	These	
approaches	have	their	own	drawbacks	(in	particular,	deadlocks	can	still	happen	–	for	
example,	due	to	index-related	implicit	locks,	so	they	still	MUST	be	accounted	for),	but	in	
general	–	they	can	be	made	work.122		
	
The	real	problem	here,	however,	is	related	to	code	maintenance.	With	dozens	of	changes	
per	week	typical	for	a	gamedev	environment	–	it	is	extremely	easy	to	violate	one	of	those	
rules;	moreover	–	no	realistic	testing	will	be	able	to	detect	such	a	bug,	so	each	such	mistake	
will	effectively	create	a	ticking	time	bomb,	waiting	for	that	worst-possible-moment	to	
manifest	itself.	
	
I	will	stop	short	of	saying	that	it	is	outright	impossible	to	make	sure	that	real-world	
frequently-changed	concurrency-based	systems	are	bug-free;	however,		
The	costs	to	ensure	that	concurrency-based	system	is	bug-free	while	making	

lots	of	changes	–	are	extremely	high.	
To	start	with	–	as	noted	above,	such	bugs	are	inherently	untestable	<multiple-ouch!	/>,	
which	makes	all	the	regression	testing	pretty	much	useless	against	them.	In	turn	–	it	leads	to	
tons	of	mundane	work	on	code	reviewing	(and	double-code-reviewing)	–	which	it	is	not	a	

																																																								
120	Just	because	our	production	system	got	an	interrupt	at	a	bit	different	moment,	ouch!	
121	[[TODO:	wikiquote	finagle’s	law]]To	make	things	even	worse,	it	goes	beyond	generic	
Finagle’s	Law	of	“Anything	that	can	go	wrong,	will—at	the	worst	possible	moment.”	When	
probability	of	the	problem	depends	on	site	load	in	a	non-linear	manner	(which	is	the	case	
for	most	of	the	concurrency	bugs),	chances	of	it	manifesting	itself	for	the	first	time	exactly	
during	your	heavily	advertised	Event	of	the	Year	become	huge.	
122	Another	(theoretical)	approach	is	to	say	that	“let’s	use	SERIALIZABLE	transaction	isolation	
level,	so	smart	database	will	do	everything	for	us”	–	but	it	doesn’t	really	work	in	practice,	as	
performance	goes	out	of	the	window	for	SERIALIZABLE	level	(and	you	still	need	to	follow	
strict	order	of	obtaining	locks	to	avoid	deadlocks).	

picnic	at	all.	BTW,	if	you	could	write	a	code	analyzer	which	can	check	whether	your-
concurrency-rules-are-complied-with	automatically	–	it	would	change	things	drastically	in	
this	regard;	however	–	I	never	heard	of	such	a	tool,	and	writing	it	would	be	a	highly	non-
trivial	exercise	for	sure.	
	
[[wiki	MVCC]]On	the	other	hand,	there	are	concurrent	systems	with	millions	
transactions/day	out	there	which	are	working,	and	there	are	DB	guys&gals	out	there	who	
made	them	work.123	One	thing	which	I’m	not	so	sure	about,	is	whether	you’ll	have	such	a	
person	on	your	game	DB	team	(such	people	are	very	few	and	far	between,	this	we	can	
count	on).	BTW,	as	a	side	note:	IF124	going	for	multi-connection	system	(which	I	normally	
wouldn’t)	–	I’d	prefer	MVCC-based	system	to	a	lock-based	one	(as	MVCC	tends	to	be	more	
forgiving	for	concurrency	bugs,	and	tends	to	introduce	less	concurrency	issues125).	
	
Performance	Issues	
	
From	performance	perspective,	it	has	been	observed	that	concurrent-transaction	approach	
tends	to	lose	badly	to	the	single-writing-connection	one.	
	
Most	importantly	–	whenever	we’re	using	multiple	connections,	we	SHOULD	NOT	use	app-
level	caching	(i.e.	even	DB-Proxy	SHOULD	NOT	be	allowed	to	cache).	While	correct	app-level	
caching	at	DB	Proxy	is	theoretically	possible	even	for	multiple	connections,	re-ordering	of	
replies	on	the	way	from	DB	Worker	to	DB-Proxy	makes	the	whole	thing	way	too	complicated	
to	be	practical.	While	I’ve	implemented	such	a	thing	myself	once,	and	it	worked	without	any	
consistency	problems	(that	is,	after	several	months	of	heavy	replay-based	testing	and	fixing	
subtle	bugs	found	in	the	process),	it	was	the	most	convoluted	thing	I’ve	ever	written,	and	I	
clearly	don’t	want	to	repeat	this	exercise	–	especially	as	significantly	more	straightforward	
alternatives	exist.	
	
In	addition	–	multiple-connection	approaches	tend	to	cause	quite	a	bit	of	contention	within	
DBMS;	this	includes	not	only	about	observable-from-app-level	row-level	locks,	but	also	
internal	mutexes	etc.	And	this	contention	(exactly	as	any	kind	of	contention)	can	eat	quite	a	
bit	of	performance.	
	
Scalability	Issues	
	
[[wiki:	Amdahl’s	Law]]Last	but	not	least,	the	scalability	of	the	multiple	connections,	while	
apparent,	is	never	perfect	(and	no,	those	TPC-C	numbers	don’t	prove	that	linear	scalability	is	
achievable	for	real-world	transactions).	The	first	problem	here	is	related	to	the	same	
contention	issue	mentioned	above:	as	soon	as	we	have	contention	over	certain	resource	–	
we	lose	scalability,	plain	and	simple	(at	least	according	to	Amdahl’s	Law,	but	in	practice	
scalability	loss	is	much	larger	than	that,	due	to	context	switch	costs	being	significant).	
																																																								
123		usually	–	starting	along	the	lines	briefly	outlined	above,	plus	a	lot	of	DB-specific	trickery	
<ouch!	/>	to	deal	with	DB	peculiarities	and/or	to	speed	things	up	
124	and	that’s	indeed	a	big	fat	“if”	
125	Note	that	MVCC	DBs	still	do	use	locking	for	writing,	and	can	deadlock	as	a	result	quite	
easily	

	
Things	become	even	worse	if	we	try	to	scale	beyond	one	single	server	box;	configurations	
including	heavy-weight	solutions	such	federated	DBs,126	while	claimed	to	be	scalable	–	are	
observed	to	scale	pretty	badly	in	the	real	world	<sad-face	/>.		
	
In	contrast,	single-connection-made-scalable	Shared-Nothing	approach	which	we’ll	discuss	
in	Vol.	VI’s	chapter	on	Databases,	can	be	extended	to	achieve	near-perfect	linear	scalability;	
this	is	predicted	theoretically,	and	also	has	been	observed	in	practice	at	least	for	systems	
with	up	to	several	billion	transactions	per	year.	
	

Single-Writing-DB-Connection	
	
In	contrast	to	the	traditional	multiple-connection	schema	above,	let’s	consider	an	
alternative	one	–	based	on	a	single	DB	connection	(at	least	–	a	single	writing	DB	connection;	
other	connections	are	ok	as	long	as	they’re	read-only	and	have	Uncommitted-Read	isolation	
level).	
	
Sure,	most	of	the	people	with	a	DB	background127	will	throw	away	even	the	thought	of	
having	single	DB	connection	outright.	However	–	if	asking	them	about	their	arguments	
against	single	DB	connection,	they	won’t	be	able	to	produce	any,	except	for	a	non-argument	
“nobody	is	doing	it	this	way”128,	another	non-argument	about	“not	being	able	to	utilize	all	
the	CPU	cores”129,	and	a	(semi-)argument	about	lack	of	scalability.		
	
Out	of	these,	only	the	(semi-)argument	about	scalability	is	worth	considering.	However,	as	it	
was	mentioned	in	the	Scalability	Issues	section	above	–	scalability	of	the	single-DB-
connection-made-scalable	Shared-Nothing	approach	is	actually	better	than	that	of	the	
traditional	“throw	everything	at	DB	hoping	it	will	scale”	multi-connection	model.	In	turn,	it	
means	that	we’re	out	of	the	killer	arguments	against	the	single-writing-DB-connection	–	and	
at	least	can	take	a	closer	look	at	it.	
	
Apparently,	this	approach	looks	very	simple:	

																																																								
126	more	generally	-	any	system	which	is	based	on	blocking	synchronization	algorithms,	such	
as	two-phased	commit.	BTW,	as	long	as	we	do	want	ACID	transactions	over	a	generic	
federated	DB	–	there	is	no	way	to	avoid	blocking	<sad-face	/>.	
127	well,	except	for	those	who	participated	in	my	projects	<wink	/>	
128	Not	only	it	is	a	non-argument,	but	it	is	actually	wrong.	What	stands	is	that	“no	book	on	
databases	describes	single-connection-DBs”,	but	quite	a	few	real-world	systems	are	using	
single-write-connection	DBs	–	and	very	successfully	too.	
129	We	don’t	really	care	about	“utilizing”	cores,	what	we	care	about	is	ability	to	do	the	job	as	
load	increases	(which	is	covered	under	Scalability)	

	
	
The	whole	point	here	is	that	the	only	meaningful	thread	of	the	DB	Server	App	merely	
receives	all	the	requests	one	by	one	–	and	processes	them	in	a	serial	manner,	that’s	it.	It	
means	that	our	single-connection	DB	Server	App	can	safely	assume	that	there	are	no	other	
transactions	happening	in	parallel	to	its	own	ones;	as	a	result	–	no	things	such	as	SELECT	
FOR	UPDATE	are	ever	needed,	there	are	zero	worries	about	deadlocks	(and	about	
contention	in	general),	and	so	on.	
	
Note	that,	as	shown	on	the	Fig	9.23,	in	addition	to	that	single-writing-DB-connection	coming	
from	DB	Server	App,	we	can	also	have	several	read-only	connections.	These	connections	
MUST	be	read-only	(to	avoid	interfering	with	the	main	writing	connection);	in	addition	-	to	
reduce	their	impact	on	the	writing	connection	(and	to	prevent	deadlocks)	–	we	SHOULD	
restrict	these	read-only	connections	to	Read-Uncommitted	transaction	isolation	level	(at	
this	level	–	most	of	DBMSs	out	there	issue	only	very-short-term	locks,	with	contention	being	
extremely	limited,	and	zero	chance	of	deadlocks).	Note	that	in	spite	of	these	precautions	–	
at	some	point	we’ll	still	start	to	feel	negative	effects	from	the	existence	of	the	read-only	
connections	(mostly	–	because	of	cache	poisoning	caused	by	them),	so	in	the	long	run	we’ll	
need	to	move	most	of	these	read-only	data	consumers	to	the	read-only	replicas	(more	on	
replicas	–	in	Vol.	VI’s	chapter	on	Databases).	
	
App-Level	Cache	
	

An	important	practical	item	on	Fig	9.23	is	App-Level	Cache,	which	allows	to	speed	things	up	
very	considerably.	In	fact,	this	application-level	cache	has	
been	observed	to	provide	10x+	performance	improvement	
over	DB	cache	even	after	all	the	necessary	performance-
related	optimizations	(such	as	prepared	statements	or	even	
stored	procedures,	indexes,	etc.	etc.)	are	made	on	the	
DBMS	side.	Just	think	what	is	faster:	simple	hash-based	in-
memory	search	within	your	DB	Server	App	(where	you	
already	have	all	the	data,	so	we’re	speaking	about	100	CPU	
clock	cycles	or	so	even	if	the	data	is	not	available	in	L3	
cache),	or	going	to	DB	lib	->	marshalling	->	going	to	kernel	
ring	->	going	to	DBMS	process	over	some	IPC		->	going	from	
kernel	ring	to	user	ring	->	unmarshaling	->	finding	execution	
plan	by	prepared	statement	handle	->	executing	execution	
plan	via	reading	pages	mostly	from	memory	but	sometimes	
from	disk	<yikes!	/>	->	marshaling	results	->	going	to	kernel	
ring	->	going	back	to	DB	(Re)Actor	process	over	RPC	->	
going	from	kernel	ring	to	user	ring	->	unmarshaling	results	
–>	going	from	DB	lib	to	DB	App.	In	the	latter	case,	we’re	
speaking	at	least	about	a	hundred	microseconds,	or	over	
1e5	CPU	clock	cycles,	it	is	three	orders	of	magnitude	difference	from	a	simple	search	in	an	
app-level	cache.130		
	
Implementation-wise,	the	only	not-so-trivial	issue	about	this	cache	is	ensuring	its	coherency	
but	as	our	writing-DB-connection	is	the	only	one	-	keeping	this	app-level	cache	coherent	is	
very	straightforward.		
	
In	practice,	the	main	thing	which	gets	cached	for	games	is	usually	ubiquitous	USERS	(or	
PLAYERS)	table,	as	well	as	some	of	small	game-specific	near-constant	tables	–	and	caching	
these	few	tables	already	helps	a	Damn	Lot™	performance-wise	(over	10x	improvement	has	
been	observed	in	practice).	
	
Implementing	Single-writing-DB-Connection	DB	Server	App	as	a	(Re)Actor	
	
Implementing	the	same	thing	under	(Re)Actor-fest	model	is	also	obvious	and	extremely	
simple:	

																																																								
130	with	stored	procedures	the	things	become	a	bit	better	for	DB	side,	but	the	performance	
difference	is	still	considerable,	not	to	mention	vendor	lock-in	which	is	pretty	much	
inevitable	when	using	stored	procedures	

	
Application-level	cache	
has	been	observed	to	
provide	10x+	
performance	
improvement	over	DB	
cache	even	if	all	the	
necessary	performance-
related	optimizations	
are	made	on	the	DB	
side	

	
	
Here,	there	is	a	single	DB	Server	App	(Re)Actor	which	has	a	single	connection	to	DBMS	(such	
as	an	ODBC/JDBC/…)	–	and	processes	all	the	requests	using	blocking	calls	to	the	DBMS.	
That’s	it	–	it	is	indeed	this	easy.	
	
Single-writing-DB-Connection:	Benefits	
	
Actually,	at	least	at	the	first	stages	of	your	development	and	deployment,	I’m	usually	
strongly	advocating	to	go	with	this	single-connection	approach131.	It	is	very	nice	from	many	
different	points	of	view.	
	
First,	it	is	damn	simple.	This	makes	development	extremely	straightforward:	receive	
request,	check	its	validity	against	cache,	bind	appropriate	prepared	statement(s),	execute	
BEGIN	TRAN132,	execute	bound	prepared	statement(s),	execute	COMMIT	–	that’s	it,	we’re	
done	with	incoming	request,	and	are	ready	to	process	the	next	one.	

																																																								
131		NB:	while	it	will	evolve	with	time	–	it	won’t	become	a	multi-connection	one	in	the	long	
run;	instead	–	it	will	become	a	set	of	single-write-connection-DBs.		
132	BEGIN	TRANSACTION,	START	TRANSACTION,	whatever-else-your-DB-vendor-prefers	

	

Second,	there	is	no	need	to	worry	about	concurrency	issues	
such	as	transaction	isolation	levels,	locks	and	deadlocks	(we’ll	
discuss	DB	concurrency	issues	in	Vol.	VI’s	chapter	on	
Databases).		
	
Third,	if	following	(Re)Actor-fest	model	-	it	can	be	written	as	a	
perfectly	deterministic	(Re)Actor	(with	all	the	associated	
goodies	discussed	ad	nauseum	in	Vol.	II’s	chapter	on	
(Re)Actors);	moreover,	this	determinism	stands	both	(a)	if	we	
use	“call	wrapping”	for	the	calls	coming	from	DB	(Re)Actor	to	
DBMS	(more	on	“call	wrapping”	in	Vol.	II),	or	(b)	if	we	consider	
DB	itself	as	a	part	of	the	(Re)Actor	state,	in	the	latter	case	no	
call	wrapping	is	required	to	achieve	determinism.	
	
Fourth,	the	performance	is	very	good.	There	are	no	locks	whatsoever,	and	the	light	for	the	
transaction	is	always	green,	so	everything	goes	unbelievably	smoothly	(and	without	those	
thread	context	switches	which	tend	to	cause	lots	of	waste).	Add	application-level	caching,	
and	we	have	a	clear	winner	performance-wise!133	I’ve	seen	a	real-world	single-connection	
system	which	had	an	average	transaction	processing	time	in	hundreds-of-microseconds	
range	(that’s	with	real-world	transactions	modifying	multiple	tables,	real	commit	to	disk	
after	every	transaction,	etc.	etc.).	
	
The	only	drawback	of	this	schema	(and	the	one	which	will	make	DB	people	extremely	
skeptical	about	it,	to	put	it	very	mildly)	is	an	apparent	lack	of	scalability.	However,	we’ll	
discuss	ways	to	modify	this	single-connection	approach	to	provide	virtually	unlimited	
scalability,	134	in	Vol.	VI’s	chapter	on	Databases;	moreover	–	opposed	to	inherently-flawed-
due-to-inevitable-contention	scalability	provided	by	traditional	DBMSs,	in	our	case	it	will	be	
a	near-perfect	Shared-Nothing	scalability.	
	
Still,	in	spite	of	all	the	benefits	provided	by	single-writing-DB-connections,	this	schema	
clearly	sounds	as	an	heresy	from	any-DBMS-person-out-there	point	of	view.	On	the	other	
hand,	in	practice	it	works	surprisingly	well	(that	is,	as	soon	as	you	manage	to	convince	your	
DBMS	guy	to	implement	it	<wink	/>).	I’ve	seen	such	single-connection	architecture135	
handling	50M+	DB	transactions	per	day	for	a	real-world	game,	and	it	were	real	transactions,	

																																																								
133	I	know	I	sound	like	a	commercial	
134	while	in	practice	I’ve	never	seen	systems	processing	above	100M	DB	transactions/day	
with	this	“single-connection-made-scalable”	approach,	I’m	pretty	sure	that	you	can	get	to	
1B	pretty	easily,	and	then	it	MAY	become	tough,	as	the	number	is	too	different	from	what-
I’ve-seen	so	some	unknown-as-of-now	problems	can	start	to	develop.	On	the	other	hand,	I	
daresay	reaching	this	kind	of	numbers	is	even	more	challenging	with	traditional	multiple-
connection	approach	(when	going	beyond	one	single	DB	server	box,	for	most	types	of	
transactional	loads	DB	scalability	isn’t	linear	even	if	your	DB	salesperson	is	ready	to	sign	it	
with	his	blood	just	to	sell	it	to	you).	
135	with	a	cache	of	PLAYERS	table	

	
There	is	no	need	to	
worry	about	
transaction	isolation	
levels,	locks	and	
deadlocks	

with	many	creating/modifying	several	dozen	rows,	with	all	the	strict	ACID	guarantees,	audit	
tables	and	so	on	and	so	forth.	
	
One	thing	to	keep	in	mind	for	this	single-connection	approach,	is	that	it	is	very	sensitive	to	
latencies	between	DB	Server	App	and	DB;	we’ll	speak	about	it	in	more	detail	in	Vol.	VI’s	
chapter	on	Databases,	but	for	now	let’s	just	say	that	to	get	into	any	serious	performance	
(that	is,	comparable	to	numbers	above),	you’ll	need	to	use	RAID	card	with	BBWC	in	write-
back	mode,136	or	something	like	NVMe,	for	the	disk	which	stores	DB	log	files	(other	disks	
don’t	usually	matter	too	much).	And	if	your	DB	server	is	a	cloud	one,	you’ll	need	to	look	for	
the	one	which	has	low	latency	disk	access	(such	things	are	available	from	quite	a	few	cloud	
providers,	though	I	have	no	idea	about	real	latency	values	they	provide).	
	
BTW,	let’s	keep	in	mind	that	for	the	time	being,	we	did	NOT	discuss	implementation	of	DB	
Server	App	in	detail;	rather	–	we’re	making	a	very	high-level	outline	of	such	an	
implementation,	with	a	real	discussion	on	the	implementation	postponed	until	Vol.	VI’s	
chapter	on	Databases.	
	

DB	Server	App	Summary	
	
Let’s	summarize	my	feelings	expressed	above:	

• You	MUST	have	a	very	clean	DB	Server	API	
o DB	Server	API	MUST	be	expressed	in	game-level	terms,	and	requests	in	DB	

Server	API	MUST	NOT	include	SQL	statements.	While	having	SQL	statements	
right	within	your	game	code	may	seem	to	add	flexibility	–	in	practice	it	just	
adds	unnecessary	coupling,	and	will	hurt	badly	in	the	medium-	and	long-run	
<sad-face	/>	

o All	DB	requests	in	DB	Server	API	MUST	be	atomic	(i.e.	DB	transaction	MUST	
NOT	span	different	DB	requests)	

o Having	clean	DB	Server	API	is	MUCH	more	important	even	than	the	question	
of	“whether	to	go	for	single-connection	or	multiple-connection	approach”.	
After	all	–	with	clean	DB	Server	API	in	place,	it	is	possible	to	switch	from	
single-connection	model	to	multi-connection	one	(and	vice	versa)	without	
any	changes	to	your	Game	Servers(!).	

• Unless	you	happen	to	have	on	your	team	a	DB	gal	with	real-world	experience	of	
dealing	with	locks,	deadlocks,	and	transaction	isolation	levels	for	your	specific	DBMS	
under	at	least	million-per-day	DB	write-transaction	load	–	I	suggest	to	go	for	a	single-
connection	approach	

o Whether	to	use	(Re)Actors	to	implement	it	–	is	not	that	important	(though	
personally	I	still	prefer	(Re)Actors	<wink	/>)	

o If	you’re	not	doing	insane	things137	and	are	following	advice	from	Vol.	VI’s	
chapter	on	Databases	–	with	some	work	(including	near-optimal	indexes,	
near-optimal	physical	DB	layout,	app-level	caching,	and	read-only	replicas	for	

																																																								
136	don’t	worry,	write-back	is	perfectly	fine	as	long	as	you	have	BBWC,	and	you	still	have	all	
the	integrity	guarantees	in	the	case	of	power	loss	
137	Which	admittedly	can	be	difficult,	especially	if	this	is	your	first	experience	with	DBs	

reporting	etc.)	you	should	be	able	to	process	up	to	10M	transactions/day	
over	one	single	DB	writing	connection.		

§ At	that	point,	you’ll	need	to	work	on	implementation	of	your	DB	
Server	App	(effectively	splitting	it	into	share-nothing	architecture)	–	
more	details	on	it	in	Vol.	VI.	

• If	you	do	happen	to	have	such	a	DB	guru,	try	to	convince	her	to	go	single-connection,	
but	if	she	vehemently	opposes	–	you	MAY	try	multi-connection	DB	Server	

• Note	that	we	did	NOT	discuss	whether	your	DB	needs	to	be	SQL	or	NoSQL	–	this	is	a	
subject	of	a	separate	discussion	in	Vol.	VI’s	chapter	on	Databases.	For	now,	it	is	more	
or	less	clear	that	you’ll	need	to	have	an	ACID-compliant	DB,	but	the	rest	is	not	that	
obvious	so	we’ll	postpone	this	discussion.	

	

MOGs	and	Cloud	
	
These	days,	whenever	we	speak	about	the	Server-Side	of	MOGs,	everybody	and	their	dog	
are	crazy	about	clouds.	However,	“cloud”	being	a	very	broad	umbrella	term	–	we	need	to	
realize	what	is	really	meant	in	every	specific	case.	Let’s	take	a	look	at	several	very	different	
things	which	are	named	“cloud”	in	the	MOG	context.	
	

“Cloud	Gaming”	
	
Of	course,	with	“cloud”	being	THE	buzzword	for	last	10	years	or	so	–	it	has	inevitably	lead	to	
the	emergence	of	the	term	“Cloud	Gaming”.	Moreover,	as	Wikipedia	says	[TODO:
Wikipedia.CloudGaming]	–	there	are	two	different	types	of	“Cloud	Gaming”:	the	one	which	
is	based	on	“video	streaming”,	and	another	–	on	“progressive	downloading”.	
	

Video/Pixel	Streaming	
	
Out	of	all	the	cloud-related	stuff	which	happened	in	the	recent	years	–	one	of	the	strangest	
things	was	a	concept	of	the	game	being	fully	played	–	and	rendered	–	on	the	Server-Side,	
where	the	game	output	was	compressed,	and	sent	back	to	a	“thin”	Client	as	a	video	stream	
(a.k.a.	“pixel	stream”).	The	most	known	real-world	deployment	of	such	a	system	was	the	
one	by	OnLive (later	re-launched	as	CloudLift);	the	whole	thing	didn’t	really	fly,	at	least	
commercially,	and	experienced	significant	technical	issues	too	(in	particular,	it	had	serious	
problems	working	over	all-but-the-very-best-connections	with	no-packet-loss-whatsoever).	
	
Technical	problems	of	video/pixel	streaming	games	are	numerous:	

• Latencies	are	bad	(ruling	out	faster	games	completely).	In	particular:	
o Client-Side	Prediction	(discussed	at	length	in	Vol.	I’s	chapter	on	

Communications)	is	completely	impossible	with	video/pixel	streaming.	This	
means	that	input	lag	cannot	be	less	than	an	RTT.	

o 	Video	streaming	is	just,	well,	streaming	–	
which	means	that	Head-Of-Line	blocking	
(discussed	in	Vol.	IV’s	chapter	on	Network	
Programming)	is	pretty	much	inevitable,	and	
in	case	of	single	packet	loss	–	we’re	speaking	
about	delays	of	at	least	2*RTT	(which	need	to	
be	buffered	on	receiving	side	to	avoid	
constant	“jerking”,	so	actually	we’re	speaking	
about	at	least	2*RTT	delays	all	the	time	–	
which	BTW	was	consistent	with	real-world	
observed	delays	for	OnLive).	

§ To	make	things	worse	–	even	in	
presence	of	such	buffers,	multiple	
packet	losses	in	a	row	(which,	as	it	was	
noted	in	Vol.	IV,	are	becoming	more	
and	more	frequent	over	the	Internet	in	
recent	years),	cause	considerable	
delays	and	degradations	in	player	experience.	

o Video	quality	suffers	significantly	(to	get	quality	comparable	to	Blu-ray	–	we’d	
need	around	10Mbit/s	of	video	stream	–	and	even	more	CPU	power	to	
compress	it	in	real-time)	

o CPU	power	required	on	servers	to	render	3D	–	and	to	compress	stream	with	
acceptable	quality	in	real-time(!),	is	huge.	Comparing	it	to	traditional	
architectures	(such	as	those	discussed	in	Vol.	III’s	chapter	on	Server-Side	
Architectures)	–	we’re	speaking	about	100x	increase	in	Server-Side	CPU	
power(!).	

	
As	a	result	–	
I	do	not	think	that	games	based	on	video	streaming,138	are	viable	at	least	in	
the	near	future.	Within	this	book,	we	will	not	discuss	them	any	further.	

NB:	video	streaming	which	stays	completely	within	LAN	(such	as	“Steam	In-Home	
Streaming”)	–	with	rendering	happening	on	a	Client	PC	and	then	streamed	to	other	devices	
within	the	same	LAN	–	does	not	suffer	from	the	problems	above,	and	can	be	made	viable	
with	current	technologies	
		

Progressive	Downloading	(a.k.a.	File	Streaming)	
	
Progressive	downloading	(a.k.a.	file	streaming)	is	radically	different	from	video/pixel	
streaming.	The	basic	idea	is	to	write	your	game	in	a	usual	Client-Server	way	–	while	avoiding	
to	force	player	to	do	heavy	downloads	at	once;	instead	–	we	would	be	downloading	stuff	
(such	as	additional	levels,	characters,	quests,	etc.)	as-player-plays.	The	key	point	here	–	is	to	
enable	“instantly	playable”	games.	Probably,	the	most	well-known	representative	of	this	
variety	of	“Cloud	Games”	is	Kalydo/Utomik.	

																																																								
138	That	is	–	from	Client	to	Server,	see	below	

	
Video	streaming	is	just,	
well,	streaming	–	which	
means	that	Head-Of-
Line	blocking	(discussed	
in	Vol.	IV's	chapter	on	
Network	Programming)	
is	pretty	much	
inevitable	

	
Progressive	downloading	doesn’t	suffer	from	the	problems	of	
video	streaming	–	and	can	be	actually	seen	as	an	evolution	of	
DLCs	(though	an	automated	one,	and	having	much smaller	
pieces	than	traditional	DLCs).	As	we’ll	see	it	in	Vol.	V’s	
chapter	on	Client	Updates,	progressive	downloading	can	be	
implemented	without	departing	from	the	traditional	
communication	and	architectural	patterns	(well	–	at	least	
without	departing	from	them	too	much).	
	

IaaS	vs	PaaS	vs	SaaS	
	
Game-specific	“cloud	gaming”	aside	–	cloud	is	traditionally	
separated	into	different	“service	models”;	out	of	these	-	the	
most	popular	ones	are	“Infrastructure	as	a	Service”	(IaaS),	
“Platform	as	a	Service”	(PaaS),	and	“Software	as	a	Service”	
(SaaS).	
	
At	this	point	we’ll	be	speaking	mostly	about	so-called	Infrastructure-as-a-Service	(IaaS).	
Under	IaaS	–	what	you’ll	get	from	your	cloud	provider,	will	look	almost-exactly139 as	a	
remotely-accessed	hardware	server	box;	while	most	of	the	time	it	will	be	a	virtual	server	
rather	than	a	physical	one	(though	see	below	on	“bare-metal	cloud”)	–	it	can	run	exactly	the	
same	software	as	can	be	run	on	physical	server	boxes.	
	
Other	cloud	models	(PaaS	and	SaaS)	are	significantly	trickier.	First	of	all,	we	need	to	realize	
that	it	is	very	common	to	create	proprietary	APIs	for	services	which	are	marketed	as140	
PaaS/SaaS;	and	proprietary	APIs	inevitably	mean	that	(a)	choosing	cloud	is	not	a	
deployment-time	decision	(i.e.	you	need	to	decide	on	it	looong	before),	and	(b)	you’re	
having	an	Absolute	Vendor	Lock-In	(which,	as	discussed	in	Vol.	II’s	chapter	on	DIY-vs-Reuse,	
is	a	Bad	Thing™).	Examples	of	such	PaaS-with-proprietary-APIs	include	Google	App	Engine,	
and	significant	parts	of	Microsoft	Azure;	in	the	game	engines	world	–	we	might	want	to	
consider	services	such	as	Photon	Cloud,	as	a	kind	of	PaaS	(and	with	the	Absolute	Vendor	
Lock-In	too	<sad-face	/>).	
	
On	the	other	hand	–	sometimes	vendors	market	services-with-standard-APIs	(one	example	
would	be	using	MySQL-as-a-service)	as	PaaS	or	SaaS.	Such	PaaS/SaaS	services	
with	standard	APIs	can	be	used	without	introducing	additional	Vendor	Lock-Ins	<phew	/>	–	
though	you	still	need	to	be	very	careful	with	two	things:	(a)	costs,141	and	(b)	latencies.	Still,	

																																																								
139	Usually,	the	only	substantial	difference	being	performance	and	latencies	
140	at	this	point,	we	don’t	care	what	“really”	qualifies	as	PaaS/SaaS	according	to	Wikipedia	or	
any	other	source;	what	is	important	is	to	decipher	wording	used	by	various	CSPs	
141	“cloud”	doesn’t	mean	it	is	cheap	(moreover,	as	we’ll	see	in	Vol.	VII’s	chapter	on	
Preparing	for	Launch,	more	often	than	not,	it	is	exactly	the	opposite)	–	so	make	sure	to	
compare	costs	before	jumping	the	cloud	wagon.	For	example,	[TODO:	Frost,	
http://www.admin-magazine.com/CloudAge/Articles/MySQL-as-a-Service]	mentions	

	
Progressive	
downloading	can	be	
implemented	without	
departing	from	the	
traditional	
communication	and	
architectural	patterns	

even	before	going	to	cost	and	latency	analysis	(which	we	actually	should	postpone	until	
later),	we	have	to	remember	that	
Having	“standard”	APIs	is	very	important	for	services	marketed	as	PaaS/SaaS	
	
If	PaaS/SaaS	has	“standard”	API	–	we	should	care	only	about	costs	and	latencies	(and	even	
more	importantly	–	we	can	switch	to	in-house	instance	of	the	same	service	if	3rd-party	
service	doesn’t	work	for	us).	In	short	–	we	do	NOT	really	need	to	consider	such	cloud-
services-with-standard-APIs	before	Vol.	VII	(chapter	on	Preparing	for	Launch).	
	
On	the	other	hand	–	if	it	has	proprietary	API	–	the	whole	game	becomes	very	different.	
With	proprietary	APIs,	the	choice	of	PaaS	or	SaaS	is	not	a	deployment-time	decision	
anymore;	as	a	result	–	if	you’d	like	to	use	this	kind	PaaS	or	SaaS	–	you	should	consider	them	
not	at	a	deployment	stage,	but	right	now,	while	architecting	your	game.	It	doesn’t	mean	
that	you	cannot	use,	say,	Photon	Cloud	–	but	it	means	that		
Choosing	a	cloud	service	with	a	proprietary	API	is	a	decision	which	MUST	

NOT	be	taken	lightly.	
	

Pros	and	Cons	of	the	IaaS	Cloud	
	
Now,	let’s	briefly	discuss	merits	of	by-far-the-most-popular	cloud	service	model	–	
Infrastructure-As-A-Service	a.k.a.	IaaS.		
	
First,	about	IaaS	pros	(when	comparing	IaaS	to	traditional	
rented	servers):	

• IaaS	cloud	does	provide	elasticity	at	cheap	prices.	In	
other	words	–	if	your	load	varies	greatly	with	time	–	
you	will	be	able	to	save	quite	a	bit	by	using	per-hour	
(or	even	per-second)	billing.	

• Fast	hardware	replacement	in	case	of	hardware	
failure.	Typically,	for	virtualized	cloud	server	the	
only	problem	is	to	detect	the	failure	–	and	then	your	
provider	will	re-launch	your	instance	elsewhere	
within	seconds	(note	that	you	still	lose	all	the	in-
RAM	data	of	the	instance	–	and	any	hard	disk	data	
too).	For	rented	servers	–	fixes	usually	come	in	a	
few	hours,	so	to	ensure	the	continuity	you	may142	
need	to	have	(and	pay	for)	a	stand-by	server	of	each	
type.	

o Note	that	normally,	high	availability	and	fault	tolerance	are	not	included	into	
IaaS	offerings.	In	other	words	–	an	IaaS	server	is	almost-exactly	like	your	
physical	server,	and	can	crash	at	any	moment;	if	you	want	to	have	high	

																																																								
$11/day	for	a	10G	MySQL-as-a-service	database	–	which	is	outright	exorbitant	(these	days,	
you	can	rent	the	whole	server	with	1T	disk	for	about	$100)	
142		(or	may	not	–	as	failures	beyond	fans	and	HDDs	are	really	really	rare	–	more	on	it	in	
chapter	10)	

	
if	your	load	varies	
greatly	with	time	–	you	
will	be	able	to	save	
quite	a	bit	by	using	per-
hour	(or	even	per-
second)	billing	

availability	and/or	fault	tolerance	–	you’re	still	on	your	own	(but	you	can	still	
use	any	of	the	methods	discussed	in	chapter	10	–	except,	most	likely,	for	
those	which	rely	on	VMs).	

	
Now,	an	(apparently	significantly	longer)	list	of	IaaS	cloud	cons,	as	they	apply	to	games:	

• Costs.	If	you	are	using	your	system	100%	of	the	time	–	cloud	prices	are	
usually	significantly	higher	than	renting	the	same	computing	power.143	As	of	mid-
2017,	it	was	possible	to	rent	a	“workhorse”	1U/2-socket	server	with	2×8=16	cores,	
64G	RAM,	and	8x2T	HDDs	–	and	residing	in	a	very	decent	datacenter,	for	about	
$150/month.	To	rent	comparable	computing	power	(though	without	HDDs)	from	a	
leading-but-not-overly-expensive	cloud	provider,	pricing	for	per-hour	billing	was	
$0.862/hour	–	or	$630/month,	it	is	wallet-blowing	four	times	more	expensive(!).144	

o In	some	scenarios,	however,	higher	per-hour	pricing	can	be	compensated	by	
elasticity.	For	quite	a	few	games	out	there,	a	price-optimal	deployment	will	
include	both	per-month	rented	servers	(to	handle	fixed	load),	and	per-minute	
rented	cloud	servers	(to	handle	load	spikes).	For	a	detailed	analysis	of	
economics	of	the	cloud	and	of	such	“hybrid”	deployments	–	see	Vol.	VII’s	
chapter	on	Preparing	for	Launch.	

• Traffic	pricing.	Quite	a	few	games	out	there	are	rather	heavy	traffic	consumers.	For	
example,	for	a	“typical”	simulation	server	capable	of	running	1000	players	with	
100kBit/s	going	to	each	of	the	players	–	for	a	non-cloud	hosting	ISP	we’re	speaking	
about	“unmetered	100Mbit/s	connection”,	which	(as	of	mid-2017)	can	be	obtained	
(for	a	$150/month	server	mentioned	above)	for	as	little	as	$20/month.145	However,	
for	the	cloud,	a	similar	amount	of	traffic	(~13	petabytes146)	will	cost	you	several	
hundreds	of	dollars;	it	is	of	the	order	of	10x	price	difference(!).	

• Higher	and	unpredictable	latencies.	Due	to	the	very	nature	of	virtualized	clouds,	
which	need	to	move	instances	around,	there	are	occasional	“latency	spikes”	of	the	
order	of	hundreds	of	milliseconds	–	and	sometimes	going	into	seconds.	

o There	is	a	way	to	mitigate	it	–	by	using	so-called	“bare-metal	cloud	servers”	
(which	are	essentially	merely	ultra-fast-provisioned	servers	with	per-hour	
billing);	more	on	them	below	

• Significantly	less	control	over	exact	location	of	your	server.	As	discussed	above	–	
for	fast-paced	games	there	are	reasons	to	know	where	your	servers	are	–	and	clouds	
are	usually	pretty	bad	with	it;	the	reason	for	this	issue,	once	again,	is	that	clouds	are	
moving	instances	around	(and	can	easily	move	the	instance	from	one	datacenter	to	

																																																								
143	NB:	through	this	section,	I	am	speaking	only	about	published	pricing;	any	kind	of	special	
deals	which	might	be	available	from	service	providers	(especially	for	high-profile	games),	are	
not	included	
144	Sure,	you	can	buy	the	same	thing	with	per-month	billing,	but	(a)	you	will	lose	all	the	
elasticity,	and	(b)	it	will	still	be	about	2x	more	expensive	than	dedicated	servers.	As	for	ultra-
cheap	cloud	providers	such	as	Linode	or	Digital	Ocean	–	they	bill	per	month	and	provide	
per-core	pricing	which	is	comparable	to	the	cost	of	renting	servers;	however	–	as	with	any	
per-month	billing,	there	are	no	elasticity	benefits,	and	other	considerations	–	such	as	
latencies	and	their	DDoS	policies	–	are	pretty	bad	for	game	servers.	
145	YMMV,	no	warranties	of	any	kind,	batteries	not	included.	
146	Assuming	50%	average	utilization	

another	one	if	they	feel	like	it).	Once	again,	“bare-metal	cloud	servers”	could	
mitigate	this	issue.		

• Inability	to	customize	hardware.	By	design,	clouds	are	
built	from	commodity	server	boxes.	While	to	certain	
extent	this	stands	for	all	the	hosting	ISPs	(i.e.	
for	any	hosting	ISP	you	won’t	be	able	to	use	exotic	
hardware	–	at	least	unless	you’re	doing	co-location),	
cloud	providers	offer	even	less	options	to	choose	
specific	hardware,	than	a	good	hosting	ISP	renting	out	
“dedicated	servers”.	In	particular,	there	are	at	least	two	
options	which	are	important	for	certain	subsystems,	
and	obtainable	on	most	of	traditional	hosting	ISPs,	but	
are	not	available	in	clouds:	

o Larger	4S/4U	boxes.	Historically,	there	are	two	
“standard”	sizes	for	server	boxes:	(a)	smaller	
“workhorse”	2S/1U	boxes,	and	(b)	larger	4S/4U	server	boxes.147	The	latter	
ones	are	more	expensive	per-GHz	–	but	on	a	positive	side,	they	tend	to	have	
significantly	longer	MTBFs.	This,	in	turn,	comes	
handy	if	we	want	to	avoid	dealing	with	fault	
tolerance	for	a	few	critical	server	boxes	–	such	
as	database	server(s).148	In	short	–	with	4S/4U	
server	boxes	(coming	from	Big	Three	server	
manufacturers),	they	tend	to	have	MTBFs	in	the	
range	of	5-10	years,	and	quite	often	it	is	the	
most	practically	reliable	thing	to	use;	for	more	
discussion	–	see	Chapter	10.	

o For	OLTP	databases	such	as	those	used	in	
games,149	latency	of	disk	writes	is	important.	For	hosting	ISP,	we	can	easily	
get	a	BBWC	RAID	card,	bringing	disk	write	latencies	pretty	close	to	the	
latency	of	PCIe	transfer	forward	and	back	–	and	usually	the	number	is	in	
dozens-of-microseconds.	For	cloud	–	we’re	often	speaking	about	distributed	
cloud	storage	(with	latency	spikes	reaching	hundreds	of	milliseconds	[TODO:	
https://www.datadoghq.com/blog/aws-ebs-latency-and-iops-the-surprising-
truth/]	–	which	is	about	10’000x	higher(!)).	Even	for	low-latency	on-cloud-
box	shared	SSDs	(which	are	going	to	cost	you	even	more	than	those	already-
high	numbers	above)	–	latency-spikes	due	to	somebody-else-doing-backup-
to-the-same-SSD	can	easily	reach	milliseconds,	which	is	already	pretty	bad.150		

																																																								
147	there	is	a	third	common	size	–	2S/2U,	but	its	uses	are	quite	specific	and	relatively	limited	
148	While	it	may	sound	as	a	fallacy	-	as	we’ll	see	in	Chapter	10,	fault	tolerance	itself	is	also	
often	error-prone	and	tends	to	cause	quite	a	bit	of	trouble	–	and	this	can	include	MTBF	
being	decreased	because	of	faulty	fault	tolerance	mechanisms.	
149	especially	for	those	which	use	single-write-connections	which	I	recommend,	see	
[[TODO]]	section	above	and	Vol.	VI’s	chapter	on	Databases	for	discussion.	
150	Once	again,	if	we’re	speaking	about	bare-metal	cloud	server	with	an	on-server	SSD	–	then	
it	might	become	competitive.	

	
By	design,	clouds	are	
built	from	commodity	
server	boxes	

MTBF	
https://en.wikipedia.org/wiki/Mean_time_between_failur
es		

Mean	time	between	
failures	(MTBF)	is	the	
predicted	elapsed	time	
between	inherent	
failures	of	a	system	
during	operation	

• Need	to	handle	resource	allocation	failures.	To	be	profitable,	cloud	services	need	to	
keep	the	balance	of	the	hardware-they-have	–	and	the	hardware-they-really-use-to-
run-their-services.	If	too	many	cloud	users	request	CPU	at	the	same	time	–	well,	the	
cloud	provider	will	need	to	decide	who	of	the	customers	gets	priority,	and	who	gets	
offline	while	the	load	spike	persists.151	Sure,	developments	such	as	EC2’s	“spot	
instances”	do	help	to	establish	clear	priority	rules152	-	and	help	to	mitigate	this	
problem,	but	IMO	it	is	still	imprudent	to	build	a	cloud-based	system	with	no	handling	
of	the	“CSP	refused	to	allocate	new-server-we-requested”	scenario.	

o To	handle	such	a	“cloud	resource	allocation	failure”	scenario,	to	the	best	of	
my	knowledge,	two	ways	are	possible:	(a)	to	have	a	backup	CSP,	where	your	
system	will	automatically	go	in	case	of	primary	CSP	failing	to	allocate	a	new	
server	for	you;	(b)	to	have	an	ability	to	reduce	system	load	(like	stopping	
lower-priority	games,	etc.).	However,	implementing	(a)	may	be	tricky	for	
faster	games	(where	“bare-metal	cloud	servers”	are	often	necessary),	and	(b)	
strongly	depends	on	the	specifics	of	your	game.	

• Inability	to	use	VM-based	techniques.	If	your	servers	are	virtualized	–	you	won’t	be	
able	to	use	virtualization	techniques,	including	such	a	potentially	useful	thing	as	VM-
based	fault	tolerance	(such	as	VMWare	Fault	Tolerance	or	Xen	Remus,	more	on	them	
in	Chapter	10).	

o In	theory,	cloud	providers	may	include	them	into	their	offerings	–	but	I	don’t	
know	of	any	provider	doing	it	yet.	

o Bare-metal	clouds	are	exempt	from	this	restriction.	
o Side	note:	if	considering	VM-based	fault	tolerance	–	beware	of	additional	

latencies	it	creates	(for	more	discussion	–	see	chapter	10)	
	

Bare-Metal	Clouds	
	
One	relatively	recent	and	certainly	welcome	addition	to	the	
cloud	scene,	is	so-called	“bare-metal	cloud”	servers.	
Essentially	–	they	are	just	good	old	leased/rented	servers	
offered	by	traditional	hosting	ISPs,	but	ideally	–	with	two	
significant	improvements:	

• Ultra-fast	deployment	(within	2-3	minutes)	
• Ability	to	prepare	your	own	disk	image	on	one	of	

these	“bare-metal	servers”,	to	store	this	image	with	
the	provider,	and	then	to	request	new	instance	
from	this	stored	image	

o This	way,	first	you	prepare	your	own	disk	
image	of	your	own	configuration	–	together	
with	your	preferred	OS	with	its	settings,	with	your	own	apps	etc.	etc.	–	and	
then	you	are	able	to	deploy	the	whole	thing	within	2-3	minutes	after	you	

																																																								
151	and	no	CSP	I	know	provides	sufficient	remedies	from	such	failures	in	their	respective	
SLAs	
152	of	course,	for	operational	servers	of	our	game,	we	should	not use	“spot	instances”;	
they’re	important	because	other	users	of	the	cloud	may	use	them,	generating	profit	for	CSP	
–	while	we’re	still	enjoying	prioritized	access	to	cloud	resources.	

	
One	relatively	recent	
and	certainly	welcome	
addition	to	the	cloud	
scene,	is	so-called	
“bare-metal	cloud”	
servers.	

realize	that	you	need	this	new	server	box.	Very	neat	–	and	if	not	for	
exorbitant	cloud	pricing,	I	would	say	that	this	is	exactly	the	way	to	go.	

o I	am	not	sure	that	all	the	providers	who	are	speaking	about	“bare-metal”	
clouds,	are	allowing	to	store	your	own	image	with	them.	However,	as	for	
those	ISPs	which	don’t	–	I	have	very	serious	doubts	that	they	are	usable	for	
games.	Bottom	line	–	make	sure	to	double-check	it	with	your	CSP	of	choice.	

	

Accounting	for	IaaS	Clouds	and	Bare-Metal	Clouds	in	
Architecture	
	
As	it	was	mentioned	above	–	for	quite	a	few	games,	having	a	“hybrid”	deployment,	with	
monthly-rented-servers	to	handle	fixed	load,	plus	cloud	servers	to	handle	load	spikes,	is	an	
optimal	schema	price-wise.	On	the	other	hand,	at	our	current	stage	of	architectural	design,	
designing	for	a	specific	cloud	vendor	is	almost-universally	premature;	in	general	–	all	
decisions	about	“which	cloud	vendor	to	use”	should	be	deployment-time	decisions.	The	
reasons	for	it	are	numerous,	including	such	things	as	“who	knows	which	new	cheap-and-
good	cloud	provider	will	emerge	by	that	time”,	“who	knows	what	kind	of	deal	we’ll	be	able	
to	strike	with	a	specific	cloud	vendor”,	and	“we	might	need	to	support	TWO	cloud	vendors	–	
at	least	to	account	for	potential	resource	allocation	failures”.		
	
To	enable	dealing	with	cloud	server	allocation	(including	“hybrid”	deployments),	while	not	
tying	ourselves	to	a	specific	cloud	vendor	prematurely	–	the	following	approach	might	work:	

• Our	Matchmaking	Server	could	assume	that	we	have	Nfixed	server	instances	which	
are	intended	for	“fixed”	load	

• In	addition,	we	could	have	a	very	generic	non-vendor-specific	
AllocateServer()/DeallocateServer()	API	used	by	our	MatchMaking	Server	to	create	
new	server	instances	above	the	Nfixed	(and	to	destroy	them	when	they’re	no	longer	
necessary)	

o In	some	cases	-	our	MatchMaking	Server	should	also	try	to	consolidate	the	
load	on	as-few-allocated-servers-as-possible	(so	it	can	deallocate	as	much	
servers	as	possible,	and	to	save	us	some	money	<smile	/>).	

• We	can	implement	a	simulation	implementation	of	
AllocateServer()/DeallocateServer()	API	(with	an	adjustable	delay	between	request	
and	“creation”	of	such	a	server153).	One	way	to	implement	this	simulation	is	based	
on	our	own	VMs	(though	exact	implementation	details	are	not	too	important).	

• With	all	this	in	place	-	we	can	test	the	whole	thing	at	least	in	a	very	basic	way,	
making	MatchMaking	Server	to	“allocate”	and	“deallocate”	new	servers	–	while	
making	sure	that	the	whole	system	still	works	as	intended.		

	
Of	course,	when	we	come	to	deployment	and	will	start	using	specific	cloud	vendors	–	both	a	
different-implementation-of-AllocateServer()-API	and	subtle-adjustments-to-MatchMaking-
logic	will	be	necessary,	but	at	least	we’ll	have	a	“working	skeleton”	in	advance,	and	–	most	
importantly	-	will	be	able	to	support	pretty	much	any	IaaS	cloud	provider	very	quickly.	
	

																																																								
153	For	allocation	of	bare-metal	servers	–	it	can	be	as	much	as	3-5	minutes	

	

TL;DR	on	Clouds	
	
To	summarize	my	rants	about	clouds	(only	that	part	which	is	relevant	to	architecture):	

• At	least	for	now	-	don’t	bother	about	video/pixel	streaming.		
• File	streaming	(a.k.a.	progressive	downloading)	is	not	that	different	from	usual	game	

architecture;	we’ll	discuss	its	basics	in	Vol.	V’s	chapter	on	Client	Updates.	
• From	our	current	perspective,	PaaS/SaaS	services	can	be	divided	into	two	wide	

categories:	
o Those	using	proprietary	APIs.	Decisions	to	use	these	services	MUST	NOT	be	

taken	lightly	–	and	only	if	you’re	perfectly	ok	with	having	an	Absolute	Vendor	
Lock-In.	

o Those	using	industry-standard	APIs	(such	as	MySQL	API	etc.).	Using	such	
services	is	a	deployment-time	decision,	so	we	don’t	need	to	consider	them	
right	now.	

• As	for	IaaS	services	(which	are	the	most	popular	cloud	services	out	there)	–	they	
tend	to	cost	much	more	for	fixed	loads,	and	to	cost	much	less	for	spiked	loads.	As	a	
result	–	for	many	games,	price-wise	the	optimal	way	is	to	use	“hybrid”	deployments,	
more	on	them	in	Vol.	VII’s	chapter	on	Preparing	for	Launch.		

o Architecture-wise,	anticipating	such	a	deployment	option	is	usually	a	Good	
Thing™.	One	way	to	anticipate	such	scenarios	without	committing	to	a	
specific	cloud	vendor	is	briefly	described	above.	

	

Server-Side.	Eternal	Linux-vs-Windows	Debate	
	
As	we’re	pretty	much	done	with	the	Server-Side	Architecture	in	general	<phew	/>,	we	can	
start	discussing	more	specific	details,	such	as	operating	system	and	programming	language	
you’re	going	to	use	on	the	Server-Side.	Let’s	start	with	discussing	operating	systems	for	the	
Server-Side.		
	
NB:	Please	don't	expect	to	find	anything	new	in	this	section,	especially	in	the	context	of	
"which	OS	is	the	best	one	out	there".	It	is	merely	a	summary	of	well-known	things	as	they	
apply	to	MOG	Server-Side.	
	
For	the	Client-Side,	operating	system	is	normally	a	big	fat	Business	Requirement,	which	
means	that	we	as	developers	don't	have	much	choice	about	it.	If	we	need	to	support	
Android,	iOS	and	Windows	on	the	Client-Side	–	we	just	need	to	shut	up	and	do	it,	plain	and	
simple.	With	operating	system	for	the	Server-Side,	situation	is	usually	different	–	as	nobody	
on	the	business	side	of	things	really	cares	(or	at	least	SHOULD	NOT	care)	about	which	OS	is	
used	to	run	our	servers,	it	is	more	or	less	a	developer's	choice.	What	MAY	(and	actually	
SHOULD)	interest	business	guys/gals	though,	is	time-to-market	and	the	cost	of	running	
servers,	more	on	it	below.	
	

	
	
When	it	comes	to	Server-Side	operating	systems,	there	are	actually	only	two	realistic	
choices:	Windows	and	Linux154.	While	in	theory	you	can	run	an	OS	X	server,	or	can	dream	
about	trying	that	16-sockets-with-32-cores-each	SPARC	M7	box	under	Solaris,	or	(like	
myself)	be	eager	to	get	your	hands	on	the	latest	greatest	POWER8	box,	in	practice	all	we'll	
ever	get	(except,	maybe,	for	stock	exchange	guys)	is	a	x64	box	running	either	Windows	or	
Linux.	And	while	there	is	nothing	wrong	about	x64,	it	still	often	leaves	us	feel	a	bit	sad	about	
all	those	existing-but-never-available	opportunities.	
	
Leaving	sentimental	feelings	aside,	we	need	to	take	a	look	at	two	real	contenders:	
Linux/BSD	and	Windows.	Unfortunately,	over	the	course	of	serveral	last	centuries	decades,	
any	attempt	to	take	such	a	look	has	invariably	lead	to	almost-religious	wars.	
	

New	Generation	Chooses	Cross-Platform!	Well,	at	least	it	
SHOULD...	
	
One	thing	you	should	seriously	consider	before	choosing	one	single	OS	as	your	development	
target,	is	"whether	you	can	make	your	program	cross-platform	instead".	In	general,	I	
strongly	support	cross-platform	programs.	On	Client-Side,	being	cross-platform	is	often	a	

																																																								
154	For	the	purposes	of	our	discussion,	we'll	consider	*BSD	as	a	flavour	of	Linux.	While	this	is	
admittedly	a	sacrilege	-	Linux	programming	and	*BSD	programming	at	our	application	level	
are	that	similar,	that	with	a	few	narrow	exceptions	such	as	epoll/kqueue,	we	can	pretty	
much	ignore	the	difference	for	a	long	while.	

requirement;	on	the	Server-Side,	going	cross-platform	admittedly	can	be	avoided;	however,	
even	for	the	Server-side,	I	still	usually	prefer	cross-platform	code	for	several	reasons:	

• Better	code	quality.	Programs	directly	depending	on	platform-specific	stuff	tend	to	
be	significantly	more	obscure	than	necessary.	In	addition,	they	tend	to	have	LOTS	of	
poorly	understood	implicit	dependencies,	making	code	maintenance	MUCH	more	
difficult	than	it	should	be.	

• With	cross-platform	code,	we	don't	need	to	go	into	Linux-vs-Windows	debate	right	
here,	making	it	a	deployment-time	decisions	rather	than	development-time	one.	Not	
only	having	cross-platform	code	postpones	the	debate,	but	also	it	makes	the	debate	
much	less	heated,	as	the	cost	of	mistake	at	deployment-time	is	orders	of	magnitude	
lower	

• cross-platform	programs	are,	well,	cross-platform,	which	gives	you	deployment-time	
freedom	

o for	example,	if	three-months-down-the-road	you	find	that	for	the	purposes	
of	your	game	the	latest	greatest	TCP	stack	from	Linux	(or	Windows)	works	
significantly	better	(see	"Other	Technical	Differences	(kernel	scheduler,	TCP	
stack,	etc)"	section	below)	-	you	can	switch	without	too	much	hassle	

o Once	upon	a	time,	I’ve	even	seen	a	large	chunk	of	code	migrated	to	Power	
CPU	to	get	better	per-core	performance	(it	was	damn	latency-critical	piece	of	
code).	As	the	code	was	cross-platform	to	start	with,	porting	was	completed	in	
a	few	days	(mostly	testing)	

o moreover,	you	can	have	some	servers	on	Windows	and	some	on	Linux	at	the	
same	time	(optimizing	different	audiences	according	to	different	
parameters).		

o If	at	some	point	in	time,	you’ll	need	to	work	with	a	3rd-party	library	which	
happens	to	run	only	on	one	platform	(and	it	does	happen;	in	particular	
Windows-only	DLLs	for	communicating	with	payment	processors	tend	to	be	a	
common	problem	for	Linux	boxes)	–	well,	you	won’t	have	much	trouble	
running	just	that	one	server	under	different	OS.	

• cross-platform	programming	helps	to	keep	dependencies	in	check	
• cross-platform	programs	tend	to	have	better	structured	codebases	(I	attribute	it	to	

better	discipline,	so	it	is	not	inherent	to	cross-platform	programs,	but	there	is	a	
definite	correlation	between	the	two)	

• cross-platform	programming	helps	to	test	your	code	better.	If	running	your	code	on	
two	platforms	–	you	will	get	more	bugs	fixed;	moreover,	very	often	you	see	that	the	
bug	which	doesn’t	want	to	manifests	itself	on	one	platform	–	manifests	itself	on	
another	platform.	One	of	my	friends	names	this	process	of	testing	in	different	
environments	as	“shaking	the	program”	(Ligoum	n.d.);	from	what	I’ve	seen,	such	
“shaking”	tends	to	cause	quite	a	few	bugs	to	fall	out.	

o With	deterministic	(Re)Actors,	in	theory	it	SHOULD	NOT	be	the	case	(they	
SHOULD	behave	exactly	the	same	under	any	kind	of	OS).	However,	the	very	
question	of	“whether	your	(Re)Actor	is	really	deterministic”	may	need	to	be	
tested	too,	and	two	platforms	tend	to	help	fixing	non-deterministic	issues	
too.	

	
How	to	achieve	a	Holy	Grail	of	cross-platform	code,	is	a	separate	story,	which	we'll	discuss	in	
“Going	Cross-Platform”	section	below.	For	now,	let's	just	make	a	note	that	going	cross-

platform	does	not	necessarily	mean	going	JVM	(Python,	Erlang,	pick	your	poison),	and	that	
C++	can	also	be	made	perfectly	cross-platform,	so	at	least	don't	write	it	off	on	these	
grounds.	On	the	other	hand,	let's	keep	in	mind	that	outside	of	deterministic	(Re)Actors	(and	
for	pretty	much	any	programming	language),	the	best	we	can	possibly	hope	for,	is	"run	once	
-	test	everywhere",	and	"testing	everywhere"	takes	time	<sad-face	/>.	Which,	in	turn,	makes	
convincing-managers-going-cross-platform-route	quite	difficult	(that	is,	unless	you're	using	
Java/Python/...,	which	are	still	“test	everywhere”	but	are	not	perceived	as	such),	so	you	may	
be	forced	to	choose	your	OS	even	if	you	would	like	to	avoid	choosing	it	in	the	first	place	
<sad-face	/>.	
	

Eternal	Windows-vs-Linux	Debate	
	
I	realize	that	for	the	analysis	below,	I	will	be	hit	hard	by	zealots	from	both	sides.	On	the	
other	hand,	as	choosing	server-side	OS	is	an	important	part	of	the	overall	MMO	exercise,	I	
need	to	provide	at	least	some	observations	in	this	regard,	so	I	have	no	choice	other	than	to	
brace	myself	and	be	prepared	to	all	the	punches	from	both	Windows	and	Linux	fans	(with	
an	occasional	hit	from	proponents	of	BSD/Solaris).	
	
Now,	we	can	forget	about	the	boring	cross-platform	stuff,	and	to	concentrate	on	the	
classical-and-juicy	Linux-vs-Windows	flame	war.	BTW,	most	of	the	arguments	routinely	
raised	in	such	flame	wars,	do	have	some	merit	behind	them,	with	the	tricky	part	being	to	
estimate	applicability	and	impact	of	these	arguments	within	the	specific	context.	Let's	take	a	
closer	look	at	some	of	them	(only	in	the	context	of	the	Server-Side	specifically	for	games):	
	

Open-Source	
	
Of	course,	Linux	is	open	source,	and	Windows	is	not.	However,	
if	we	throw	away	reasons	revolving	around	“The	Greater	Good	
of	Mankind”	and	concentrate	on	our	job	at	hand,	we’ll	need	to	
think	about	practicalities.		
	
The	(semi-)practical	pro-open-source	argument	goes	along	the	
lines	of	“if	you	ever	have	a	problem	with	Linux,	you'll	be	able	to	
fix	it”.	However,	you	being	a	game	developer,	I	don't	think	it	is	
realistic	to	expect	that	you'll	be	able	to	fix	anything	in	Linux	
kernel	(or,	Linus	forbid,	driver).	If	you've	done	it	before	–	of	
course,	being	able	to	fix	things	in	kernel	becomes	an	all-
important	pro-Linux	argument,	but	otherwise	–	don't	hold	your	
breath	over	it;	fixing	kernels	and	drivers	is	damn	complicated,	
and	writing	a	driver	that	occasionally	causes	kernel	panic	is	
MUCH	easier	than	writing	a	driver	which	doesn’t	<sad-face	/>.	
	

Stability/Reliability	
	
There	are	a	lot	of	horror	stories	about	Windows	being	unstable/unreliable,	including	
(in)famous	migration	of	London	Stock	Exchange	from	Windows	to	Linux	in	2009	–	see,	for	

	
I	have	no	choice	other	
than	to	brace	myself	
and	be	prepared	to	all	
the	punches	from	both	
Windows	and	Linux	
fans	

example,	(London	Stock	Exchange	gets	the	facts	and	dumps	Windows	for	Linux	n.d.).	My	
personal	experience,	however,	doesn't	support	this	observation	(well,	if	we’re	not	speaking	
about	9x	which	was	indeed	a	disastrous	disaster).	In	short	–	from	what	I've	seen,	if	all	you're	
using	from	Windows,	is	NT-derived	kernel	(and	without	any	fancy	COM	components	or	
.NET)	–	Windows	has	been	observed	work	perfectly	fine	(more	on	disabling	unnecessary	
software	in	Vol.	VII’s	chapter	on	Preparing	to	Launch).		
	
However,	if	you	add	any	large	Windows	subsystem	(such	as	.NET)	on	top	of	a	bare	Windows	
kernel	–	and	if	you're	not	careful	enough,	you're	entering	much	riskier	waters,	to	put	it	
mildly.	Pretty	much	the	same	goes	for	Linux,	but	as	Linux	doesn't	try	to	cover	everything-
under-the-sun	as	a	part	of	operating	system,	you	can	usually	choose	which	software	to	use,	
more	freely.	Still,	from	my	experience,	if	you're	careful	enough,	it	is	more	or	less	a	tie	
between	Linux	and	post-9x	Windows	in	the	stability	realm	(maybe	with	a	rather	slim	
advantage	for	Linux).	
	

Security	
	
Another	quite	popular	argument	is	that	Linux	is	more	secure	
than	Windows	(what	Microsoft	vehemently	objects,	mostly	
on	the	basis	of	the	number	of	reported	bugs,	which	is	a	very	
convenient	metrics	for	a	closed-source	company).	Personally,	
I	would	agree	that	Linux	is	somewhat	more	secure	than	
Windows	(that	is,	if	you're	exercising	at	least	basic	caution	
and	are	not	running	your	web	server	under	root	account).	
	
I	tend	to	attribute	it	to	the	fact	that	Linux	in	general	is	more	
modular	than	Windows,	so	disabling	unnecessary	parts	is	
easier	(and	it	is	these	unnecessary	parts	that	cause	most	of	
the	trouble).	While	this	is	partially	offset	by	an	atrocious	*nix	
permission	system	(with	suid	bit	abuses	being	responsible	of	
a	substantial	chunk	of	successful	real-world	attacks),	being	
highly	modular	still	helps	even	in	this	department.	Also	SE	
Linux,	despite	all	the	shortcomings,	does	provide	an	
additional	layer	of	protection.	
	
On	the	other	hand,	it	is	clear	that	you	do	need	a	highly	qualified	and	security-aware	admin	
to	run	any	operating	system	securely.	Just	one	very	recent	real-world	breach	example	
involved	default	Amazon	EC2	Linux	image	to	run	Apache	under	root	(and	while	SE	Linux	was	
running,	SE	policies	didn't	prevent	attacker	from	taking	the	server	over).155	In	short:	it	
wasn't	a	problem	of	Linux	as	such,	but	a	problem	of	Linux	being	misconfigured.	While	this	
specific	example	is	not	that	important,	it	leads	us	to	an	all-important	generalization:	
	

Each	server	is	only	as	secure	as	its	admin	
	
																																																								
155	if	you	don't	understand	why	running	your	services	under	root	account	is	a	problem	–	
wait	until	Vol.	VII’s	chapter	on	Preparing	to	Launch,	we'll	briefly	discuss	it	there	

	
Personally,	I	would	
agree	that	Linux	is	
somewhat	more	secure	
(that	is,	if	you're	
exercising	at	least	basic	
caution	and	are	not	
running	your	web	
server	under	root	
account)	

Which	means	that		
It	is	more	secure	to	run	Windows	with	good	admins,	than	running	Linux	with	

bad	ones.	
Also,	it	is	more	secure	to	run	Windows	if	your	admins	are	Windows	ones.	

	
On	the	other	hand,	if	you	have	highly	qualified	admins	for	both	Windows	and	Linux,	then	I'd	
certainly	prefer	Linux	from	security	perspective.	In	particular,	even	as	of	2017,156	I	would	
still	say	that	I’d	rather	not	rusk	running	a	Windows	box	without	a	firewall	between	the	
server	and	the	Internet	(regardless	of	the	games)	–	and	for	certain	games,	running	Linux	
server	wide-open	to	the	Internet,	is	fine	(with	quite	a	few	things	hardened,	this	usually	
includes	SE	Linux).	This	(given	roughly	the	same	quality	of	admins)	indicates	quite	an	
advantage	for	Linux	at	least	on	one	of	the	very	important	attack	vectors.	
	

Network	Processing	
	
As	we’re	speaking	about	multi-player	games,	everything	network-related	is	quite	of	
importance	to	us.	So,	the	question	“how	efficiently	the	OS	processes	network	packets”,	is	
firmly	within	our	scope.		
	
In	particular,	if	your	game	is	latency-sensitive,	all	chances	are	that	you'll	need	to	use	UDP	
(see	Vol.	I’s	chapter	on	Communications,	as	well	as	Vol.	IV’s	chapter	on	Network	
Programming	for	further	discussion).	And	when	you're	using	UDP,	under	heavy	load	you	
may	easily	run	into	your	recvmsg()/recvmmsg()	thread	becoming	a	bottleneck.		
	
In	such	cases,	if	port-per-thread	scaling	described	in	“UDP-related	(Re)Actors”	section	above	
as	well	as	multiple	threads	reading	from	the	same	socket,	don’t	help	-	you're	pretty	much	
out	of	cross-platform	options.	On	the	other	hand,	there	are	a	few	platform-specific	tricks	
which	may	help	you.	I	tend	to	separate	these	tricks	into	two	very	broad	categories:	“light-
weight”	ones	and	“heavy-weight”	ones.	From	my	perspective,	“light-weight”	ones	are	those	
which	do	not	require	rewriting	our	network	layer,	and	are	merely	minor	adjustments	(either	
purely	configuration	ones,	or	within	the	network	code	–	but	still	minor	ones).		
	
Light-weight	platform-specific	network	trickery	I	know	about:	

• Linux/*BSD:	Receive	Side	Scaling	(RSS)/Receive	Packet	Steering(RPS)/Receive	Flow	
Steering(RFS).	These	are	all	about	processing	network	IRQs	on	specific	CPU	cores	
(where	you’re	ready	to	process	the	packets,	so	there	are	no	cache	misses	etc.	due	to	
switching	to	a	different	core).	They	need	to	be	configured	in	kernel	(without	the	
need	to	change	your	code),	and	have	been	observed	to	provide	some	performance	
benefits,	but	rather	mild	ones.	See	(Scaling	in	the	Linux	Networking	Stack	n.d.)	for	a	
detailed	description.		

• Windows:	also	supports	Receive	Side	Scaling	(which	is	actually	an	option	provided	by	
NIC),	see	(Introduction	to	Receive	Side	Scaling	n.d.)	for	details,	but	doesn’t	seem	to	
support	RPS	or	RFS.	

																																																								
156	and	10	to	5	years	ago,	the	answer	was	even	more	obvious	(causing	“Are	you	guys	really	
Crazy?”	reaction	when	somebody	was	running	an	open-to-the-Internet	Windows	box)	

	
Heavy-weight	platform-specific	stuff	usually	means	using	some	little-known	platform-
specific	API:	

• Linux/*BSD:	netmap	(netmap	-	the	fast	packet	I/O	framework	n.d.).	When	using	
netmap,	performance	becomes	outright	crazy	((netmap	-	the	fast	packet	I/O	
framework	n.d.)	gives	a	number	of	~15	million	packets	per	second	per	core),	but	
netmap	requires	netmap-aware	drivers	for	NICs	which	are	rather	scarce	<sad-face	/>	
(worse	than	that,	finding	information	on	supported	cards	is	difficult	for	netmap).		

• Linux/*BSD:	DPDK	(DPDK	n.d.)	has	ideas	similar	to	netmap	and	provides	
performance	comparable	to	netmap	–	but	once	again,	requires	explicit	support	for	a	
specific	NIC	<sad-face	/>.	I’ve	made	a	micro-research	of	the	most	popular	servers	
(those	which	dominate	rentable	servers	in	datacenters	-	Dell	R530/R630	and	HP	
DL120/180,	more	on	it	in	Vol.	VII’s	chapter	on	Preparing	to	Launch);	as	of	the	mid-
2017,	it	seems	that	while	both	HP	and	Dell	are	officially	committed	to	support	DPDK,	
they	do	NOT	seem	to	support	DPDK	for	those	NICs	which	come	in	these	servers	by	
default	(and	you’re	not	likely	to	get	anything	other	than	default	when	you’re	renting	
servers	–	at	least	not	without	a	LARGE	hit	in	costs	<sad-face	/>).	As	a	result	–	while	
IMO	DPDK	is	a	much	better	bet	for	the	Server-Side	than	netmap	(because	of	support	
by	manufacturers),	before	going	into	DPDK,	ask	your	datacenter	guys	what	exactly	
are	the	NICs	they	have	in	their	rentable	servers,	then	check	that	these	NICs	do	
support	DPDK,	and	DON’T	be	surprised	if	they	don’t	<sad-face	/>.	

• Windows:	Registered	IO	(RIO).	RIO	is	quite	different	from	the	netmap/DPDK	
described	above,	and	is	more	an	interface	between	kernel	and	userland	(unlike	
netmap/DPDK	which	are	interfaces	between	hardware	NIC	and	userland);	as	a	result,	
it	does	NOT	seem	to	require	special	NIC	drivers.	However,	this	abstraction	doesn’t	
come	for	free,	and	RIO	seems	to	have	significantly	lower	performance	than	
netmap/DPDK:	Microsoft	claims	they’ve	got	up	to	4	million	packets	per	second	
processed	using	RIO	(New	techniques	to	develop	low-latency	network	apps	n.d.)	
(this	is	for	the	whole	server	with	an	unspecified	number	of	cores)	–	which	compares	
poorly	to	netmap’s	15	million	packets	per	core.	For	more	information	on	RIO,	see	
(New	techniques	to	develop	low-latency	network	apps	n.d.).	

• Quick	summary:	as	always,	you	need	to	pick	your	own	poison	yourself.	DPDK	
provides	better	performance	–	but	it	may	require	upgrading	your	Server-Side	NICs	
(and	installing	anything	besides	standard-config-available-in-your-datacenter,	is	
next-to-impossible	unless	you’re	co-locating,	see	Vol.	VII’s	chapter	on	Preparing	to	
Launch).	On	the	other	hand,	RIO	seems	to	work	for	all	the	NICs,	but	–	it	provides	less	
performance	improvement.	

• Last	but	not	least	–	before	even	to	start	considering	these	things,	think	whether	you	
really	need	this	much	performance	from	your	interface	with	NIC.	With	a	typical	
game	(if	such	a	thing	exists),	for	a	network-heavy	Front-End	Server	we’re	likely	to	be	
able	to	support	around	10K	simultaneous	players	(corresponding	to	processing	
around	~200-300K	packets	per	second)	without	any	of	the	trickery	above.	Using	
DPDK	(and	taking	into	account	high	single-digit	microsecond	app-level	processing),	
we	MIGHT	be	able	to	get	into	multi-million	packet/second	range,	but	unfortunately	
questions	about	using	NICs	with	DPDK	support,	mentioned	above,	will	remain	
unclear	until	the	very	moment	of	deployment	<sad-face	/>.		

o As	a	result,	for	early	stages	of	development,	I	do	NOT	advise	to	spend	time	on	
heavy-weight	techniques	such	as	DPDK	or	RIO.	Instead,	I’d	rather	suggest	to	
concentrate	on	other	things	(including	removal	of	unnecessary	delays	within	
app-level	processing)	for	the	time	being,	and	delay	any	discussions	about	
netmap/DPDK/RIO	until	post-deployment;	there	you	will	know	MUCH	more	
about	your	system	to	see	whether	this	thing	you	have	is	a	bottleneck	(and	if	
you’re	following	my	advice	on	having	your	Game	Logic	confined	to	(Re)Actors	
–	moving	from	Berkeley	Sockets	to	DPDK	won’t	affect	your	Game	Logic	at	
all(!)).	

	
As	for	the	TCP	stack:	all	the	TCP	stacks	out	there	start	with	the	same	RFC793	(yes,	that's	
1981	and	still	not	obsolete);	of	course,	there	are	several	dozens	RFCs	on	top	of	the	basics	
described	there,	and	sets	of	these	RFCs	and	their	defaults	vary,	but	deep	inside	it	is	still	
pretty	much	the	same	thing	(and	even	first	several	layers	on	top	of	it,	such	as	Nagle's	
algorithm	or	SACK,	are	pretty	much	the	same).	Most	of	the	differences	between	TCP	stacks	
discussed	out	there,	are	actually	about	using	different	defaults/settings	for	TCP	stack	
(especially	-	about	using	different	TCP	congestion	algorithms),	which	result	in	different	
throughput	under	different	conditions	(especially	TCP	performance	over	long	fat	pipes	can	
be	significantly	different).	However,	these	things,	while	interesting	and	important	for	video-	
and	file-serving	services,	usually	have	little	effect	on	games,	where	average	packet	size	is	
below	100	bytes	(that's	including	20	bytes	of	IP	header),	and	TCP	throughput	is	not	
something	we	really	care	about.		
	
When	it	comes	to	latencies,	network	stack	doesn't	affect	UDP	latencies	much,	and	TCP	
latencies	will	depend	on	lots	of	things,	including	TCP	stack	on	the	Client-Side	(not	to	
mention	that	if	you're	into	single-	or	double-digit	millisecond	latencies,	using	TCP	is	
probably	not	the	best	idea).	One	thing	which	may	affect	those	games	working	over	TCP,	is	a	
choice	of	TCP	congestion	algorithm	(with	Windows	Server	2008+	using	NewReno,	and	
recent	Linux	reportedly	using	CUBIC);	however,	as	of	now,	I	don't	have	any	information	
which	demonstrates	any	advantage	of	any	of	them	TCP-latency-wise	(that	is,	with	usual	
mixed-bag	of	clients,	consisting	of	PCs	and	mobile	phones);	on	the	other	hand,	it	is	an	area	
where	development	is	still	very	much	ongoing,	so	further	changes	are	likely.	On	the	third	
hand	<wink	/>,	experience	shows	that	most	of	the	development	with	regards	to	TCP	
congestion	is	concentrated	on	bandwidth	with	much	less	attention	to	latencies,	so	don’t	
hold	your	breath	over	it.	Also	note	that	as	we	cannot	control	OS	on	the	Client-Side	and	
there	are	tons	of	different	Clients	with	different	TCP	settings	out	there,	any	theoretical	
analysis	becomes	extremely	complicated;	the	best	we	can	do	-	is	to	try	both	candidate	
Server-Side	TCP	stacks	in	a	real-world	environment	(the	one	with	thousands	of	Clients)	and	
see	whether	there	are	any	differences.	Which	BTW	makes	yet	another	reason	to	have	your	
code	cross-platform.	
	
If	touching	a	subject	of	“Linux	network	stack	vs	*BSD”,	there	is	a	long-standing	perception	
that	for	network-related	things,	BSD	stack	is	better;	from	my	experience,	however,	the	
answer	is	that	“it	depends”,	so	you’ll	need	to	try	both	in	your	specific	environment	(which	
qualifies	one	more	reason	to	have	cross-Linux-BSD	code	<wink	/>).	That	being	said,	chances	
are	that	for	games	you	won’t	see	much	difference.	Sure,	BSD’s	kqueue()	is	more	convenient	
to	deal	with	than	Linux’s	epoll()	(it	allows	to	handle	more	input	events	directly,	including	

signals	and	user	events	without	creating	an	artificial	pipe	just	for	this	purpose	–	which	is	
often	necessary	with	epoll()),	but	for	the	purposes	of	game	Server-Side	it	is	not	likely	that	
this	difference	will	be	too	important.	
	

Other	Technical	Differences	(scheduler,	IPC,	file	access,	etc)	
	
There	are	quite	a	few	debates	out	there	related	to	comparisons	between	Linux	and	
Windows	schedulers,	IPC	mechanisms,	etc.	However,	looking	at	these	differences	from	a	
gamedev	point	of	view	-	these	differences	are	pretty	much	negligible.	A	tiny	bit	more	
detailed	analysis	follows.	
	
Regarding	kernel/thread	schedulers	-	note	that	for	the	game	you	certainly	want	to	keep	
your	CPU	utilization	low	(even	for	social	games	having	CPU	utilization	at	100%	is	certainly	
not	a	good	idea),	and	thread	queue	-	as	short	as	possible.	It	means	that	there	should	always	
be	a	free	CPU	in	the	system,	which	is	ready	to	process	incoming	packet.157	It	means	that	the	
scheduler	(almost)	always	doesn't	really	have	much	choice	on	which-thread-to-schedule	–	
simply	because	all	threads	which	are	not	waiting,	will	run,	as	there	are	(almost)	always	
sufficient	CPUs	to	run	them.	In	practice,	I	don't	know	of	any	significant	differences	between	
Windows	and	Linux	schedulers	when	applied	to	games;	moreover,	at	least	for	games	the	
difference	was	non-observable	in	practice	even	in	the	days	of	Linux	round-robin	and	O(n)	
schedulers.158	
	
One	topic	which	is	closely	related	to	schedulers,	is	related	to	
so-called	NUMA	scheduling.	The	thing	here	is	the	following.	In	
production,	you're	very	likely	to	use	2-socket	(or	4-socket)	x64	
servers,	which	are	NUMA	for	the	last	10	years	or	so.	And	for	
NUMA,159	it	is	very	important	performance-wise	to	keep	your	
threads'	physical	memory	on	the	same	socket	(NUMA	node)	
where	your	thread	is	running	(otherwise	memory	accesses	will	
need	to	go	across	the	QPI/Hypertransport,	which	is	slow	
compared	to	local	memory	accesses).		
	
The	topic	of	keeping	NUMA	locality	when	scheduling,	is	still	
very	much	in	active	development	(see,	for	example,	(Corbet)),	
and	does	have	a	potential	to	bring	significant	benefits	for	
applications	(due	to	removal	of	unnecessary	round-trips	via	
QPI/Hypertransport).	However,	the	last	time	I've	seen	(at	least	somewhat	appropriate)	
																																																								
157	in	practice,	it	is	more	complicated,	as	depending	on	the	hardware,	interrupt	coming	from	
NIC	can	be	processed	only	on	some	dedicated	CPU,	which	complicates	things.	However,	this	
is	normally	not	an	OS	restriction,	but	a	hardware	restriction,	so	there	isn't	much	which	can	
be	done	about	it	<sad-face	/>;	see,	however,	discussion	about	RSS	etc.	in	“Network	
Processing”	section	above	
158	I	also	don't	know	of	attempts	to	use	different	Linux	schedulers	for	games,	but	based	on	
reasoning	above,	I	have	my	doubts	whether	they	will	make	any	difference.	Please	let	me	
know	if	you	try	it	though	<smile	/>		
159	I'm	speaking	about	classical	NUMA,	with	a	node	per	socket	

NUMA	
https://en.wikipedia.org/wiki/Non-
uniform_memory_access		

Non-uniform	memory	
access	(NUMA)	is	a	
computer	memory	
design	used	in	
multiprocessing,	where	
the	memory	access	
time	depends	on	the	
memory	location	
relative	to	the	
processor	

comparison,	I	wasn't	able	to	notice	the	difference	between	Windows	and	Linux	in	this	
regard	(which	admittedly	might	or	might	not	be	because	of	(Re)Actor-oriented	architecture,	
which	tends	to	exhibit	very	good	memory	locality	and	may	be	easier	to	handle	by	NUMA	
schedulers).	In	short	-	jury	is	still	out	on	Windows-vs-Linux	NUMA	scheduling,	and	it	may	or	
may	not	affect	your	game	(though	IMHO	the	differences	are	not	going	to	be	drastic,	at	least	
not	for	long).	Good	description	of	NUMA	on	Linux	can	be	found	in	(Lameter).	A	bit	more	on	
practical	suggestions	related	to	manipulating	NUMA-related	things	from	application	level	
will	be	mentioned	in	Vol.	IX’s	chapter	on	Optimizations	and	Scaling.	
	
When	it	comes	to	IPC	(Inter-Process	Communication),	both	systems	are	very	similar.	We'll	
discuss	it	in	more	detail	in	Vol.	IX’s	chapter	on	Optimizations	and	Scaling,	but	the	rule	of	
thumb	is	always	the	same	regardless	of	the	platform:	if	you	want	it	to	be	Really	Fast™	-	use	
shared	memory	for	IPC,	all	the	other	mechanisms	are	inherently	slower.	And	fortunately,	
shared	memory	is	available	on	both	Windows	and	Linux.	On	the	other	hand,	if	you	don't	
care	too	much	about	achieving	absolutely	best	speed	for	your	IPC	-	all	common	other	
methods	(such	as	pipes	and	sockets)	are	readily	available	on	both	these	platforms;	and	
while	using	them	will	cause	a	performance	penalty	compared	to	shared	memory	–	it	is	
usually	within	20%,	which	is	small	enough	to	ignore	it	until	you’re	Really	Big.	Fancy	stuff	
such	as	completion	ports	and	APC,	may	in	theory	provide	some	difference,	but	in	practice	it	
wasn't	observed	to	provide	any	advantage	at	least	for	(Re)Actor-based	architectures	(on	the	
other	hand,	it	is	obviously	possible	to	construct	an	architecture	which	would	run	MUCH	
better	using	completion	ports,	as	well	<insert-any-other-specific-IPC-technology-here>).		In	
short	-	IPC-wise	(and	if	not	designing	for	one	single	pre-selected	IPC	mechanism),	you	will	
have	quite	a	difficulty	to	find	significant	differences	between	Linux	and	Windows.160	
	
As	for	file	systems	–	first,	let’s	note	that	for	your	Front-End	Servers	and	Game	Servers	they	
don't	really	matter.	Amount	of	file	I/O	on	Front-End	Servers	and	Game	Servers	should	be	
kept	negligible,	mostly	reading	executables	and	configuration	files	(and	writing	logs);	under	
these	conditions	all	the	differences	between	JFS,	ZFS,	ext4,	and	NTFS,	won't	play	any	
significant	role.	And	for	your	database	servers	–	you	need	to	rely	on	your	DBMS	for	I/O,	and	
to	choose	whatever-your-DBMS-prefers	(more	on	it	in	[[TODO]]	section	below).	
	
To	summarize	-	technically	(and	looking	only	from	games	perspective)	both	Windows	and	
Linux	kernel	are	doing	really	good	job	and	(drivers	aside)	you're	quite	unlikely	to	observe	
significant	differences	performance-wise	(that	is,	if	you’re	using	methods-which-are-
optimal-for-respective-OS).		
	

C++	Compilers	
	
If	speaking	about	C++	(or,	Kernighan	forbid,	C),	a	question	of	compiler	becomes	quite	
important.	If	you're	going	Windows	route,	your	obvious	choice	would	be	MSVC161,	and	for	
																																																								
160	ok,	local	sockets	tend	to	be	a	tad	slower	on	Windows	than	on	Linux,	but	if	you're	really	
after	speed,	you	still	should	use	shared	memory,	so	it	becomes	pretty	much	a	moot	issue	
161	Starting	from	Visual	Studio	2017,	it	seems	to	support	Clang	as	one	of	the	options	to	
compile	Windows	executables	–	both	as	Clang/LLVM	and	Clang/C2	(C2	being	a	Microsoft	
2nd-stage	compiler);	however	–	at	the	moment	of	this	writing,	I	don’t	know	of	any	

Linux	it	is	probably	LLVM/Clang	(recently,	Clang	tends	to	outperform	GCC).	When	comparing	
MSVC	from	Visual	Studio	2015	to	GCC/Clang,	Linux-based	compilers	(especially	GCC	4.8	and	
up,	or	Clang)	tend	to	produce	better-quality	code,	which	may	amount	(in	practice)	to	as	
much	as	5-10%	overall	performance	difference	between	Clang-or-GCC-on-Linux	vs	MSVC-
on-Windows.162		
	
If	comparing	LLVM/CLang	to	GCC,	in	practice	the	difference	(as	of	mid-2017)	is	pretty	much	
negligible	most	of	the	time.	
	

Is	it	Enough	to	Decide?	
	
All	the	technical	arguments	we	discussed	above	are	repeated	ad	infinitum	all	over	the	
Internet,	and	as	you	probably	see,	I	personally	tend	to	favor	Linux,	but	honestly,	I	don't	
really	feel	that	these	arguments	are	sufficient	to	make	a	decision	for	our	game	servers.	In	
practice,	the	real	deal	is	usually	about	the	following	two	reasons	–	it	is	(a)	license	costs	and	
(b)	time	to	market.	
	

Free	as	in	“Free	Beer”	
	
Most	of	the	time,	you	will	need	quite	a	few	servers	to	run	
your	game.	Ok,	let’s	make	it	“a	LOT	of	servers”.	From	what	I	
know,	industry	standard	number	for	simple	enough	
simulations	revolves	around	100	players/core	or	1000	
players/2-Socket	“workhorse”	server	(and	these	days,	100	
players/core	and	1000	players/server,	give	or	take,	is	pretty	
much	the	same	thing).	So,	if	you	want	to	run	your	game	with	
100K	players	simultaneously	–	you’ll	need	of	the	order	of	100	
those	1U/2S	“workhorse”	servers.	Among	other	things	which	
we	discuss	in	other	places,	this	number	means	that	the	price	
of	the	Windows	license	can	start	to	hurt	in	a	Pretty	Bad	way.	
And	don't	listen	to	those	who	say	“Hey,	RedHat	license	is	
about	the	same	price	as	the	Windows	one,	so	it	doesn't	really	
matter”;	in	a	price-conscious	environment,	you	will	likely	use	
Debian,	CentOS,	or	some	other	perfectly	free	distro,	and	will	
stay	away	from	paying	anything	for	Linux	(except,	maybe,	for	
your	DB	server	–	more	on	it	below).	And	guess	what	-	with	
zero	price	of	free	distros,	there	is	absolutely	no	way	for	Windows	to	beat	them	price-wise,	
and	even	matching	it	looks	very	unlikely	in	foreseeable	future.	
	

																																																								
performance	benchmarks	of	Clang-for-Windows	(and	didn’t	do	them	myself	either)	<sad-
face	/>.	
162	performance	difference	for	individual	functions	can	be	much	larger,	but	on	average	and	
taking	into	account	such	things	as	context	switches	and	associated	very	severe	cache	
misses,	it	is	not	that	much	as	it	may	seem	from	"pure	calculation"	benchmarks	

	
With	zero	price	of	free	
distros,	there	is	
absolutely	no	way	for	
Windows	to	beat	them	
price-wise,	and	even	
matching	it	looks	very	
unlikely	in	foreseeable	
future	

TCO	wars	
	
Of	course,	Microsoft	is	well-aware	of	this	argument,	so	at	some	
point	around	10	years	ago,	Microsoft	has	pushed	a	point	of	
view	that	despite	license	costs,	a	long-term	cost	of	ownership	
(known	as	TCO)	is	lower	for	Windows	than	for	Linux	(mostly	
due	to	higher	salaries	of	Linux	guys).	This	point	of	view	was	one	
of	the	cornerstones	of	Microsoft's	highly	controversial	“Get	the	
Facts”	campaign.	I	certainly	and	clearly	don't	agree	with	
Microsoft	on	TCO,	and	am	of	a	very	firm	opinion	that		
at	least	for	not-too-small	datacenter-hosted	systems,	
pretty	much	regardless	of	how	you	calculate	it,	costs	of	Linux	boxes	will	be	

lower.		
	
Fortunately,	there	are	quite	a	few	bits	of	research	out	there,	which	confirm	my	experience	
a.k.a.	gut	feeling	in	this	regard.	These	start	(surprisingly)	from	a	Microsoft-sponsored(!)	IDC	
report	back	from	2002	(IDC);	while	Microsoft	has	made	a	lot	of	buzz	about	Windows	TCO	
advantage	found	by	this	report,	it	usually	conveniently	omitted	that	for	web	servers	Linux	
TCO	was	found	to	be	lower	(and	our	game	servers	are	much	more	similar	to	web	servers	
than	to	handling	file	or	print	jobs	in	office	environments).	Other	studies	supporting	the	
same	point	of	view	include	a	report	by	Cybersource	(Cybersource)and	an	IBM-sponsored	
report	by	RFG	(RFG).	The	latter	one	is	especially	interesting	not	only	because	it	is	exactly	
about	application	servers,	and	not	only	because	it	found	Linux	being	40%	less	expensive	
than	Windows	in	the	long	run,	but	also	because	it	has	found	that	Linux	admins,	while	more	
expensive,	on	average	are	able	to	handle	more	servers	than	their	opposite	numbers	from	
the	Windows	side.	To	be	honest,	I	need	to	mention	that	there	are	other	reports	which	do	
claim	that	Microsoft	TCO	has	an	advantage,	but	also	being	honest,	I	need	to	say	that	I	am	
not	buying	their	arguments,	agreeing	with	PCWorld's	take	on	Linux-vs-Windows	TCP	for	
servers:	“There's	no	beating	Linux's	total	cost	of	ownership,	since	the	software	is	generally	
free...	The	overall	TCO	simply	can't	be	beat.”	(Noyes)	
	
To	summarize	the	long	text	above:	
Cost-wise,	for	game	servers	Linux	is	likely	to	provide	a	significant	advantage	
	
The	importance	of	this	observation,	however,	depends	heavily	on	the	number	of	servers	
you	expect	to	run;	if	your	server	costs	(not	including	traffic	costs!)	are	going	to	be	negligible,	
the	whole	line	of	argument	about	the	server	costs	becomes	much	less	important.	More	on	it	
in	[[TODO]]	subsection	below.	
	

TCO	
https://en.wikipedia.org/wiki/Total_cost_of_ownership	

Total	cost	of	ownership	
(TCO)	is	a	financial	
estimate	intended	to	
help	buyers	and	owners	
determine	the	direct	
and	indirect	costs	of	a	
product	or	system.	

On	ISPs	and	Windows-vs-Linux	Cost	
	
If	you	by	any	chance	think	“hey,	we	will	rent	servers	from	ISP	
anyway,	so	license	costs	won't	matter”,	you're	deadly	wrong.	Sure,	
you	will	most	likely	rent	servers	from	ISPs	(see	Vol.	VII’s	chapter	on	
Preparing	to	Launch	for	details),	but	ISPs	(no	real	surprise	here)	
need	to	factor	in	the	license	price	into	their	server	rental	price.	As	
of	the	mid-2017,	kind	of	typical	price	difference	between	CentOS	
two-socket	“workhorse”	server	and	the-same-hardware	server	
with	Windows	Standard,163	was	roughly	between	$35/month	and	
$50/month.	For	cheaper	servers,	the	difference	between	Windows	
and	Linux	can	eat	as	much	as	50%	of	the	server	rental	price	
(though	for	those	servers	which	are	more	or	less	optimal	price-
performance-wise	observed	cost	difference	was	closer	to	20-30%).	
And	with	cloud	providers,	it	won't	get	any	better:	an	instance	
which	costs	$52/month	with	Linux,	went	up	to	$77/month	with	
Windows	(that's	almost	50%	on	top	of	Linux	(!)).	
	

Time	To	Market:	Familiarity	to	your	Developers	
	
Going	besides	server	costs,	we	still	have	that	ubiquitous	question	
of	Time-To-Market.	In	general,	if	your	game	is	computationally	intensive,	and	you	can	
support	only	a	thousand	players	per	server	(and	therefore,	if	your	game	is	a	success,	you	will	
need	hundreds	of	servers	to	run	your	game),	costs	become	a	very	important	factor,	difficult	
to	fight	with.	In	such	cases,	there	is	IMHO	only	one	consideration	that	can	trump	lower	costs	
for	Linux	boxes.	This	one	is	Time	to-Market	for	your	game.	
	
In	other	words,	if	you	don't	have	anybody	on	the	team	who	has	ever	developed	anything	for	
Linux,	it	is	usually	a	good	enough	reason	to	use	Windows	on	the	Server-Side	(and	yes,	it	will	
work,	provided	that	you're	careful	enough164).	It	is	not	that	to	exploit	lower	cost	of	Linux	
boxes	you	need	all	of	your	developers	to	be	Linux	gurus	(as	it	was	mentioned	above,	you’ll	
fare	much	better	when	you	can	keep	your	(Re)Actors	“pure”	anyway,	and	being	“pure”	
pretty	much	implies	being	cross-platform),	but	if	the	whole	your	team	has	zero	Linux	
experience	–	it	will	probably	qualify	as	a	valid	reason	to	use	Windows	(that	is,	if	you've	
already	calculated	the	associated	price	tag	and	are	ok	with	it).	
	
An	additional	(and	quite	similar)	time-to-market-related	pro-Windows	argument	arises	if	
your	game	is	PC-only	(or	PC-and-Xbox-only).	In	this	case,	if	you	keep	your	server	under	
Windows,	you	can	have	the	same	code	running	on	Server	and	Client	quite	easily.	While	such	
logic	has	a	grain	of	truth	in	it,	personally	I	don't	really	like	this	line	of	reasoning.	First	of	all,	
there	isn't	that	much	code	to	share	to	start	with	(it	is	mostly	about	the	framework	code	–	
which	will	likely	be	server-specific	anyway,	plus	Client-Side	Prediction	if	applicable,	which	is	
relatively	small).	Second,	your	Game	Logic	code	needs	to	be	“pure”	and	cross-platform	
																																																								
163	No	“Windows	Essentials”	edition	was	observed	as	a	rental	option,	probably	because	of	
license	restrictions	
164	and	that	somebody	on	your	team	is	familiar	with	developing	Server-Side	on	Windows	

	
For	cheaper	servers,	
the	difference	between	
Windows	and	Linux	can	
eat	as	much	as	50%	of	
the	server	rental	price	
(though	for	those	
servers	which	are	more	
or	less	optimal	price-
performance-wise	
observed	difference	
was	closer	to	20-30%).	

anyway	(see	above).	Third,	95+%	of	the	outside	of	Game	Logic	can	be	made	cross-platform	
without	using	Vendor-Lock-In	stuff,	with	a	relative	ease.	And	last	but	not	least,	having	the	
same	code	run	on	different	platforms,	while	taking	additional	time,	allows	to	test	your	code	
better,	improving	overall	code	quality.	
	
Still,	having	(almost-)nobody	on	the	team	with	Linux	experience,	usually	hits	Linux	
development	time	badly	enough	to	consider	Windows.	Still,	I	am	arguing	for	writing	this	
supposedly-Windows	code	as	cross-platform	as	possible	(with	Game	Logic	being	perfectly	
cross-platform)	–	then,	a	bit	later	(and	when	you’re	successful	enough	for	Windows	license	
costs	starting	to	hurt),	you	will	be	able	to	port	your	infrastructure	code	to	Linux	(keeping	
Game	Logic	stuff	intact).	Once	upon	a	time	I’ve	went	this	route	myself	–	and	it	did	work	like	
a	charm	(though	it	did	require	extreme	vigilance	to	remove	Windows-specific	stuff	as	soon	
as	it	accidentally	appeared	in	the	code).	
	

It	is	All	about	Numbers	<sad-face	/>	
	

At	the	end	of	the	day,	if	your	team	consists	primarily	(but	not	
exclusively)	of	Windows	developers,	and	your	game	is	
computationally	intensive	enough	to	support	only	thousands	
(or	even	worse	–	hundreds)	of	players	per	server	(and	you	can	
count	on	income	per	player	being	very	limited),	you're	facing	
quite	a	difficult	decision.	
	
Pretty	often,	under	such	circumstances	Time-to-Market	
considerations	will	override	lower	server	costs,	so	often	the	
Linux-to-Windows	question	is	down	to	the	balance	of	
Windows-vs-Linux	guys	and	gals	on	your	team.	On	the	other	
hand,	it	is	clearly	a	Business	Decision	which	needs	to	be	made	
by	Business	People	and	is	outside	of	scope	of	this	book.	Our	
job	as	developers	is	just	to	warn	business-minded	people	that	
renting	Windows	servers	are	going	to	cost	more	than	their	
Linux	counterparts	(and	that	server/cloud	rental	difference	can	

be	as	large	as	50%,	though	likely	to	be	more	in	around	20-30%;	note	that	these	numbers	do	
not	include	traffic,	which	will	be	the	same	regardless	of	the	platform);	the	rest	is	not	our	
decision	anyway.	
	
On	the	other	hand,	if	your	estimates	show	that	you	can	handle	10K	players	per	server	
(which	does	happen,	for	example,	for	casino	multiplayer	games)	–	it	looks	unlikely	that	
license	costs	will	eat	too	much	of	your	budget	either	way,	so	in	this	case	you	may	be	able	to	
use	Linux	or	Windows,	whichever-platform-looks-better-for-you.	The	whole	thing	is	all	
about	numbers,	pure	and	simple.	
	

DB	Server	Considerations	
	
It	should	be	noted	that	considerations	for	choosing	operating	system	for	DB	Servers	tend	to	
be	rather	different	from	those	for	Game	Servers	(though	these	different	considerations	can	

	
Pretty	often,	under	
such	circumstances	
time-to-market	
considerations	will	
override	lower	server	
costs	

still	lead	you	to	choosing	the	same	OS	<wink	/>).	Here	goes	my	personal	list	of	special	
considerations	for	DB	Servers:	

• First	of	all,	number	of	your	DB	Servers	is	usually	relatively	low,	which	makes	all	the	
reasoning	above	about	license	pricing,	rather	irrelevant	for	DB	Servers.	In	other	
words	–	well,	you	might	be	able	to	run	your	DB	Servers	on	Windows.	It	means	that	
you	happen	to	have	your	DB	guys	to	be	fans	of	MS	SQL	–	well,	you	can	try	doing	it	
too.165	

• While	most	of	DBMS	do	support	both	Windows	and	Linux	–	make	sure	to	take	a	look	
at	their	preferred	operating	systems	and	distros.	For	example,	if	you’re	going	to	use	
Oracle	DBMS,	it	makes	perfect	sense	to	run	it	on	Oracle	Linux	(and	tends	to	reduce	
fingerpointing	between	DBMS-vendor	and	OS-vendor	too).		

• In	any	case,	I	strongly	insist	on	having	your	OS/distribution	officially	supported	by	
your	RDBMS	running;	while	it	is	not	a	strict	requirement	–	having	officially	supported	
RDBMS	can	easily	reduce	unplanned	downtime	from	0.1%	to	0.01%	for	your	DB	
Server	(and	believe	me,	that’s	a	Damn	Lot™	of	difference).		

o This	doesn’t	give	advantage	to	Linux	or	Windows	–	but	gives	an	edge	to	
mainstream	server	Linux	distros	over	not-so-mainstream	ones.	Usually,	large	
commercial	RDBMS	tend	to	support	distros	such	as	RedHat	and	SUSE)and	to	
less	extent	Ubuntu	and	Debian);	in	any	case	-	make	sure	to	check	the	list	of	
supported	distros	for	your	DBMS	of	choice.		

§ Even	a	question	“whether	CentOS	is	good	enough”	is	not	that	obvious	
one	when	speaking	about	DB	Servers.	While	technically	CentOS	==	
RedHat,	from	fingerpointing	point	of	view	it	is	not	so:	running	CentOS	
gives	your	DBMS	support	a	damn	good	excuse	of	“hey,	you’re	running	
an	unsupported	distro”	–	which	tends	to	cause	more	trouble	than	it	is	
worth	when	dealing	with	those	guys	(when	you’re	trying	to	make	
them	to	fix	that	bug	in	their	DBMS	which	haunts	you).	As	a	result,	I’d	
still	prefer	to	have	RedHat	rather	than	CentOS	–	for	DB	Server,	that	is	
(and	this	reasoning	does	not	apply	to	Game	Servers)	

• When	it	comes	to	file	systems	–	interaction	of	your	DBMS	with	file	system	depends	
on	the	way	how	your	DBMS	handles	disk	I/O:	

o Some	of	serious	commercial	RDBMSs	prefer	to	work	with	their	own	
containers,	so	any	impact	of	file	system	will	be	pretty	much	eliminated;	even	
if	those	DB	containers	are	lying	on	top	of	file	system	(as	huge	fixed-size	files)	
–	they’re	not	going	to	use	much	of	file	system	magic	anyway,	making	file	
system	choice	a	rather	moot	issue.		

§ A	related	but	slightly	different	issue	is	“Concurrent	I/O	vs	Direct	I/O”	
(which	is	in	turn	related	to	a	specific	implementation	of	file	system).	
However,	even	here	the	jury	is	out	which	of	these	two	performs	
better	under	real-world	loads.	In	short	–	if	you’re	into	this	kind	of	
stuff,	you’ll	need	to	test	it	yourself.	

o On	the	other	hand,	quite	a	few	DBs	out	there	which	tend	to	rely	on	file	
systems	heavily	at	least	by	default.	Still,	even	for	them	observation	it	is	not	
that	obvious	which	file	system	is	better;	as	of	2017,	ext4,	XFS,	and	BtrFS	are	

																																																								
165	NB:	personally,	I	happen	to	dislike	MS	SQL,	but	this	is	a	different	story	–	and	I	cannot	be	
sure	that	this	dislike	(originated	15-20	years	ago)	is	still	valid	now	

the	most	common	contenders	–	but	make	sure	to	perform	your	own	testing	
on	exactly	that	hardware	you’re	going	to	use,166	and	under	close-to-real-life	
loads	before	making	a	decision.	And	if	you’re	too	lazy	to	do	it	–	at	least	use	
whatever-file-system	your	DBMS	vendor	recommends	(while	they	can	be	
wrong	for	your	specific	load,	but	at	least	you’ll	have	a	reasonably	good	
starting	point).	

	

Mixed	Bags	
	
In	some	cases,	you	may	need	to	run	a	mixed	bag	of	Operating	Systems	on	your	deployment	
site.	A	few	examples	of	such	things	include:	

• DB	Servers	running	on	different	OS	than	Game	Servers	(see	above	for	a	list	of	
considerations	which	are	different	between	Game	Servers	and	DB	Servers).	Of	
course,	it	is	better	to	keep	both	Game	Servers	and	DB	Servers	on	the	same	OS	(even	
if	the	distro	is	different),	but	if	it	happens	to	be	better	to	run	them	on	different	
platforms	–	well,	it	is	not	the	end	of	the	world	either.	

• Even	if	you’re	running	most	of	your	Game	Servers	from	Linux	–	there	is	always	a	
chance	that	some	weird	payment	provider	will	ask	you	to	use	their	Windows-only	
DLL	(and	they	may	provide	so	good	rates	that	your	management	may	ignore	your	
pleads).	

o Or	it	can	be	a	3rd-party	library	(say,	2FA	library	handling	all	those	2FA	
devices).	

o Or	it	can	be	some	kind	of	strange	stuff	regulators	in	some	European	country	
asked	from	you	–	and	believe	me,	this	stuff	can	easily	be	weird	enough	to	
require	calling	Windows	.DLL.		

o Or	pretty	much	any	kind	of	3rd-party	stuff	which	you	need	to	integrate	with	
for	almighty	Business	Reasons	<sad-face	/>	

• On	the	other	hand,	even	if	you’re	running	a	mostly-Windows	shop	–	it	is	still	usually	
better	to	run	your	public	e-mail/web	servers	under	Linux	

• As	your	game	becomes	more	and	more	successful	-	another	team	(such	as	“team	
writing	CSR	reports”)	may	be	created	–	and	they	may	prefer	to	use	ASP.NET	running	
on	Windows	

• Etc.	etc.	etc.	
	
Moral	of	the	story.	While	it	is	usually	possible	to	start	your	MOG	running	all	its	servers	
under	one	OS,	keep	in	mind	that	as	soon	as	you’re	successful	–	you	will	probably	need	to	go	
heterogeneous,	at	least	on	some	fringe	(as	we	prefer	to	think	<wink	/>)	servers.	
	

Linux-vs-Windows:	Time	to	Decide	
	
To	summarize	my	arguments	above:	

																																																								
166	this	is	DAMN	important;	in	particular,	testing	on	hardware	without	BBWC	RAID	card,	and	
with	it	(or	on	SSD	and	HDD)	–	can	provide	drastically	different	results	

	
• if	you	want	to	use	Linux	because	you're	familiar	with	it	–	

you're	fine	regardless	of	number	of	servers	you	need	
• if	you	want	to	use	Windows	because	you're	familiar	with	

it	–	take	a	look	at	the	number	of	servers	you	expect	to	be	
using	

o the	price	of	Windows	license	is	far	from	negligible	
(making	up	to	50%	of	the	rental	cost	of	the	server,	
though	usually	the	price	difference	is	more	in	20-
30%	range),	so	it	can	make	a	significant	difference	
for	your	ongoing	costs	after	you	launch	the	game	

• in	this	case,	you	may	want	to	develop	cross-platform	
code,	which	will	run	on	more	familiar	Windows	first	(to	
speed	time-to-market),	and	to	migrate	to	Linux	later	

o however,	to	achieve	it	–	the	code	needs	to	be	
cross-platform	from	the	very	beginning;	porting	Windows-specific	stuff	(the	
one	nobody	intended	for	porting	in	the	first	place)	to	Linux	is	a	recipe	for	a	
mortgage-crisis-size	disaster.	

o extreme	vigilance	to	avoid	being	inadvertedly	locked-in	is	required	(see	Vol.	
II’s	chapter	on	DIY	vs	Re-use	for	details).	On	the	other	hand,	(Re)Actors	tend	
to	make	dependency	fighting	simpler.	

• if	you're	in	doubt	–	use	Linux,	it	is	safer	that	way167	
	

Things	to	Keep	in	Mind:	Windows	
	
When	developing	for	a	specific	platform,	there	are	always	platform-specific	things	which	
you	need	to	keep	in	mind.	For	Windows	my	own	favorite	list	
of	DO's	and	DON'Ts	goes	as	follows	(note	that	this	is	a	
language-agnostic	list,	for	C++-specific	stuff	see	Vol.	V’s	
chapter	on	C++):	

• DO	fight	3rd-party	dependencies.	Unnecessary	
dependencies	tend	to	make	Windows	less	stable,	less	
secure,	the	code	less	manageable,	etc.	Refer	to	Vol.	
II’s	chapter	on	DIY	vs	Re-use	for	discussion	on	“what	
to	DIY	and	what	to	re-use”.	

• DO	fight	3rd-party	dependencies.	Re-use	MUST	NOT	
be	taken	lightly,	and	extreme	vigilance	is	required.	

• DO	fight	3rd-party	dependencies.	In	spades	for	
Windows.	While	all	the	developers	are	prone	to	
taking	some	“nice”	3rd-party	component	and	to	using	it	without	telling	anybody,	
from	my	experience	Windows	developers	are	more	likely	to	do	it	than	Linux	ones.	

																																																								
167	”safer”	here	can	be	interpreted	in	several	different	ways:	from	“a	little	bit	safer	security-
wise”	to	“safer	in	case	if	your	profits	are	much	lower	than	expected,	so	price	of	the	servers	
becomes	more	critical”.	

	
if	you	want	to	use	Linux	
because	you're	familiar	
with	it	–	you're	fine	
regardless	of	number	of	
servers	you'll	need	

	
DO	fight	3rd-party	
dependencies.	In		
spades	for	Windows.	

• DON'T	use	.NET-based	stuff	unless	absolutely	necessary.	.NET	in	production	will	
cause	you	quite	a	lot	of	trouble.	If	you	want	to	use	.NET	as	your	own	platform	–	well,	
at	least	you	(I	hope)	know	why	you're	using	it,	and	will	be	able	to	configure	it	to	
minimize	the	impact.	However,	if	most	of	your	game	in	not	.NET-based,	running	.NET	
unless	absolutely	necessary,	is	a	recipe	for	several	different	disasters	(ranging	from	
security	problems	to	run-away	3rd-party	not-really-necessary	.NET	component	
eating	all-the-available-resources).	

• As	a	rule	of	thumb,	stay	away	from	web	services	(that	is,	unless	you're	into	Web-
Based	Architecture),	at	the	very	least	for	time-critical	pieces	of	your	system.	In	
general,	any	technology	that	has	a	blocking	RPC-like	interface	for	inter-process	(and	
even	worse,	inter-server)	communication,	should	be	avoided	for	several	reasons.	
Problems	with	blocking	calls	are	numerous,	from	causing	excessive	context	switches	
(which	in	turn	makes	the	whole	thing	poorly	scalable)	–	to	difficulties	with	detecting	
and	handling	timeouts	and	problems	staying	non-revealed	during	in-lab	testing	(this	
is	very	typical	for	blocking	RPCs,	as	blocking	RPCs	are	very	latency-	and	load-
sensitive,	and	latencies	and	loads	for	intra-lab	testing	are	usually	very	small	to	cause	
any	trouble	<sad-face	/>).	For	more	details	–	please	see	Vol.	II’s	chapter	on	
(Re)Actors.	

• Stay	away	from	COM.168	COM	components	have	two	pretty	bad	properties.	First,	it	is	
yet	another	technology	based	on	blocking	RPC	calls	(see	above	about	them).	Second,	
if	you're	using	COM	for	your	own	components	–	it	is	quite	silly	(ok,	unless	you're	
using	Visual	Basic),	and	if	you're	using	it	for	3rd-party	components	–	it	is	a	3rd-party	
dependency,	which	you	should	fight	as	stated	above.	Consider	an	offense	of	using	
DCOM	as	just	a	seriously	aggravated	form	of	the	offense	of	using	COM.	

	

Things	to	Keep	in	Mind:	Linux	
	
Linux	also	has	its	fair	share	of	DO's	and	especially	DON'Ts.	My	favourite	ones	are	as	follows:	

• DO	fight	3rd-party	dependencies.	While	from	my	experience,	the	danger	of	3rd-party	
dependencies	is	lower	for	Linux	than	for	Windows,	it	still	exists.	

• DON'T	program	for	one	single	distribution.	Your	code	should	be	generic	enough	to	
allow	jumping	around	different	distros	easily;	within	our	game-related	code,	there	is	
no	reason	to	depend	on	package	manager	or	exact	directory	structure.	If	you	need	
these	badly,	move	this	kind	of	dependencies	into	config	files	(or	into	rarely-executed	
shell	scripts),	so	your	admins	can	adjust	directories	if	
necessary.	

o As	long	as	we're	speaking	about	Linux	(not	
including	BSD),	all	you	really	need	to	use	on	
your	Game	Server	is	Linux	kernel	and	glibc.	
Both	will	be	very	much	the	same	for	all	the	
distros	(with	the	only	difference	being	
kernel/glibc	version).	

o If	considering	*BSD	family,	they	are	somewhat	
different	from	Linux,	but	as	long	as	you're	

																																																								
168	yes,	I	know	lots	of	people	consider	COM	long-dead;	unfortunately,	it	is	not	

	
DON'T	program	for	one	
single	distribution.	

using	POSIX	APIs	(and	that	covers	99%	of	what	you'll	really	want	in	
practice,169	the	differences	are	negligible	

• DON'T	use	shell	scripts	for	frequently-performed	tasks.	While	an	occasional	shell	
script	to	install	your	daemon	is	fine,	invoking	shell	1000	times	a	second	is	rarely	a	
good	idea.	

• Pretty	much	the	same	goes	for	cron	–	DON'T	try	to	get	around	cron's	1-minute	
restriction	by	playing	tricks	such	as	running	60	cron	jobs	every	minute,	with	the	first	
job	waiting	for	one	second,	the	second	one	waiting	for	another	second,	and	so	on.	
Write	your	own	daemon	doing	these	things.	

	

Things	to	Keep	in	Mind:	(Re)Actors	
	
In	addition,	there	are	a	few	things	to	remember	about,	which	apply	if	you’re	using	
(Re)Actors	(which	you	should	<wink	/>),	but	regardless	of	the	platform	you're	developing	
for:	

• DON'T	use	platform-specific	APIs	within	your	(Re)Actors	(see	below	about	using	
them	outside	of	(Re)Actors).	Leaving	aside	a	few	narrow	exceptions,	your	(Re)Actors	
need	to	stay	“pure”	(see	Vol.	II’s	chapter	on	(Re)Actors	
for	discussion	of	the	associated	benefits),	and	platform-
specific	APIs	is	#1	enemy	of	the	code	being	“pure”.	

• DO	consider	cross-platform	code	even	outside	
(Re)Actors.	The	whole	(Re)Actor-fest	system	can	be	
written	in	a	fully	cross-platform	manner.170	Even	if	your	
code	can	use	platform-specific	optimizations,171	it	is	still	
better	to	have	a	purely	cross-platform	version	(at	the	
very	least,	to	have	a	baseline	to	compare	your	
optimizations	against).172	

	

MOG	Server-Side.	Programming	
Languages	
	

Going	Cross-Platform	
	
In	the	previous	section	we	discussed	choosing	an	Operating	System	for	your	MOG	servers.	
And	one	of	the	first	things	I've	noted	was	that	you	should	certainly	consider	developing	
cross-platform	code.	In	fact,	this	is	what	I	am	usually	doing	(that	is,	if	I	can	get	past	
management,	which	is	usually	supported	by	a	bunch	of	fellow	developers	who	neither	

																																																								
169	the	remaining	1%	includes	things	such	as	epoll/kqueue	
170	been	there,	done	that	
171	most	likely	–	epoll()/kqueue()	
172	I've	seen	quite	a	few	“platform-optimized”	versions	which	were	actually	slower	than	
cross-platform	ones,	and	even	more	platform-optimized	stuff	which	was	exactly	on	par	with	
the	cross-platform	one	

	
DO	consider	cross-
platform	code	even	
outside	(Re)Actors.	

know,	nor	don't	want	to	learn	anything	but	their-favorite	thing).	But	let's	see	what	going	
cross-platform	means	from	the	programming	languages	point	of	view.	
	

Cross-platform	C++	

	
	
Actually,	my	personal	favorite	for	cross-platform	development,	is	cross-platform	C++.	BTW,	I	
am	certainly	not	trying	to	argue	that	C++	is	the	only	programming	language	for	the	Server-
Side	(in	fact,	for	the	Server-Side	advantages	of	C++	are	admittedly	significantly	smaller	than	
for	the	Client-Side173)	–	but	I	can	have	a	personal	preference,	can’t	I?	<wink	/>.	Also	let’s	
note	that	if	you’re	using	C++	on	Client-Side	(which	is	quite	likely	–	see	Vol.	II’s	chapter	on	
Client-Side	Architecture	for	relevant	discussion),	and	are	going	to	share	some	code	(such	as	
simulation	code	used	both	for	Server-Side	simulation	and	Client-Side	prediction)	–	than	C++	
will	get	an	objective	advantage	in	addition	to	any	subjective	ones	<smile	/>.		
	
Now,	let’s	see	whether	we	can	make	C++	cross-platform.	To	those	having	any	doubts	in	this	
regard:		

yes,	C++	can	be	made	cross-platform,	I've	done	it	myself	on	numerous	
occasions.		

	
It	tends	to	work	even	better	when	you	have	your	code	restricted	to	event-driven	side-
effect-free	processing	(a.k.a.	deterministic	(Re)Actors,	see	Vol.	II’s	chapter	on	(Re)Actors	for	
details);	on	the	other	hand,	(Re)Actors	are	certainly	NOT	necessary	to	make	C++	cross-
platform.	For	our	current	discussion,	one	thing	is	important	about	(Re)Actors:	as	soon	as	
																																																								
173	down	to	the	point	that	“unless	you	already	have	an	unusually	strong	C++	team	–	it	is	
usually	better	to	use	some-other-programming	language	on	the	Server-Side”	

your	(Re)Actor	becomes	deterministic,	it	doesn't	really	have	any	significant	interaction	with	
the	system,	so	it	is	“pure	logic”	(a.k.a.	“moving	bits	around”,	and	is	very	similar	to	“pure”	
functions	from	functional	programming).	And	“pure	logic”	is	inherently	cross-platform	(that	
is,	as	long	as	you	keep	it	“pure”).	
	
On	the	other	hand,	to	keep	your	logic	“pure”,	you'll	need	to	make	quite	significant	effort,	
and	to	be	extremely	vigilant	when	it	comes	to	platform-specific	dependencies	(see	also	
relevant	discussion	in	Vol.	II’s	chapter	on	(Re)Actors).	This	is	especially	true	for	C++.	
	
Note	that	for	some	pieces	of	code,174	you	MAY	want	to	use	
platform-specific	stuff	as	an	optimization.	Usually,	it	works	as	
follows	(yes,	I	know	it	is	Really	Old	News™	for	all	the	seasoned	
C++	cross-platform	developers,	but	believe	me	or	not,	there	are	
lots	of	programmers	out	there	who	don't	know	it,	especially	
among	hardcore	zealots	of	Windows-	or	Linux-specific	
development):	

• You	develop	a	perfectly	cross-platform	version,	which	
uses	only	cross-platform	APIs.	It	doesn't	really	matter	
whether	cross-platform	API	is	a	part	of	official	C++	
standard,	more	important	question	is	whether	it	is	really	
uses	only	the	stuff	which	is	supported	across	the	board.	In	
practice,	there	are	several	big	sets	of	APIs	which	we	can	
safely	consider	cross-platform:	

o C++14	standard,	including	std::	library	
o Most	of	C	Standard	Library	
o boost::	library	
o Berkeley	sockets	(while	it	is	not	strictly	100%	

cross-platform,	for	practical	purposes	it	is	very	close)	
o Note	that	POSIX	standard	stuff	(the	one	which	is	not	a	part	of	C	library)	is	

generally	NOT	cross-platform.	Notable	example:	fork()	which	is	missing	under	
Windows	

§ Moreover,	some	Windows	functions	which	look	like	their	POSIX	
counterparts	and	have	the	same	signatures,	exhibit	different	
behavior.	One	notable	example	includes	Microsoft	_exec*()	family	of	
functions,	which	has	different	semantics	from	POSIX	exec*().	

• You	launch	it,	iron	out	all	the	bugs,	and	then	it	works	for	a	while	
o Then,	you	realize	that	performance	of	your	cross-platform	code	can	be	

improved	for	one	specific	platform.	Just	as	one	example	–	your	cross-
platform	version	implemented	inter-thread	queues-with-select()	(see	Vol.	II’s	
chapter	on	Client-Side	Architecture	for	the	rationale	behind	these	queues,	
which	are	waiting	either	for	somebody	pushing	something	into	the	queue,	or	
for	data	arriving	to	one	of	the	sockets)	via	sockets+anonymous-pipe,	and	you	
realized	that	under	Windows	WaitForMultipleObjects()-based	version	will	
work	faster.	

																																																								
174	if	you’re	using	(Re)Actors	–	usually	it	should	be	outside	of	(Re)Actors,	i.e.	in	Infrastructure	
Code	

	
I	know	it	is	Really	Old	
News™	for	all	the	
seasoned	C++	cross-
platform	developers,	
but	believe	me	or	not,	
there	are	lots	of	
programmers	out	there	
who	don't	know	it	

o Ok,	you're	rewriting	relevant	piece	of	code	(keeping	all	the	external	
interfaces	of	this	piece	intact),	and	placing	it	under	an	ugly	(but	still	working	
perfectly	fine)	#ifdef	MY_DEFINE_WINDOWS_ONLY	(and	relevant	portion	of	
the	cross-platform	code	under	#ifndef	MY_DEFINE_WINDOWS_ONLY).	Bingo!	
You	have	your	Windows-specific	version	running	under	Windows,	and	your	
cross-platform	version	running	everywhere	else.	

	
Bottom	line:	C++	can	be	made	cross-platform	–	and	can	have	platform-specific	optimizations	
at	the	same	time.	For	further	discussion	on	C++,	see	Vol.	V’s	chapter	on	C++.	
	

Cross-platform	Languages	
	

...the	purpose	of	Newspeak	was	not	only	to	provide	a	medium	of	expression	for	the	world-
view	and	mental	habits	proper	to	the	devotees	of	IngSoc,		

but	to	make	all	other	modes	of	thought	impossible.	
–	G.	Orwell–	

	
Another	way	to	achieve	cross-platform	code	is	to	use	one	of	the	cross-platform	languages,	
such	as	Java,	Python,	C#,	Go,	or	Erlang.	
	
From	cross-platform	point	of	view,	these	languages	have	one	significant	advantage	over	
cross-platform	C++:	most	of	their	APIs	are	already	cross-platform,	so	they	don't	provide	you	
that	many	opportunities	to	deviate	into	platform-specific	stuff.	While	going	platform-
specific	is	still	possible	(via	JNI/Python	ctypes/PInvoke	or	unmanaged	code/...),	it	is	usually	
more	difficult	with	cross-platform	languages.	
	
This	“going	platform-specific	being	more	difficult”	is	actually	IMO	the	main	

advantage	of	cross-platform	languages	when	going	cross-platform	
	
In	other	words,	the	problem	with	C/C++	is	that	they're	providing	you	more	freedom	with	
going	platform-specific	(and	yes,	having	more	freedom	is	not	always	a	good	thing).	The	way	
cross-platform	languages	are	doing	it,	can	be	seen	as	an	(almost)	enforcement	of	a	self-
imposed	rule	that	“everything	should	be	cross-platform”.	
	
Now	let's	consider	these	languages	against	our	“baseline”	cross-platform	C++.	
	

Pros	(compared	to	C++)	
	

• Almost	all	cross-platform	programming	languages	I	know175	are	garbage-collected.	
o It	means	less	time	spent	on	memory	management	during	development,	

which	in	turn	means	faster	time-to-market.	On	the	other	hand,	I	will	argue	
that	for	a	(Re)Actor	model	(especially	in	gaming	context,	where	memory	
allocations	are	often	discouraged	as	too	
expensive),	memory	management	is	rudimentary	
either	way,	so	the	difference	will	be	negligible	
(that	is,	provided	that	you	have	at	least	one	
seasoned	C++	developer	who	knows	how	the	
things	should	be	done	at	lower	levels).	

o It	means	no	pointers,	and	no	bugs	related	to	
misuse	of	pointers	(and,	Ritchie	save	us,	pointer	
arithmetic).	Note	that	once	again,	we're	in	the	
realm	of	having	too	much	freedom	causing	
trouble	(and	once	again,	it	is	only	a	question	of	
self-discipline	to	avoid	using	them,	as	references	
do	just	fine	90%	of	the	time,	and	reference-like	
use	of	pointers	will	fill	the	rest).	

• As	noted	above,	keeping	your	code	cross-platform	requires	much	less	efforts	in	
Java/Python/...	than	in	C++.	

• Learning	curve.	C++	learning	curve	is	steep.	It	is	not	too	bad	if	you're	staying	within	
limits	of	the	(Re)Actor,	but	reading	a	book	on	C++	can	easily	be	overwhelming	
(especially	those	books	which	start	with	discussing	interesting-but-not-really-
important-and-rarely-used-things	such	as	operator	overloading	and	multiple	
inheritance).	

• Good	C++	developers	are	really	few	and	far	between,	not	to	mention	they're	very	
expensive.	For	most	of	the	languages	mentioned	above	(except	for	Erlang)	finding	a	
good	developer	is	usually	significantly	easier.	

	

Cons	(compared	to	C++)	
	
When	speaking	about	deficiencies	of	the	cross-platform	programming	languages,	several	
things	come	to	mind	(note	that	while	the	list	of	cons	is	longer	than	that	of	pros,	it	doesn't	
mean	that	cross-platform	languages	are	inherently	worse;	it	is	just	that	some	of	these	cons	
are	not	as	well-known	as	pros,	so	I'm	spending	more	time	elaborating	on	them):	
	

																																																								
175	Rust	being	the	only	exception	

	
Almost	all	cross-
platform	programming	
languages	I	know	are	
garbage-collected	

• Almost	all	cross-platform	programming	languages	I	know	
are	garbage-collected.	This	means	that	they	tend	to	suffer	
from	two	problems:	

o the	first	problem	is	memory	bloat	(if	you	have	any	
doubts	that	such	a	problem	exists	–	take	a	look	at	
Eclipse	or	at	OpenHAB).	I	tend	to	attribute	this	
apparent	bloat	to	the	following.	While	garbage-
collected	languages	eliminate	so-called	“syntactic	
memory	leaks”	(pieces	of	memory	which	cannot	
possibly	be	used),	they	cannot	possibly	eliminate	
“semantic	memory	leaks”	(pieces	of	memory	
which	can	potentially	be	used,	but	won't	be	used,	
ever)	('No	Bugs'	Hare).	And	those	“semantic	
memory	leaks”	for	garbage-collected	languages	
tend	to	be	worse	than	for	manually	memory	managed	languages	such	as	C++,	
because	of	“we	don't	need	to	care	about	memory	leaks”	mentality,	and	
because	garbage	collectors	are	obligated	to	stay	on	the	absolutely	safest	
side,	keeping	in	memory	everything	that	has	a	slightest	chance	to	be	used	
(i.e.	everything	theoretically	reachable).	Of	course,	memory	bloat	for	
garbage-collecting	languages	can	be	managed	
(there	is	nothing	difficult	in	explicitly	assigning	
null	to	a	reference);	however,	then	–	just	as	with	
C++	memory	management	-	it	once	again	
becomes	all	about	self-discipline,	and	whether	
after	doing	it	garbage-collected	languages	will	
still	provide	that	much	development	speedup	
over	manually	memory-managed	C++	-	is	not	
obvious	to	me.		

§ On	the	other	hand,	it	should	be	noted	
that	for	(Re)Actor-based	development	
(which	usually	implies	states	of	rather	
limited	size),	the	problem	of	“semantic	memory	leaks”	is	usually	not	
too	bad	(based	on	the	same	reasoning	why	manual	memory	
management	is	usually	not	that	much	of	a	problem	for	(Re)Actor-
based	development),	and	fixing	them	usually	isn't	too	difficult.	

o The	second	problem	is	garbage	collector's	infamous	“stop	the	world”	
(mis)feature.	In	short	–	to	perform	garbage	collection,	most	of	GCs	out	there	
need	to	“stop	the	world”	(i.e.	to	stop	all	the	threads(!)	within	the	same	VM)	
for	some	time.	For	most	of	the	applications,	it	is	not	a	problem	(as	delays	
even	of	a	hundred	milliseconds	are	so	short	that	your	application	won't	really	
notice	them).	However,	if	we're	speaking	about	a	fast-paced	game	such	as	an	
MMOFPS,	these	delays	are	known	to	cause	lots	of	trouble.	Even	worse,	when	
you	run	into	such	things,	it	is	usually	too	late	to	rewrite	your	whole	code,	
which	leads	to	really	ugly	workarounds	such	as	“let's	not	run	garbage	
collector	at	all	for	a	while”	(then,	if	your	Game	Event,	such	as	MOBA	match,	
lasts	longer-than-usual,	you	can	easily	eat	all	the	server	RAM	and	even	more).	
While	it	doesn't	mean	that	GC	languages	cannot	possibly	work	with	

	
Almost	all	cross-
platform	programming	
languages	I	know	are	
garbage-collected	

Semantic	
Garbage	

https://en.wikipedia.org/wiki/Garbage_(computer_science
)	
Semantic	garbage	
cannot	be	
automatically	collected	
in	general,	and	thus	
cause	memory	leaks	
even	in	garbage-
collected	languages.	

MMOFPS,	I'd	suggest	to	be	very	cautious	in	this	regard,	and	to	research	how	
big	"stop-the-world"	pauses	are	for	the	GC	used	by	your	target	VM	(also	note	
that	it	is	about	VM,	and	not	about	language,	so,	say,	the	same	C#	code	may	
exhibit	very	different	behaviour	with	regards	to	GC	under	CLR	and	Mono).	

§ As	a	mitigating	measure,	it	is	possible	to	reduce	the	time	of	“stopping	
the	world”	effect	(at	the	cost	of	some	performance	loss);	see,	for	
example,	“Concurrent	Mark-and-Sweep”	and	“G1”	garbage	collectors	
for	JVM,	and	<gcConcurrent>/SustainedLowLatency	parameters	for	
CLR	(for	detailed	discussion	on	it,	see	(Bray	n.d.)).	Such	“concurrent”	
garbage	collectors	tend	to	run	a	large	portion	of	GC	processing	
without	“stopping	the	world”	(so	only	a	small	part	of	GC	loop	needs	to	
be	run	in	the	“stop	the	world”	mode).	From	what	I	know,	these	GCs	
(at	the	cost	of	relatively	minor	overall	performance	penalty)	bring	
pauses	down	to	single-ms	range	even	for	large	heaps,	which	makes	it	
"good	enough"	for-all-games-except-maybe-for-MMOFPS;	as	usual,	
YMMV,	batteries	not	included.	For	Mono,	there	is	a	supposedly	
similar	GC	flag	concurrent-sweep,	though	I	have	no	information	how	
small	the	"stop-the-world"	pauses	are	when	Mono	GC	runs	with	this	
flag	(=”if	your	game	is	fast,	you’ll	need	to	measure	it	yourself”).	

§ As	an	another	mitigation	technique	(which,	at	least	in	theory,	may	
also	work	as	a	compliment	to	concurrent	collectors),	it	is	possible	to	
reduce	“stop	the	world”	time	by	splitting	your	system	into	separate	
VMs	(such	as	JVM	or	CLR	VM176)	and	each	VM	will	run	a	separate	GC.	
This	tends	to	help	because	the	smaller	your	“world”	is,	the	less	time	
garbage	collector	will	need	to	run,	so	the	less	time	“stop	the	world”	
will	take.	The	technique	actually	flies	extremely	good	with	(Re)Actors	
(as	(Re)Actors	are	Shared-Nothing,	they	can	be	easily	put	into	
separate	VMs).	In	the	extreme	case,	you	may	even	end	up	with	
running	one	VM	for	each	of	Game	World	(Re)Actors.	However,	there	
is	a	price	for	doing	it,	and	the	price	is	related	to	the	per-VM	
overheads;	where	the	optimum	for	your	game	(balancing	overhead	vs	
latencies)	–	you'll	need	to	find	out	yourself.	

o The	third	GC-related	problem	is	related	to	asynchronous	I/O	(in	our	context	-	
socket	I/O).	Intensive	server-side	asynchronous	I/O	tends	to	cause	problems	
with	GC	at	least	under	CLR,	as	to	pass	the	buffer	to	an	asynchronous	Win32	
API,	it	needs	to	be	“pinned”	(i.e.	cannot	be	relocated,	what	reflects	pretty	
badly	on	CLR's	copying	GC),	and	having	too	many	pinned	buffers	may	cause	
CLR's	GC	to	stall,	up	to	the	point	of	being	deadlocked.	While	there	is	a	
workaround	for	it,	via	SocketAsyncEventArgs	(or	you	can	always	go	into	an	
unmanaged	mode,	accessing	Win32	APIs	directly	and	stopping	being	cross-
platform),	this	is	a	complication	one	needs	to	be	aware	about	in	highly-
loaded	network-oriented	environments.	Also	I	have	no	idea	whether	the	
workaround	would	work	as	intended	under	Mono.	

																																																								
176	I	know	that	Microsoft	prefers	to	call	it	“Execution	Engine”,	but	it	still	looks	like	a	VM,	
swims	like	a	VM,	and	even	quacks	like	a	VM	

• Unless	your	target	platform	has	a	JIT	compiler	for	
bytecode	of	your	language,	you're	most	likely	looking	at	
10x+	performance	penalty.		

o Fortunately,	all	the	languages	mentioned	above	
do	have	their	respective	JIT	compilers	for	both	
Windows	and	Linux,	with	only	one	unfortunate	
exception	(leaving	discussion	about	Lua/LuaJIT	
aside	until	"Scripting	Languages"	section).	
Erlang,	while	working	on	BEAMJIT,	still	seems	to	
have	it	only	as	a	proof-of-concept	<sad-face	
/>.177	

• Even	when	compared	with	JIT-enabled	cross-platform	
language,	C++	performance	can	be	made	at	least	somewhat	better	99%	of	the	
time.178	On	the	other	hand,	95%	of	the	time	you	won't	bother	with	such	
optimizations	even	in	C++,	so	it	doesn’t	really	matter	
much.	Possible	exceptions	include	heavy	AI	and/or	
heavy	physics	simulations	(especially	if	they	go	well	
with	SSE).	Oh,	and	for	“glue”	code	it	doesn’t	matter	at	
all	(neither	you	should	try	to	optimize	it	in	the	first	
place).	

	

Personal	Preferences	and	(Re)Actors	
	
Out	of	the	aforementioned	cross-platform	programming	
languages,	I	am	especially	fond	of	Erlang's	actors	(and	it	also	reportedly	has	a	good	record	
for	development	of	large-scale	distributed	systems,	though	an	overhead	due	to	apparent	
lack	of	JIT	is	significant).	Java	and	Python	are	not	bad	either	(within	their	own	applicability	
limits).	I	have	never	been	a	big	fan	of	C#,	in	particular	because	it	traditionally	has	the	
blurriest	line	between	cross-platform	APIs	and	platform-specific	stuff	(which	is	not	really	
surprising	as	such	policy	makes	perfect	business	sense	for	Microsoft),	but	if	you're	planning	
your	servers	as	Windows-only	-	it	will	certainly	do,	and	if	you're	going	to	go	Linux	-	Mono	or	
.NET	Core	might	work	for	you	too	(with	some	caveats:	Mono	is	not	exactly	100%	
compatible,	and	.NET	Core,	while	officially	supported	by	MS	under	Linux,	has	limited	feature	
set,	so	you	need	to	know	from	the	very	beginning	what	exactly	you’re	targeting	–	full	.NET	
or	.NET	Core179).	
	
When	it	comes	to	Go,	I	tend	to	dislike	its	goroutines;	I	explained	more	on	this	dislike	in	Vol.	
II’s	chapter	on	(Re)Actors,	but	very	briefly	goroutines	(unless	configured	to	run	in	one	
thread)	encourage	programming	style	which	requires	synchronization;	while	it	is	possible	to	
																																																								
177	As	for	Python,	while	CPython	as	such	doesn't	have	JIT,	other	Python	implementations,	
such	as	native	PyPy	and	JVM-based	Jython,	do	have	JITs	(though	make	sure	to	start	testing	
your	game	under	that-implementation-you’re-going-to-use-in-production,	ASAP).	
178	100%	of	the	time	if	we	allow	to	use	inline	asm,	but	believe	me	–	you	do	NOT	want	to	go	
there	
179	BTW,	personally,	being	a	minimalist,	for	any	new	project	I’d	use	Core	without	a	shade	of	
doubt	

JIT	
https://en.wikipedia.org/wiki/Just-in-time_compilation	

Just-In-Time	(JIT)	
compilation,	also	
known	as	dynamic	
translation,	is	
compilation	done	
during	execution	of	a	
program	–	at	run	time	–	
rather	than	prior	to	
execution	

SSE	
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions	

Streaming	SIMD	
Extensions	(SSE)	is	an	
SIMD	(Single	
Instruction	Multiple	
Data)	instruction	set	
extension	to	the	x86	
architecture	

use	it	in	a	manner	similar	to	(Re)Actors	(and	avoiding	all	the	problems)	–	this	manner	is	not	
enforced	by	the	go	language,	which	makes	it	easy	to	step	on	a	slippery	slope	of	thread	sync	
which	will	quickly	lead	to	a	mutex-ridden	demise	</sad-face	>.	
	
Overall,	I	can	say	that	that	with	some	self-discipline,	(Re)Actors	described	in	Vol.	II’s	chapter	
on	(Re)Actors	(and	which	are	pretty	much	the	same	as	Erlang's	actors/processes	or	Akka	
actors),	can	be	easily	implemented	in	any	of	the	cross-platform	programming	languages	
(and	in	C/C++	too).	
	

Scripting	Languages	
	
We	went	through	C++	and	cross-platform	languages,	but	we're	not	done	yet.	
	
As	it	was	mentioned	in	Vol.	II’s	chapter	on	Client-Side	
Architecture,	for	game	development,	there	is	a	common	
practice	to	use	scripting	languages	to	write	Game	Logic	(with	
people	writing	in	scripting	languages	including,	but	not	limited	
to,	Game	Designers).	Moreover,	on	the	Server-Side	(unlike	
Client-Side)	obscurity-based	protection	from	bot	writers	is	not	
an	issue	(as	Server-Side	code	is	not	supposed	to	be	exposed	to	
players);	this	in	turn	means	that	scripting	languages	become	
significantly	more	feasible	for	the	Server-Side.		
	
Therefore,	it	seems	to	make	perfect	sense	to	allow	using	some	
kind	of	scripting	language	on	the	Server-Side	(regardless	of	you	
using	it	on	the	Client-Side).	
	
Two	most	common	scripting	programming	languages	used	in	
games,	are	Lua	and	JavaScript.	I	won't	go	into	comparison	of	
these	two	languages	(they’re	actually	very	different),	but	will	
just	note	that	both	will	do	their	job	when	it	comes	to	game	scripting.	However,	one	thing	
needs	to	be	mentioned	in	this	regard,	and	it	is	that	future	of	the	Lua	hinges	on	further	
development	of	LuaJIT	–	and	development	of	LuaJIT	doesn’t	look	too	good	as	of	mid-2017	
(development	is	not	too	active,	and	with	previous	history	of	conflict	about	support	for	Lua	
5.3,	and	original	author	Mike	Pall	leaving	the	team	–	it	is	unclear	whether	it	will	continue	
well	or	not).	This,	in	turn,	IMNSHO	counts	as	a	strong	argument	against	Lua	(and	in	favor	of	
JavaScript);	moreover,	some	of	former	Lua	fans	have	already	switched	to	JS	(see,	for	
example,	[TODO:	https://realmensch.org/2016/05/28/goodbye-lua/]).	
	
Other	than	that,	the	most	common	concern	about	allowing	scripting	on	the	Server-Side	is	
related	to	performance.	However,	with	LuaJIT	(though	see	my	concerns	about	LuaJIT	above)	
and	V8	JavaScript	(which	also	has	its	own	JIT),	this	is	much	less	of	a	concern	than	for	non-
JIT-ted	script	engines.	
	
When	speaking	about	Server-Side	JavaScript	–	I	actually	mean	Node.js.	And	I	have	to	confess	
that	I	like	Node.js	a	LOT	(more	than	any	other	programming	language	barring	my	first	love	
C++	<wink	/>).	If	they	throw	in	built-in	determinism	–	I	may	even	consider	divorcing	C++	for	

	
On	the	Server-Side	
(unlike	Client-Side)	
obscurity-based	
protection	from	bot	
writers	is	not	an	issue	
(as	Server-Side	code	is	
never	exposed	to	
players)	

the	Server-Side	after	all	these	years	of	happy	marriage	<smile	/>.	On	the	somewhat-
negative	side	–	I	feel	that	Node.js	is	too	much	about	being	non-blocking;	as	it	was	discussed	
in	Vol.	II’s	chapter	on	(Re)Actors	–	I	am	advocating	mostly-non-blocking	processing	(and	may	
allow	to	block	on	local	disk/DB	operations),	opposed	to	100%-non-blocking.	Still,	out	of	the	
ready-to-use	systems	for	Server-Side	–	Node.js	would	be	probably	my	2nd	choice	(after	DIY-
framework-in-C++).		
	

On	Programming	Languages	as	Such	
	
There	is	one	more	thing	which	I	didn’t	touch	yet	–	it	is	a	
question	of	the	differences	between	programming	languages	
themselves.	Here,	I	am	going	to	be	hard	once	again–	this	time	
for	not	going	into	a	lengthy	discussion	about	pros	and	cons	of	
syntactic	sugar	used	by	different	programming	languages.	
However,	my	strong	position	is	that	from	the	50'000-feet	point	
of	view,	90%	of	the	differences	between	modern	mainstream	
programming	languages	(as	they're	normally	used	-	or	better	to	
say,	SHOULD	be	used	-	at	application-level)	are	minor	or	
superficial.180	This	is	also	confirmed	by	Line-to-Line	conversion	
exercise	which	will	be	discussed	in	Vol.	IV’s	chapter	on	Things	
to	Keep	in	Mind.	
	
In	other	words,	we	have	good	news	and	bad	news.	Good	news	
is	that	
Whatever	mainstream	programming	language	we’re	

choosing	–	we	can’t	be	TOO	wrong	<smile	/>	
	
A	flip	side	of	it	is	that		
Whatever	programming	language	you	happen	to	
know/love	–	it	doesn’t	automatically	make	you	

“better”	than	the	rest	of	developers	
	
BTW,	I	know	quite	a	few	people	out	there	who	will	say	I’m	deadly	wrong	about	it,	and	that	
<insert-their-favorite-programming-language>	is	obviously	so	much	better.	Well,	it	is	not.	
The	whole	discussion	about	advantages	programming	languages	reminds	me	of	the	
discussion	15	years	ago	or	so,	about	“RISC	vs	CISC	vs	VLIW	vs	EPIC”	–	with	LOTS	of	
arguments	flying	around	about	performance	advantages	of	EPIC/Itanium;	however,	at	the	
end	of	the	day,	it	so	happened	that	all	these	things	are	irrelevant	for	performance,	and	it	is	
“NUMA	vs	FSB”	question	which	really	matters	performance-wise	(with	Itanium	buried	for	
good	after	all	the	efforts	and	billions	spent	there	–	exactly	because	of	concentrating	on	EPIC	
but	not	on	more	down-to-earth	things	such	as	NUMA).	IMO	pretty	much	the	same	thing	is	
																																																								
180	it	doesn't	really	stand	for	Erlang,	and	I	am	not	100%	convinced	that	it	stands	for	Lua,	but	
C++/C#/Java/Python/Javascript	as-you-SHOULD-use-them-for-application-level-
programming	are	all	pretty	much	the	same,	saving	for	relatively	limited	amount	of	oddities	
and	peculiarities	

	
From	the	50'000-feet	
point	of	view,	90%	of	
the	differences	
between	modern	
mainstream	
programming	
languages	(as	they're	
normally	used	-	or	
better	to	say,	SHOULD	
be	used	-	at	
application-level)	are	
minor	or	superficial	

happening	with	programming	languages	now:	it	is	not	specific	syntax	which	matters	for	
developers,	it	is	more	subtle	things	such	as	threading	models	etc.	which	really	make	a	
difference.	
	
Another	observation	which	helps	in	this	regard,	is	that	there	is	a	tendency	for	modern	
mainstream	programming	languages	to	converge	with	time.	For	example,	C++11	code	is	
much	closer	to	Python	code	than	C++03,181	Java	5+	(with	generics)	is	much	closer	to	C++	
than	Java	4-	(the	one	without	generics),	and	so	on.	In	general,	programming	languages	
borrow	certain	constructs	and	practices	(usually	best	ones,	but	it	is	not	guaranteed)	from	
each	other,	bringing	them	closer.	There	are	lots	of	examples	of	such	convergence,	with	the	
most	obvious	ones	being	RAII-like	behavior182	and	lambdas183	(where	languages	already	
converged),	and	coroutines	(where	converging	is	still	in	progress).	
	
In	practice,	from	my	experience,	the	only	thing	which	tends	to	be	fundamentally	different	
between	the	programming	languages,	is	the	difference	between	manual	and	automated	
memory	management.	Still,	with	more-or-less	modern	style	of	C++	code	(with	widespread	
use	of	containers	and	std::unique_ptr<>),	the	difference	is	actually	not	that	drastic.	Sure,	
creating	reference	loops	from	is	not	advisable	with	std::unique_ptr<>,	but	to	be	honest,	I	
don’t	remember	last	time	when	I	really	needed	such	a	loop	anyway.184	
	

Which	Language	is	the	Best?	Or	On	Horses	for	Courses	
	
Right	above,	we've	described	quite	a	few	options	for	Server-Side	programming	languages.	
The	Big	Question	is,	as	usual,	the	following:	which	one	to	
choose?	
	
My	two	cents	points	in	this	regard	are	the	following.	First,	
there	is	no	such	thing	as	“the	best	language	for	everything”.	
Rather,	what	we	need	is	a	language-best-for-some-specific-
task.	And	here	there	are	quite	a	few	different	scenarios,	from	
“just	a	scripting	language	for	Game	Designers	to	work	with”	
(where	C++	and	even	Java	are	pretty	much	out	of	question),	
to	“time-critical	simulation	code”,	with	“something	for	integration	with	enterprise	web	
apps”	in	between.	As	a	very	wild	guess,	you	might	want	to	use	Lua	or	JavaScript	for	the	first	
one,	C++	for	the	second	one,	and	Java	or	C#	for	the	third	one.	Doing	everything-we-have-in-
such-a-huge-project-as-MOG	in	one	single	language,	while	possible,	in	many	cases	will	be	
suboptimal.	
	
																																																								
181	ok,	it	is	probably	better	to	say	“SHOULD	be	written	in	a	manner	which	is	much	closer	
to…”	
182	I	mean	try-with-resources	in	Java	7,	with	statement	in	Python,	and	using	statement	in	C#	
183	In	spite	of	all	the	peculiarities	such	as	lambdas	in	Python	
(StackOverflow.PythonLambdaLoop)	and	C#	(StackOverflow.C#LambdaLoop)	having	rather	
strange	behavior	with	regards	to	lambdas	within	loop	(or	maybe	it's	C++	peculiarity	that	it	
behaves	exactly	as	intuitively	expected?).	
184	that	is,	for	loops	consisting	of	“strong”	references	such	as	std::unique_ptr<>.		

Horses	for	
courses	

https://en.wiktionary.org/wiki/horses_for_courses		

An	allusion	to	the	fact	
that	a	racehorse	
performs	best	on	a	
racecourse	to	which	it	
is	specifically	suited	

On	Programming	Languages	and	(Re)Actors	
	
My	second	cent	in	this	regard	is	that	at	least	with	(Re)Actors,	it	is	easy	to	combine	
(Re)Actors	written	in	different	languages,	in	any	way	you	want.	Personally,	I've	made	such	
things	myself	for	three	languages:	C++,	Java,	and	JavaScript.	It	went	along	the	following	
lines:	

• Originally,	the	whole	thing	(both	outside-(Re)Actors	infrastructure	code	and	intra-
(Re)Actor	code)	was	written	in	C++.	Great	performance,	full	control,	no	problems	
with	GC,	everybody	was	really	happy,	etc.	etc.	But	finding	good	C++	developers	for	
app-level	job	isn't	easy	<sad-face	/>		

• As	a	result,	at	some	point,	it	was	decided	to	make	an	analytics	portal	and	to	develop	
it	in	Java.	

• As	pure	DB	access	wasn't	sufficient	(as	they	needed	real-time	updates,	and	DB	
triggers	didn't	look	optimal	at	all)	Java	guys	asked	for	a	way	to	get	the	data	from	C++	
system.	

• At	this	point,	there	was	a	line-to-line	translation	project	
of	outside-(Re)Actor	C++	infrastructure	code	into	Java	
(to	facilitate	writing	(Re)Actors	in	Java)	–	along	the	lines	
which	will	be	discussed	in	Vol.	IV’s	chapter	on	Things	to	
Keep	in	Mind185	

o This	outside-(Re)Actor	Infrastructure	Code	in	
Java	was	compatible	at	message	format	level	
with	C++	code,	which	means	that	from	C++	
(Re)Actor	standpoint,	Java-based	(Re)Actor	was	
indistinguishable	from	a	C++-based	one,	and	
vice	versa.	

o So,	C++	and	Java	(Re)Actors	could	interact	easily	
(after	agreeing	on	interfaces,	of	course),	without	
no	problems	whatsoever.	In	particular,	Java	
(Re)Actors	were	able	to	“subscribe”	to	the	data	
“published”	by	C++	(Re)Actors,	and	get	all	the	
updates	in	real-time	(most	of	the	data	necessary	
was	already	published	by	C++	(Re)Actors,	so	Java	
(Re)Actor	subscribing	to	the	data	they	needed,	was	mostly	possible	without	
changing	C++	code).	

	
In	a	different	project	(and	similar	situation),	a	JavaScript	(Re)Actor	was	produced	to	allow	
Server-Side	scripting	(in	addition	to	existing	C++	(Re)Actors).	In	this	case,	C++	outside-of-
(Re)Actor	code	was	re-used,	which	called	react()	(written	in	JavaScript)	from	within.	Pretty	
much	the	same	approach	can	be	(more	or	less	easily)	extended	to	all	the	other	
programming	languages	of	interest.	
	

																																																								
185	we	could	try	to	go	JNI	route	instead,	but	we	preferred	pure	Java	and	didn't	regret	this	
decision	

	
At	this	point,	there	was	
a	line-to-line	
translation	project	of	
outside-(Re)Actor	
infrastructure	code	into	
Java	(to	facilitate	
writing	(Re)Actors	in	
Java)	

In	both	cases,	all	the	paradigms	of	our	(Re)Actors	were	transparently	maintained	for	all	the	
(Re)Actors	across	all	the	supported	languages.	This	included	more	or	less	the	following	
things:	

• react()	was	a	single	access	point	to	our	(Re)Actor,	see	Vol.	II’s	chapter	on	(Re)Actors	
• timer	actions	were	expressed	in	terms	of	timer	messages	(though	now	I’d	probably	

prefer	same-thread	futures	or	coroutines	instead,	see	Vol.	II	for	discussion)	
• extensive	support	for	communication	was	provided,	including:	

o support	for	non-blocking	RPCs	(it	was	OO-style	same-thread	callbacks,	but	
now	I’d	probably	prefer	same-thread	futures	or	coroutines	instead,	see	Vol.	
II)	

o support	for	state	synchronization	interfaces	(see	Vol.	I’s	Chapter	on	
Communications)	with	same-thread	callbacks	

• support	for	some	of	the	recording/replay	goodies	described	in	Vol.	II’s	chapter	on	
(Re)Actors	

	

Supporting	Multiple	languages/compilers/JITs:	Is	It	Worth	the	
Trouble?	
	
The	next	obvious	question	on	the	way	to	multiple	programming	languages	is	the	following:	

Are	such	cross-language	approaches	worth	the	trouble	of	implementing	
them?	

	
Well,	as	always,	YMMV,	but	from	my	experience	the	answer	is	

Absolutely!	
	
In	such	a	multi-language	development	paradigm	(whether	(Re)Actor-based	or	not,	though	I	
prefer	(Re)Actors	for	other	reasons)	you're	no	longer	tied	to	one	programming	language.	
You	may	say	“hey,	this	is	what	CLI/Mono	(as	well	as	non-Java	compilers	into	JVM	bytecode)	
are	about!”	Right,	but	with	CLI/CLR	you're	still	tied	to	one	type	of	VM	(ok,	two	if	we're	
Windows-only).	
	

And	with	cross-language	approach	(whether	(Re)Actor-based	
or	not),	we're	no	longer	restricted	to	one	single	VM,	or	to	the	
availability	of	specific	compilers	which	compile	into	that	single	
VM.	With	cross-language	paradigm	we	can	use	the	very	best	
language/compiler	pair	for	each	specific	job	–	whether	it	is	
Lua/LuaJIT,	or	JavaScript/V8,	or	Python/PyPy,	or	
Java/HotSpotVM,	or	C++/LLVM	(note	that	none	of	these	
popular	and	very-well	performing	combinations	is	possible	
under	CLI/CLR).		
	
Another	very	practical	reason	to	keep	an	ability	to	go	cross-
language	–	is	that	in	larger	real-world	projects,	it	happens	to	be	
silly	to	restrict	your	developers	to	one	single	programming	
language	(tool,	…).	Just	one	real-world	example.	There	was	a	
game	which	used	C++	and	only	C++	for	both	Client	and	Server;	
it	was	fine	for	a	while,	until	some	point	later	a	need	arose	for	
some	additional	integration	with	3rd-parties.	It	didn’t	need	to	
be	ultra-fast	(i.e.	“stop	the	world”	didn’t	cause	any	trouble),	
and	in	fact	was	mostly	“glue”	code.	At	the	same	time	(as	it	
often	happens)	supply	of	C++	developers	in	the	city	was	pretty	
much	exhausted	(i.e.	finding	C++	developers	became	difficult).	On	the	other	hand,	finding	
Java	developers	for	this	Server-Side	subproject	was	easy	–	and	Java	did	the	job	perfectly	
well	too.186		
	
Another	example	is	when	you	need	to	have	web-based	SQL-based	reporting;	and	with	all	
due	respect	to	C++,	writing	reports	in	C++	is	a	crazy	idea	<sad-face	/>.	Having	a	separate	
team	working	in	{ASP.NET|PHP|Python+Django|…}	will	work	MUCH	better.		
	
These	two	examples	are	just	a	tip	of	a	huge	iceberg	of	real-world	cases	where	you	SHOULD	
want	to	separate	your	teams	–	and	to	give	each	team	a	choice	of	whatever-language-they-
want-to-use	(while	providing	a	way	for	them	to	communicate	with	each	other	over	well-
defined	interfaces).	Doing	otherwise,	while	possible,	will	severely	hit	you	as	soon	as	you’re	
past,	say,	30-50	developers	or	so.	
	
Of	course,	there	will	be	LOTS	of	developers	who’ll	say	“hey,	<insert-their-favorite-language-
here>	is	THE	BEST	one	for	everything	out	there”;	however,	for	each	and	every	programming	
language	there	is	a	field	where	it	is,	well,	sub-optimal	(to	put	it	mildly).	Have	you	ever	tried	
to	convince	your	Game	Designers	to	write	in	C++,	kernel	developers	to	write	in	JavaScript,	
write	a	memory-constrained	program	in	Java	or	C#,	or	a	readable	one	in	Perl?	Sure,	all	these	
things	are	possible	–	given	enough	time	that	is,	but	efforts	necessary	to	do	different	things,	
vary	significantly	from	one	language	to	another	one.	In	other	words,	yes	–	there	are	
different	horses	for	different	courses.		
	

																																																								
186	Of	course,	as	the	languages	are	not	that	different	(see	“On	Programming	Languages	as	
Such”	section	above)	-	it	is	not	that	difficult	for	Java	developers	to	learn	C++	-	but	it	is	still	
easier	not	to	do	it	<smile	/>	

	
With	cross-language	
approach	we	can	use	
the	very	best	
language/compiler	pair	
for	each	specific	job	–	
whether	it	is	
Lua/LuaJIT,	or	
JavaScript/V8,	or	
Python/PyPy,	or	
Java/HotSpotVM,	or	
C++/LLVM	

Oh,	BTW,	to	make	it	perfectly	clear	–	I	am	NOT	arguing	to	have	all	of	your	code	in	all	the	
languages	(I	am	not	that	crazy	<wink	/>);	what	I	am	arguing	for,	is	to	have	a	common	
framework	which	allows	for	interoperability	between	large	chunks	of	code	written	in	
different	languages.	Chunks	being	“large”	is	important	here:	I	am	not	speaking	about	having	
ten-line	piece	of	C	within	JavaScript;	rather	it	is	about	having	the	whole	teams	working	in	
different	languages	on	their	separate	projects	separated	by	well-defined	APIs.	
	

Supporting	Different	Programming	Languages	within	the	Same	Project	
	
Assuming	that	I've	managed	to	sell	you	the	idea	of	using	cross-language	development,	our	
next	question	is	“how	to	implement	it?”	
	
From	my	experience,	there	are	two	possible	approaches.	The	first	one	is	related	to	line-to-
line	translations	(of	the	Infrastructure	Code,	that	is);	line-to-line	translations	can	be	
implemented	in	a	pretty	much	the	same	manner	as	was	discussed	in	Vol.	IV’s	chapter	on	
Things	to	Keep	in	Mind.	I	done	it	myself	translating	50K-LoC	Infrastructure	Code	from	C++	
into	Java	line-by-line	–	and	it	worked	like	a	charm	(well,	at	least	compared	to	trying	to	do	a	
completely	separate	implementation	perfectly	compatible	over	the	wire).	
	
The	second	approach	is	to	have	some	common	denominator	(usually	C/C++)you’re	your	
Infrastructure	Code,	and	then	to	integrate	this	common	denominator	into	each	of	the	
programming	languages	you	need.	Usually,	it	is	not	that	difficult.	For	example,	you	can	have	
C++	communication	code	running	under	JNI	and	calling	your	Java	MyReActor.react()	from	
there.	Or	under	CLI,	it	is	possible	to	have	unmanaged	code	doing	pretty	much	the	same	
thing.	Or	with	LuaJIT/V8,	it	is	possible	to	have	C++	app	calling	an	appropriate	script	engine.	
	
Which	way	to	use	–	is	up	to	you;	usually	I	prefer	line-to-line	translations	(IMO	they	tend	to	
cause	less	trouble	in	the	long	run),	but	YMMV.	
	

Inter-Language	Equivalence	Testing:	Yet	Another	(Re)Actor	Replay	
Benefit	
	
Right	above	we	discussed	inter-language	porting	of	Infrastructure	Code.	However,	in	some	
cases,	you	may	also	need	to	port	a	part	of	your	(Re)Actor	code	from	one	language	to	
another	one.	It	may	happen,	for	example,	to	optimize	the	time-critical	piece	of	code,	or	
more	generally	-	to	rewrite	the	whole	thing	into	language-which-is-better-suitable-for-the-
job.	And	with	all	such	conversions,	one	of	the	biggest	problems	is	the	question	“how	we	can	
be	sure	that	the	code-in-new-language	and	the	code-in-old-language	are	strictly	
equivalent?”	
	
Fortunately,	if	you’re	using	(Re)Actors,	there	is	an	easy	way	to	test	the	code	equivalence.	
The	procedure	goes	as	follows:	

• “record”	a	big	chunk	of	inputs	and	outputs	for	(Re)Actor-being-ported	(and	running	
old	code);	“recording”	can	be	done	along	the	lines	described	in	Vol.	II’s	chapter	on	
(Re)Actors,	and	may	be	done	even	in	production.	

• “replay”	it	in	lab	on	the	new	code.	(as	described	in	Vol.	II)	

o if	the	results	are	exactly	the	same	for	old	code	and	new	code,	on	a	
sufficiently	large	chunk	of	real-world	data,	it	means	very	good	chances	that	
the	code	is	indeed	equivalent	(at	least	within	the	bounds	which	are	of	
practical	interest).	In	practice,	it	has	been	noticed	that	for	quite	a	big	game,	if	
there	is	no	bug	which	has	manifested	itself	after	the	first	four	hours	after	
new	code	deployment,	there	won't	be	any	bugs	in	Game	Logic	at	all.	Pretty	
much	the	same	applies	to	record/replay	testing.	

o if	there	is	a	non-equivalence,	it	can	be	found	very	quickly	by	simply	running	
the	same	"replay"	over	both	languages	in	debugger,	and	comparing	
corresponding	variables.	

	
Bingo!	After	this	kind	of	equivalence	testing	–	we	can	be	reasonably	confident	that	new	
version	(even	if	it	is	written	in	a	completely	different	programming	language(!))	is	indeed	
exactly	equivalent	to	the	old	one.	
	

Chapter	9	Summary	
There	are	two	hard	things	in	computer	science:	cache	invalidation,	naming	things,		

and	off-by-one	errors	
--	Unknown	author,	XXI	century	

	
Trying	to	summarize	our	enormously-long	Chapter	9	on	just	a	few	pages:	

• Two	major	deployment	architectures	for	games	are	“Web-Based”	and	“Classical”	
o With	“Web-Based”	Deployment	Architecture,	the	most	non-trivial	thing	is	

caching	(and	usually	it	should	be	write-back	caching	to	reduce	DB	load)	
§ Surprisingly,	(Re)Actors	can	be	used	for	Web-Based	Architectures	too.	

o With	“Classical”	Deployment	Architecture,	it	is	all	about	stateful	In-Memory	
processing	(and	all	kinds	of	simulations	tend	to	be	mapped	very	naturally	
there)	

§ IMNSHO,	(Re)Actors	really	shine	here	–	but	TBH,	you	still	can	get	away	
without	them	

o “Hybrid”	approach	(a.k.a.	Mixed	Stack)	is	also	possible	
• Regardless	of	specific	architecture	you	use	–	you	SHOULD	have	a	separate	DB	Server	

App,	separated	by	DB	Server	API	
§ DB	Server	API	MUST	be	expressed	in	terms	of	Game	Logic	(without	

any	SQL	in	sight)	
§ All	operations	within	your	DB	Server	API	MUST	be	inherently	atomic	

• If	you	can	have	LOTS-of-players+observers	for	a	single	Game	World	–	chances	are	
that	you	may	need	Front-End	Servers	

• If	your	game	is	fast-paced	–	Regional	Datacenters	are	likely	to	be	necessary	to	
reduce	latencies	

o When	implementing	them	–	make	sure	to	avoid	naïve	architectures	(those	
with	databases	being	completely	separated).	

• My	strongly-preferred	approach	to	DB	Server	App	is	based	on	heretical-for-any-DB-
person	(but	working	very	well	in	more-than-one-major-real-world-game)	single-
writing-DB-connection	approach	

o In	chapter	9,	it	is	only	cursory	mentioned.	Much	more	detailed	discussion	will	
follow	in	Vol.	VI’s	chapter	on	Databases	

• When	it	comes	to	MOGs,	term	“cloud”	is	badly	overloaded.	
o “Video	streaming”	a.k.a.	“pixel	streaming”	doesn’t	fly	
o “File	streaming”	is	just	dynamic	loading	of	parts	of	the	Client	–	and	will	be	

discussed	in	Vol.	V’s	chapter	on	Client	Updates	
o PaaS/SaaS	have	two	very	different	flavours:	

§ Those	with	proprietary	APIs	will	lock	you	in,	and	decision	to	use	them	
MUST	NOT	be	taken	lightly	

§ Those	PaaS/SaaS	which	have	de-facto-standard	APIs	(including	MySQL	
API	etc.)	are	merely	deployment-time	decisions	which	we	can	ignore	
for	the	time	being	

o IaaS	is	by	far	the	most	popular	cloud	service	model	out	there.		
§ We	will	likely	need	to	use	both	rented-per-month	servers,	and	cloud	

(rented-per-minute)	servers	
§ Developing	for	one	single	cloud	provider	is	rarely	a	good	idea	
§ Instead	–	we	should	develop	for	a	generic	

AllocateServer()/DeallocateServer()	API	(which	will	be	implemented	
for	a	specific	cloud	provider	closer	to	deployment	time).	

• For	Server-Side	OS	–	Linux	has	a	slight	technical	advantage	over	Windows,	though	
both	can	be	made	to	work	technically	

o Real	advantage	of	Linux	comes	in	when	we’re	take	into	account	licensing	
costs	for	hundreds	of	servers	

o Requirements	for	Game	Server	boxes	and	for	DB	Server	box	are	quite	
different	

• For	Server-Side	programming	–	unlike	with	Client-Side,	C++	is	no	longer	default	
programming	language,	but	is	rather	“one	of	several	viable	options”	

o Other	contenders	mentioned	include	Java,	Python,	C#,	and	Node.js	
§ Lua	future	is	unclear	because	of	LuaJIT	future	being	unclear.	

• It	can	easily	happen	that	different	parts	of	your	system	are	better	suited	for	different	
programming	languages	

o To	address	it	-	I	am	advocating	for	writing	different	parts	in	different	
languages	(however	–	for	early	development	stages	it	is	usually	not	a	strong	
requirement)	

§ This	requires	enabling	cross-language	coarse-grain	interactions	(as	
one	example	-	between	different	(Re)Actors	written	in	different	
programming	languages).		

	
Bibliography	
Baryshnikov,	Maksim.	n.d.	"Engineering	Decisions	Behind	World	of	Tanks	Server."	
Beardsley,	Jason.	n.d.	"Seamless	Servers:	The	Case	For	and	Against."	In	Massively	

Multiplayer	Game	Development.	
Bray,	Brandon.	n.d.	The	.NET	Framework	4.5	includes	new	garbage	collector	enhancements	

for	client	and	server	apps.	
https://blogs.msdn.microsoft.com/dotnet/2012/07/20/the-net-framework-4-5-
includes-new-garbage-collector-enhancements-for-client-and-server-apps/.	

Corbet,	Jonathan.	n.d.	"NUMA	scheduling	progress".	https://lwn.net/Articles/568870/.	

Cybersource.	n.d.	"Linux	vs	Windows.	Total	Cost	of	Ownership	Comparison".	
https://static.lwn.net/images/pdf/cybersource-tco-study.pdf.	

n.d.	DPDK.	http://dpdk.org.	
Duquette,	Patrick.	n.d.	"6.2	Implementing	a	Seamless	World	Server."	In	Game	Programming	

Gems	5.	
IDC.	n.d.	"Windows	2000	Versus	Linux	in	Enterprise	Computing".	

https://www.cetic.be/IMG/pdf/TCO.pdf.	
n.d.	Introduction	to	Receive	Side	Scaling.	https://msdn.microsoft.com/en-

us/windows/hardware/drivers/network/introduction-to-receive-side-scaling.	
Lameter,	Christoph.	n.d.	"NUMA	(Non-Uniform	Memory	Access):	An	Overview".	

https://queue.acm.org/detail.cfm?id=2513149.	
Lightstreamer.	n.d.	http://www.lightstreamer.com/.	
Ligoum,	Dmitry.	n.d.	"private	communications	with."		
n.d.	London	Stock	Exchange	gets	the	facts	and	dumps	Windows	for	Linux.	

http://www.itwire.com/opinion-and-analysis/the-linux-distillery/28359-london-
stock-exchange-gets-the-facts-and-dumps-windows-for-linux.	

n.d.	netmap	-	the	fast	packet	I/O	framework.	http://info.iet.unipi.it/~luigi/netmap/.	
n.d.	New	techniques	to	develop	low-latency	network	apps.	

https://channel9.msdn.com/Events/Build/BUILD2011/SAC-593T.	
'No	Bugs'	Hare.	n.d.	"Memory	Leaks	and	Memory	Leaks".	http://ithare.com/memory-leaks-

and-memory-leaks/.	
Noyes,	Katherine.	n.d.	"Five	Reasons	Linux	Beats	Windows	for	Servers".	

http://www.pcworld.com/article/204423/why_linux_beats_windows_for_servers.ht
ml.	

n.d.	Predicting	the	Performance	of	Virtual	Machine	Migration.	
https://www.cl.cam.ac.uk/~sa497/akoush-mascots10.pdf.	

Redis.CAS.	n.d.	http://redis.io/topics/transactions#cas.	
RFG.	n.d.	"TCO	for	Application	Servers:	Comparing	Linux	with	Windows	and	Solaris".	

http://www-
03.ibm.com/linux/whitepapers/robertFrancesGroupLinuxTCOAnalysis05.pdf.	

n.d.	Scaling	in	the	Linux	Networking	Stack.	
https://www.kernel.org/doc/Documentation/networking/scaling.txt.	

StackOverflow.C#LambdaLoop.	n.d.	"Captured	variable	in	a	loop	in	C#"	
where="StackOverflow".	http://stackoverflow.com/questions/271440/captured-
variable-in-a-loop-in-c-sharp.	

StackOverflow.PythonLambdaLoop.	n.d.	"What	do	(lambda)	function	closures	capture	in	
Python?".	http://stackoverflow.com/questions/2295290/what-do-lambda-function-
closures-capture-in-python.	

Steen	Larsen,	Parthasarathy	Sarangam,	Ram	Huggahalli.	n.d.	"Architectural	Breakdown	of	
End-to-End	Latency	in	a	TCP/IP	Network."	

Zubek,	Robert.	n.d.	"Engineering	Scalable	Social	Games".	
http://gdcvault.com/play/1012230/Engineering-Scalable-Social.	

—.	n.d.	"Private	communications	with".		
	
	 	

Copyright	©	ITHare.com	Website	GmbH,	2015-2017	

Chapter	10.	Fault	Tolerance	
	

Anything	that	can	go	wrong	will	go	wrong.	
--	Murphy’s	Law	

	
When	speaking	about	business-critical	systems	(and	our	game	certainly	qualifies	as	such),	
one	all-important	question	which	you’d	better	have	an	answer	
to,	is	the	following:	“What	will	happen	if	some	piece	of	
hardware	(or	software)	fails	badly?”	Of	course,	within	the	
scope	of	this	book	we	won’t	be	able	to	do	a	formal	full-scale	
FMEA	for	an	underspecified	architecture,	but	at	least	we’ll	be	
able	to	give	some	hints	with	regards	to	“how	to	build	
architecture	which	is	able	to	withstand	failures?”	
	

On	SPOFs	vs	MTBFs	
	
Most	of	the	time,	whenever	speaking	about	Fault	Tolerance,	we	can	hear	analysis	in	terms	
of	SPOFs	(=”Single	Points	of	Failure”).	While	SPOF-based	analysis	is	all	fine	and	dandy,	way	
too	often	it	devolves	into	something	like	[TODO:	dunce]“hey,	this	system	has	a	SPOF,	so	it	
MUST	be	worse	than	this	system	without	a	SPOF”.	This	statement	is	not	only	horribly	
wrong,187	but	relying	on	it	has	probably	caused	more	failures	than	any-other-misconception-
about-Fault-Tolerance.	
	

MTBF	is	the	ONLY	thing	which	matters	
	
Instead,	when	speaking	about	Fault	Tolerance,	the	only	thing	we	
actually	care	about,	is	“how	often	our	system	fails”;	in	other	
words	–		
it	doesn’t	really	matter	whether	we	really	have	a	SPOF	
–	as	long	as	overall	system	reliability	(measured	as	

MTBF)	is	higher	than	alternatives.	
	
Overall,	having	a	SPOF	is	known	to	be	not	that	bad,	as	long	as	
SPOF	is	very	simple	and	its	chances	to	fail	are	extremely	low.	Just	
as	one	example	–		Really	Fault-Tolerant	hardware-based	boxes	such	as	Stratus	and	NonStop,	
when	dealing	with	potential	CPU	failures,	simply	run	several188	CPUs	in	parallel	and	compare	
their	outputs	(to	determine	whether	one	of	CPUs	has	failed);	on	the	other	hand	–	with	such	

																																																								
187	Actually	–	it	is	even	wrong	in	theory,	especially	if	we	take	all	the	things	into	account,	
more	on	it	in	[[TODO]]	section	below	
188	usually	–	four,	but	this	discussion	goes	beyond	the	scope	of	this	book	

FMEA	
https://en.wikipedia.org/wiki/Failure_mode_and_effects_
analysis	

Failure	mode	and	
effects	analysis	(FMEA)	
was	one	of	the	first	
systematic	techniques	
for	failure	analysis.	

MTBF	
https://en.wikipedia.org/wiki/Mean_time_between_failur
es	

Mean	time	between	
failures	(MTBF)	is	the	
predicted	elapsed	time	
between	inherent	
failures	of	a	system	
during	operation	

an	approach,	the	comparator	itself	is	actually	a	SPOF;	it	is	just	that	it	is	so	simple	and	fails	so	
rarely	(at	least	compared	to	failure	rates	of	CPUs),	that	a	question	of	comparator’s	failure	
can	be	ignored	for	all	the	practical	purposes.189		
	
As	a	very	practical	result	–	
Whenever	somebody190	tells	you	“this	system	is	better	because	it	has	fewer	

SPOFS”	–	make	sure	to	ask	“but	what	about	real-world	MTBFs?”	
Note	that	“real-world”	is	very	important	here,	as	theoretical	analysis	of	redundant	systems	
tends	to	provide	MTBFs	which	are	way-too-good-to-be-true.	An	especially	common	mistake	
in	this	regard	is	assuming	certain	events	to	be	independent	while	they’re	actually	not;	the	
most	devastating	result	of	such	a	mistake	I	know,	wasn’t	from	computers,	but	from	aviation:	
for	a	DC-10	plane,	they	theoretically	calculated	that	the	odds	against	all	three	hydraulic	
systems	failing	simultaneously	are	as	high	as	a	billion	to	one	
[https://en.wikipedia.org/wiki/United_Airlines_Flight_232];	however	–	as	it	has	been	seen	
on	an	unfortunate	UA	flight	232,	all	the	hydraulic	systems	were	located	close	enough	to	be	
hit	by	debris	coming	from	one	single	uncontained	failure	of	the	engine.	As	for	computer-
related	MTBFs	of	redundant	systems	being	estimated	too	high	–	we’ll	see	it	below.	
	

Adding	Fault	Tolerance	Can	Make	Your	MTBF	Worse	
	
Now,	armed	with	this	all-important	observation,	let’s	take	a	closer	look	at	these	MTBF	
numbers	(and	apply	them	to	the	real-world	server-based	system).	Let’s	consider	a	system	
which	can	be	run	using	one	4S/4U	Server	Box	for	its	OLTP	DB;	as	we’ll	see	in	[[TODO]]	
section	below	–	4S/4U	box	is	often	enough	to	run	up	to	several	hundred	thousand	of	the	
players,	so	such	as	scenario	is	highly	practical.		
	
From	what	I’ve	seen,	your	usual	4U/4S	box	has	an	MTBF	of	about	“one	failure	in	10	years”	
(that	is,	if	we	monitor	and	repair	partial	failures	such	as	disk	failures,	power	source	failures,	
fan	failures,	etc.);	this	is	more	or	less	consistent	with	MTBF	of	45000	hours	(~5	years)	for	a	
comparable	server	discussed	in	(Determining	the	Availability	and	Reliability	of	Storage	
Configurations	n.d.).191		
	
It	means	that	if	we’ll	run	our	database	from	such	a	single	4U/4S	box,	it	will	fail	once	per	5-10	
years	even	without	any	Fault	Tolerance.	And	for	certain	of	your	servers	(such	as	DB	Server)	
this	is	exactly	what	I’m	usually	suggesting	to	do	(unless	you	really	need	Fault	Tolerance,	such	
as	for	stock	exchanges).	The	reason	for	this	suggestion	is	three-fold:	

• First,	for	most	of	the	games	out	there	–	MTBF	of	5-10	years	qualifies	as	“good	
enough”	

o NB:	to	account	for	this	potential	failure,	we	still	need	to	run	an	“async	
replica”	(or	at	least	to	ship	DB	logs	in	real-time	to	a	different	box)	so	we	have	

																																																								
189	at	some	point,	Stratus	was	boasting	that	80%	of	all	the	nuclear	attack	warnings	go	via	
Stratus	boxes;	IMO,	it	does	qualify	as	“good	enough”	for	pretty-much-any-other-use-too.	
190	Especially	a	salesman	
191	Note	that	for	2S/1U	servers	MTBF	is	usually	significantly	lower,	but	still	in	the	range	of	3	
years	or	so	

a	copy	which	is	usually	only	a	few	seconds	/	minutes	behind.	While	recovery	
from	such	a	scenario	will	still	be	a	pretty	big	headache	–	if	happening	once	
per	10	years192,	it	won’t	be	too	bad.	

• Second	–	trying	to	eliminate	single	points	of	failure	in	such	a	system	will	bring	in	
additional	systems	with	additional	complexity,	and	MTBF	of	failure	of	such	additional	
systems	(especially	software-based	ones,	and	Gates	forbid,	driver-based	ones)	is	
usually	significantly	lower	than	these	5-10	years.	As	a	result,	instead	of	decreasing	
chances	of	failure,	adding	fault	tolerance	will	INCREASE	them.	

o I	cannot	even	count	how	many	times	I’ve	heard	
the	dreaded	phrase	of	“our	system	has	failed	
because	of	misconfigured	failover	scripts“.	
Moreover,	at	least	in	half	of	such	cases	more	
detailed	investigation	reveals	that	failover	
wasn’t	caused	by	a	real	hardware	failure	–	but	
rather	by	misusing	failover	for	other	purposes	
(testing/maintenance),	or	by	a	failure	of	fault	
detection	mechanisms	(see	also	“Fault	
Tolerance	–	on	Failure	Detection”	section	
below).		

• Third	–	to	have	a	really	Fault	Tolerant	DB	Server,	we’ll	
inevitably	need	to	have	some	synchronous	exchanges	
between	two	server	boxes	(for	example,	some	kind	of	
synchronous	replication).	And	any	kind	of	synchronous	stuff	can	easily	lead	to	very	
unexpected	unnecessary	system	failures.	Just	one	real-world	example:	

o Once	upon	a	time,	I’ve	seen	a	RAID	HDD	failing	in	a	strange	way	–	it	didn’t	
really	fail	(and	didn’t	even	report	predicted	failure),	but	slowed	down	10x	or	
so.	As	such,	neither	RAID	nor	any	other	fault-tolerant	subsystem	was	able	to	
say	that	HDD	has	failed;	on	the	other	hand	–	the	whole	system	was	slowed	to	
the	point	when	it	was	utterly	unable	to	handle	the	load	(so	it	effectively	was	
a	system	downtime).	Worse	–	in	a	synchronous	Fault	Tolerant	configuration,	
chance	of	downtimes	due	to	such	failures	is	DOUBLED	compared	to	a	non-
Fault-Tolerant	ones	<sad-face	/>.	This,	in	turn,	leads	to	lower	MTBFs	of	the	
whole	system	–	exactly	due	to	introducing	supposed	Fault	Tolerance	(!).		

	
BTW,	to	be	perfectly	clear:	I	am	NOT	arguing	that	Fault	Tolerance	is	always	bad;	instead	–	I	
am	saying	that	depending	on	specifics	(and	especially	if	applied	in	a	careless	way	under	the	
premise	of	“hey,	smart	guys	will	do	it	for	us”),	adding	Fault	Tolerance	might	lead	to	a	
significant	decrease	in	overall	system	reliability	(such	as	significantly	lowered	MTBFs).	
	

On	MTBFs	of	redundant	systems	
	
My	observations/calculations	above	look	counter-intuitive,	and	before	relying	on	them,	we	
have	to	be	100%	sure	they’re	solid	–	so	let’s	do	a	bit	of	math.	After	all,	intuitively,	when	
speaking	about	adding	redundancy	to	a	system,	we	expect	the	end-result	to	be	better	

																																																								
192	actually,	less	frequently,	as	most	of	the	real-world	failures	will	leave	your	data	intact	

	
instead	of	decreasing	
chances	of	failure,	
adding	fault	tolerance	
will	INCREASE	them	L	

(actually	–	MUCH	better)	than	that	of	non-redundant	system.	Let’s	see	whether	such	an	
expectation	is	that	universal	as	it	seems	to	be.	
	
Let’s	consider	a	redundant	system	Z	consisting	of	2	redundant	components	X	and	Y.	Now	we	
need	to	introduce	MDT	(=“Mean	Down	Time”),	which	is	the	mean	time	between	the	
component	going	down	and	it	being	brought	back	to	operation;	MDT	is	usually	measured	in	
hours	and	usually	ranges	from	8	hours	to	several	days.193		
	
Let’s	note	that	the	maths	below,	while	perfectly	common	and	accepted	(see,	for	example,	
Chapter	8	in	[TODO:	Smith])	is	using	quite	a	few	implicit	assumptions.	In	particular,	it	
assumes	that	(a)	MDTs	are	negligible	compared	to	MTBFs,	and	(b)	that	failure	probabilities	
(inverse	of	MTBFs)	can	be	added	together	(i.e.	that	failure	probabilities	are	small	enough	to	
say	that	non-linear	effects	when	adding	probabilities,	are	negligible).	
	
Note	that	both	these	assumptions,	while	potentially	confusing,	do	stand	in	most	real-world	
situations.	What	we’ll	be	concentrating	on	is	a	different	implicit	assumption	–	the	one	which	
doesn’t	usually	stand	<sad-face	/>.	
	
//WARNING:	INVALID	IMPLICIT	ASSUMPTION	AHEAD	
	
At	this	point,	it	is	common	to	assume	(erroneously!	See	below)	that	redundant	system	Z	will	
fail	if	and	only	if	one	of	the	following	scenarios	happen:	(a)	after	component	X	fails,	
component	Y	will	fail	within	MDTx	(i.e.	while	component	X	is	still	being	repaired);	or	(b)	
after	component	Y	fails,	component	X	will	fail	within	MDTy	(i.e.	while	component	Y	is	still	
being	repaired).	The	probability	of	such	a	failure	of	component	Y	within	the	MDTx,	assuming	
that	MTBFs	are	large,	and	MDTs	are	relatively	small	compared	to	MTBFs,	is	
	
Pyx	=	1/MTBFy	*	MDTx	
	
NB:	relying	on	assumption	(a)	above	
	
It	(still	erroneously)	means	that	MTBFz	can	be	calculated	as	
	
MTBFzincorrect	
=	1	/	(1	/	MTBFx	*	Pyx	+	1	/	MTBFy	*	Pyx)	
=	1	/	(1	/	MTBFx	*	1/MTBFy	*	MDTx	+	1	/	MTBFy	*	1/MTBFx	*	MDTy)	
=	MTBFx	*	MTBFy	/	(MDTx	+	MDTy)	
	
NB:	relying	on	assumption	(b)	above	
	
//END	OF	INVALID	IMPLICIT	ASSUMPTION	
	

																																																								
193	Note	that	MTTR	(=”Mean	Time	To	Repair”),	while	closely	related	to	MDT,	doesn’t	
normally	include	such	things	as	‘How	to	get	the	replacement	part	from	supplier	to	your	
datacenter’	–	and	so	is	not	directly	usable	for	our	MTBF	analysis.	

It	looks	all	grand	and	dandy	(and	with	typical	MTBFs	of	3–5	years	and	MDTs	being	maximum	
3–5	days,	we’d	have	an	MTBFzincorrect	of	thousands	of	years	–	wow!)	–		
until	we	notice	that	there	is	one	thing	which	is	utterly	unaccounted	for	in	the	

formula	above:	it	is	the	MTBF	of	the	redundancy	system	itself.		
Let’s	name	it	MTBFr.	
	
Practically,	MTBFr	needs	to	cover	all	the	components	which	form	the	redundancy	system	
itself.	Just	one	example:	if	our	system	uses	a	‘heartbeat’	Ethernet	cable	between	two	nodes	
to	detect	failure	of	the	other	node,	then	failure	of	this	cable	is	likely	to	lead	to	all	kinds	of	
trouble	(including	extremely	disastrous	‘split-brain’	failures),	and	so	it	needs	to	be	
accounted	for	in	MTBFr.	In	a	similar	manner,	network	cards	(and	their	respective	drivers(!))	
serving	this	‘heartbeat’	cable,	also	need	to	be	included	into	MTBFr.	Moreover,	if	this	cable	
and	NICs	are	made	redundant	(which	would	be	quite	unusual,	but	is	certainly	doable),	they	
will	still	have	their	respective	MTBFr,	and	moreover	there	will	be	some	kind	of	software	(or,	
Linus	forbid,	drivers)	handling	this	redundancy,	which	will	also	have	its	own	MTBFr.	And	so	
on,	and	so	forth.	
	
With	MTBFr	in	mind	(and	realizing	that	whenever	redundancy	system	itself	fails	–	the	whole	
thing	will	fail	too)	–	MTBFzcorrect	can	be	written	as	
	
MTBFzcorrect	=	1	/	(1/	MTBFzincorrect	+	1/	MTBFr).	(*)	
	
How	large	your	MTBFr	is	depends,	but	I	can	assure	you	that	for	the	vast	majority	of	real-
world	cases,	it	will	be	much	smaller	than	those	hyper-optimistic	‘thousands	of	years’.	
	
And	in	practice	(and	especially	whenever	redundancy	is	implemented	in	drivers	–	more	on	it	
below),	MTBFr	can	be	easily	much	smaller	than	MTBFx.	For	example,	if	MTBFr	is	1	month	
(BTW,	it	is	not	a	joke,	I’ve	seen	quite	a	few	redundancy	systems	which	exhibited	less-than-a-
week	MTBFs	under	serious	loads)	while	having	MTBFx	at	3–5	years	–	the	formula	(*)	will	
show	that	MTBFzcorrect	is	30x-50x	smaller	than	original	non-redundant	MTBFx.	
	
I	rest	my	case.	
	

A	Real-World	Story	
	
To	complement	theory	with	practice,	a	real-world	story.	Once	upon	a	time,	there	was	a	
game	with	hundreds	of	thousands	of	players.	And	a	pre-IPO	technical	auditor	has	come	to	
analyse	it.	At	some	point,	he	asked	about	the	downtime	numbers,	and	was	surprised	how	
low	they	were	(“how	you	guys	can	possibly	have	downtimes	which	are	5x-10x	rarer	than	the	
rest	of	the	industry?”);	after	all	the	necessary	logs	were	presented	–	he	had	to	accept	it.	A	
half	an	hour	later,	looking	at	the	deployment	diagrams,	he	asked	“hey	guys,	why	don’t	you	

use	clusters?”	–	and	the	answer	was	“that’s	because	we	want	to	have	those	downtimes	
which	are	5x-10x	lower	than	the	rest	of	the	industry”.194		
	
I	tend	to	attribute	these	real-world	effects	exactly	to	the	balance	of	(a)	very	high	single-
server	MTBF	to	start	with;	and	(b)	low	MTBFs	of	software-	and	especially	driver-based	fault-
tolerant	solutions.		
	

Hardware	Fault	Tolerance	is-much-better-than	
Software	Fault	Tolerance	is-much-better-than	Driver-
Based	Fault	Tolerance	
	
I	have	already	bashed	software-	and	driver-based	fault	
tolerance	quite	a	few	times	above,	so	now	let’s	make	it	very	
official:		
IMNSHO,	as	a	Big	Fat	Rule	of	Thumb™,	Driver-Based	

Fault	Tolerance	is	a	DUD.	
	
Let’s	discuss	different	implementations	of	Fault	Tolerance	in	more	detail	–	and	see	how	they	
usually	fare	in	the	real	world:		

• Hardware-Based	Fault	Tolerance	usually	works.	This	includes	things	such	as	HP	
NonStop	or	Stratus;	also	fault-tolerant	hardware	boxes	(such	as	reduntant	switch	or	
router)	MAY	work	too.	

o NB:	even	if	such	solutions	are	using	their	own	drivers	–	they	still	MIGHT	
work.195		

• Software-Based	Fault	Tolerance	MAY	work.	This	includes	both	app-level	solutions	
(such	as	HAProxy,	though	see	some	reservations	about	it	below)	and	OS-level	
solutions	including	OS-level	hardware-independent	drivers	–	though	see	below	re.	
hardware-specific	drivers.		

o Still,	Software-Based	Fault	Tolerance	(especially	the	one	which	is	NOT	
integrated	with	your	app	and	does	things	“automagically”	behind	the	scenes)	
carries	a	huge	risk	of	dreaded	“misconfigured	failover	scripts”	(which,	from	
my	experience,	are	responsible	for	over	50%	of	all	the	system	failures).	

• Fault	Tolerance	based	on	Hardware-Specific	Drivers.	By	far	the	worst	thing	which	
can	happen	with	your	Supposedly-Fault-Tolerant	system	–	is	if	it	uses	some	
hardware-specific	drivers	allowing	your	stock	OS	to	interact	with	their	custom	
hardware.	From	what	I’ve	seen	–	such	things	tend	to	cause	much	more	trouble	than	
working	without	them.		

o A	few	real-world	examples:	
																																																								
194	of	course,	lack	of	clusters	wasn’t	the	only	reason	for	having	such	low	downtimes;	in	
particular,	I’m	sure	that	using	(Re)Actors	(as	discussed	in	Vol.	II’s	chapter	on	(Re)Actors)	
were	also	a	very	significant	contributing	factor	
195	as	we’ll	see	below	for	Drivers,	it	is	interaction	between	two	very	different	parts	(OS	and	
hardware)	which	tends	to	kill	their	reliability;	when	you	have	your-own-hardware	with	your-
own-OS	–	it	MIGHT	NOT	apply	

DUD	
http://dictionary.cambridge.org/dictionary/english/dud	

something	that	has	
no	value	or	that	does	
not	work	

§ Once	upon	a	time,	one	of	the	best-known	(and	best-working)	
manufacturers,	Stratus,	has	tried	to	create	a	much-cheaper	
alternative	making	two	Windows	boxes	redundant	(it	was	known	as	
Stratus	RADIO);	I’ve	seen	one	of	the	first	such	boxes	as	a	part	of	their	
“beta”	program.	When	we	tried	to	load	it	-	after	merely	half	an	hour	
of	running	it	under	a	load,	it	went	to	infamous	Blue	Screen	of	Death,	
with	a	failure	in	one	of	those	custom	drivers	used	to	make	things	
redundant.	Apparently,	the	problems	were	that	bad,	that	Stratus	has	
completely	abandoned	this	effort	before	even	releasing	RADIO	to	
production.	

§ At	some	point,	we	were	playing	with	a	RAID	card	where	most	of	the	
RAID	was	actually	implemented	as	a	part	of	their	custom	driver.	Guess	
what	–	after	a	few	months,	we	found	that	some	of	the	data	on	that	
RAID	is	corrupted	<ouch	and	double-ouch!	/>.196		

§ Just	recently,	I’ve	seen	The	Ultimate	Nightmare™	of	all	the	
communication	failures	–	massive	data	corruption	observed	at	TCP	
level;	ironically,	it	was	caused	by	redundancy	drivers	for	NIC	<sigh	/>.	

o The	reason	behind	this	all-important	observation	is	simple	and	well-known:	it	
is	just	that	99%	of	hardware	guys	are	usually	not	too	skilled	in	writing	drivers.	
Or,	without	making	is	seem	that	I	blame	them197	–	writing	a	hardware	driver	
requires	knowing	BOTH	intimate	knowledge	of	the	hardware,	AND	intimate	
knowledge	of	the	dark	art	of	writing-drivers-for-specific	OS;	not	only	that	
people	with	knowing	BOTH	these	things	are	very	scarce,	but	also	even	for	
such	people	thinking	of	BOTH	these	things	at	the	same	time	is	very	likely	to	
push	them	over	7+-2	cognitive	limit,	usually	with	devastating	results.	

	
Actually,	the	situation	with	driver-based	Fault	Tolerance	is	that	bad,	that	by	default	(i.e.	
without	any	credible	3rd-party	data	showing	that	this-particular-driver-based-Fault-
Tolerance	system	DOES	work	for	several	years	in	a	real-world	without	causing	too	much	
trouble)	I’d	advice	to	

Stay	Clear	from	Driver-Based	Fault	Tolerance.	
	
From	my	experience:	

• More	often	than	not,	it	is	better	to	stay	without	Fault	Tolerance	at	all	(relying	on	
MTBFs	being	high	enough),	rather	than	to	use	Driver-Based	Fault	Tolerance.	

• If/when	the	hardware	failures	become	a	problem	–	it	is	almost-universally	better	to	
use	(or	implement-your-own)	Software-Based	Fault	Tolerance	rather	than	relying	on	
a	3rd-party	Driver-Based	one.	

	

Communication	Failures	
	

																																																								
196	Later,	it	was	confirmed	that	it	was	a	bug	in	the	driver,	and	a	fix	was	released.	Too	little,	
too	late…	
197	Actually,	I	deeply	sympathise	with	their	predicament	

Now,	let’s	see	what	can	possibly	go	wrong	within	our	deployment	architecture	(such	as	one	
of	the	architectures	discussed	in	Chapter	9)?	First	of	all,	there	are	switches	(or	even	
routers/firewalls)	residing	between	our	servers;	while	they’re	not	shown	on	our	diagrams	in	
Chapter	9,	but	they	still	exist	(see	Vol.	VII’s	chapter	on	Preparing	for	Launch	for	further	
discussion	on	them).	
	
While	these	network-level	boxes	can	(and	often	SHOULD)	be	made	redundant,	even	in	this	
case	their	failures	(as	well	as	transient	software	failures	of	the	network	stack	on	hosts)	may	
easily	cause	occasional	packet	loss;	worse	than	that	–	some	of	these	failures	also	may	cause	
TCP	disconnects	on	inter-server	connections.	Even	worse	–	we	have	to	keep	in	mind	that	
TCP	does	not	provide	any	reliable	guarantees	of	the	stream	being	non-corrupted;198	what	
we	have	to	do	to	ensure	stream	integrity	–	is	to	use	crypto-level	checksums	(at	least	128-bit	
ones),	and	if	the	checksum	is	broken,	we	won’t	have	any	other	options	than	to	drop-and-
reestablish	offending	TCP	stream	ourselves.		
	

Recovery	from	Channel	Failures	
	
While	saving	for	such	hardware-or-driver	failures,	TCP	disconnects	for	Server-to-Server	
communications	will	be	almost-non-existent	(that	is,	as	long	as	we’re	staying	within	one	
single	datacenter)	-	but	hardware	and	especially	driver	failures	are	generally	bad	enough	to	
account	for	them	(BTW,	as	soon	as	we	do	it	–	according	to	Murphy’s	Law	the	chances	of	
such	failures	go	down	<wink	/>;	still	–	it	is	a	good	insurance-like	tradeoff).		
	
To	deal	with	communication	failures,	our	Server-to-Server	protocols	need	to	account	for	a	
potential	channel	loss	(such	as	a	TCP	channel	loss)	and	allow	for	guaranteed	recovery	after	
the	channel	is	restored.	In	Vol.	I’s	chapter	on	Communications,	we’ve	already	discussed	
some	Server-to-Server	protocols	which	allow	to	recover	from	transient	failures	–	and	these	
can	(and	SHOULD)	be	used	for	Server-2-Server	communications.	Very	briefly,	
implementation-wise	we	have	to:	

• Whenever	the	channel	is	lost	–	re-establish	it	
• ensure	re-sending	on	the	sending	side	whenever-channel-is-lost-and-re-established.	
• eliminate	duplicates	on	the	receiving	side.	

As	a	whole	–	it	will	guarantee	us	exactly-once	delivery	for	each	of	the	messages,	and	if	our	
mechanics	also	guarantee	preservation	of	the	message	ordering	-	it	will	become	
indistinguishable	from	the	normal	work	(i.e.	where	the	channel	has	never	been	lost).		
	
Of	course,	Server-2-Server	channels	loss	being	undetectable	is	the	Holy	Grail™	of	the	Fault	
Tolerance	–	so	if	we	do	care	about	fault	tolerance,	we	certainly	should	go	this	way.	One	
word	of	caution	though	–	we	need	to	keep	in	mind	that	with	an	active	channel	loss	
detection,	such	a	loss	will	be	“indistinguishable”/”undetectable”	only	as	long	as	we	don’t	
speak	about	delays	(in	other	words,	channel	loss	will	lead	to	delays,	we	just	need	to	make	
sure	they’re	not	too	bad);	still,	such	infrastructure-level	recovery	of	transient	failures	tends	
to	be	a	huge	improvement	compared	to	dealing	with	it	ad-hoc	at	app	level:	with	

																																																								
198	see	also	above	re.	my	recent	experience	with	a	redundancy-driver-induced	failure	of	the	
TCP	stream	

infrastructure-level	recovery,	at	least	we	shouldn’t	care	about	“what	to	do	if	the	message	
got	lost/TCP	channel	got	broken”	at	app-level	<phew	/>.	
	
Speaking	of	delays	(and	keeping	them	at	bay):	one	nasty	thing	which	can	happen	to	
connectivity	–	is	“hanged”	TCP	connections;	these	may	be	detected	(by	both	sides	of	
communication)	by	some	of	keep-alive	techniques	(application-level	and/or	TCP-level)	
which	will	be	discussed	in	Vol.	IV’s	chapter	on	Network	Programming;	what	is	important	for	
us	now,	is	that	regardless	of	the	specific	mechanism	used	to	detect	“hanged”	connection,	
the	only	thing	we	can	meaningfully	do	whenever	we	detect	that	the	connection	has	
“hanged”	–	is	to	abort	it	and	re-establish,	so	all	the	mechanics	mentioned	above	is	still	
necessary.	
	

Implementing	Redundant	Channels	
	
The	next	question	we’ll	have,	is	“how	to	make	sure	that	if	Ethernet	switch	fails,	we	still	have	
our	system	working?“	For	a	long	time,	in	this	regard,	I	was	tacitly	agreeing	with	a	common	
approach	of	“hey,	it	is	not	a	developer’s	problem,	let	admins	handle	it	for	us”;	unfortunately	
–	while	redundancy	at	the	switch	level	does	work	good	enough,	at	host	level	it	is	universally	
implemented	by	hardware-specific	drivers	–	which	has	been	seen	to	cause	all	kinds	of	
trouble,	from	kernel	panics	to	corrupted	data	<sad-face	/>.	
	
As	a	result	–	I	am	currently	arguing	for	a	DIY-style	connectivity	redundancy,	along	the	
following	lines:	

• there	are	two	separate	networks	to	connect	your	Server	Boxes	(in	addition	to	any	
out-of-band	management	network).	Each	of	these	networks	has	its	own	switch	
(completely	isolated	from	another	one),	and	its	own	range	of	IP	addresses	(such	as	
one	having	10.0.x.x	and	another	one	having	10.1.x.x).	

• each	server	has	two	separate	NICs	–	one	for	each	network	(and	each	with	its	own	IP	
address)	

• every	Server-2-Server	connection	is	actually	implemented	as	two	TCP	connections,199	
one	going	via	10.0.x.x,	and	another	one	–	via	10.1.x.x.	

• each	message	is	sent	over	both	these	TCP	connections.	On	the	receiving	side	–	it	the	
first	message	arriving	which	wins	(with	duplicates	eliminated	in	a	manner	similar	to	
those	Server-2-Server	transient	failure	protocols	discussed	in	Vol.	I’s	chapter	on	
Communications).	

That’s	it.	With	this	approach,	we	do	have	perfect	redundancy	(including	–	and	without	
those-ever-failing-drivers	too	<phew	/>.	
	

																																																								
199	+encryption-level	checksum	at	least	to	provide	acceptable	level	of	integrity	for	in-transit	
data	

Game	Server	Failures	
	
Of	course,	in	addition	to	communication	failures,	any	of	the	
servers	can	go	badly	wrong.	However,	ways	of	handing	Game	
Server	failures	and	DB	Server	failures	tend	to	be	rather	
different.	Let’s	start	our	analysis	with	catastrophic	failures	of	
our	Game	Servers;	as	we	are	likely	to	have	dozens	(if	not	
hundreds)	of	Game	Servers	–	chances	are	that	they	will	fail	
MUCH	more	frequently	than	just	a	few	of	our	DB	Servers.	
	
There	are	tons	of	solutions	out	there	claiming	to	address	this	
kind	of	failures;	however,	we	should	keep	in	mind	that	as	a	rule	
of	thumb,	the	stuff	marketed	as	“High	Availability”,	doesn’t	
help	to	preserve	in-memory	state:	what	you	need	if	you	want	
to	avoid	losing	in-memory	state,	is	“Fault-Tolerant”	techniques	
(see	also	“Server	Fault	Tolerance:	King	is	Dead,	Long	Live	the	
King!”	section	below).200	
	
Fortunately,	though,	for	a	reasonably	good	hardware	(the	one	
which	has	a	reasonably	good	hardware	monitoring,	including	
fans,	and	at	least	having	ECC	and	RAID,	see	Vol.	VII’s	chapter	on	Preparing	to	Deployment	
for	more	discussion	on	it),	such	fatal	server	failures	are	extremely	rare.	From	my	experience	
(and	more	or	less	consistently	with	manufacturer	estimates),	failure	rate	for	reasonably	
good	server	boxes	(such	as	those	from	one	of	Big	Three	major	server	vendors)	is	somewhere	
between	“once-per-5-years”	and	“once-per-10-years”,	so	if	you’d	have	only	one	such	server	
(and	unless	your	game	is	a	stock	exchange),	you’d	be	pretty	much	able	to	ignore	this	
problem	entirely.		
	
However,	if	you	have	100	servers	–	the	failure	rate	goes	up	to	“once	or	twice	a	month”,	
which	is	unacceptable	if	such	a	failure	leads	to	the	whole	site	going	down.	
	
Therefore,	at	the	very	least	you	should	plan	to	make	sure	that	single	failure	of	the	single	
server	doesn’t	bring	your	whole	site	down.	BTW,	most	of	the	time	it	will	be	a	Game	World	
Server	going	down,	as	you’re	likely	to	have	much	more	of	these	than	the	other	servers,	so	at	
first	stages	you	may	concentrate	on	containment	of	Game	World	server	failures	(rather	on	
bulletproof	prevention	of	all	the	failures).		
		

Containment	of	Game	World	Server	failures	
	

																																																								
200	on	the	other	hand,	IF	your	architecture	has	your	Game	Servers	are	stateless	(or	at	least	
their	state	can	be	recovered;	this	includes	Stateless-App-with-in-Memory-Write-Back-Cache	
and	Disposable-Stateful-Apps	discussed	in	Chapter	8)	–	we	CAN	use	more	conventional	(and	
easier-to-achieve)	High	Availability	for	our	Game	Servers	(though	NOT	for	Write-Back	
Caches	if	there	are	any).	

	
Note	that	the	stuff	
marked	as	'High	
Availability',	usually	
doesn't	help	to	
preserve	in-memory	
state:	what	we	need	to	
avoid	losing	in-memory	
state,	is	'Fault-Tolerant'	
techniques.	

The	very	first	(and	rather	obvious)	technique	to	minimize	
(though	not	to	eliminate)	the	impact	of	your	Game	World	
server	failure	on	your	whole	game	site,	is	to	make	sure	that	
your	Game	World	Server	reports	relevant	changes	(without	
sending	the	whole	state)	to	DB	Server	as	soon	as	they	occur.	As	
a	result,	if	Game	World	Server	fails,	it	can	be	restarted	from	
scratch,	losing	all	the	changes	since	last	save-to-DB,	but	at	least	
preserving	previous	results.		
	
This	much	is	more	or	less	obvious,	but	now	there	is	a	less	
obvious	part:	these	saves-to-DB	are	the	best	to	be	done	at	
some	naturally	arising	points	within	your	game	flow.	
	
For	example,	if	your	game	is	essentially	a	Starcraft-	or	Titanfall-
like	sequence	of	matches,	then	the	end	of	each	match	
represents	a	very	natural	save-to-DB	point.	In	other	words,	if	
Game	World	server	fails	within	the	match	–	all	the	match	data	will	be	lost,	but	all	the	player	
standings	will	be	naturally	restored	as	of	beginning	of	the	match,	which	isn’t	too	bad.	In	
another	example,	for	a	casino-like	game	the	end	of	each	“hand”	also	represents	the	natural	
save-to-DB	point.	
	
If	your	gameplay	is	an	MMORPG	with	continuous	gameplay,	then	you	need	to	find	a	way	to	
save-to-DB	all	the	major	changes	of	the	players’	stats	(such	as	“level	has	been	gained”,	or	
“artifact	has	changed	hands”).	Then,	if	the	Game	Server	crashes,	you	may	lose	the	current	
positions	of	PCs	within	the	world	and	a	few	hundred	XP	per	player,	but	players	will	still	keep	
all	their	important	stats,	achievements,	and	artifacts	preserved.		
	
In	general	–	you	should	save	to	DB	at	least	end	of	each	of	the	Game	Events	(more	on	Game	
Events	in	discussion	on	‘No	Bugs’	Rule	of	Thumb	in	Chapter	8);	however	–	in	certain	cases	
(especially	if	there	are	significant	changes	to	the	stats	of	your	player	when	she’s	essentially	
in	a	single-player	mode)	you	MAY	need	to	save	your	state	more	frequently	than	that.	
	
Two	words	of	caution	with	regards	to	save-to-DB	points.	First,	

For	synchronous	games,	don’t	try	to	keep	the	whole	state	of	your	Game	
Worlds	in	DB	

	
Except	for	some	rather	narrow	special	cases	(such	as	stock	exchanges),	saving	all	the	state	
of	your	game	world	into	DB	won’t	work	due	to	performance/scalability	reasons	(more	on	it	
in	Chapter	8).	Also,	we	need	to	keep	in	mind	that	even	if	we	would	be	able	to	perfectly	
preserve	the	current	state	of	the	game-event-currently-in-progress	(with	game	event	being	
“match”,	“hand”,	or	an	“RPG	fight”)	without	killing	your	DB,	there	is	another	very	big	

	
If	Game	World	server	
fails,	it	can	be	restarted	
from	scratch,	losing	all	
the	changes	since	last	
save-to-DB,	but	at	least	
preserving	previous	
results.	

practical	problem	of	psychological	rather	than	technical	nature.	
Namely,	if	you	disrupt	the	game-event-currently-in-progress	for	
more	than	2	minutes,	for	almost-any	synchronous	multi-player	
game	you	won’t	be	able	to	get	the	same	players	back,	and	will	
need	to	rollback	the	game	event	anyway	(more	on	it	in	
discussion	on	‘No	Bugs’	Rule	of	Thumb	in	Chapter	8).	
	
Trying	to	keep	all	the	state	in	DB	is	a	common	pitfall	which	
arises	when	the	guys-coming-from-single-player-casino-game-
development	are	trying	to	implement	something	multiplayer.	
Once	again:	don’t	do	it.	While	for	a	single-player	casino	game	
having	state	stored	in	DB	is	a	Big	Fat	Business	Requirement™	
(and	is	easily	doable	too),	for	multi-player	games	it	is	neither	a	
requirement,	nor	is	feasible	(at	least	because	of	the	can’t-get-
the-same-players-together	problem	noted	above).	Think	of	
Game	World	server	failure	as	of	direct	analogy	of	the	fire-in-
brick-and-mortar-casino	in	the	middle	of	the	hand:	the	very	
best	you	can	possibly	do	in	this	case	is	to	abort	the	hand,	return	
all	the	chips	to	their	respective	owners	(as	of	the	beginning	of	
the	hand),	and	to	run	out	of	the	casino,	just	to	come	back	later	
when	the	fire	is	extinguished,	so	you	can	start	an	all-new	game	
with	all-new	players.	
	
The	second	pitfall	on	this	way	is	related	to	DB	consistency	
issues	and	DB	Reactor	API:	

Your	DB	Reactor	API	MUST	enforce	logical	
consistency	

	
For	example,	if	(as	a	part	of	your	very	own	DB	Reactor	API)	you	
have	two	DB-related	requests,	one	of	which	says	“Give	PC	X	
artifact	Y”,	and	another	one	“Take	artifact	Y	from	PC	X”,	and	
are	trying	to	report	an	occurrence	of	“PC	X	took	over	artifact	Y	
from	PC	XX”	as	two	separate	DB	requests	(one	“Take”	and	one	
“Give”),	you’re	risking	that	in	case	of	Game	World	server	
failure,	one	of	these	two	requests	will	go	through,	and	the	
other	one	won’t,	so	artifact	will	get	lost	(or	will	be	duplicated)	
as	a	result.		

	
Instead	of	using	these	two	requests	to	simulate	“taking	over”	occurrence,	you	should	have	a	
special	DB	Reactor	request	“PC	X	took	over	artifact	Y	from	PC	XX”	(and	it	should	be	
implemented	as	a	single	DB	transaction	by	DB	Reactor);	this	way	at	least	the	consistency	of	
the	system	will	be	preserved,	so	whatever	happens	–	there	is	still	exactly	one	artifact.	The	
very	same	pattern	MUST	be	followed	for	passing	around	anything	of	value,	from	casino	
chips	to	money,	with	any	other	goodies	in	between.	
	
Actually,	even	better	is	to	have	an	EndOfGameEvent	request	–	which	would	do	lots	of	
things,	including	artifacts	changing	hands	if	necessary.	

	
If	you	disrupt	the	game-
event-currently-in-
progress	for	more	than	
0.5-2	minutes,	for	
almost-any	
synchronous	multi-
player	game	you	won't	
be	able	to	get	the	same	
players	back,	and	will	
need	to	rollback	the	
game	event	anyway.	

	
You	should	have	a	
special	DB	request	“PC	
X	took	over	artifact	Y	
from	PC	XX”	(and	it	
should	be	implemented	
as	a	single	DB	
transaction	within	DB	
Reactor)	

	

Server	Fault	Tolerance:	King	is	Dead,	Long	Live	the	King!	
	
While	mitigating	effects	of	the	Game	World	Server	failures	is	one	of	the	easiest	thing	to	do	–	
it	is	not	the	most	reliable	one.	Moreover	–	for	quite	a	few	subsystems	(such	as	any	kind	of	
Write-Back	Cache)	we	may	easily	need	to	have	real	Fault	Tolerance.	
	
When	speaking	about	real	Server	Fault	Tolerance,	we	need	to	distinguish	between	“high	
availability”	and	“fault	tolerance”.	Usually,	“high	availability”	in	this	context	merely	means	
that	you	have	a	hot-swap	server,	which	is	ready	to	be	launched	as	soon	as	necessary;	
however,	“high	availability”	usually	does	NOT	include	saving	in-memory	state	–	and	this	can	
be	fatal	for	most	of	our	Game	Servers.	On	the	other	hand,	if	we	want	“fault	tolerance”	–	
which	usually	includes	preserving	up-to-date	in-memory	state	too	(!)	-	there	are	some	ways	
to	implement	it,	allowing	us	to	have	our	cake	and	to	eat	it	too.		
	
However,	let’s	keep	in	mind,	that	all	fault-tolerant	solutions	are	complicated	and	costly,	and	
in	the	games	realm	they	often	qualify	as	an	over-engineering	(even	by	my	standards	<wink	
/>).	On	the	other	hand,	there	are	two	notable	exceptions:	

• If	your	game	is	a	stock	exchange	or	a	reasonable	facsimile,	you’re	likely	to	want	full-
scale	fault	tolerance	

• Quite	often,	there	are	a	few	Really	Critical	Servers	within	your	game,	which	MAY	
warrant	fault	tolerance.	Examples	of	such	Really	Critical	Servers	include:	

o Servers	which	are	critical	for	the	operation	of	your	game	as	a	whole	–	these	
routinely	include	such	things	as	directory	servers,	DB	servers	(see	also	“DB	
Server	Failures”	section	below),	Write-Back	Caches,	etc.	

o Servers	which	run	that	highly	publicized	Tournament	of	the	Year	which	you	
cannot	afford	to	fail.	

	
Still,	I’d	say	that	implementing	fault	tolerance	for	ALL	your	Game	Servers	is	an	overkill	for	
the	vast	majority	of	games	out	there,	so	think	twice	before	going	that	route.	
	

Clusters:	HA,	not	FT	
	
When	speaking	about	handling	Server	faults	within	your	team,	pretty	much	inevitably	
somebody	will	say201	“Hey!	It’s	easy!	We’ll	just	use	cluster	by	<insert-cluster-
implementation-here>!”.		
	
Unfortunately,	clusters	(at	least	all	those	cluster	which	I’ve	seen)	are	NOT	providing	“Fault	
Tolerance”,	but	rather	merely	a	“High	Availability”	<sad-face	/>.	In	other	words,	with	
clusters	in	case	of	failure	current	in-memory	state	is	NOT	preserved.	This	alone	makes	them	
completely	unusable	for	Fault	Tolerance	purposes	as	defined	above.202	

																																																								
201	this	tends	to	happen	especially	often	after	reading	a	enthusiastict-to-the-point-of-being-
outright-misleading	promotional	material	by	hardware	or	OS	manufacturer	
202	as	we’ll	discuss	in	Vol.	IX’s	chapter	on	Deployment	Architecture	Take	2,	I	also	have	a	
strong	dislike	at	least	of	traditional	clusters-with-shared-disk	even	for	the	purposes	of	HA;	

	

Fault-Tolerant	Servers:	Damn	Expensive	
	
Historically,	fault-tolerant	systems	were	provided	by	damn-expensive	hardware	such	as	
(FAULT	TOLERANT	AVAILABILITY	FOR	CRITICAL	APPLICATIONS	AND	VIRTUALIZED	
WORKLOADS	n.d.)	and	(NonStop	(server	computers)	n.d.).	These	beasts	have	everything	
doubled	(and	CPUs	often	quadrupled(!))	to	avoid	all	single	points	of	failure,	and	tend	do	
work	very	well.	But	they’re	usually	way	out	of	game	developer’s	reach	for	financial	reasons,	
so	unless	your	game	is	a	stock	exchange203	–	you	can	pretty	much	forget	about	them	<sad-
face	/>.	
	

Fault-Tolerant	VMs	
	

Fault-Tolerant	VMs	(such	as	VMWare	FT	feature	or	Xen	
Remus)	are	quite	new	kids	on	the	block	(for	example,	VMWare	
FT	got	beyond	single	vCPU	only	in	2015),	but	they’re	already	
working.	However,	as	there	is	no	magic	involved,	there	are	
some	significant	caveats,	described	below.	BTW,	make	sure	to	
take	everything	I’m	saying	about	fault-tolerant	VMs	with	
a	really	good	pinch	of	salt,	as	all	the	technologies	are	new	and	
evolving,	and	information	is	scarce;	also	I	have	to	admit	that	I	
didn’t	have	a	chance	to	try	them	myself	yet	<sad-face	/>.	
	
When	you’re	using	a	fault-tolerant	VM,	the	Big	Picture	looks	
like	this:	you	have	two	commodity	servers	(usually	right	next	
to	each	other),	connect	them	via	10G	Ethernet,	run	VM	on	one	
of	them	(the	“primary”	one),	and	when	your	“primary”	server	
fails,	your	VM	magically	reappears	on	the	“secondary”	box.	
From	what	I	can	observe,	modern	Fault-Tolerant	VMs	are	
using	one	of	two	technologies:	“virtual	lockstep”	and	“fast	
checkpoints”.	As	we’ll	see	below,	“virtual	lockstep”	is	better	
suited	for	latency-oriented	applications	(games	included),	but	

unfortunately,	it	doesn’t	seem	to	be	supported	anymore	by	major	VM	hypervisors	<sad-face	
/>.	
	
Virtual	Lockstep:	Not	Available	Anymore?	
	

																																																								
very	briefly,	my	problems	with	such	clusters	include	such	things	as	shared	HDD	being	a	
SPOF,	Really	Bad	behavior	in	case	of	failure	of	the	heartbeat	link	(see	also	discussion	in	
“Fault	Tolerance	–	on	Failure	Detection”	in	this	Chapter),	and	ease	of	misconfiguring	a	
failover	script,	which	tends	to	make	clusters	having	smaller	MTBF	than	MTBF	of	good	single	
servers	<sad-face	/>.	
203	That’s	where	I	was	able	to	lay	my	clavicles	on	one	of	them	–	and	it	did	work	like	a	charm	
too	

	
Modern	Fault-Tolerant	
VMs	are	using	one	of	
two	technologies:	
'virtual	lockstep'	and	
'fast	checkpoints'.	
Unfortunately,	each	of	
them	has	its	own	
limitations	<sad-face	
/>.	

The	idea	behind	virtual	lockstep	(which	was	used	in	VMWare	vSphere	4-5)	is	based	on	
treating	VM	pretty	much	as	a…	deterministic	finite	state	machine	(which	is	fundamentally	
similar	to	our	deterministic	(Re)Actors	as	discussed	in	Vol.	II’s	chapter	on	(Re)Actors).	Virtual	
lockstep	takes	one	single-core	VM,	logs	all	its	inputs,	passes	all	these	inputs	to	the	
secondary	server,	and	runs	a	secondary	(backup)	VM	there,	feeding	all	the	inputs	to	that	
backup	VM	all	the	time	(see	(How	Fault	Tolerance	Works	n.d.)	for	description	of	virtual	
lockstep	in	VMWare,	and	also	see	discussion	on	our	own	implementation	of	DIY	virtual	
lockstep	in	“Low-Latency	Fault	Tolerance:	DIY	Virtual	Lockstep”	section	below).		
	
Let’s	see	how	the	failure	of	the	primary	VM	is	handled	in	this	case.	Whenever	computer	
hosting	primary	VM	suffers	from	a	sudden	death,	we	can	simply	switch	all	the	
communicating	parties	to	the	secondary	one	(how	to	detect	the	failure	and	how	to	switch	
communications	is	a	different	story,	but	it	is	more-or-less	doable).	However,	we	MUST	
beware	of	a	scenario	when	primary	VM	already	got	some	packet	(message/whatever)	and	
replied	to	it	(right	before	it	sudden	death),	and	secondary	VM	didn’t	get	this	logged	packet	
(because	host	of	primary	VM	has	died);	this	scenario	can	easily	lead	to	a	fatal	discrepancy	
between	VM	states,	with	all	the	hell	going	loose	because	of	it.	Avoiding	this	problem	is	
surprisingly	simple:	while	primary	VM	can	and	should	process	all	the	packets/inputs	at	full	
speed,	the	host	of	primary	VM	SHOULD	NOT	release	replies	of	the	primary	VMs	to	these	
inputs,	until	secondary	VM	confirms	that	it	got	the	inputs-which-caused-these-replies	(NB:	it	
is	not	necessary	to	wait	until	secondary	VM	has	processed	the	input,	it	is	simply	necessary	to	
receive	the	input	and	have	the	presence	and	order	of	inputs	fixed	for	the	secondary	VM	
before	allowing	primary	VM	to	reply).	This	creates	a	“delayed	replies	window”	of	processed-
but-unsent	replies	on	the	primary	host,	which	means	that			
Fault	Tolerance	introduces	an	additional	latency	while	the	system	is	working	

normally	and	without	any	failover.204	
	
This	additional	latency	is	pretty	much	inevitable	for	any	implementation	of	Fault	Tolerance;	
however,	if	your	both	Server	boxes	are	sitting	next	to	each	other	in	the	datacenter	(and	
everything	runs	smoothly	as	it	should)	–	for	virtual	lockstep	we’re	speaking	about	the	
additional	latencies	of	the	order	of	hundreds	microseconds	(i.e.	within	1ms).	For	most	of	the	
games	out	there,	while	potentially	undesirable,	this	kind	of	delay	is	not	fatal;	also,	as	we’ll	
see	below,	this	is	a	very	minor	delay	compared	to	alternative	fault-tolerant	
implementations.		
	
One	additional	thing	to	be	mentioned	is	that	amount	of	traffic	between	virtual-lockstepped	
server	boxes	is	roughly	equal	to	their	I/O	–	and	for	boxes	which	do	most	of	their	work	with	
the	network	(such	as	Game	Servers),	it	is	roughly	equal	to	their	network	traffic	–	in	other	
word,	it	is	extremely	unlikely	to	overload	a	usual	1G	Ethernet	link	(which	is	a	kind	of	
minimal-standard	these	days).	
	
Overall,	virtual	lockstep	seems	to	be	very-well-suited	for	our	purposes;	however	–	it	also	has	
one	drawback:	virtual	lockstep	cannot	possibly	handle	more-than-single-core	VMs.	This	is	
																																																								
204	in	case	of	failover,	latencies	will	be	much	worse,	but	as	long	as	failover	happens	once	in	a	
blue	moon	(and	as	the	alternative	is	to	crash	completely)	–	it	hopefully	won’t	impact	your	
game	too	badly.	

related	to	an	inherent	non-determinism	of	multi-threaded	programs	and	multi-core	VMs	
(strictly	speaking	–	to	ensure	determinism	in	multi-core	environments,	we’d	need	to	log-
and-send-to-secondary-box	all	the	inter-core	memory	sharing	occurrences,	and	this	is	one	
thing	which	is	even	a	hypervisor	cannot	achieve	with	any	reasonable	performance).		
	
While	at	least	for	a	(Re)Actor-fest	architecture	we’d	be	able	to	live	with	this	single-core	
restriction	(hey,	(Re)Actors	are	single-core	anyway),	being	single-core-only	was	deemed	
unacceptable	by	vendors,	and	starting	from	vSphere	6,	VMWare	has	switched	to	“fast	
checkpoints”	fault	tolerance	–	which	allow	multi-core	VMs	but	at	the	cost	of	MUCH	higher	
latencies	(and	MUCH	more	inter-server	traffic	too)	<sad-face	/>.		
	
In	other	words	–	virtual	lockstep	would	be	ideal	for	games	(and	other	latency-oriented	
things),	but	–	it	does	not	seem	to	be	supported	anymore	<sad-face	/>.	
	
Checkpoint-Based	Fault	Tolerance:	Latencies	and	Even	More	Latencies	
	
To	get	around	the	single-core	limitation,	a	different	technique,	known	as	“checkpoints”,	is	
used	by	both	Xen	Remus	and	vSphere	6+.	The	idea	behind	checkpoints	is	to	make	a	kind	of	
incremental	snapshots	(“checkpoints”)	of	the	full	state	of	the	system	and	log	it	to	a	safe	
location	(“secondary	server”).		
	
The	very	rough	description	of	checkpoint-based	fault	tolerance	goes	as	follows.	First	of	all,	
we	need	to	implement	“checkpoints”	–	these	are	usually	implemented	over	a	list	of	CPU	
pages	(4K	in	size	for	x86/x64)	which	were	modified	since	previous	“checkpoint”.	When	we	
have	these	“checkpoints”,	and	as	long	as	we	don’t	let	any	replies	coming	out	of	our	primary	
server	out	(keeping	them	in	“delayed	replies	window”),	all	the	calculations	which	are	made	
by	primary	VM	between	the	“checkpoints”,	become	inherently	unobservable	from	the	
outside.	On	the	other	hand,	as	soon	as	we	have	committed	the	“checkpoint”	to	a	secondary	
server	–	we	can	release	all	the	replies	which	were	made	before	this	“checkpoint”	was	
started.	While	decisions-which-happen-after-this-checkpoint,	can	be	different	when	it	is	run	
for	the	second	time	on	the	secondary	VM	(as	noted	above,	we	can’t	have	any	determinism	
with	multi-core	VMs)	–	as	long	as	nobody	knows	about	the	results	of	the	first	run,	the	whole	
system	works	exactly	“as	if”	the	inputs	were	never	processed	on	primary	VM	(all	the	replies	
by	primary	VM	after	last	checkpoint,	never	leave	the	“delayed	replies	window”),	so	the	
answer	to	the	question	“whether	it	was	decided	one	way	first,	but	then	re-decided	another	
way”	becomes	almost	completely	unobservable.205	For	more	details	on	checkpoint-based	
VMs,	see	[TODO:Remus].	
	
Note	that	with	checkpoint-based	fault	tolerance	(and	unlike	with	virtual-lockstep-based	
Fault	Tolerance)	it	is	not	necessary	to	feed	all	the	inputs	from	the	primary	VM	to	the	
secondary	VM.	Or	from	a	bit	different	perspective	–	with	checkpoints,	it	is	state	which	gets	
synchronized	(and	with	virtual	lockstep	–	it	is	inputs	which	are	guaranteed	to	be	the	same,	

																																																								
205	BTW	in	theory,	using	side	channels	or	insider	information,	it	may	be	possible	to	build	an	
attack	which	would	see	the	outcome	on	the	first	VM	before	it	is	released	to	the	public,	and	
then,	if	outcome	is	not	favorable	for	the	attacker,	to	bring	the	box	with	first	VM	down	to	
retry	the	whole	thing	on	the	secondary	box	hoping	for	a	better	outcome	this	time(!)	

and	we’re	reconstructing	the	state	from	the	same	inputs	based	on	determinism).	This	leads	
to	two	important	observations	(both	apply	only	to	checkpoint-based	fault	tolerance,	and	if	
we’re	not	feeding	the	same	inputs	from	primary	VM	to	a	secondary	VM206):	

• strictly	speaking,	primary	and	secondary	VMs	cannot	be	made	identical,	as	some	of	
the	packets	will	be	almost	inevitably	lost	after	failover	switch	to	the	secondary	VM.	
However,	as	packet	loss	is	a	normal	occurrence	and	OS/apps	within	VM	are	expected	
to	handle	packet	loss	anyway	–	this	still	works.	

• it	is	an	open	question	whether	virtual	lockstep	or	checkpoints	have	more	traffic	
between	the	primary	and	secondary	boxes:	if	most	of	the	interactions	are	read-only	
–	then	checkpoint-based	implementation	may	result	in	less	traffic,	but	if	there	are	
frequent	changes	to	the	state	(this	includes	disk	writes(!))	–	then	virtual	lockstep	
implementation	will	win	traffic-wise.	On	the	other	hand,	this	is	usually	a	moot	issue	
unless	we’re	speaking	about	inter-data-center	fault	tolerance	(i.e.	unless	you	want	to	
withstand	failure	of	the	whole	datacenter).	

	
So	far	so	good,	but	the	problem	with	such	“checkpoints”	is	that,	as	noted	above,	to	achieve	
consistency	guarantees,	“delayed	replies”	in	“delayed	reply	window”	need	to	be	kept	until	
the	moment	when	the	next	“checkpoint”	is	reached.	Worse	than	that,	in	systems	such	as	
VMWare	FT	and	Xen	Remus,		
these	“checkpoints”	are	reached	only	every	several	dozens	of	milliseconds	–	
and	often	only	every	100-300ms	–	and	it	means	that	with	checkpoint-based	
Fault	Tolerance,	we	need	to	delay	replies,	introducing	latencies	for	up	to	

hundreds	of	milliseconds	too	<very	sad-face	/>.		
	
This	observation	essentially	rules	out	“checkpoint-based”	fault	tolerance	for	Game	Servers	
of	quite	a	few	games	out	there.207	Which	is	a	pity,	because	besides	latencies,	checkpoint-
based	fault	tolerance	has	many	desirable	properties,	such	as	support	for	multiple	CPU	cores	
and	N+1	redundancy	(though	to	be	fair	to	virtual	lockstep,	we	should	also	mention	that	in	
addition	to	worse	latencies,	checkpoint-based	Fault	Tolerance	tends	to	have	significantly	
higher	CPU	overhead).		
		

DIY	Fault-Tolerance	for	(Re)Actor-fest	architectures	
	
If	third-party	methods	of	achieving	fault	tolerance	discussed	above	are	not	good	enough	
(and	they	quite	often	won’t)	–	then	we	have	an	option	to	implement	fault	tolerance	
ourselves.	However,	to	do	it	–	we’ll	need	to	have	our	Game	Logic	to	be	implemented	as	
(Re)Actors	(and	not	just	any	(Re)Actors,	but	deterministic	(Re)Actors).	On	the	other	hand,	as	
soon	as	we	have	our	logic	implemented	in	terms	of	deterministic	(Re)Actors	–	we	have	at	
least	two	distinct	ways	to	implement	DIY	fault	tolerance	–	and	(which	is	most	important	for	
us)	in	a	latency-friendly	manner.	
	

																																																								
206	both	VM	hypervisors	I	know,	seem	to	implement	checkpoint-based	fault	tolerance	
without	feeding	inputs	of	one	VM	to	another	one	
207	though	as	a	rule	of	thumb,	it	may	still	be	used	for	DB	Servers,	Write-Back	Caches,	etc.	

Low-Latency	Fault	Tolerance:	DIY	Virtual	Lockstep	
	
First	of	all,	we	can	implement	Virtual	Lockstep	ourselves	–	along	the	same	lines	described	
above	for	VMs.	The	idea	stays	pretty	much	the	same:	

• we	have	Game	Logic	implemented	as	a	deterministic	(Re)Actor	
o it	is	also	desirable	to	have	the	(Re)Actor	implementing	

serialization/deserialization	of	its	state.	While	some	level	of	protection	from	
server	failures	benefits	can	be	obtained	without	serialization	–	this	protection	
is	limited	(see	below)	

• we	have	2	server	boxes	instead	of	one	(2	virtual	servers	MAY	do	too,	though	to	
achieve	fault	tolerance,	these	virtual	servers	they	should	reside	on	different	physical	
boxes,	and	I’m	not	sure	that	your	cloud	service	provider	will	provide	this	kind	of	
guarantees)	

• on	the	first	box,	we’re	running	primary	instance	of	our	Game	Logic	(Re)Actor	(of	
course,	we	can	run	several	instances	of	different	(Re)Actors	on	the	same	box)	

o Infrastructure	code	running	on	the	first	box,	logs	all	inputs	of	the	(Re)Actor	
(this	includes	all	input	events,	and	all	“wrapped”	calls	etc.	–	see	Vol.	II’s	
chapter	on	(Re)Actors	for	details),	and	sends	them	to	the	secondary	box.		

o At	the	same	time,	primary	(Re)Actor	is	processing	these	inputs	and	generates	
outputs	

o Each	of	the	outputs	of	the	primary	(Re)Actor	is	put	on	hold	until	the	moment	
when	the	secondary	instance	of	the	(Re)Actor	(running	on	the	second	server	
box)	confirms	that	it	received	all	the	inputs	preceding	this	output	(or	more	
strictly	–	all	the	inputs	which	may	have	contributed	to	the	computation	of	the	
output).	As	soon	as	confirmation	is	obtained	–	output	can	(and	should)	be	
sent	to	the	recipients.	

• on	the	second	box,	we’re	running	secondary	instance	of	our	Game	Logic	(Re)Actor,	
accepting	all	the	inputs	coming	from	the	first	box,	and	applying	them	to	the	
secondary	instance	of	the	(Re)Actor.	Due	to	the	determinism	of	our	(Re)Actors,	they	
have	the	same	state	after	processing	the	same	inputs.	

• In	case	of	catastrophic	failure	of	the	primary	server	box	–	we	make	secondary	box	a	
primary	one	(and	former	secondary	instance	–	a	primary	one	too).	In	case	of	
catastrophic	failure	of	the	secondary	box	–	we	keep	operating	primary	one	(just	not	
waiting	for	confirmations	from	the	secondary	one	anymore)	

o At	this	point,	we	handled	one	single	failure	within	the	system	without	losing	
integrity.	However,	redundancy	of	the	system	is	still	compromised.	

o Note	that	in	some	cases,	working	without	redundancy	can	be	acceptable.	For	
example,	if	you	restart	your	system	once	a	day	anyway	–	then	the	chances	of	
two	boxes	failing	within	the	same	day	can	be	seen	as	negligible.	A	similar	
situation	arises	when	it	is	not	your	whole	system,	but	the	(Re)Actors	in	
question	have	a	limited	life	span.	If	this	is	the	case	–	it	may	allow	you	to	
implement	serialization	only	for	those	(Re)Actors	which	have	long	life	spans.	

o To	restore	redundancy	–	we’ll	need	to	build	a	secondary	instance	from	the	
primary	one.	To	do	it,	we’ll	need	to	(a)	serialize	primary	instance,	(b)	move	
serialized	state	to	the	replacement	box	(which	becomes	secondary	one),	and	
(c)	to	create	secondary	instance	from	deserialized	state.		

o Bingo!	We	restored	redundancy,	and	can	withstand	another	server	failure.	

	
This	DIY	Virtual	Lockstep	schema	is	pretty	good	for	our	game-related	purposes;	in	particular,	
it	exhibits	pretty	good	latency	(for	the	fault	tolerant	system,	that	is).	In	practice,	if	your	
server	boxes	are	located	next	to	each	other,	you	should	be	able	to	limit	the	additional	
latency	introduced	by	fault	tolerance,	to	values	below	1ms.	
	
The	only	significant	drawback	of	this	schema	I	can	think	of,	is	that	it	has	N*2	redundancy:	in	
other	words,	it	requires	to	keep	two	server	boxes	to	have	redundancy	for	one	server	box.	
Apparently,	this	can	be	improved	without	sacrificing	latencies.	
	
Another	Low-Latency	Fault	Tolerance:	DIY	N+1	Reactor-based	Redundancy:	
Logging	Server	
	
To	improve	over	N*2	redundancy	which	can	be	achieved	by	“Virtual	Lockstep”	model	-	the	
following	approach	can	be	used	to	achieve	N+1	redundancy:	

• we	still	have	Game	Logic	implemented	as	a	deterministic	(Re)Actor.	And	(Re)Actors	
implement	state	serialization/deserialization	too.	

• we	still	have	2	server	boxes	instead	of	one	(and	notes	above	about	virtual	servers	
still	stand)	

• on	the	first	server	box,	we’re	running	a	Logging	Server.	Logging	Server	merely	
handles	all	the	inputs	for	the	(Re)Actor(s),	logs	them,	and	forwards	them	to	the	
second	box.	Note	that	to	keep	deterministic	nature	of	the	(Re)Actors,	this	almost	
inevitably	will	include	timestamping208	events.		

o When	“call	wrapping”	is	necessary	to	achieve	determinism	(see	Vol.	II’s	
chapter	on	(Re)Actors	for	relevant	discussion),	such	requests	should	be	
transferred	back	to	the	logging	server,	and	processed-and-logged	there	<sad-
face	/>	

§ On	the	other	hand,	if	we’re	speaking	about	file	I/O	requests	(or	any	
other	disk-based	I/O	such	as	DB	requests),	they	can	be	processed	
right	on	the	second	box;	however,	there	is	a	caveat	–	if	doing	so,	all	
non-constant	files	need	to	be	considered	as	a	part	of	the	Reactor	
state	–	and	therefore	MUST	be	serialized	when	storing	the	state	into	
the	log;	for	certain	types	of	(Re)Actors,	this	can	easily	become	“way	
too	much”	<sad-face	/>	

o To	avoid	keeping	logs	forever,	logs	on	Logging	Server	are	circular,	and	
whenever	a	wraparound	in	logs	is	about	to	happen,	Logging	Server	requests	
and	gets	current	state	of	the	(Re)Actor	from	the	second	server	box.	In	other	
words,	Logging	Server	always	keeps	“state	X	+	all	events	after	the	state	X”	for	
all	the	Reactor(s)	it	serves.	

• on	the	second	server	box,	we’re	running	the	instance	of	our	(Re)Actor	(it	is	the	
primary	instance,	but	also	is	the	only	one)	–	using	only	the	inputs	coming	from	the	
Logging	Server.	

																																																								
208	or	some	other	type	of	ordering	

• in	case	of	catastrophic	failure	of	the	first	server	box	
(the	one	with	the	Logging	Server)	–	we	just	replace	it	
(with	a	spare),	and	restore	redundancy	by	requesting	
the	(Re)Actor	state	from	the	second	box	(and	logging	
all	the	events	after	this	state).	

• in	case	of	catastrophic	failure	of	the	second	box	(the	
one	running	the	instance	of	our	Reactor)	–	we	(a)	
replace	the	box,	(b)	restore	(Re)Actor	from	the	last	
logged	serialized	state	(the	one	stored	on	Logging	
Server),	and	(c)	“rollforward”	–	i.e.	apply	all	the	
events	in	the	log	to	the	restored	instance	of	the	
(Re)Actor.	Note	that	re-applying	events	doesn’t	need	
to	take	as	much	wall	clock	time	as	it	took	to	process	
them	originally;	in	other	words,	if	your	last	state	was	
stored	5	minutes	ago,	it	can	be	perfectly	feasible	to	
rollforward	input	events	in	5	seconds	–	while	overall	
CPU	usage	will	be	the	same	during	this	process,	all	the	
waits	can	be	skipped	while	rolling	forward.	

	
This	Logging-Server-based	schema	is	better	than	DIY	Virtual	
Lockstep	in	a	sense	that	it	requires	only	N+1	servers	(plus	a	
spare)	to	run	the	whole	thing.	On	the	minus	side,	handling	of	
“wrapped”	calls	is	admittedly	ugly	–	and	while	they	can	be	
avoided	most	of	the	time,	in	some	cases	it	will	lead	to	the	files	becoming	a	part	of	the	
(Re)Actor	state	–	and	this	needs	to	be	serialized	on	a	regular	basis.	In	other	words	–	using	
this	model	for	your	DB	Server	isn’t	likely	to	fly.	
	
DIY	Fault	Tolerance	–	Checkpoints	
	
In	addition	to	two	options	discussed	above,	at	least	in	theory,	there	can	be	other	ways	to	
implement	DIY	fault	tolerance.	In	particular,	the	same	principle	of	the	Checkpoint-Based	
Fault	Tolerance	as	was	discussed	with	regards	to	VMs	above,	can	be	applied	to	(Re)Actors	
too.	On	the	other	hand	–	exactly	as	with	VMs,	latencies	are	going	to	be	very	significant,	so	
for	most	of	the	environments,	I’d	rather	not	use	it.209	
	
DIY	Fault	Tolerance	–	Connections	and	IPs	
	
In	all	those	DIY	Fault	Tolerance	models	which	we	discussed	above,	we	ignored	a	question	
“how	to	replace	the	server	at	connection	level?”	(or	more	precisely,	“how	to	re-establish	all	
the	connections	to	the	Server	instance	with	the	connections	to	the	replaced	instance?”)210	

																																																								
209	also	–	if	checkpoint-based	stuff	works	for	you,	there	is	no	real	reason	to	write	DIY	fault	
tolerance	in	the	first	place,	as	checkpoint-based	one	is	already	available	and	working	
210	For	VMs	it	is	actually	easier,	as	packets	can	be	lost	anyway	and	they	can	rely	on	in-VM	
OS’s	and	apps	to	handle	packet	losses.	

	
in	case	of	catastrophic	
failure	of	the	second	
box	(the	one	running	
the	instance	of	our	
(Re)Actor)	–	we	(a)	
replace	the	box,	(b)	
restore	(Re)Actor	from	
the	last	logged	
serialized	state	(stored	
on	Logging	Server),	and	
(c)	“rollforward”	-	apply	
all	the	events	in	the	log	
to	the	restored	instance	
of	the	Reactor	

To	solve	this	problem,	we	can	use	one	of	the	two	following	approaches	–	IP	replacement	or	
re-connecting	at	source.		
	
IP	replacement	can	work	as	follows:	

• on	the	replacement	server,	we	simply	change	IP	address	
o Note	that	changing	IP	over	SSH211-which-goes-over-the-same-IP	can	easily	

cause	weird	chicken-and-egg	problems.	In	practice,	out-of-band	management	
is	almost-the-must	for	such	trickery	(more	on	out-of-band	management	in	
Vol.	VII’s	chapter	on	Preparing	for	Launch).	

o Even	more	importantly	–	before	changing	IP	address	on	the	replacement	
server,	we	need	to	be	200%	sure	that	the	old	server	(supposedly	failed	one)	
does	NOT	respond	to	the-IP-we’re-about-to-change.	Here,	we	can	easily	run	
into	all	the	kinds	of	partial	failures	–	for	example,	if	our	heartbeat	app	on	the	
supposedly-failed	server	is	down,	IP	stack	can	be	still	up;	in	such	a	case,	
changing	IP	on	a	replacement	server	isn’t	likely	to	work.	

§ To	deal	with	it	–	the	best	thing	is	to	turn	off	our	supposedly-failed-
server-box	completely.	In	practice	–	turning	it	off	using	out-of-band-
management	such	as	IPMI/iLO/DRAC/…,	while	still	not	100%	reliable	
in	theory,	is	usually	good	enough	for	our	purposes.	

o [TODO/wiki	ARP]after	changing	IP	on	our	replacement	server,	so-called	ARP	
caches	for	this	IP	on	other	server	boxes	will	still	point	to	the	MAC	address	of	
the	old	server,	causing	packets	these	other	server	boxes	send,	to	be	lost	for	
quite	a	while	(up	to	5-15	minutes	<ouch	/>).	To	deal	with	it,	we	may	want	to	
do	one	of	the	following:	

§ after	changing	IP	address,	we	may	drop	ARP	caches	on	all	the	other	
servers	directly	connected	over	the	Ethernet	to	this	one.	See,	for	
example,	discussion	on	it	in	(Bergsma	n.d.).	

§ in	addition	to	changing	IP	address,	we	may	change	MAC	address	of	
the	new	server	to	match	MAC	address	of	the	old	server	on	the	
corresponding	interface	(and	also	may	want	to	bring	Ethernet	
interface	down	and	up).	On	the	other	hand	–	this	further	significantly	
complicates	configuration	(introducing	risks	of	your	MAC	mappings	
being	out	of	date),	so	I’d	rather	not	use	this	approach.	Also	–	if	going	
this	way,	importance	of	out-of-band	management	grows	even	further.	

	
Overall,	I	don’t	like	relying	on	trickery	such	as	changing	IPs	and	MACs	on	the	fly	(though	I	
admit	that	this	may	be	because	I	am	a	developer	and	not	an	admin	<wink	/>).	
	
An	alternative	to	changing	IP	address	of	the	server	box	on	the	fly,	is	what	I	call	“re-connect	
at	source”:	

• After	the	failure	is	detected,	each	of	the	Clients	of	the	affected	server	(these	can	be	
Clients	or	other	Servers)	is	asked	to	use	new	IP	address	for	communicating	with	the	
Server	X	from	this	point	on	

o note	that	we	have	to	make	sure	that	this	process	of	distributing	new	IP	
address	(or	more	precisely	–	of	notifying	about	the	failure)	is	itself	fault-

																																																								
211	Or	whatever-other-mechanism	

tolerant	(answering	the	question	“what	if	the	server	box	which	distributes	
these	requests,	goes	down?”)	

• As	an	alternative,	we	can	provide	the	secondary	IP	address	to	the	Clients	“well	in	
advance”,	and	make	the	Client	to	fails	to	use	secondary	IP	as	a	fallback	in	case	of	
problems	communicating	with	the	primary	one.	

o IF	we’re	relying	on	this	approach,	we	MUST	make	sure	that	secondary	server	
does	NOT	accept	connections	until	it	is	told	to	take	over	by	that-entity-which-
detects-primary-box-failure	(and	turns	primary	server	off);	otherwise	–	we’ll	
have	a	huge	risk	of	“split-brain”	failures	(when	half	of	the	Clients	are	
connected	to	the	primary	server,	and	half	of	the	Clients	are	connected	to	the	
secondary	one,	and	there	is	no	consistent	picture	at	all).	

• note	that	handling	of	the	connectivity	issues	discussed	in	“Communication	Failures”	
section	above,	is	still	necessary.	

	
If	we’re	using	some	kind	of	an	MQ	product	(such	as	RabbitMQ,	or,	IMO	better,	ZeroMQ)	for	
our	Server-2-Server	communications212	–	handling	reconnections	can	be	done	by	MQ	(MQs	
tend	to	have	LOTS	of	mechanics	to	handle	exactly	this	kind	of	stuff).	Moreover,	IMNSHO	this	
is	one	of	the	very	few	scenarios	where	MQ	products	are	somewhat	useful	in	our	game-like	
environments;	still	–	if	going	this	way,	make	sure	that	(a)	your	MQ	system	of	handling	
addresses	is	itself	fault-tolerant,	and	(b)	that	it	detects	“hanged”	connections	(such	as	
“hanged”	TCP	connections)	fast	enough	for	your	purposes.	
	
Overall,	for	a	connectivity-level	fault	tolerance	–	all	three	approaches	will	work,	but	
personally	I	tend	to	give	a	preference	to	“re-connect	at	source”	models,	though	this	
preference	is	not	something	I’d	really	insist	on	if	facing	really	fierce	resistance	from	admins	
<wink	/>.	
	
DIY	Fault	Tolerance	in	case	of	Almost-Determinism	
	
In	some	cases,	our	Server	Apps	may	be	not	deterministic,	but	almost-deterministic.	This	
happens	in	the	case	when	we	have	some	kind	of	non-deterministic	behavior	which	still	leads	
to	substantially	similar	results.	Examples	of	such	almost-deterministic	behavior	include	such	
things	as	multi-threading,	and	particularly	GPGPU	calculations	(where	it	is	usually	very	
difficult	to	avoid	multi-threading	effects).	In	such	cases,	with	respect	to	Fault	Tolerance,	at	
least	two	approaches	are	possible:	

• to	re-sync	states	completely	on	regular	basis,	delaying	all	replies	until	the	re-sync	
happens	–	similar	to	what	VM	checkpoint-based	fault	tolerance	is	doing	(see	
“Checkpoint-Based	Fault	Tolerance:	Latencies	and	Even	More	Latencies”	section	
above).	In	DIY	(Re)Actor-fest	environment,	one	way	to	achieve	re-sync	is	via	
serializing	(Re)Actor	state	(which	has	to	be	stored	separately,	for	example	as	
discussed	in	the	Another	Low-Latency	Fault	Tolerance:	DIY	N+1	Reactor-based	
Redundancy:	Logging	Server	section	above)	

• to	say	that	ALL	such	almost-deterministic	results,	while	being	released	to	the	outside	
world,	are	always	seen	as	transient.	This	means	that	while	these	results	exist,	they’re	
NOT	used	for	any	decision-making,	and	are	only	treated	as	advisory.		

																																																								
212	a	bit	more	on	it	in	Vol.	I’s	chapter	on	Communications	

o In	game	environment,	one	example	of	such	transient	and	advisory	stuff	is	
publishable	data	sent	to	Clients;	as	discussed	in	Vol.	I’s	chapter	on	Cheating,	
we	SHOULD	NOT	make	any	decisions	on	the	Clients,	so	any	such	data	can	be	
used	only	for	visualizing.	Moreover,	as	discussed	in	Vol	I’s	chapter	on	
Communications,	often	we	have	to	implement	Client-Side	Interpolation	
and/or	Client-Side	Prediction,	which	are	inherently	approximate	–	so	Client	is	
always	ready	to	reconcile	with	the	updated	version	of	the	Game	World	when	
it	gets	the	next	update	from	the	Server.		

§ Therefore,	if	the	ONLY	thing	which	is	not	really	deterministic,	but	just	
almost-deterministic,	is	Publishable	State	(and	Client	is	using	
Publishable	only	for	visual	purposes	–	which	it	SHOULD	as	we	want	to	
have	our	server	authoritative	–	see	discussion	in	Vol.	I’s	chapter	on	
Cheating)	–	we	still	MIGHT	be	able	to	use	Fault	Tolerance	along	the	
lines	outlined	above.	If	our	Server	App	fails	and	we	restart	it	–	on	the	
second	run	results	MAY	be	different;	however,	(a)	the	differences	will	
be	self-healed	very	soon	(as	soon	as	the	next	server	update	comes	in);	
and	(b)	during	self-healing,	the	differences	will	be	only	visual,	and	
negligible	too.	Note	that	achieving	“negligible”	part	of	it	is	not	
something	which	we	can	easily	quantify,	but	in	MOG	context,	to	make	
Client-Side	Prediction	work,	keeping	the	differences	between	Server	
and	Client	“negligible”	is	a	substantial	part	of	our	work	anyway,	so	
usually	nothing	special	needs	to	be	done	in	this	regard	to	deal	with	
almost-determinism	in	case	of	failover.	

	

Game	Server	Fault	Tolerance	–	What	to	Use	
	
Actually,	the	very	first	question	you	should	ask	yourself	in	this	regard	is	that	“do	we	really	
need	to	have	real	Fault	Tolerance	for	our	Game	Servers?”	Sure,	Game	Servers	will	fail	on	a	
regular	basis,	but	In	fact	–	for	most	of	the	games	out	there,	ensuring	that	we	only	mitigate	
the	impact	of	such	failures,	is	sufficient.		
	
IF	you	happen	to	need	Fault	Tolerance	for	your	Game	Servers	(which	BTW	should	be	
decided	on	GDD	level	–	see	Vol.	I’s	chapter	on	GDD)	–	then	keep	in	mind	that	for	latency-
sensitive	games	currently-available	VM-based	Fault	Tolerance	is	not	likely	to	work	well.	In	
such	cases	–	you	may	need	to	resort	to	(Re)Actor-based	DIY	Fault	Tolerance	(DIY	Virtual	
Lockstep	or	DIY	Logging	Server	ones).	BTW	–	if	doing	it,	make	sure	to	think	hard	about	“how	
to	avoid	split-brain	conditions”;	as	these	conditions	are	known	to	be	much-worse-than-
simple-failures	<ouch	and	double-ouch!	/>	-	being	100%	sure	that	your	system	is	not	prone	
to	them	even	under	most-unlikely-but-still-possible	conditions,	is	absolutely	critical.		
	

DB	Server	Failures	
	

It’s	All	about	Numbers	–	and	Nothing	Else	
	

When	we’re	speaking	about	DB	Server	failures	–	the	first	thing	I	need	to	tell	is	that,	counter-
intuitively	(and	unless	you’re	running	a	stock	exchange	or	a	bank),	failures	of	DB	Server	are	
not	that	important	to	deal	with;	not	because	they	have	less	impact	than	Game	World	
Servers	(actually,	they	do	have	much	more	impact),	but	because	they’re	much	less	likely	to	
happen	that	a	failure	of	one-of-Game-World-servers.	
	
Let’s	take	a	closer	look	at	this	(admittedly	rather	controversial)	statement.	To	do	it,	we’ll	
need	to	jump	a	bit	ahead	and	briefly	mention	a	typical	DB	architecture	(it	will	be	discussed	
in	detail	in	Vol.	VI’s	chapter	on	Databases).	With	a	typical	game	(from	stock	exchange	to	an	
MMO),	it	is	likely	to	have	a	central	“OLTP	DB”	(the	one	processing	all	the	transactions)	–	and	
asynchronous	replicas	to	run	reporting	(as	it	will	be	discussed	in	Vol.	VI,	there	are	a	few	
other	DBs	too,	such	as	archive	one	and	analytical	one,	but	they’re	not	too	interesting	for	us	
at	the	moment).	
	
For	read-only	replicas,	Fault	Tolerance	is	trivial	–	just	run	two	replicas	and	that’s	it.	So,	the	
only	real	thing	we	really	need	to	discuss	–	is	Fault	Tolerance	for	the	OLTP	DB	Server	–	the	
one	processing	all	the	transactions	in	the	system.		
	
As	we’ll	see	in	Vol.	VI	(the	same	chapter	on	Databases)	–	most	of	the	time,	properly	
designed	OLTP	DB	can	run	up	to	100K	simultaneous	players	(and	10M+	of	daily	writing	
transactions)	off	one	single	DB	connection	(effectively	utilizing	only	1.5-2	CPU	cores).	It	
means	that	even	if	we	need	more	than	100K	simultaneous	players	(we’ll	discuss	how	to	
scale	your	DB	to	achieve	it,	in	the	same	chapter	on	Databases	within	Vol.	VI)	–	one	4U	4-
socket	workhorse	server	(such	as	HP	DL580)	with	4x	24-core	CPUs	(and	assuming	that	our	
DB	load	is	typical	OLTP,	so	we’re	not	writing	videos	to	the	DB	which	would	quickly	cause	us	
to	become	I/O-bound),	will	be	able	to	run	DB	Server	for	at	least	several	millions	of	
simultaneous	players.	It	is	the	order	of		
DB-Wise,	we	can	run	millions	of	simultaneous	players	from	one	single	4S/4U	

box.	
	
Now,	using	the	data	from	the	Adding	Fault	Tolerance	Can	Make	Your	MTBF	Worse	section	
above,	we	can	expect	that	MTBF	for	such	4S/4U	box	will	be	around	3-5	years	or	so.	And	with	
this	kind	of	numbers,	from	what	I’ve	seen,	adding	Fault	Tolerance	may	easily	reduce	your	
MTBFs	instead	of	improving	it.	
	

Exception	–	Stock	Exchanges	
	
Right	above,	I	have	argued	to	ignore	Fault	Tolerance	mechanisms	on	the	grounds	that	
adding	fault	tolerance	for	a	single	high-quality	server	tends	to	reduce	MTBF	instead	of	
supposed	increases.	One	exception	to	this	rule	of	thumb,	is	when	you’re	running	a	stock	
exchange	or	a	bank	(i.e.	when	any	failure	involving	data	loss	is	utterly	unacceptable).		
	
In	such	a	case	–	be	prepared	for	LOTS	of	research	and	analysis	to	make	sure	you	find	a	Fault-
Tolerant	system	that	DOES	work.	Personally	–	if	the	budget	permits,	for	this	kind	of	systems	
I’d	certainly	try	to	use	either	HP	NonStop,	or	one	of	Stratus	boxes.	From	what	I’ve	seen	–	

such	fault-tolerant	systems	tend	to	have	significant	advantage	over	the	detect-and-switch-
to-another-node	systems	(which,	most	importantly,	suffer	from	a		
	
If	Stratus/NonStop	is	out	of	reach	but	you	still	need	to	implement	Fault	Tolerance	–	be	
prepared	to	a	looong	process	of	research	and	even	more	importantly,	testing	of	the	
software-based	allegedly-Fault-Tolerant	solutions	(and	for	your	customers	sake,	make	sure	
to	avoid	solutions	which	are	based	on	customized	hardware	drivers	–	these	tend	to	cause	
much	more	trouble	than	they’re	worth).		
	

Fault	Tolerance	for	DBs	
	
In	such	(BTW,	really	rare)	cases	when	you	DO	need	Fault	
Tolerance	for	your	DBs	but	can’t	afford	a	box	such	as	Stratus	or	
NonStop	–	you	basically	have	two	options.	The	first	one	is	to	
use	RDBMS-provided	fault	tolerance.	As	a	rule	of	thumb,	I	am	
arguing	against	it	(that	is,	unless	your	goal	with	implementing	
Fault	Tolerance	is	mere	to	C.Y.A.).	The	reason	for	it	is	two-fold:	

• First,	as	a	rule	of	thumb,	most	of	these	things	are	
notoriously	poorly	implemented	(and	even	more	poorly	
tested)	

o in	particular,	“heartbeat”	failures	can	easily	
bring	your	system	to	the	knees	(and	even	cause	
split-brain	scenarios,	which	tend	to	be	much-worse-than-simple-failure	for	DB	
servers).		

o Moreover,	as	discussed	below	in	“Fault	Tolerance	–	on	Failure	Detection”	
section	–	the	task	of	failure	detection	cannot	be	100%	really	solved	with	only	
two	servers;	and	two-server	configs	are	still	predominant	ones	in	the	
industry.	Multi-node	systems	tend	to	fare	better	in	this	regard	–	but	see	
below	on	latencies.	

o As	a	result	–	very	intensive	testing	is	necessary	when	you’re	using	these	
systems,	and	it	is	really	unclear	what	is	more	difficult	–	to	conduct	good	
black-box	testing	of	the	3rd-party	system	–	or	to	write	your	own	one	(so	
testing	won’t	need	to	be	black-box	anymore).	

• Second	–	traditional	RDBMS-based	Fault-Tolerant	configs	are	not	that	latency-
friendly	(which	will	cause	quite	a	bit	of	trouble,	especially	with	single-DB-connection	
architectures	I	will	be	arguing	for	in	Vol.	VI’s	chapter	on	Databases).	Having	a	DIY	
Fault-Tolerance	allows	to	avoid	this	problem.	

o This	tends	to	be	especially	true	for	multi-node	systems	(which	can	be	made	
immune	to	heartbeat	failures	and	split-brain	conditions	but	latencies	tend	to	
go	through	the	roof	<sad-face	/>).	

	
The	second	option	is	to	use	VM-based	Fault	Tolerance	(such	as	VMWare	FT	or	Xen	Remus)	
for	your	OLTP	DB	Server	Box.	Two	practical	things	to	note	in	this	regard:	

C.Y.A.	
https://en.wikipedia.org/wiki/Cover_your_ass	

Cover	your	ass	or	C.Y.A.	
describes	activity,	
usually	in	a	work-
related	or	bureaucratic	
context,	done	by	an	
individual	to	protect	
himself	or	herself	from	
possible	subsequent	
criticism,	legal	penalties	
or	other	repercussions.	

• You	DO	need	at	least	10GBit/s	link	between	your	primary	and	secondary	boxes.213	
Make	sure	to	monitor	its	utilization	and	upgrade	when	necessary.	

• Due	to	significant	impact	of	the	latency	between	your-DB-Server-App	and	your-
RDBMS,	make	sure	to	run	both	of	them	within	the	same	VM	<sic!	/>.	

	
In	theory	–	you	can	also	try	a	DIY	Fault	Tolerance	for	a	Database	Server	too	(along	the	same	
lines	as	for	Game	World	Servers)	–	but	honestly,	with	the	state	including	the	database	–	it	is	
going	to	be	a	really	big	challenge	(even	by	my	heavily-leaning-towards	-DIY	standards	<wink	
/>).		
	

Fault	Tolerance	–	on	Failure	Detection	and	Split-Brain	
Conditions	
	
One	thing	which	is	inherent	for	any	kind	of	Fault-Tolerance-with-failover	(whether	DYI	or	
otherwise)	–	is	failure	detection:	before	we	can	fail	over	to	a	reserve	box	–	we	have	to	
detect	a	failure.	Moreover,		
if	failure	detection	mechanism	can	leave	both	our	Server	Boxes	thinking	that	

they’re	masters	at	the	same	time	–	we’re	in	Deep	Deep	Trouble™.	
	
Such	as	situation	is	known	as	a	“split-brain	condition”,	and	for	stateful	systems	it	is	
fundamentally	irrecoverable	in	general;	among	other	things,	it	means	that	

At	least	for	stateful	systems,	split-brain	condition	can	easily	lead	to	
significantly-worse	results	than	simple	failure.	

	
Overall,	implementing	Failure	Detection	properly	(including	guarantees	against	split-brain	
conditions)	tends	to	be	very	tricky.	
	
There	is	quite	a	bit	of	research	on	Failure	Detection	(see,	for	example,	(Bongiovanni	n.d.));	
however,	in	practice	most	of	the	time	Failure	Detection	use	some	variation	of	the	heartbeat:	
every	side	sends	“heartbeats”	at	pre-defined	intervals,	and	if	we	don’t	receive	anything	
from	the	other	side	–	we	consider	the	other	side	as	failing.		
	
However,	naïve	heartbeat	implementations	are	vulnerable	to	heartbeat	link	failures	<ouch!	
/>	(and	to	make	things	worse,	such	a	failure	in	a	naïve	implementation	will	very	likely	lead	
to	that	dreaded	split-brain	condition	too	<double-ouch!	/>).	Let’s	consider	the	following	
example:	

• There	are	two	servers	(Master	and	Slave)	sending	heartbeats	to	each	other	
• if	Slave	doesn’t	receive	heartbeats	from	Master	–	it	assumes	that	Master	is	dead,	

and	takes	over.	
o In	quite	a	few	cases	(in	particular,	for	clusters),	take	over	is	implemented	via	

changing	IP	address	of	the	Slave	(usually	followed	by	an	ARP	flush)	–	along	
the	lines	discussed	in	the	DIY	Fault	Tolerance	–	Connections	and	IPs	section	

																																																								
213	that	is,	if	your	VM	Fault	Tolerance	is	checkpoint-based,	but	as	far	as	I	know,	as	of	mid-
2017	both	VM	FT	and	Xen	Remus	are	checkpoint-based	with	no	plans	to	change	it	

• If	Master	indeed	fails	–	then	this	kind	of	simplistic	failover	does	work	as	intended	
• However,	if	it	is	the	link-used-for-sending-heartbeat	which	fails	(or	any	of	the	NICs-

serving-heartbeat-link	fails,	or	drivers	for	such	NICs	fail,	or	Master	fails	partially,	
leading	to	about	the	same	result),	we’re	in	lots	of	trouble:		

o not	receiving	heartbeats	anymore,	Slave	will	decide	that	Master	is	dead,	and	
will	change	it’s	own	IP	

o But	if	Master’s	non-hearbeat	interface	is	not	dead	–	we’ll	have	two	Servers	
(Master	and	Slave)	with	the	same	IP	address	(but	different	MAC	addresses)	
within	the	same	network	–	and	this	is	enough	to	effectively	make	the	whole	
thing	unusable	even	at	the	network	level.	

	
Actually,	the	problem	with	the	naïve	heartbeat	system	described	above,	is	not	really	with	IP	
change;	in	fact,	regardless	of	IPs,	if	we	have	two	nodes,	and	they	can	stop	communicating	
with	each	other,	while	accepting	Clients	–	Slave	node	will	decide	that	the	other	node	is	
dead,	so	we’ll	get	a	classical	split-brain:	two	separate	universes	which	pretend	to	work,	but	
each	having	its	own	state,	which	is	actually	worse	than	non-working	at	all;	in	particular,	if	
one	of	the	Clients	gets	some	unique	resource	on	one	Server,	and	another	Client	gets	the	
same	unique	resource	on	another	Server,	reconciling	them	is	not	really	possible	(in	extreme	
cases,	such	reconciliation	is	not	possible	except	that	in	court	of	law	<n-times-ouch!	/>).		
	
As	it	was	already	briefly	mentioned	above,	the	simplest	way	to	avoid	split-brains	is	to	make	
sure	that	there	is	a	single	entity	making	this	“other	side	is	dead”	decision	(or	one	single	
entity	should	enforce	this	decision	for	all	the	entities	involved),	and	to	turn	one	of	the	
servers	off	(or	disconnect	it)	entirely.	One	schema	which	would	work	along	these	lines,	
would	be	the	following:	

• Both	Master	and	Slave	are	connected	to	the	same	managed	Ethernet	switch	(as	
we’ll	see	in	Vol.	VII’s	chapter	on	Preparing	for	Launch,	it	is	an	extremely	common	
practice	anyway)	

• When	our	heartbeat	script	on	the	Slave	detects	a	potential	failure	of	the	Master	–	
first	thing	it	does,	is	connecting	to	that	managed	Ethernet	switch	where	both	our	
nodes	are	connected	to.		

• While	connected	to	the	switch,	our	Slave	disconnects	Master	from	the	switch	(using	
shutdown	for	CISCO	switches,	for	more	on	scripting	CISCO	switches	–	see,	for	
example,	(Scripting	a	Cisco	switch	with	Python	and	Expect	n.d.)).		

o If	this	attempt	succeeds	–	it	means	that	our	system	is	no	longer	redundant,	
but	more	importantly	–	it	means	that	our	Slavee	did	take	the	system	over	

• Now,	our	Slave	can	start	changing	IPs/taking	connections/…;	as	Master	is	already	
disconnected	at	switch	level	–	any	of	the	actions	taken	by	Slave,	cannot	possibly	
lead	to	the	dreaded	split-brain	(regardless	of	supposedly-dead	Master	being	really	
dead,	partially	dead,	or	not	dead	at	all).	

	
Another	way	to	prevent	split-brain,	is	so-called	quorum-based	systems	with	more	than	two	
nodes.	While	such	system	can	be	made	split-brain-immune,	at	least	in	a	case	of	an	
extremely-generic-failure	they	still	need	to	use	some	kind	of	physical/network	disconnect	
such	as	the	one	discussed	above,	to	disable	a	node	which	could	potentially-got-really-mad.	
	

Of	course,	when	disabling	the	Ethernet	interface,	there	is	still	a	chance	for	failure	
misdetection	to	become	a	contributing	factor	to	overall	system	failure	–	in	particular,	if	
we’re	turning	a	working	Server	off,	we’re	losing	redundancy	which	does	lower	overall	
reliability,	but	well	–	as	a	Big	Fat	Rule	of	Thumb™,	is	still	MUCH	better	than	risking	a	split-
brain.	
	

Summary	for	Chapter	10	
	
To	summarize	our	findings	from	this	Chapter:	

• Redundancy	!=	better	MTBF,	and	MTBF	is	the	only	thing	which	really	matters214	
• Thinking	about	potential	failures	is	important	for	games.		

o However,	for	quite	a	few	of	the	games	out	there,	the	only	thing	we	really	
MUST	handle	–	is	mitigation	of	the	failures	of	Game	World	Servers	(ensuring	
that	it	does	NOT	crash	the	whole	system,	and	that	recovery	from	the	failure	
is	at	least	somehow	reasonable	from	player’s	perspective).	

o Surprisingly,	handling	DB	Server	failures	is	often	not	required215	due	to	such	
failures	being	extremely	rare	(that	is,	if	you	run	your	DB	on	one	single	box).	

• if	we	need	to	have	real	Fault	Tolerance	for	Game	Servers	–	it	can	be	achieved	
o modern	VM-based	Fault	Tolerance	tends	to	add	significant	latencies	(easily	

reaching	100+	ms)	
o There	at	least	two	distinct	DIY	Fault	Tolerance	schemas,	based	on	

deterministic	(Re)Actors,	which	can	work	at	the	cost	of	latency	penalty	<	1ms	
• If	we	need	have	real	Fault	Tolerance	for	DB	Servers	–	it	can	be	achieved	

o If	we’re	speaking	about	stock	exchanges	etc.	(where	such	requirements	are	
the	most	common)	–	seriously	consider	HP	NonStop	or	Stratus;	they’re	by	far	
the	best	thing	to	achieve	real	Fault-Tolerance.	

o As	for	RDBMS-level	solutions	–	they	will	take	a	lot	of	time	to	make	them	work	
anywhere-close	to	be	really	reliable.		

• Split-brain	conditions	are	really	nasty	(and	are	observed	on	a	surprisingly	huge	
number	of	naïve	heartbeat-based	systems	merely	by	disconnecting	that	heartbeat	
cable).	As	effects	of	split-brain	tend	to	be	much	worse	than	effects	of	simple	failure	–	
make	100%	sure	that	your	system	does	NOT	suffer	from	them	(at	the	very	least	–	
make	sure	to	test	how	your	system	handles	unplugging	of	your	heartbeat	cable).	

	

Bibliography	
	
Bergsma,	R.	(n.d.).	Migrating	an	ip-address	to	another	server:	clear	the	arp	cache	of	your	

neighbors.	Retrieved	from	https://blog.remibergsma.com/2012/11/15/migrating-an-
ip-address-to-another-server-clear-the-arp-cache-of-your-neighbors/	

																																																								
214	Ok,	severity	of	the	impact	from	the	failure	also	matters	–	but	it	still	has	nothing	to	do	
with	redundancy	
215	beyond	having	a	replica-or-logs-which-are-a-few-minutes-behind	

Bongiovanni,	F.	(n.d.).	Retrieved	from	
http://deptinfo.unice.fr/twiki/pub/Minfo/DistributedAlgo/Cours_FailuresDetectors-
Consensus-SelfStabilization.pdf	

Determining	the	Availability	and	Reliability	of	Storage	Configurations.	(n.d.).	Retrieved	from	
http://www.dell.com/content/topics/global.aspx/power/en/ps3q02_shetty?c=us	

How	Fault	Tolerance	Works.	(n.d.).	Retrieved	from	https://pubs.vmware.com/vsphere-4-
esx-
vcenter/index.jsp?topic=/com.vmware.vsphere.availability.doc_41/c_plan_understa
nd_ft.html	

NonStop	(server	computers).	(n.d.).	Retrieved	from	
https://en.wikipedia.org/wiki/NonStop_(server_computers)	

Scripting	a	Cisco	switch	with	Python	and	Expect.	(n.d.).	Retrieved	from	
https://www.electricmonk.nl/log/2014/07/26/scripting-a-cisco-switch-with-python-
and-expect/	

FAULT	TOLERANT	AVAILABILITY	FOR	CRITICAL	APPLICATIONS	AND	VIRTUALIZED	
WORKLOADS.	(n.d.).	Retrieved	from	
http://www.stratus.com/solutions/platforms/ftserver/	

	
	 	

Copyright	©	ITHare.com	Website	GmbH,	2015-2017	

Chapter	11.	Pre-Coding	Checklist:	Things	
Everybody	Hates,	but	Everybody	Needs	Them	
Too.	From	Version	Control	to	Coding	
Guidelines	
	
	
Along	the	course	of	our	Volumes	I	to	III,	we've	discussed	a	lot	of	architectural	issues	specific	
and	not-so-specific	to	MOGs,	and	now	you've	hopefully	already	drawn	a	nice	architecture	
diagram	for	your	upcoming	multiplayer	game.	
	
However,	before	actually	starting	coding,	there	are	still	a	few	things	to	do.	Let's	take	a	look	
at	them	one	by	one.	

Version	Control	
[[TODO:	picture	with	“referring	to	Skyrim	by	Bethesda	Softworks”]]	
	

Always	keep	the	entire	universe	required	to	build	your	software	in	version	control	
--	Neal	Ford	

To	develop	pretty	much	anything,	you	do	need	a	version	
control	system	(VCS,	also	known	as	source	control	system).	I	
don't	want	to	go	into	a	discussion	why	do	you	need	it,	just	
saying	that	there	is	a	consensus	out	there	on	version	control	
being	necessary	for	all	the	meaningful	development	
environments.	Even	if	you're	single	developer,	you	still	need	
version	control:	the	version	control	system	will	act	as	a	natural	
backup	of	your	code,	plus	being	able	to	rollback	to	that-
version-which-worked-just-yesterday,	will	save	you	lots	of	time	
in	the	long	run.	And	if	you're	working	in	a	team,	benefits	of	
version	control	are	so	numerous	that	nobody	out	there	dares	
to	develop	without	it.	

The	very	first	question	about	version	control	is	“what	to	put	
under	your	version	control	system?”	And	as	a	rule	of	thumb,	
the	answer	goes	like	
You	should	put	under	version	control	pretty	much	
everything	you	need	to	build	your	game,	but	usually	NOT	the	results	of	the	

builds	

	
I	don't	want	to	go	into	a	
discussion	why	you	
need	source	control	
system,	just	saying	that	
there	is	a	consensus	out	
there	on	it	being	
necessary	

[TODO:rabbit_pullquote	img="areyoucrazy"	quote="hey,	what	is	the	mesh	we	should	use	
with	this	source	code?"]And	yes,	“pretty	much	everything”	generally	includes	assets,	such	as	
meshes	and	textures.	Moreover,	it	is	of	paramount	importance	to	keep	all	the	assets	under	
the	same	version	control	system	–	and	in	the	same	repository	-	as	your	source	code.	While	
there	are	people	out	there	advocating	using	Git	for	code,	and	SVN	for	assets	–	I	am	firmly	
against	such	split-brain	approaches.	The	main	problem	along	this	line	is	with	being	unable	
to	synchronize	two	completely	separate	repositories,	we’ll	pretty	much	inevitably	run	into	
situation	when	answering	a	question	“hey,	what	is	the	mesh	we	should	use	with	this	source	
code??”	will	take	much	longer	than	it	should	have.		
	
On	the	other	hand,	as	with	most	of	the	rules	of	thumb	out	there,	there	are	certain	(but	
usually	very	narrow)	exceptions	to	both	“everything	you	need	to	build”	and	“usually	NOT	
results	of	the	builds”	parts	of	the	bold	statement	above.	As	an	exception	to	“everything	you	
need	to	build”	part,	you	might	want	to	keep	certain	egregiously-large-and-barely-
connected-to-your-game	things	(such	as	intro	videos)	outside	of	your	version	control	
system,216	but	such	cases	should	be	very	few	and	far	between.	Most	importantly,	
your	game	should	be	buildable	from	version	control	system,	and	the	build	

should	be	playable	
,	that's	one	strict	requirement;	however,	as	long	as	you	comply	with	this	rule	-	you	MIGHT	
bend	all	the	other	rules	a	bit.		
	
BTW,	if	your	source	significantly	depends	on	the	toolchain	you’re	using	(which	shouldn’t	be	
the	case	in	theory	–	but	it	does	happen	way	too	often	in	practice	<sad-face	/>217)	–	then	to	
comply	with	this	rule,	you	may	have	to	get	your	whole	toolchain	into	your	version	control	
(in	the	extreme	case	–	a	whole	VM-with-all-the-tools-used-to-reproduce-the-build	can	
become	a	part	of	source-controlled	universe,	but	IMO	this	is	rarely	necessary	for	gamedev).	
	
As	for	exceptions	to	“not	including	results-of-your-build”	rule	of	thumb	–	I’ve	seen	examples	
when	having	YACC-compiled	.c	files	within	version	control	has	simplified	development	flow	
(i.e.	not	all	developers	needed	to	setup	YACC	on	their	local	machines),	but	once	again	–	this	
is	merely	a	very	narrow	exception	from	the	common	rule	of	thumb	stated	above.	On	the	
other	hand,	keeping	your	compiled	executables	(and	worse	–	complete	installers)	within	the	
version	control	is	usually	undesirable.	At	some	point,	I’ve	seen	such	a	policy	increasing	the	
size	of	the	version	control	DB	beyond	the	point	of	being	usable	(and	while	an	argument	of	
‘disk	is	cheap’	does	fly	to	certain	extent	–	the	time	necessary	to	checkout,	as	well	as	time	
necessary	to	backup	your	version	control,	are	important	–	and	both	were	severely	affected	
by	such	a	policy).		
	
[TODO:rabbit_pullquote	img="pointingout"	pos="right"	quote="Note	that	I	am	not	arguing	
along	the	lines	of	“whether	binaries	belong	to	the	version	control””]Note	that	I	am	not	
arguing	along	the	lines	of	“whether	binaries	belong	to	the	version	control”.	Instead	–	it	is	
about	“whatever-is-necessary-to-build”	against	“what-we-get-as-a-result-of-our-build”.	
While	“whatever-is-necessary-to-build”	should	include	assets,	and	may	include	compilers-
																																																								
216	Make	sure	to	replace	them	with	stubs,	so	your	build	is	still	perfectly	playable	
217		this	is	pretty	common	for	embedded	developers,	but	fortunately,	for	gamedev	it	is	not	
that	common	

and-libraries-used-to-build	–	storing	results	of	our	build	(whether	binary	or	not)	is	rarely	
necessary.	First,	if	you	did	a	good	job	with	storing	“whatever-is-necessary-to-build”,	you	can	
reproduce	exactly	the	same	build,	so	you	don’t	really	need	to	store	the	results;	second	-		the	
value	of	binary	executable	/	installer	for	development	is	extremely	limited.	
	

To	Git	or	not	to	Git?	To	Feature-Branch	or	not	to	Feature-
Branch?	
	
In	the	most	of	the	development	world,	for	quite	a	few	years	Git	(or	sometimes	more-or-less-
equivalent	Mercurial)	is	considered	a	golden	standard	for	source/version	control.	On	the	
other	hand,	recently	I	feel	a	completely	unexpected	comeback	of	SVN.		
	
Actually,	if	we	take	a	closer	look	at	the	heated	Git-vs-SVN	debates,	the	main	line	of	
meaningful	arguments	is	not	really	about	specifics	of	the	source	control	system,	but	is	
rather	about	branching.218	And	as	most	of	the	modern	VCS	(including	Git,	Mercurial,	and	
SVN	1.8+)	do	provide	useable	branching219		–	the	actual	line	of	argument	is	not	about	“what	
our	VCS	will	allow	us	to	do”	anymore,	but	is	about	“what	do	we	want	to	do”	with	regards	to	
branching,	and	more	generally	–	with	regards	to	our	development	flow.		
As	a	result,	we’ll	discuss	development	flows	first,	and	only	then	we’ll	proceed	towards	the	
discussion	of	the	pros	and	cons	of	specific	VCS.		
	
Before	we	start,	let’s	note	one	all-important	property	we	should	keep	in	mind	while	
discussing	development	flows	and	VCS	in	the	context	of	game	development.	First,	let’s	
observe	that,	as	noted	above	–	we	have	to	store	all	the	game	assets	under	our	version	
control	system.	Second	–	let’s	note	that	assets	are	generally	handled	by	non-developers	
(such	as	artists).	When	these	two	observations	are	combined,	it	means	that	
As	a	rule	of	thumb,	for	gamedev	we	DO	need	to	have	our	version	control	to	

be	easily	usable	by	non-developers.	
	
[TODO:rabbit_pullquote	img="thumbup"	pos="right"	quote="In	general,	it	is	not	a	problem	
to	explain	the	concept	of	“check-in”	and	“check-out”	to	non-developers"]In	general,	it	is	not	
a	problem	to	explain	the	concept	of	“check-in”	and	“check-out”	to	non-developers;	after	all	
–	even	the	most	conservative	gamedev	teams	are	using	version	control	(such	as	SVN	or	
Perforce),	with	“check-in”	and	“check-out”	being	the	cornerstone	of	all-the-source-control-
systems.	On	the	other	hand	–	requiring	non-developers	to	understand	rather	complicated	
flows	such	as	GitFlow	(and	Linus	forbid,	the	concept	of	“rebasing”)	is	usually	out	of	
question.	
	

																																																								
218	ok,	there	is	also	a	“distributed-vs-centralized”	argument,	but	this	we	can	argue	about	ad	
infinitum,	while	at	least	for	closed-source	and	in-house	version	control	it	doesn’t	really	
matter	that	much	
219	though	each	not	without	its	own	gimmicks,	see	below	for	details	

Development	Flows:	from	Release	Branching	and	Feature	Branching	to	
Trunk-Based-Development-with-Continuous-Integration	and	Feature-
Branching-with-Frequent-Integration	
	
Now,	let’s	take	a	closer	look	at	those	development	flows.	Over	the	time,	at	least	four	rather	
distinct	approaches	to	development	were	observed	in	the	wild:220	

• Trunk-Based	Development	(with	Release	Branching	on	the	side).	Actually,	Trunk-
Based	Development	(i.e.	“everybody	actually	works	on	a	trunk,	and	directly	commits	
to	trunk”)	is	a	natural	thing	when	you’re	working	on	the	project	alone	–	and	it	was	
used	for	larger	projects	for	a	while	too.	In	practice,	Trunk-Based	Development	
becomes	rather	frustrating	as	soon	as	you	have	a	team	with	100+	developers	making	
commits	to	trunk,	where	any	single	commit	can	break	the	whole	thing;	it	has	led	to	
infamous	situations	of	“hey,	nobody	can	compile	until	this	<censored>	guy	has	his	
code	fixed”	<sad-face	/>…	

o Pretty	often	(and	especially	in	waterfall-based	development	processes),	
Trunk-Based	Development	is	accompanied	with	the	practice	of	Release	
Branching;	this	practice	goes	back	to	times	when	the	software	was	released	
with	a	biennial	cycle.	From	the	point	of	view	of	source	control	–	it	means	that	
whenever	we	have	a	release,	we	needed	to	have	two	branches:	one	to	
develop	bugfixes	for	this	release,	and	another	one	–	to	develop	our	next	
release.	

• Feature	Branching.	Historically,	Feature	Branching	was	hugely	popularized	by	Linux	
development	flow	and	Git.	Essentially,	Git	is	all	about	the	philosophy	of	a	more	
extreme	form	of	Feature	Branching,	where	everything	out	there	can	be	seen	as	a	
patch.	From	our	point	of	view	–	Feature	Branching	does	work,	but	has	a	problem	
that	integrating	Feature	Branch	can	easily	become	a	significant	effort;	moreover,	the	
longer	the	Feature	Branch	lives	without	integration	–	the	more	difficult	it	will	be	to	
integrate	it,	up	to	the	point	of	throwing	away	the	whole	development	of	several	
month	in	one	of	the	branches	<ouch!	/>.		

• Trunk-Based-Development-with-Continuous-Integration.	As	the	time	passed,	so-
called	“Continuous	Integration”	has	emerged	(more	on	it	in	[[TODO]]	section	below),	
which	has	helped	Trunk-Based-Development	in	a	very	significant	way.	The	most	
important	difference	of	Trunk-Based-Development-with-Continuous-Integration	
from	simple	Trunk-Based-Development	is	that	with	the	help	of	Continuous	
Integration,	you	won’t	be	allowed	to	check	in	anything	which	breaks	compile-and-a-
bunch-of-very-basic-tests.	As	a	result	–	addition	of	Continuous	Integration	mostly	
solves	that	everybody-waiting-for-you-to-fix-your-bug-which-made-it-to-trunk	
problem		<phew	/>,	which	is	typical	for	“pure”	Trunk-Based	Development.	

• Feature-Branching-with-Frequent-Integration.	As	noted	above,	one	problem	
inherent	to	feature	branching,	is	that	branches	can	easily	become	out-of-sync,	
making	merge	down	the	road	very	difficult	(up	to	the	point	of	being	outright	

																																																								
220	Note	that	the	processes	described	below	are	not	really	“all-or-nothing”,	and	different	
aspects	of	them	can	be	combined	in	one	single	development	process;	still	-	more	often	than	
not,	specific	real-world	development	process	tends	to	lean	towards	one	of	these	workflows	
in	a	more-or-less	obvious	manner.		

impossible).	To	deal	with	it	–	we	can	adopt	a	policy	of	Frequent	Integration.	With	
such	a	policy	in	place	(and	enforced	by	tools	–	more	on	them	in	[[TODO]]	section	
below)	we	don’t	sit	in	a	Feature	Branches	for	long,	merging	them	back	to	trunk	as	
soon	as	possible	(as	in	“usually	–	daily,	at	the	very	most	–	once	per	week”).	
Moreover,	even	if	we	cannot	integrate	our	feature	branch	yet	–	we	should	at	least	re-
sync	changes	from	the	trunk	into	our	feature	branch.	In	turn,	such	a	tool-aided	policy	
mostly	solves	that	problem	of	the	long-living-Feature-Branches	being	difficult	to	
integrate	back	to	the	trunk.221		

	
Looking	at	these	four	approaches	I	can	say	that	I	clearly	do	not	like	first	two	of	them	(though	
even	they	can	work	in	practice);	as	for	the	two	last	ones	–		
At	this	point	I	don’t	dare	to	claim	which	of	Trunk-Based-Development-with-
Continuous-Integration	and	Feature-Branching-with-Frequent-Integration	is	

better.222	
In	other	words	–	both	these	workflows	will	work,	and	“which	one	to	choose”	is	more-or-less	
down	to	preferences	of	your	team.	BTW,	if	we	think	of	it	for	a	few	more	seconds	–	we’ll	
realize	that	with	adding	of	the	Continuous/Frequent	Integration,	original	approaches	
actually	converged	towards	a	more-usable-flow	(with	the	difference	between	the	two	
approaches	declining	as	the	life	time	of	each	Feature	Branch	is	reduced	–	and	reducing	the	
life	span	of	Feature	Branch	as-much-as-possible	is	already	almost-universally	recognized	as	
being	a	Good	Thing™,	the	only	remaining	argument	is	about	what	“as-much-as-possible”	
really	means).		
	
[TODO:rabbit_pullquote	img="surprised"	pos="right"	quote="at	least	in	theory	Trunk-Based-
Development-with-Continuous-Integration	and	Feature-Branching-with-Frequent-
Integration	can	co-exist	within	the	same	project"]Moreover,	at	least	in	theory	Trunk-Based-
Development-with-Continuous-Integration	and	Feature-Branching-with-Frequent-
Integration	can	co-exist	within	the	same	project	(though	personally	I	would	still	suggest	to	
pick	one	of	them	to	start	with223).		
	
Now,	armed	with	this	information	–	let’s	discuss	Trunk-Based-Development-with-
Continuous-Integration	and	Feature-Branching-with-Frequent-Integration	in	a	bit	more	
detail.	
	

Trunk-Based-Development-with-Continuous-Integration	
There	is	something	very	strange	and	unaccountable	about	a	tow-line.		

	You	roll	it	up	with	as	much	patience	and	care		

																																																								
221	Let’s	keep	in	mind	that	even	if	we	re-sync	each	feature	branch	with	trunk,	there	is	still	
risk	of	two	long-living	feature	branches	conflicting	with	each	other,	so	integrations	with	the	
trunk	still	need	to	be	frequent	enough.	
222	In	gamedev	world,	trunk-based	development	is	currently	much	more	popular	–	so	it	
should	be	a	tad	safer	to	go	this	way;	on	the	other	hand	–	there	are	games	developed	under	
both	models,	so	it	is	not	that	risky	either	way.	
223	You	can	be	pretty	sure	that	as	the	time	passes,	you	will	encounter	situations	when	your	
choice	is	sub-optimal,	so	you	will	have	to	start	using	both	of	them	<wink	/>	

as	you	would	take	to	fold	up	a	new	pair	of	trousers,		
and	five	minutes	afterwards,	when	you	pick	it	up,		

it	is	one	ghastly,	soul-revolting	tangle.	
--	Jerome	K.	Jerome,	Three	Men	in	a	Boat	

[sed	s/tow-line/source	code/g]	
	
Very	roughly,	Trunk-Based-Development-with-Continuous-Integration	goes	as	follows:	

• Essentially,	all	we	have	is	‘trunk’	branch,	where	all	the	development	goes	
o All	the	usual	“check-in”/”check-out”	logic	applies	
o By	default,	all	check-ins/check-outs	go	directly	into	‘trunk’	

§ There	are	exceptions,	but	they’re	rare	
• One	such	exception	is	hotfixes	–	which	usually	involve	“release	

branch”	
• To	avoid	those	“nobody	can	work	because	somebody	

has	checked	in	one	non-compilable	file”	–	we	use	a	
Continuous-Integration	tool	(CI	tool)	

o CI	tool	compiles	checked-in	code,	and	runs	a	
bunch	of	very	basic	unit	tests	

o [TODO:	rabbit_pullquote	img="assertive"	
pos="right"	quote="to	work	efficiently	–	CI	tool	
should	work	(and	give	a	“green	light”)	not	only	
on	each	commit,	but	before	the	actual	commit	
happens"]IMPORTANT:	to	work	efficiently	–	CI	
tool	should	work	(and	give	a	“green	light”)	not	
only	on	each	commit,	but	before	actual	commit	
happens.	As	discussed	below	in	the	Pre-tested	
Commit	section,	such	“pre-tested	commits”	are	
extremely	important	to	reduce	the	number	of	that	“everybody	waits	for	a	
committed-bug	to	be	fixed”	situation.		

	
Trunk-Based	Development,	when	aided	with	a	CI	tool	doing	pre-tested	commits	(a.k.a.	pre-
commit	test,	delayed	commit,	etc.),	has	several	important	advantages	over	Feature	
Branches:	

• It	is	simple.	Most	importantly	–	it	is	simple	enough	to	be	used	for	non-developers	
(such	as	artists).	If	you	give	your	artists	Perforce	or	a	TortoiseSVN	(without	any	
branches	in	sight)	–	chances	of	them	revolting	against	using	version	control	become	
pretty	slim	(but	give	them	Git	and	ask	them	to	“rebase”	to	re-sync	their	branch	–	and	
you	will	certainly	have	a	mortgage-size	crisis	on	your	hands).	

• As	everybody	works	with	already-committed	code	-	it	allows	for	much	more	testing	
to	be	performed	over	that	already-committed	stuff;	this	tends	to	help	with	ironing	
those	most-pesky	integration	bugs	out.	

• Merges	are	rare	–	which	means	that	there	is	less	risk	of	the	need	to	revert	a	merge	
(and	reverting	a	merge	is	a	well-known	counter-intuitive	mess	at	least	in	Git	and	
Mercurial,	more	on	it	below).	

	
On	the	negative	side	-	Trunk-Based-Development-with-Continuous-Integration	exhibits	a	
few	not-so-desirable	properties	too:	

Pre-tested	
commit	

https://en.wikipedia.org/wiki/Gated_commit	

A	gated	commit,	gated	
check-in	or	pre-tested	
commit	is	a	software	
integration	pattern	that	
reduces	the	chances	for	
breaking	a	build	(and	
often	its	associated	
tests)	by	committing	
changes	into	the	main	
branch	of	version	
control.	

• It	complicates	work	on	not-so-trivial	features.	As	there	are	no	“feature	branches”	–	
we	have	to	choose	between	doing-everything-in-a-very-incremental-manner	(which	
is	possible,	but	time-consuming)	–	or	developing	for	a	while	without	committing	at	
all	(which	is	risky	and	prevents	inter-developer	collaboration	on	features).		

• Cherry-picking	(i.e.	deciding	which	features	should	go	into	next	build)	is	pretty	much	
impossible	

o OTOH,	“feature	flags”	a.k.a.	“feature	toggles”	(~=”runtime	decision	to	
enable/disable	a	feature”)	allow	for	rather	similar	functionality,	though	with	
two	(admittedly	relatively	minor)	drawbacks	

§ While	I	don’t	have	problems	with	enabling	and	disabling	ready-to-be-
used	features	using	feature	flags	–	relying	on	feature	flags	to	make	
sure	that	code	from	half-baked	features	is	never	ever	used	is	well,	
rather	risky	(if	your	system	can	be	misconfigured	in	production	–	
somebody	will	do	it	sooner	rather	than	later).	In	addition,	feature	
flags	also	creates	a	risk	of	such	never-used	code	living	in	trunk	for	
years.		

§ on	the	Client-Side	giving	away	the	code	prematurely	may	conflict	with	
our	bot	fighting	efforts	(more	on	it	in	Vol.	VIII’s	chapter	on	Bot	
Fighting).	

• [TODO:rabbit_pullquote	pos="right"	img="thumbdown"	quote="With	Trunk-Based-
Development-with-Continuous-Integration	development	model	running	over	several	
years,	code	tends	to	become	unnecessarily-tightly-coupled	more	easily	than	when	
using	Feature	Branches"]With	Trunk-Based-Development-with-Continuous-
Integration	development	model	running	over	several	years,	code	tends	to	become	
unnecessarily-tightly-coupled	more	easily	than	when	using	Feature	Branches.	While	
there	is	an	overall	tendency	for	the	unattended	code	to	become	entangled	(pretty	
much	as	unattended	tow-lines	from	epigraph	to	this	section)	–	with	Trunk-Based-
Development	lacking	a	concept	of	“feature”,	fighting	the	spaghetti	code	tends	to	
require	more	discipline	than	for	Feature-Branch	approach.	

o On	the	other	hand	–	if	you’re	using	(Re)Actors	(which,	as	I	am	arguing	over	
this	whole	book,	you	should	<wink	/>)	–	clean	inter-(Re)Actor	interfaces	are	
enforced	in	a	rather	strong	manner,	so	at	least	between	(Re)Actors	it	is	not	
that	much	of	a	problem.	

	

Feature-Branches-with-Frequent-Integration	
	
An	alternative	to	Trunk-Based-Development-with-Continuous-Integration	is	Feature-
Branches-with-Frequent-Integration.	As	a	rule	of	thumb,	it	goes	as	follows:	
	

• All	the	development	is	done	within	Feature	Branches,	which	are	then	merged	into	
the	trunk;	normally	–	no	direct	commits	into	trunk	are	allowed.		

• Usually,	when/if	going	a	Feature	Branch	route,	I	am	arguing	for	the	“Git	Flow”	
branching	model	by	Vincent	Driessen	described	in	(Driessen).	When	you	look	at	it	for	
the	very	first	time,	it	may	look	complicated,	but	for	the	time	being	you'll	just	need	a	
few	pieces	of	it:	

o master	branch.	As	a	rule	of	thumb,	you	should	merge	here	only	when	
milestone/release	comes.	All	the	commits	to	the	master	branch	should	come	
from	merges	from	develop	branch.	Direct	commits	(i.e.	commits	which	are	
not	merges	from	develop)	into	master	branch	SHOULD	NOT	happen.	

o develop	branch.	The	branch	which	is	expected	to	work.	More	precisely	–	it	is	
usually	understood	as	a	branch	that	compiles	and	passes	all	the	
automated/CI	tests.224	You	should	merge	to	develop	branch	as	soon	as	
you've	got	your	feature	working	“for	you”	(and	all	the	automated	regression	
tests	do	pass).		

§ As	for	allowing	direct	commits	(not	from	feature	branches)	into	
develop	branch	–	it	is	arguable.	If	we	do	allow	them	–	we’ll	be	actually	
using	a	hybrid	between	Feature-Branches-with-Frequent-Integration	
and	Trunk-Based-Development-with-Continuous-Integration	(and	this	
is	not	bad,	but	it	is	important	to	understand	implications	of	each	
model).	

§ Whether	we	use	direct	commits	or	not	–	for	all	the	commits	into	
develop	branch	we	MUST	use	that	pre-commit	Continuous-Integration	
stuff	discussed	in	the	Trunk-Based-Development-with-Continuous-
Integration	section	above.	Actually,	it	becomes	even	more	important	
for	merges	(in	particular,	because	reverting	merges	is	a	mess	for	
pretty	much	all	the	VCS	out	there	<sad-face	/>).	

o feature	branch.	You	should	create	your	own	
feature	branches	as	you	develop	new	features.	
These	feature	branches	should	be	merged	into	
develop	branch	as	soon	as	your	feature	(fix,	
whatever)	is	ready.	Consider	feature	branch	as	
your	private	playground	where	you’re	
developing	the	feature	until	it	is	ready	to	be	
merged	into	develop	branch.	Feature	branches	
are	generally	not	required	even	to	compile;	
however,	it	is	a	really	good	idea	to	have	an	
ability	to	run	CI	tests	on	a	feature	branch	–	and	
to	use	this	ability	on	regular	basis.		

	
A	major	word	of	caution	with	regards	to	feature	branches:	
there	are	developers	out	there	who	prefer	to	live	within	their	
own	feature	branch	for	many	weeks	and	months,	often	even	
implementing	many	different	features	under	the	same	branch	
and	postponing	integration	for	as	long	as	they	can.	This	is	a	
Really	Bad	Practice™,	and	you	SHOULD	integrate	your	Feature	
Branches	very	often.	Moreover,	even	if	merge	of	your	feature	
branch	into	develop	branch	is	not	possible	–	at	the	very	least	
you	should	sync	your	branch	with	trunk	(via	“sync	merge”	in	

																																																								
224	it	is	important	to	understand	that	no	amount	of	automated	testing	can	guarantee	that	
the	code	is	really	working	

	
[[TODO:	stop	
sign]]There	are		
developers	out	there		
who	prefer	to	live		
within	their	own		
feature	branch	for		
many	weeks	and		
months,	implementing		
many	different		
features	under	the		
same	branch	and		
postponing	integration		
as	long	as	they	can	

SVN,	and	via	“rebase”	in	Git)	on	regular	basis	(at	the	very	most	once	per	2-3	days),	to	
incorporate	changes-made-in-trunk,	back	into	your	Feature	Branch.	
	
These	policies	are	all	good,	but	the	problem	is	that	for	a	team	of	20+,	pretty	much	any	policy	
doesn’t	work	without	police	some	way	to	help	us	to	follow	it.	
	
Fortunately,	there	are	at	least	two	phenomena	which	can	help	with	reducing	life	time	of	
those	way-too-long	Feature	Branches.	First,	we	have	to	note	that	the	very	nature	of	merge-
based	source	control	systems	tends	to	punish	those	developers	who	do	their	merges	later.	
When	both	you	and	a	fellow	developer	are	working	on	your	respective	branches,	and	she	
got	committed	her	merge	5	minutes	before	you,	then	it	becomes	your	problem	to	resolve	
any	conflicts	which	may	arise	from	the	changes	both	of	you	have	made.	In	most	cases	for	a	
reasonably	mature	codebase,	there	won't	be	too	many	conflicts,	but	whenever	they	do	
happen,		
it	is	the	second	developer	to	commit	who	becomes	a	rotten	egg	responsible	

for	resolving	conflicts	
	
Print	this	profound	truth	in	a	144pt	font	and	post	it	on	the	wall	to	help	your	fellow	
developers	merge	their	feature	branches	more	frequently.	
	
The	second	way	to	deal	with	those	Feature-Branches-which-outlive-their-usefulness,	is	to	
have	an	automated	tracker	of	long-lived	feature	branches	–	and	to	send	automated	
reminders	at	least	to	those	involved	and	to	PM225	(and	if	you	really	want	to	get	rid	of	these	
too-long-branches	–	send	the	reminder	to	the	whole	team	to	create	additional	peer	
pressure).	Automated	notifications,	while	not	being	a	silver	bullet,	do	help	to	push	
developers	in	the	right	direction.	
	
Pros	and	cons	of	Feature-Branches-with-Frequent-Integration	over	Trunk-Based-
Development-with-Continuous-Integration	actually	mirror	respective	cons	and	pros	
discussed	in	the	Trunk-Based-Development-with-Continuous-Integration	section	above.	On	
the	plus	side,	Feature-Branches-with-Frequent-Integration:	

• streamlines	development	of	the	not-so-trivial	features	
• ensures	cleaner	code	in	the	long	run	(in	particular,	it	reduces	unnecessary	tightly	

coupling)	
• provides	an	ability	to	cherry-pick	features-to-be-compiled-in	

o This,	in	turn,	is	a	practical	prerequisite	to	rather-important	Replay-Based	
Testing	as	discussed	in	Vol.	II’s	chapter	on	(Re)Actors.	

	
On	the	negative	side,	this	model	is	not	really	ideal	either:	

• It	is	too	complicated	for	non-developers	such	as	artists.			
o To	deal	with	it	–	we	have	to	say	that:	

§ At	each	given	moment,	each	artist226	works	in	one	specific	feature	
branch.		

																																																								
225	=Project	Manager	
226	or	at	least	“each	checkout	by	artist”	

§ We	provide	simple	scripts227	checking-out	and	checking-in	into	this	
branch	from	his	working	directory	

§ This	way	–	from	artist’s	perspective,	the	whole	flow	is	the	same	as	
with	trunk-based	development,	and	is	simple	enough	to	deal	with	
without	going	into	the	complicated	world	of	branches.	

• While	merges	are	less	frequent	with	Feature-Branch-based	development	–	each	
merge	takes	more	time	(especially	if	it	was	hold	for	too	long).	

o See	above	about	“how	to	push	developers	to	commit/push	more	often”.	
• [TODO:rabbit_pullquote	img="omg"	pos="right"	quote="amount	of	naturally	

occurring	de-facto	integration	testing	of	the	committed	code	is	reduced	(and	
reducing	the	amount	of	testing	–	especially	integration	testing	–	is	never	a	good	
thing)"]As	commits	into	develop-branch-used-by-everybody	tend	to	happen	less	
frequently	than	for	Trunk-Based	Development	–	it	means	that	amount	of	naturally	
occurring	de-facto	integration	testing	of	the	committed	code	is	reduced	(and	
reducing	amount	of	testing	-	especially	integration	testing228	-	is	never	a	good	thing).		

• Merges	are	frequent,	which	raises	chances	of	having	a	merge	revert	(and	they	are	
way	too	messy	at	least	in	Git	and	Mercurial).	

	

Comparing	Feature-Branches-with-Frequent-Integration	and	Trunk-
Based-Development-with-Continuous-Integration	
	
Now,	let’s	compare	our	two	candidate	workflows	side	by	side;	such	a	comparison	can	be	
seen	in	Table	11.1:	
	 Trunk-Based-Development-

with-Continuous-
Integration	

Feature-Branching-with-
Frequent-Integration	

Development	Flow	 Simple 	 Good 	for	developers,	too	
complicated 	for	non-
gamedevs	(the	latter	should	
be	addressed	as	described	
above)	

Merges	 Simple,	more	frequent	 More	rare,	larger	
Geared	Towards	 Trivial/smaller	features	 Not-so-trivial/larger	

features	
Naturally	Occurring	
Integration	Testing	

Quite	a	bit 	 Limited 	

Code	Quality	 More	tightly	coupled 	 Less	tightly	coupled 	
Risk	of	Merge	Revert	 Very	low 	 Higher 	
Cherry	Picking	 Not	possible 	 Doable 	
Replay-Based	Testing	 Difficult 	 Doable 	
	

																																																								
227	GUI,	whatever-else	
228	that’s	where	the	sneakiest	bugs	are	usually	found	

As	we	can	see	–	pros	and	cons	of	these	two	approaches	are	pretty	well-balanced,	so	“what	
to	choose”	becomes	more-or-less	a	matter	of	whatever-team-prefers	(that	is,	as	long	as	
things	such	as	CI	and	monitoring	of	the	long-living	feature	branches	are	implemented).	Also	
–	it	is	certainly	possible	to	use	a	“hybrid”	approach	with	more-trivial	features	going	directly	
to	the	trunk,	and	more-complicated-stuff	living	in	their	own	Feature	Branches	for	up	to	a	
few	weeks.	[[TODO:	elaborate	on	“hybrid”,	where	you’ll	end	up	anyway	<wink	/>]]	
	

Choosing	Version	Control	System	
	
After	we	finished	our	(admittedly	very	limited)	discussion	on	development	flows	–	we	can	
proceed	to	discussing	specific	version	control	systems.	As	of	2017,	the	following	four	version	
control	systems	are	widely	used	for	game	development	(listed	in	historical	order	of	their	
respective	first	releases):	Perforce,	SVN,	Git,	and	Mercurial.	While,	as	noted	above,	most	of	
gamedev	industry	is	still	leaning	towards	Perforce	and	SVN	–	there	were	successful	games	
using	Git	and	Mercurial	too.	
	

Perforce	
	
I	have	to	admit	that	I	never	used	Perforce	myself;	still,	I’ll	try	to	summarize	arguments	which	
gamedevs	routinely	provide	for	using	Perforce:	

• Unlike	most	of	the	version	control	systems	–	Perforce	is	oriented	not	only	towards	
coders,	but	also	towards	non-coders	such	as	designers	and	artists.	And	I	have	to	
agree	that	providing	designers/artists	with	a	friendly	environment	is	indeed	
extremely	important.	

• Huge	projects	 (those	with	 lots	of	asset	binary	 files,	 totaling	 terabytes)	are	handled	
without	issues.	

• Locking	files	is	possible.	
o As	asset	files	(whether	they’re	binary	or	text	–	more	on	it	below)	are	usually	

not	 really	mergeable	–	having	 two	artists	 to	work	on	 the	same	file	 is	a	Bad	
Idea™.	This	is	where	universally-frown-upon-in-programmers-world	“lock	file”	
feature	comes	handy.	

	
On	the	minus	side:	

• Perforce	branching	 is	 reported	 to	be	 rather	ugly	 (up	 to	 the	point	of	being	outright	
unusable);	 even	 worse	 -	 data	 loss	 has	 been	 reported	 to	 happen	 during	 Perforce	
merges	<double-ouch!	/>229.	

• Perforce	keeps	track	of	your	working	copy	on	the	server;	while	not	a	problem	for	LAN	
–	it	is	a	problem	when	you	have	to	work	remotely	(which	is	more	and	more	often	these	
days)	

o While	working	offline	is	possible	with	Perforce,	it	is	subject	to	“reconciliation”	
process	when	you’re	back	online,	which	is	well,	ugly.	

• Perforce	 has	 been	 reported	 to	 require	 to	 resort	 to	 out-of-the-source-control	 file	
copying	and/or	sharing	(which	is	an	inherently	Bad	Thing™)	on	quite	a	few	occasions.	

																																																								
229	to	be	fair	–	other	users	have	reported	working	with	Perforce	for	many	years	without	
problems,	though	it	is	unclear	how	much	branching	they	were	using	

• Continuous	 Integration	 tools	are	 relatively	 reluctant	 in	 supporting	Perforce;	on	 the	
other	hand,	with	Jenkins,	TeamCity	and	Bamboo	supporting	Perforce	–	it	is	not	that	
bad	either.	

• “Locking	files”	feature	can	be	abused	(in	particular,	you	should	have	a	policy	of	“not	
using	exclusive	checkout”	for	the	code).	

• You	cannot	just	delete	file	in	your	working	copy	–	you	should	do	it	ONLY	via	Perforce	
client;	otherwise	–	you’re	in	quite	a	bit	of	trouble.	While	it	is	certainly	not	that	big	deal	
–	but	certainly	an	inconvenience.	

• At	hundreds-of-dollars-per-user	-	pricing	can	get	not-so-insignificant	(especially	if	you	
have	part-time	users).	

	

SVN	
	
I	have	to	admit	that	for	a	long	while,	I	have	been	a	fan	of	SVN	–	and	I	still	admire	it.	From	a	
technical	standpoint,	SVN	is	your	typical	centralized	version	control	system	(based	on	a	
single	centralized	server),	and	is	great	because:	

• model	is	simple	
• it	is	easily	usable	by	non-developers.		

o For	non-developers	on	Windows	(and	large	chunk	of	your	designers	will	be	
on	Windows)	Tortoise	SVN	rulezzz!	

• Handles	large	multi-terabyte	projects	well.	
• File	locking	is	available.	
• Offline	work	is	possible	and	easy	(though	offline	commits	aren’t	possible,	and	

neither	is	offline	access	to	history	beyond	one	last	version)	
• IMO,	SVN	sync	merge	is	more	intuitive	than	Git’s	rebase	(though	I	admit	that	this	

point	is	debatable	and	flame-war	ridden).	
• SVN	is	built	under	a	strong	perception	of	history	being	immutable.	While	it	is	

possible	to	mess	with	SVN	history,	it	is	difficult	(or	even	impossible?)	to	do	without	
messing	with	SVN	files	directly	(i.e.	without	having	admin-level	access	to	svn	server	
box).	

• [[TODO:	partial	checkouts]]	
• Path-based	access	control	is	possible,	including	restricting	reads	on	a	per-

directory/per-file	basis.	[[TODO:	refer	to	explanation	why	it	is	necessary]]	
	
On	the	minus	side:	

• While	merges	reportedly	improved	on	the	way	towards	SVN	1.8	or	so	–	they’re	still	
not	as	fluid	as	in	Git.	At	the	very	least	–	as	far	as	I	know,	you	still	SHOULD	avoid	
renaming	files	in	your	branches	(otherwise	–	chances	are	you’ll	get	an	infamous	
“tree	conflict”	<sad-face	/>).230	It	is	not	that	big	deal	–	but	a	significant	
inconvenience	if	doing	feature	branching.	

• Commits	while	you’re	offline	are	not	possible.	This	is	not	as	bad	as	with	Perforce	
(actually,	if	you’re	offline	just	while	you’re	typing	in	while	on	a	train	back	home	–	it	is	

																																																								
230	While	SVN	1.10	is	expected	to	address	this	problem	by	a	significantly	improved	conflict	
resolver	–	SVN	1.10	is	not	out	yet,	so	it	is	unclear	whether	this	feature	will	make	it	to	1.10,	
and	how	exactly	it	will	work	in	practice	if	it	does	make	it.	

not	noticeable	at	all),	but	if	you’re	going	to	be	offline	for	a	while	as	you	are	
developing231	–	it	can	become	a	problem.	

• As	with	Perforce,	locking	can	be	abused.	To	mitigate	it,	it	is	possible	to:	
o Outright	prohibit	locking	of	source	files	(IIRC,	pre-commit	script	should	do	it).	
o for	non-mergeable	files	-	make	sure	to	write	a	script	sending	reminders	(CC:	

PM)	such	as	“you’re	holding	this	file	since	yesterday	–	are	you	sure	you	really	
need	it	for	this	long?”)	

• For	an	open-source	project	–	SVN’s	model	doesn’t	lend	itself	well	to	“pull	requests”	
o OTOH,	I	didn’t	see	much	“pull	requests”	for	intra-company	development,	

even	less	for	gamedev.	
	

Git	
	

Definition	of	git:	
a	foolish	or	worthless	person	

--	Merriam-Webster	dictionary	
	
After	working	with	SVN	for	a	while,	I	had	to	switch	to	Git	–	and	found	it	being	clearly	better-
suited	 for	Feature-Branch	development	model;	moreover	–	Git	 is	also	perfectly	usable	 for	
Trunk-Based-Development	-	as	long	as	it	is	only	developers	who	work	on	the	repository.	On	
the	 other	 hand,	 for	 gamedev-with-assets-and-artists-involved	 –	Git,	while	 being	 usable,	 is	
clearly	not	the	best	option.		
	
Pros	of	Git	include:	

• Being	branch-centered	from	the	very	beginning,	branch	handling	in	Git	is	good.	
o Still,	 reverting	branch	merge	 is	 ugly	 even	 in	Git	 <sad-face	 />,	more	on	 it	 in	

[[TODO]]	section	below.		
• Offline	work	is	very	straightforward,	you	have	full	capabilities	of	commit	and	having	

your	history.	
o Of	course,	it	comes	at	the	cost	of	extra	push	operation,	so	if	you	don’t	work	

offline	 often	 –	 it	 is	 not	 that	 big	 deal	 (especially	 in	 2017,	 where	 you	 have	
Internet	pretty	much	all	the	time)	

	
List	of	Git	negatives,	at	least	when	it	is	used	for	game	development,	is	longer:	

• Git	is	not	really	friendly	to	non-developers	such	as	artists	(that’s	to	put	it	very	
mildly).	The	whole	model	is	significantly	more	convoluted	than	that	of	
centralized	version	control	systems	such	as	Perforce	or	SVN,	and	without	ability	
to	merge	those-files-artists-are-working-on	–	it	becomes	convoluted-for-no-
apparent-reason	for	their	purposes	<sad-face	/>.	

• Whatever-you’re-doing,	you	have	to	have	the	whole	repository	on	your	local	box	
(except	for	Git-LFS	files,	more	on	them	below);	if	the	whole-project-including-
history	is	large	(as	in	“1T	large”)	–	it	can	take	a	looong	while	to	download	it.	

• As	a	result,	some	developers	have	started	to	support	multiple	Git	repos	–	one	for	
“lean	and	mean”	code,	and	another	one	for	docs	etc.	TBH,	I	do	not	like	the	very	

																																																								
231	Say,	if	your	company	sends	you	on	a	cruise	while	you’re	developing	<wink	/>	

idea	of	having	several	repos	(it	starts	a	slippery	road	towards	“let’s	keep	all	the	
code	in	Git,	and	all	the	assets	in	SVN”	–	which	usually	qualifies	as	a	Really	Bad	
Idea™	because	of	lack	of	sync	between	two	repositories,	as	discussed	above).	

• Git-LFS	is	a	kind	of	crutch	(and	is	not	really	following	the	“distributed”	nature	of	
the	rest	of	Git).	

• Handling	of	huge-projects-with-lots-of-binary-files	is	rather	ugly	with	Git.	While	it	
did	improve	with	Git	Large	File	Storage	(Git-LFS)	–	it	is	still	not	clear	how	Git-LFS	
behaves	for	multi-terabyte	real-world	projects.	TODO:	locking	in	Git-LFS	2.0	
[https://github.com/git-lfs/git-lfs/wiki/File-Locking]	

• File	locking	for	non-mergeable	files	is	not	available	(see	below	on	advisory	locks	–	
but	they	don’t	really	work	well	for	non-developers).	

• Per-file	access	control	is	not	supported	(at	least	not	out-of-the-box).	While	this	is	
not	that	much	of	a	problem	for	open	source	projects	–	it	is	quite	an	issue,	
especially	for	gamedev	where	we	have	to	resort	to	security-by-obscurity	<sad-
face	/>.	

• I	positively	hate	an	ability	to	mess	up	with	(“amend”	in	Git-speak)	already-
committed	data.	IMNSHO,	having	history	immutable	is	a	Really	Good	Thing™	for	
any	version	control	system.	

	
For	a	more	detailed	discussion	on	problems-of-Git-for-gamedev-purposes	–	see,	for	
example,	(chris@enemyhideout	2016).	
	
Git	and	unmergeable	files	

For	game	development	(and	unlike	most	of	other	software	development	projects),	you're	
likely	to	have	binary	files	which	need	to	be	edited	(representing	so-called	“assets”;	more	on	
assets	and	asset	pipeline	in	Vol.	V’s	chapter	on	Graphics	101).	More	precisely,	it	is	not	only	
about	binary	files,	but	also	includes	any	file	which	cannot	be	effectively	merged	by	Git	(even	
simple	text-based	Wavefront	.obj	file	is	not	really	mergeable	in	a	sense	that	tracking	
differences	in	these	files	is	pretty	much	useless).	
	
A	question	"what	to	do	with	such	files"	is	not	really	addressed	by	Git	philosophy.	The	best	
way	would	be	to	learn	how	to	merge	these	unmergeable	files,	but	this	is	so	much	work	that	
doing	it	for	all	the	files	your	artists	and	game	designers	need,	is	hardly	realistic	<sad-face	/>;	
still	–	make	sure	that	if	you’re	using	Unity,	you’re	using	their	SmartMerge	(that’s	regardless	
of	using	Git	or	not).	
	
The	second	best	option	would	be	to	have	a	'lock'	so	that	only	one	person	really	works	with	
the	asset	file	at	any	given	time.	However,	while	locks	are	supported	by	Perforce	and	SVN	
(and	there	is	a	Lock	Extension	for	Mercurial	too)	-	Git's	position	with	regards	of	locks	is	(a)	
that	there	won't	be	mandatory	locks,	ever,	and	(b)	that	advisory	locks	are	just	a	way	of	
communication	so	that	should	be	done	out-of-Git	<sic!	/>.	The	latter	statement	leads	to	
having	chat	channels	or	mailing	lists	just	for	the	purposes	of	locking	<ouch!	/>.	I	strongly	
disagree	with	such	approaches,	because	IMNSHO:	
all	the	stuff	which	is	related	to	source-controlled	code,	SHOULD	be	within	

version	control	system,	locks	(advisory	or	not)	included	

To	use	advisory	(non-enforced)	locks	in	Git,	I	suggest	to	avoid	stuff	such	as	chat	channels,	
and	to	use	manually-editable	lock	files	(located	within	Git,	right	near	real	files)	instead.	Such	
a	lock	file	MUST	contain	the	name	(id)	of	the	person	who	locked	it,	as	a	part	of	file	contents	
(i.e.	having	lock	file	with	just	"locked"	in	it	is	not	sufficient	for	several	reasons).	Such	an	
approach	does	allow	to	have	a	strict	way	of	dealing	with	the	unmergeable	files	(that	is,	if	
people	who're	working	with	it,	are	careful	enough	to	update	-	and	push(!)	-	lock	file	before	
starting	to	work	with	the	unmergeable	file),	and	also	doesn't	require	any	3rd-party	tools	
(such	as	an	IM	or	Skype)	to	work.		
	
For	artists/game	designers,	at	the	very	least	this	logic	must	be	wrapped	into	a	"I	want	to	
work	with	this	file	-	lock	it	for	me"	script	(with	the	script	doing	all	the	legwork	and	saying	
"Done"	or	"Sorry,	it's	already	locked	by	such-and-such	user").232	And	if	you	like	your	artists	
better	than	that,	you	can	make	a	Windows	shell	extension	which	calls	this	script	for	them	
and	displays	nice	“Locked”	icon.	
	
The	approach	of	lock-files	described	above	is	known	to	work	(though	having	a	drawback	of	
creating	commits	just	for	locking	purposes),	but	still	remains	quite	a	substantial	headache.	
Actually,	the	headache	can	be	so	significant	that	it	might	be	better	to	use	Perforce,	SVN,	or	
Mercurial-with-Lock-Extension	(all	of	which	support	mandatory	locking)	just	for	this	reason.	
	
Let's	also	note	that	there	is	also	an	issue	which	is	often	mentioned	in	this	context,	the	one	
about	storing	large	files	in	Git,	but	IMO	this	is	a	much	more	minor	problem,	which	can	be	
mostly	resolved	by	using	Git	LFS	plugin.	
	
Issues	with	reverting	Git	branch	merge	commit	
	
One	of	Git	peculiarities	is	related	to	revert	of	Git	commit	of	merging	branches.	While	revert	
of	committed	branch	merge	is	not	a	picnic	in	any	version	control	system,	in	Git	it	is	IMO	
particularly	nasty	and	counter-intuitive.		
	
For	a	proper	discussion	of	it	–	take	a	look	at	(kernel.RevertFaultyMerge	n.d.);	here	I’ll	
provide	only	a	very	short	overview.	In	short	–	after	reverting	Git	committed	branch	merge,	
your	system	is	left	in	not	exactly	the	same	state	than	it	was	before	the	merge(!)	–	so	you	
need	to	remember	about	this	reverted	merge	when	you’re	doing	re-merge,	otherwise	you’ll	
get	very	unexpected	results	<sad-face	/>.	In	practice,	it	means	that	with	Git	you	generally	
should	avoid	reverting	branch	merges	at	all	costs.	To	make	things	worse	–	in	Git-world	this	
behavior	is	not	considered	a	bug-which-has-to-be-eventually-fixed	(but	rather	a	feature-
which-makes-those-who-know-about-it-gurus),	so	chances	of	it	being	fixed	are	estimated	
about	as	high	as	chances	of	cold	day	in	hell	<sad-face	/>.	
	

Mercurial	
	

																																																								
232	and	of	course,	another	script	"I'm	done	with	file",	which	will	be	doing	remove-lock-file-
commit-and-push	

Last	but	not	least	on	the	list	of	our	contenders-for-version-control,	is	Mercurial.	While	
Mercurial	is	ideologically	very	similar	to	Git,	it	certainly	has	a	very	different	look	and	feel.	In	
particular,	the	following	pros	can	be	observed	about	Mercurial	in	the	context	of	gamedev:	

• Mercurial	is	(almost-)usable	by	non-developers	
o TortoiseHG	helps	a	lot	for	those	poor	Windows-based	souls.		

• Branching	is	good	(though	reverting	branch	merge	is	still	a	mess	<sad-face	/>)	
• Offline	work	is	very	straightforward	too	
• Commits	are	not	mutable233	
• Lock	Extension	is	available	(though	not	distributed	with	Mercurial	by	default)	
• Per-file	access	control	is	supported	(though	not	for	reading)	

	
List	of	Mercurial	cons	is	also	impressive:	

• Large	files	(beyond	100M	or	so)	are	handled	very	inefficiently;	Mercurial	needs	
about	file-size-multiplied-by-5x-to-10x	RAM	to	operate,	so	having	a	1G	asset	file	is	
likely	to	bring	quite	a	few	systems	to	their	knees	<sad-face	/>.		

• Same	as	with	Git,	pretty-much-whatever-you’re-doing	(except	for	large	files),	you	
have	to	have	the	whole	repository	on	your	local	box.	

• Just	as	with	Git-LFS,	Mercurial	Large	Files	Extension	is	a	crutch,	going	against	its	
overall	distributed	nature.	

• Access	control	restricting	reading	within	repository	is	not	possible	<sad-face	/>.234	
	
From	what	I’ve	heard,	one	big	reason	why	gamedevs	are	not	using	Mercurial,	is	because	of	
that	issues	with	large	asset	files	(see,	for	example,	(SirGru	2015)).	
	

On	Open-Source	Gamedev	
	
If	by	any	(admittedly	rather	slim)	chance	you’re	planning	to	release	an	open-source	game	-	
another	extremely-important	factor	is	added	into	play:	namely,	“how	many	people	you’ll	be	
able	to	attract	to	work	on	your	open-source	project?”	And	in	this	regard,	GitHub	is	a	very	
clear	leader	by	far,	with	BitBucket	and	GitLab	fighting	for	distant	second	place.		
	
Now,	we	should	observe	that	all	these	three	services	are	running	Git	(only	BitBucket	
providing	Mercurial	option	on	the	side).	Moreover,	all	the	competition-running-SVN	such	as	
OSDN	and	Assembla	are	lagging	far	far	behind	these	three	(as	for	Sourceforge	–	it	is	no	
longer	recommended	due	to	certain	really	ugly	decisions	they	made	a	few	years	ago	
(Hoffman	n.d.)).	
	
This	means	that		

for	open-source	games,	Git	does	have	a	Very	Significant	Advantage™	
	

																																																								
233	except	for	“hg	rollback”	which	doesn’t	go	beyond	one	last	commit	
234	And	this	is	a	fundamental	restriction	of	all	those	distributed	version	control	systems	
which	have	a	copy	of	the	whole	repository	on	each	box	<sad-face	/>	

Comparison	of	Four	Major	Version	Control	Systems	for	Gamedev	
Purposes	
	
Now,	we	can	summarize	our	discussion	about	different	version	control	systems	in	the	
context	of	game	development,	in	the	following	Table	11.2:	
	 Perforce	 SVN	 Git	 Mercurial	
Non-dev	
friendly	

Excellent 	 Good 	 Poor 	 Kinda	
Acceptable 	

Trunk-based	
Development	

Excellent 	 Excellent 	 Overcomplicated
	

Good 	

Feature	
Branches	

Poor 	 Good 	 Excellent 	 Excellent 	

Non-mergeable	
files	

Excellent 	 Excellent 	 Afterthought,	no	
locking 	

Afterthought,	
issues	with	
large	files 	

Terabyte-size	
projects	

Excellent 	 Good 	 With	Git-LFS	
only 	

With	LargeFiles	
extension	only

	
Offline	Work	 Acceptable 	 Good 	 Excellent 	 Excellent 	
Access	Control	 Good 	 Good 	 Restricting	read-

only	access	is	
not	feasible 	

Restricting	
read-only	
access	is	not	
feasible 	

CI	Support		 Good	(Jenkins,	
Team	City,	
Bamboo)	 	

Good	(Jenkins,	
Team	City,	
Bamboo) 	

Excellent
(Jenkins,	Team	
City,	Bamboo,	
Travis)	

Good	(Jenkins,	
Team	City,	
Bamboo) 	

Open-Source	
Repositories	

None	I	know	
about 	

OSDN, 	
Assembla,
CloudForge
235	

GitHub ,	
Bitbucket ,	
GitLab 	

Bitbucket, 	
OSDN, 	
Assembla 	

	
As	we	can	see	–	unlike	for	generic	software	development	(where	Git	still	arguably	rulezz),	
for	gamedev	we	have	to	say	that	non-distributed	version	control	systems	(such	as	Perforce	
and	SVN)	tend	to	be	a	more	logical	choice	than	DVCS	such	as	Git	and	Mercurial.	When	
choosing	between	Perforce	and	SVN	–	I’d	prefer	SVN,	but	I	have	to	admit	that	if	you’re	
heading	for	trunk-based	development	–	Perforce	becomes	perfectly	competitive	too.	
	
On	the	other	hand,	if	your	game	is	going	to	be	open-source	–	Git	(or	at	least	Mercurial)	get	
an	all-important-for-open-source	advantage	of	additional	exposure.	
	

																																																								
235	I	don’t	mean	OSDN,	Assembla,	or	CloudForge	are	bad	technically;	it	is	just	that	their	
popularity	(and	this	is	what	matters	for	crowd-source	development)	is	lacking	at	this	point	

Version	Control:	3rd-party	Hosting	vs	In-House	
	
In	XXI	century,	overall	trend	is	to	have	more	and	more	services	outsourced;	however	–	while	
sometimes	outsourcing	is	indeed	a	good	idea,	some	other	times	it	doesn’t	really	work.	When	
it	comes	to	outsourcing	version	control	for	a	game,	keep	in	mind	the	following	pros	and	
cons	of	such	outsourcing	(also	known	as	“cloud-based	version	control”,	“SaaS”,	etc.):	

• Pro:	less	headaches,	plain	and	simple.	With	an	in-house	version	control,	you	need	to	
spend	time	on	configuring	it,	backing	it	up,	and	storing	backups	safely.	It	is	not	that	
much	work	–	but	somebody	has	to	do	it	if	you	keep	your	system	in-house.		

• Pro:	upgrades	happen	automagically,	so	you	don’t	need	to	spend	time	on	them	
• Pro:	unless	you	have	a	serious	admin	which	handles	it	–	it	is	less	difficult	to	mess	up	

your	version	control	system.	
o BTW,	I’d	say	that	for	Git	requirements	for	your	admin	are	higher	than	for	

other	systems	(in	other	words,	Git	is	substantially	easier	to	mismanage	–	in	
particular,	due	to	the	mutable	histories	<ouch!	/>).	

• Con:	for	a	game	with	lots	of	assets,	and	with	3rd-party	hosting	-	you	can	be	for	a	
looooong	wait	for	each	checkout.	Even	more	so	if	you’re	using	Git	or	Mercurial	(and	
if	you’re	not	careful	enough	to	keep	all	your	assets	within	Git-LFS	or	Mercurial	
LargeFiles	–	it	can	easily	become	catastrophic).	

• Con:	upgrades	happen	automagically,	so	you	can’t	schedule	them	(so	if	a	problem	
occurs	affecting	your	system	–	it	will	happen	at	the	worst	possible	time,	like	“on	the	
day	of	the	release”).	Granted,	it	is	rarely	a	problem	for	hosted	version	control	–	but	
is	quite	a	problem	for	other	3rd-party	systems	such	as	Issue	Tracking.	

• Con:	While	3rd-party	hosts	such	as	GitLab	or	BitBucket	don’t	have	a	reason	to	steal	
your	code	–	by	their	nature	they	are	extremely	juicy	attack	targets.	And	as	we	as	
gamedevs	have	to	resort	to	“security	by	obscurity”	much	more	often	than	we’d	like	
to	(more	on	it	in	Vol.	VIII)	–	the	damage	from	some-hacker-cracking-into-GitLab-or-
BitBucket-and-publishing-all-the-source-code-found	can	be	enormous.	

	
Overall,	when	it	comes	to	version	control,	it	is	not	that	much	difference	between	3rd-party	
hosting	and	in-house	system	(~=”you	won’t	do	too	wrong	choosing	any	of	these	routes”).	
BTW,	if	you	happen	to	like	UI	of	GitLab	or	BitBucket	but	are	not	fond	of	3rd-party	hosting	for	
any	of	the	reasons	mentioned	above	–	keep	in	mind	that	you	can	have	them	installed	in-
house	(a.k.a.	“self	hosted”)	too.	
	

Version	Control	and	3rd-party	Libraries	

One	subtle	issue	with	regards	to	version	control	system	is	
how	to	handle	those	3rd-party	libraries	you're	going	to	use.	
Ideally,	3rd-party	libraries	should	be	present	in	your	version	
control	system	as	links-pointing-to-specific-version	of	the	
library,	with	your	version	control	system	automagically	
extracting	them	before	you're	building	your	game.	It	is	
important	to	point	to	a	specific	version	of	the	library	(and	not	
just	to	head	of	their	project),	as	otherwise	a	3rd-party	update	
can	cause	your	code	to	start	crashing,	with	you	having	no	
idea	what	happened.	On	the	other	hand,	such	an	approach	
means	that	it	becomes	your	responsibility	to	update	this	link-
to-specific-version	to	newer	versions,	at	those	points	when	
you're	comfortable	with	doing	it	(and	re-running	all	of	your	
tests	using	that	newer-and-supposedly-better	version	of	the	library).	
	
git submodule	does	just	that,	and	git submodule update	will	allow	you	to	
update	your	links	to	the	most	recent	version	of	the	3rd-party	library.	One	potential	caveat	
on	this	way	is	that,	as	Git	uses	whole-repository	checkouts	by	design,236	it	means	that	if	your	
3rd-party	library	is	large	(which	TBH,	is	rarely	the	case	for	pure	libraries)	–	it	will	cause	quite	
a	bit	of	traffic.	
	
Another	thing	to	keep	in	mind	with	regards	to	git submodule	is	that	it	works	only	if	the	
library	is	sitting	within	a	Git	repository.	On	the	other	hand,	if	your	3rd-party	library	is	
available	as	an	svn	repository	instead	of	Git	-	you	may	setup	a	Git	mirror	of	svn	repository	
and	then	to	use	Git	submodule	(see,	for	example,	(StackOverflow.SvnAsGitSubmodule)).	A	
similar	trick	can	be	used	with	Mercurial	too	(see	(HgGitMirror)	on	creating	Git	mirror	from	
Mercurial).	
	
With	SVN,	similar	result	can	be	achieved	via	svn	externals.	They	do	work	–	at	least	as	long	as	
all	your	dependencies	are	in	SVN.	Unfortunately	for	SVN	users	–	most	of	the	external-stuff-
we-want-to-reuse	uses	Git	(and	linking	to	Git	repo	AFAIK	will	normally	require	import	of	Git	
into	svn,	<ouch	/>).	On	the	other	hand	–	fortunately	for	SVN	users,	most	of	the	external-
stuff-we-want-to-reuse	resides	on	GitHub,	and	with	GitHub	providing	SVN	access	to	their	Git	
repos	–	svn	externals	have	been	reported	to	work	pretty	well.	
	
As	for	Perforce	and	Mercurial	–	I	admittedly	don’t	have	first-hand	experience	with	them,	but	
from	what	I	heard	-	reportedly	similar	things	are	possible	both	for	Perforce	(look	for	“stream	
imports”),	and	for	Mercurial	(via	“subrepositories”).		
	
BTW,	about	open-source	and	non-open-source	3rd-party	libraries:	there	is	another	(MUCH	
more	important)	issue	with	them,	make	sure	to	read	“3rd-party	Libraries:	Licensing”	section	
below.	
	

																																																								
236	unless	we’re	speaking	about	Git-LFS	

	
How	to	handle	those	
3rd-party	libraries	
you're	going	to	use?	

Protecting	Source	Code	
	
One	important	thing	to	keep	in	mind	when	implementing	your	version	control	system,	is	
that	for	the	vast	majority	of	the	MOGs	out	there	–	your	source	code,	if	leaked	to	cheaters,	
will	make	your	life	much	more	difficult	(in	extreme	cases	–	the	whole	ecosystem	of	your	
game	can	fall	apart	<really-sad-face	/>).	In	particular,	leaks	of	your	Server-Side	code	may	
facilitate	attacks	on	your	Servers,	and	leaks	of	Client-Side	code	–	will	almost	certainly	
facilitate	all	kinds	of	bots.	
	
Eliminating	this	risk	entirely	(especially	in	a	large	organization)	is	not	really	possible	(hey,	
even	RSA	got	hacked	in	2011	–	and	those	guys	did	know	their	security).	However,	we	can	
(and	SHOULD)	reduce	both	chances	of	the	security	compromise	and	effects	if	it	happens.	
	

Reducing	Chances	of	Compromise:	Firewalls,	Antiviruses,	and	IDS	
	
First	of	all,	let’s	discuss	things	which	can/should	be	done	to	reduce	chances	of	being	
compromised.	There	is	absolutely	no	rocket	science	here	–	and	the	things	to	do	are	very	
common.		
	
One	very	obvious	measure	to	improve	your	security	is	to	have	firewall	in	your	office	(yes,	I	
know	teams	which	don’t	have	it).	Moreover,	I	am	arguing	for	having	your	version	control	
server	in	a	separate	trust	zone	from	the	trust-zone-where-developers-reside.	As	for	the	
other	trust	zones	(such	as	DMZ	for	mail/web	servers)	–	they	should	be	configured	pretty	
much	as	for	any	other	setup	(just	make	sure	to	keep	all	such	zones	miles	away	from	trust	
zone	for	your	VCS).	
	

Another	obvious	thing	to	do	is	to	run	an	antivirus	on	all	
developers’	computers	(including	those	BYOD	devices	which	
you’ll	allow	almost-inevitably).	In	addition,	it	might	be	also	a	
good	idea	to	have	your	developers	run	VMs	on	BYOD	devices	
to	separate	“home”	and	“work”	environments	(and	
associated	security	risks;	BTW,	it	also	tends	to	help	with	
achieving	better	work-life	balance,	which	is	often	badly	
affected	by	BYOD).		
	
Besides	–	it	is	certainly	a	good	idea	(and	the	must	for	serious	
gamedev	shops)	to	run	an	IDS	(=”Intrusion	Detection	
System”)	in	your	office	LAN	(and	within	that-trust-zone-
which-handles-VPN-to-access-your-VCS	–	this	should	allow	
you	to	catch	infections	on	developer’s	BYOD	devices).	BTW,	
don’t	see	IDS	as	a	burden	–	it	is	more	like	“an	opportunity	to	
catch	those	viruses/trojan/backdoors	which	can	cost	you	
many	months	to	recover	from”).	
	

Mitigating	Impact	from	Compromises	
	
The	second	vector	of	improving	security	of	your	source	code	
revolves	around	the	notion	that	even	if	security	compromise	
does	happen	–	you	need	to	make	sure	that	the	negative	impact	is	minimized.	
	
In	practice,	if	your	team	is	larger	than	5-10	developers	or	so	–	it	is	often	a	good	(though	
guaranteed	to	be	very	unpopular)	idea	of	restricting	access	of	your	developers	only	to	those	
portions	of	your	code	which	they’re	working	with;	one	example	would	be	separating	your	
repository	into	“Client”	(with	potential	further	subdivisions	–	applying	if	your	team	is	even	
larger	-	such	as	“Client/3D”,	“Client/Game	Logic”,	“Client/UI”,	etc.),	“Interface”,	and	
“Server”	(with	potential	further	subdivisions	such	as	“Server/AI”,	“Server/Gameplay”,	
“Server/Infrastructure”).		
	
BTW,	this	access	restriction	has	nothing	to	do	with	you	distrusting	your	developers	(among	
other	things,	such	a	distrust	can	easily	hurt	morale	–	which	is	never	ever	a	good	thing).	
Instead,	I	am	speaking	about	mitigating	risks	from	an	accidental	compromise	of	one	of	
developer’s	PCs	(and	these	DO	happen	–	even	more	so	if	you	allow	BYOD,	and	you	usually	
have	to).	In	other	words	–	I	am	not	arguing	for	having	areas	which	are	off-limits	for	your	
team	(well,	maybe	except	for	cheating	detection	Client	code237	–	but	even	this	is	arguable);	
rather	–	I	am	arguing	for	restricting	default	access	to	certain	repositiories.	In	practice,	I	am	
often	found	arguing	for	a	policy	that	
Every	developer	SHOULD	have	a	right	to	look	at	any	piece	of	code.	However,	
obtaining	access	to	those	portions	he	doesn’t	routinely	work	with	–	SHOULD	

require	some	additional	jumping	through	the	hoops,	with	such	jumping	

																																																								
237	and	automatically-generated	obfuscation	code	–	more	on	it	in	Vol.	VIII’s	chapter	on	Bot	
Fighting	

BYOD	
https://en.wikipedia.org/wiki/Bring_your_own_device	

Bring	your	own	device	
(BYOD)—also	called	
bring	your	own	
technology	(BYOT),	
bring	your	own	phone	
(BYOP),	and	bring	your	
own	Personal	
Computer	(BYOPC)—
refers	to	the	policy	of	
permitting	employees	
to	bring	personally	
owned	devices	
(laptops,	tablets,	and	
smart	phones)	to	their	
workplace,	and	to	use	
those	devices	to	access	
privileged	company	
information	and	
applications.	

sufficient	to	prevent	a	backdoor-running-on-this-developer’s-computer,	from	
obtaining	the	access.	

	
One	way	to	do	it	–	is	to	have	restricted	access	to	repositories,	but	provide	an	ability	to	go	to	
the	admin	(better	in	person	than	over	e-mail	–	to	avoid	that	backdoor-sitting-on-
developers-computer	sending	the	e-mail),	and	request	access	to	the	specific-repository-you-
want;	as	long	as	the	access	is	requested	for	2	days	or	so	–	no	questions	should	be	asked	by	
admin.	Note	that	to	have	any	positive	effect	on	security,	the	access	must	be	revoked	
automatically	after	it	expires	(and	there	MUST	NOT	be	a	way	to	get	access	for	time	such	as	
many	months	–	at	least	not	without	appropriate	justification).		
	
Admittedly,	such	a	policy	is	going	to	be	a	point	of	contention,	but	as	soon	as	your	team	
grows	over	50+	people	–	I	strongly	advise	to	use	it.	For	larger	and	more	popular	games	–	
spearphishing	your	development	teams	(and	spearphishing	is	notoriously	difficult	to	avoid	
in	50+-member	teams)	is	known	to	be	quite	a	problem,	and	limiting	impact	of	potential	
breaches	is	the	least	we	can	do	to	mitigate	it.	
	

Continuous	Integration	

One	thing	which	was	briefly	mentioned	above,	and	which	you	should	start	using	as	soon	as	
possible	for	a	pretty	much	any	sizeable	project,	is	Continuous	Integration	a.k.a.	CI	(not	to	be	
confused	with	Continuous	Deployment,	a.k.a.	CD	which	is	a	very	different	beast	and	will	be	
discussed	in	Vol.	VII’s	chapter	on	DevOps	for	MOGs).	

	
The	basic	idea	behind	Continuous	Integration	is	simple:	for	each	
commit	into	the	version	control	system,	a	build	is	automatically	
run	–	followed	by	all	the	tests	you	were	able	to	invent	by	that	
time.	If	the	build	or	tests	fail	–	whoever	made	the	“bad”	
commit,	gets	notified	immediately.	
	
In	a	sense,	Continuous	Integration	can	be	seen	as	an	extension	
of	a	centuries-old	practice	of	“night	builds”	(which	are	known	
since	the	times	of	Ancient	Programmers),	but	instead	of	builds	
being	made	overnight,	they’re	made	in	real-time,	further	
improving	integrity	and	stability	of	your	code.	
	
In	general,	while	there	is	pretty	much	a	consensus	that	
Continuous	Integration	is	almost	a	must-have	for	any	serious	
development,	there	is	one	important	peculiarity	with	“how	to	
implement	it”.	

	

Pre-tested	Commits	
	

	
The	basic	idea	behind	
Continuous	Integration	
is	simple:	as	soon	as	
you	commit	something,	
a	build	is	automatically	
run	with	all	the	tests	
you	were	able	to	invent	
by	that	time	

Traditional	(~=”the	old”)	way	of	doing	Continuous	Integration	is	to	run	build+tests	
automagically	right	after	the	commit.	Then,	if	the	build	or	tests	fail,	a	red	flag	is	raised,	and	
then	one	of	two	things	happens:	

a) the	commit	is	automatically	rolled	back,	or	
b) the	developer	who’s	committed	the	Bad	Thing™,	is	notified	–	and	"nobody	has	a	

higher	priority	task	than	fixing	the	build"238.		
	
While	this	was	a	standard	way	of	doing	things	at	least	since	“Continuous	Integration”	term	
was	coined,	in	practice	it	is	still	far	from	being	ideal.	Option	(b)	frequently	causes	that	
dreaded	“nobody	can	work	until	build	is	fixed”	situations,	which	are	outright	disruptive.	
	
And	option	(a),	however	nice	it	may	look	on	paper,	doesn’t	work	well	either,	in	particular	
because	of	the	peculiarities	surrounding	handling	of	reverting-merge-commits	(for	
discussion	on	Git,	see	Issues	with	reverting	Git	branch	merge	commit	section	above,	but	
other	VCS	are	also	non-ideal	in	this	department).	The	problem	is	that	reverting	merge	
commit	with	a	subsequent	automated-revert-due-to-build-failure,	apparently	may	change	
the	state	of	your	VCS,	so	it	is	not	really	a	no-op	as	we	intuitively	expect	<ouch!	/>;	moreover	
–	this	commit-followed-by-revert	may	carry	a	very	substantial	maintenance	cost	for	the	
future.	
	
As	a	result	of	these	problems	(which	in	turn	can	further	lead	to	“commit	fear”	or	“merge	
fear”,	which	are	Bad	Things™	per	se)	–	I	became	a	strong	proponent	of	running	the	build	
before	the	commit–	and	committing	only	if	the	build+tests	are	ok.	Moreover,	while	
developer	running	local	build	before	committing	has	been	a	standard	practice	for	years,	it	
(as	any	other	manual	process)	it	is	prone	both	to	different	configurations	and	to	human	
errors,	which	means	that	pre-commit	build+tests	should	be	automated.	
	
Fortunately,	I	am	certainly	not	alone	with	this	observation	<wink	/>,	and	in	recent	years,	CI	
tools	started	to	support	such	pre-commit	tests	(also	known	as	“pre-tested	commits”	and	
“gated	commits”).	This	ability	is	sooo	important,	that	IMNSHO	it	should	be	a	clear	
prerequisite	when	you’re	choosing	CI	tools	for	your	project	(BTW,	at	least	Jenkins	and	
TeamCity	do	support	pre-tested	commits).	On	the	other	hand,	if	really	necessary	–	you	
usually	can	do	the	same	thing	yourself	using	pre-commit	hooks.239	

3rd-party	Libraries:	Licensing	

DISCLAIMER: I am not a laywer (not even close), and nothing in this book should be
understood as legal advice; whenever in doubt (and you should always be in doubt when
dealing with legal matters) - make sure to consult your lawyer.

One	really	important	thing	to	remember	when	developing	your	game	is	that		

																																																								
238	the	quote	is	attributed	to	Kent	Beck	by	(Fowler)	
239	Note	that,	as	discussed	above,	post-commit	scripts	with	revert	will	likely	cause	problems	
because	of	reverting	merges	peculiarities.	

no	3rd-party	library	should	ever	be	used	without	taking	into	account	its	
license.	

	
Even	open-source	libraries	can	come	with	all	kinds	of	nasty-for-our-purposes	licenses	which	
may	prevent	you	from	using	them	for	your	project.	
	
In	particular,	beware	of	libraries	which	are	licensed	under	GPL	family	of	licenses	(and	of	so-
called	"copyleft"	licenses	in	general).	These	licenses,	while	they	do	allow	you	to	use	code	for	
free,	come	with	a	caveat	which	forces	you	to	publish	(under	the	very	same	license)	all	the	
code	which	is	distributed	together	with	the	3rd-party	library.240	There	are	a	few	mitigating	
factors	though.	First,	LGPL	license	(in	contrast	to	GPL	license)	is	not	that	aggressive,	and	
usually	might	be	used	without	the	need	to	publish	all	of	your	own	code	(while	changes	to	
library	code	itself	will	still	need	to	be	published,	this	is	rarely	a	problem).	Second,	if	you're	
not	distributing	your	Server-Side	code241-	then	only	the	Client-Side	code	will	usually	need	to	
be	published.	In	any	case,	if	in	doubt	-	make	sure	to	consult	your	legal	team.	
	

Further	two	things	to	be	aware	of	when	re-using	freely-
available	source	code,	is	(a)	"something	under	license	which	is	
not	a	recognised	open-source	license	(see	(OpenSource)	for	the	
list	of	recognised	ones),	and	(b)	"something	without	any	license	
at	all"	(you'll	see	quite	a	few	such	projects	on	GitHub).	(a)	is	
usually	a	huge	can	of	worms,	and	in	case	of	(b)	you	cannot	
really	use	the	project	in	any	meaningful	way	(by	default,	
everything	out	there	is	subject	to	copyright,	so	to	use	it	-	you	
generally	need	some	kind	of	license242).	
	
On	the	other	hand,	anything	which	goes	under	BSD	license,	MIT	
license,	or	Apache	license	-	can	usually	be	used	without	any	
licensing	problems	(YMMV,	batteries	not	included,	and	this	is	

not	a	legal	advice).	
	
And	of	course,	if	you're	using	commercial	libraries	-	make	sure	that	you're	complying	with	
terms	of	their	respective	libraries	too	(and	no,	paying	for	the	library	does	not	necessarily	
mean	that	you	are	allowed	to	use	it	as	you	wish).	

																																																								
240	in	practice,	it	is	more	complicated	than	that,	but	if	you	want	legally	precise	answers	-	you	
better	ask	your	legal	team	
241	distribution	of	Server-Side	code	may	happen,	for	example,	if	you're	selling	your	Server-
Side	as	an	engine,	but	merely	running	it	on	your	Servers	does	not,	as	far	as	I	understand,	
qualify	as	“distribution”	under	GPL/LGPL	
242	one	exception	is	to	rely	on	“fair	use”	doctrine,	but	as	far	as	I	know,	code	–	even	non-
commercial	one	-	rarely	qualifies	for	“fair	use”.	

	
Be	careful	with	open-
source	projects	which	
don't	have	any	license	
at	all	

Development	Process	–	Agile	still	Rulezz	(regardless	of	
how	you	name	it)	

The	next	thing	which	you	will	need	is	almost-universally	necessary	(that	is,	unless	you’re	a	
single-developer	shop)	and	pretty	much	universally	hated	among	developers.	It	is	related	to	
the	mechanics	of	the	development	process.	In	general,	all	of	us	would	like	to	work	at	our	
leisure,	doing	just	those-things-which-we-feel-like-doing	at	the	moment.	Unfortunately,	in	
reality	development	is	very	far	from	this	idyllic	picture.243	
	
For	your	game,	you	do	need	a	process,	and	you	do	need	to	follow	it.	What	kind	of	process	to	
use	–	old-school	project	Gannt-chart-based	planning	with	milestones,	or	agile	stuff	such	as	
XP,	Scrum,	or	Kanban	–	is	up	to	you,	but	you	need	to	understand	how	your	development	
process	is	going	to	work.	
	
I	am	not	going	to	discuss	advantages	and	disadvantages	of	
different	processes	here,	as	the	associated	debates	are	going	to	
be	even	more	heated	then	Linux-vs-Windows	and	C++-vs-Java	
holy	wars	combined.	Usually,	however,	you	will	end	up	with	
some	kind	of	a	process,	which	is	(whether	you	realize	it	or	not)	
will	be	some	combination	of	agile	methods;	in	at	least	two	of	my	
teams,	we	were	using	a	combination	of	Scrum	and	XP	long	
before	we	learned	these	terms	<smile	/>.	
	
BTW,	if	you	happen	to	consider	Agile	as	a	disease	(like,	for	
example,	(Halliwell))	–	that’s	most	likely	not	because	agile	is	bad	
per	se,	but	most	likely	because	you’ve	had	a	bad	experience	
dealing	with	an	overly-confident	(and	way	too	overzealous)	
Certified	Scrum	Master	who	was	all	about	following	the	process	
without	even	remote	understanding	of	specifics	of	your	project	
(and	quite	often	–	without	any	clue	about	programming).	While	I	
do	admit	that	such	guys	are	indeed	annoying	(and,	as	a	rule	of	
thumb,	are	outright	detrimental	for	the	project),	I	don’t	agree	
that	such	guys	make	the	concepts	behind	agile	development,	less	
useful	even	by	a	tiny	bit.	
	
One	thing	which	should	be	noted	about	agile	criticisms	(such	as	(Halliwell	n.d.)),	is	that	there	
is	no	real	disagreement	between	developers	about	what	needs	to	be	done;	the	sentiment	in	
such	criticisms	is	usually	more	along	the	lines	of	“we’re	doing	it	anyway,	so	do	we	need	
fancy	names	and	external	consultants?”	While	this	is	a	perfectly	valid	point,	there	is	still	
value	in	using	some	terms	to	describe	those-things-which-we’re-all-doing-anyway.	To	
summarize	my	own	feelings	about	it:	

Do	you	need	to	have	a	well-defined	
development	process?

Certainly.	All	successful	projects	have	one,	
even	if	it	is	not	formalized.

																																																								
243	it	applies	to	any	kind	of	development,	whether	game	or	not	

	
I	am	not	going	to	
discuss	advantages	and	
disadvantages	of	
different	processes	
here,	as	the	associated	
debates	are	going	to	be	
even	more	heated	then	
Linux-vs-Windows	and	
C++-vs-Java	holy	wars	
combined	

Do	you	need	to	have	it	written	down?
Up	to	you.	At	some	point	you’ll	probably	
need	some	rules	written	down,	but	it	is	not	
a	strict	requirement.

Does	your	project	need	to	be	iterative? Certainly
Do	you	need	to	have	your	iterations	
reasonably	short	(3	months	being	“way	too	
much”)?	

Certainly

Do	you	need	to	name	your	iterations	
“sprints”?	 Doesn’t	matter	at	all

Do	you	need	to	have	your	iteration	carved	
in	stone	after	it	started?	

It	depends,	pick	the	one	which	works	for	
you	at	a	certain	stage	of	your	project

Do	you	need	to	analyze	how	your	iteration	
went?	

A	good	idea,	whether	naming	it	“iteration”	
or	“sprint”	

Do	you	need	to	describe	your	goals	in	
terms	of	‘use	cases’/’user	stories’?10	 Certainly

Do	you	need	to	name them	‘use	
cases’/’user	stories’?	 Doesn’t	matter	at	all

Do	you	need	to	name	your	project	“Agile”,	
or	“Scrum”,	or	<insert-some-name-here>?	 Doesn’t	matter	at	all

Do	you	need	a	daily	stand-up	meeting?	 Up	to	you,	but	often	it	is	not	so	bad	idea

Do	you	need	Product	Owner	(as	a	role)	
You	SHOULD.	It	is	damn	important	to	have	
opinion	of	stakeholders	to	be	represented

Do	you	need	Product	Owner	as	a	full-
time	role?	 Not	necessarily,	it	depends

Do	you	need	to	name	this	role	“Product	
Owner”?	 Doesn’t	matter	at	all

Do	you	need	Scrum	Master	(as	a	role)?	

You	will	have	somebody-taking-care-of-
your-development-process	(usually	more	
than	one	person),	whether	you	name	it	
“Scrum	Master”	or	not

Do	you	need	a	Kanban	board?	 Up	to	you
Do	you	need	to	use	XP’s	techniques	such	as	
pair	programming,	merciless	refactoring,	
test-driven	development?	

Up	to	you	on	case	by	case	basis

Do	you	need	a	Certified	Scrum	Master	on	
your	team?	 Probably	not

Do	you	need	an	external	consultant	to	run	
your	Agile	project?	

If	you	do	–	your	team	is	already	in	lots	of	
trouble

Ultimately,	whether	you're	using	fancy	names	or	not,	your	process	will	be	a	combination	of	
agile	processes,	using	quite	a	few	agile	techniques	along	the	road.	And	it	doesn't	matter	too	
much	whether	you're	doing	it	because	you	read	a	book	on	agile,	or	because	you've	invented	
them	yourself.	In	other	words	–		

if	you	have	developed	an	allergy	to	the	word	“agile”,	

just	/s/agile/common	sense/gi,	and	go	ahead.	
After	all,	it	is	not	the	name	which	matters	–	but	rather	those	practices	you’re	using.244	
	
Which	exactly	are	those	agile/common-sense	techniques	worth	using	–	depends	a	lot	on	the	
nature	of	your	project,	and	on	the	people	you	have	on	your	team;	which	means	that	“it	is	
one	of	those	things	you	should	find	out	yourself”.	

Issue	Tracking	System	

Whether	we	like	it	or	not,	in	any	project	larger	than	“Hello,	
world!”	there	will	be	bugs	and	other	issues;	this	obviously	
applies	to	any	kind	of	game	too.	And	even	if	there	would	be	a	
chance	that	we	wouldn't	have	any	bugs	-	we'll	have	features	
which	need	to	be	added.	To	handle	all	this	stuff,	we	need	an	
issue	tracking	system.	
	
If	your	game	project	is	hosted	on	GitHub,	and	your	team	is	
really	small	(like	<5	developers)	–	you	MIGHT	get	away	with	
GitHub’s	built-in	issue	tracker.	If	you're	hosting	your	own	
version	control	server	(or	if	your	team	is	larger),	you're	likely	
to	use	some	3rd-party	issue	tracking.		
	
The	choice	of	the	issue	tracking	system	is	usually	not	that	
important	(=”it	is	difficult	to	make	too	big	mistake	here”),	but	

there	are	still	several	things	to	keep	in	mind:	
• Stick	to	a	widely-used	one.	This	rule	more	or	less	leaves	us	with	a	choice	from	

{Redmine|JIRA|Mantis|Trac|Bugzilla245|Zoho}.		
• Unlike	version	control	(which	is	a	developers’	tool),	issue	tracking	is	at	least	50%	a	

management	tool	(more	if	we	throw	in	project	management	features	which	are	
often	provided	by	issue	tracking	systems).	As	a	result	–	make	sure	to	ask	your	Project	
Manager	about	issue	tracking	system	they	prefer	(hint:	most	of	the	time,	they	will	
prefer	JIRA).		

o This	is	the	point	where	all	the	Project	Management	features	of	the	system	
come	into	play;	TBH,	as	a	developer	I	don’t	care	about	these	features	too	
much	–	but	I	do	recognize	their	need,	and	am	ready	to	deter	to	the	Project	
Manager’s	judgement	in	this	regard.246	

• Support	for	artifacts	which	are	used	in	your	development	process.	Whether	you	
want	to	use	a	Kanban	board,	Scrum	“burndown	chart”,	or	a	good	old	Gantt	chart	(or	
all	of	them	together)	–	having	these	artefacts	well-integrated	into	the	same	system	

																																																								
244	well,	naming	can	matter	too	–	in	particular,	to	communicate	and	to	create	buzz,	but	if	
the	name	“agile”	starts	to	hurt	many	people	in	your	team	–	I	have	no	problems	with	
changing	the	name,	while	keeping	all	the	relevant	practices.	
245	Yes,	it	is	still	alive	and	kicking	
246	If	the	Project	Manager	is	bad	–	then	the	whole	project	is	in	trouble	to	start	with,	so	given	
a	choice,	it	is	better	not	to	work	on	such	projects	<sad-face	/>.	

	
in	any	project	larger	
than	“Hello,	world!”	
there	will	be	bugs	and	
other	issues;	this	
obviously	applies	to	
any	kind	of	game	too	

which	provides	you	with	issue	tracking	can	save	you	quite	a	bit	of	time.	More	
importantly	–	it	may	help	you	to	follow	your	own	development	process.	So	think	
about	artifacts	of	your	development	process,	and	take	them	into	account	when	
choosing	your	issue	tracking	system.	Also	keep	in	mind	that	some	of	the	plugins	
which	implement	this	functionality	(even	for	otherwise-free	systems(!))	can	become	
pricey,	so	it	is	better	to	double-check	pricing	for	them	in	advance.	

o On	the	other	hand,	this	support-for-development-process-artifacts	is	only	a	
nice-to-have	feature	of	your	tracking	system;	you	can	certainly	live	without	it,	
and	it	only	comes	into	play	when	all-other-parameters	of	your	issue	tracking	
system	are	about-the-same	for	your	purposes.	On	the	third	hand	<wink	/>,	
these	days	issue	tracking	systems	are	pretty	much	about-the-same	from	
purely	issue-tracking	point	of	view.247	

• On	the	question	“whether	to	use	in-house	issue	tracking	system	or	3rd-party-hosted	
one”	–	the	same	reasoning	applies	as	the	one	in	the	Version	Control:	3rd-party	
Hosting	vs	In-House	section	above.	

Issue	Tracking:	No	Bypassing	Allowed	

Actually,	when	speaking	about	issue	tracking	from	developer’s	point	of	view	-	there	is	one	
thing	which	is	much	more	important	than	a	choice	of	specific	issue	tracking	system:		

Whatever	you	do,	100%	of	the	development	MUST	go	through	the	issue	
tracking	system	

It	means	that	there	MUST	be	an	issue	for	ANY	kind	of	development	(and	for	each	commit	
too).	Granted,	there	will	be	mistakes	in	this	regard,	but	you	MUST	have	an	"each	and	every	
commit	MUST	mention	its	own	issue"	policy.		

IMNSHO,	it	is	perfectly	normal	for	a	Business	Analyst	(Game	Designer,	Manager,	etc.	etc.)	to	
come	into	developer's	cubicle	and	saying	"hey,	we	need	such	and	such	feature,	let's	do	it".	
What	is	not	normal	though	-	is	not	to	open	an	issue	for	this	feature	(before	or	after	speaking	
to	the	developer).	As	for	using	e-mails	for	discussing	features	-	I	am	very	firmly	against	it,	
and	strongly	suggest	to	have	an	issue	open	for	the	feature,	and	to	have	all	the	relevant	
discussion	within	the	issue.	Otherwise,	3	months	down	the	road	you	will	have	lots	of	
problems	trying	to	find	all	those	e-mails	and	to	reconstruct	the	reasons	why	the	feature	was	
implemented	this	way	(which	very	often	turns	out	to	be	a	prerequisite	to	understanding	
whether	it	is	ok	to	change	certain	aspect	of	the	feature).	

Even	for	a	team	of	5	developers,	it	is	crucial	to	know	why	each-and-every	change	in	the	
code	has	been	made,	and	there	should	be	one	single	source	of	this	information	-	your	issue	
tracking	system.	

																																																								
247	I	realize	how	hard	I	will	be	beaten	for	this	statement	by	hardcore-zealots-of-<insert-your-
favorite-issue-tracking-system>	but	as	an	honest	person	I	still	need	to	say	it	

Coding	Guidelines	

One	last	(but	certainly	not	least)	thing	you	should	establish	
before	you	start	coding,	is	coding	guidelines	for	your	specific	
project.	In	this	regard,	my	suggestion	is	not	to	copy	a	Big	
Document	from	a	reputable	source,248	but	rather	start	writing	
your	own	(initially	very	small)	list	of	DO's	and	DON'Ts	for	your	
specific	project.	This	list	SHOULD	include	such	things	as	naming	
conventions,	and	all	the	not-so-universal	things	which	you're	
using	within	your	project.	More	on	naming	conventions	and	
project	peculiarities	below.	
	
BTW,	your	guidelines.txt	file	certainly	belongs	to	your	version	
control	system.	And	while	you’re	at	it	–	do	yourself	a	favor	and	
find	for	it	the	most	prominent	place	you	can	think	of	(root	
directory/folder	of	your	project	is	usually	a	pretty	good	
candidate).	

Naming	Conventions	

With	naming	conventions	the	situation	is	simple:	it	doesn't	really	matter	which	naming	
convention	you	use	(myFunction()	vs	my_function()	won't	make	any	realistic	difference,	and	
debating	it	for	hours	is	not	worth	the	time	spent).	What	is	important	though,	is	to	do	it	
uniformly	across	the	whole	project,	so	you	should	just	quickly	agree	on	some	naming	
conventions	and	then	adhere	to	them.	
	
That	being	said,	there	is	one	thing	in	this	regard	which	I	actively	dislike	and	which	I	am	
arguing	against	(on	the	basis	that	it	reduces	readability)	–	it	is	so-called	“Hungarian	
notation”.	If	you	really	really	feel	like	naming	your	variable	as	lpszName	–	the	sky	won't	fall,	
but	I	suggest	to	drop	these	prefixes	entirely.	My	rationale	is	simple	–	these	prefixes	tend	to	
distract	from	the	nature	of	what	we’re	doing	–	which	in	turn	significantly	reduces	code	
readability.	
	
As	for	having	some	kind	of	naming	convention	for	class	data	members	–	two	popular	
conventions	are	mDataMember	and	data_member_,	this	is	up	to	you	whether	to	have	such	
convention,249	it	won't	make	that	much	difference	anyway	(that	is,	as	long	as	you're	using	it	
consistently	across	the	whole	project).	

Project	Peculiarities	

																																																								
248	this	book	included	even	if	you	consider	it	reputable	enough;	in	Vol.	V’s	chapter	on	C++	
there	will	be	an	example	of	my	personal	guidelines	for	C++,	but	as	with	any	other	source	–	
don’t	copy	it	blindly	
249	personally,	I	don’t,	preferring	to	use	data_member_	for	constructor	parameters	

	
One	last	(but	certainly	
not	least)	thing	you	
should	establish	before	
you	start	coding,	is	
coding	guidelines	for	
your	specific	project	

For	pretty	much	every	project	you	will	have	some	peculiarities.	
For	example,	if	we	are	programming	within	(Re)Actor	model	as	
described	in	Vol.	II’s	chapter	on	(Re)Actors,	then	for	your	Game	
Logic,	threads	will	be	pretty	much	out	of	question	–so	let's	
write	it	down	into	our	guidelines.txt	file	(to	the	part	which	tells	
about	Game	Logic).	For	a	C++	project	there	is	a	common	
question	whether	you'll	be	using	printf()	or	ostream	for	
formatted	output	and	logging	–	regardless	of	your	decision,250	
it	needs	to	be	consistent	for	the	whole	project,	so	it	also	
belongs	to	guidelines.txt.	And	so	on,	and	so	forth.	

For	C++,	my	personal	set	of	Coding	Guidelines	will	be	discussed	
in	Vol.	V’s	chapter	on	C++,	but	as	with	any	other	3rd-party	
source,	you	shouldn’t	copy	it	blindly	and	should	develop	your	
own	one,	based	on	your	own	task,	your	own	style,	and	your	
own	design	decisions.251	

Per-Subproject	Guidelines	

One	important	thing	to	be	mentioned	here	is	that	most	of	the	projects	will	actually	need	
more	than	one	set	of	Coding	Guidelines.	Not	only	the	subprojects	can	be	written	in	different	
programming	languages,	but	also	subprojects	can	perform	very	different	jobs,	which	in	turn	
requires	different	guidelines.	
	
For	example,	even	if	all	your	code	is	written	in	C++	using	(Re)Actor	model,	the	guidelines	for	
Infrastructure	Code	(the	one	outside	of	(Re)Actors)	and	Game	Logic	(implementing	specific	
(Re)Actors)	is	going	to	be	very	different.	Infrastructure	Code	is	going	to	use	threads	(one	
way	or	another),	will	probably	provide	logging	facilities	so	it	will	need	to	have	direct	file	
access,	will	probably	access	OS-specific	services	too	(which	makes	prohibition	on	OS-specific	
stuff	unlikely),	etc.	In	contrast,	Game	Logic	is	basically	going	just	to	call	whatever-is-
provided-by-Infrastructure-Code	(concentrating	on	Game	Logic	rather	than	on	“how	to	
interact	with	OS”).	
	
BTW,	such	separation	is	not	specific	to	(Re)Actors.	In	a	different	example,	
simulation/graphics	code	and	payment	processing	code,	even	if	both	are	written	in	C++,	are	
still	going	to	be	very	different	(and	require	very	different	guidelines	as	a	result).	Among	
other	things	–	simulation/graphics	code	is	traditionally	very	performance-oriented	(and	also	
having	things	approximated	is	very	common);	however,	for	the	payment	processing,	exactly	
the	opposite	stands	–	for	payment	processing	code	premature	optimization	is	the	root	of	all	
evil,	and	any	approximation	should	be	banned	(actually,	most	of	the	time	all	uses	of	float	
are	banned	outright	for	payment	processing	purposes).	
	
																																																								
250	FWIW,	my	answer	is	‘neither	–	use	{fmt}	instead’,	see	Vol.	V’s	chapter	on	C++	for	further	
discussion	
251	this	can	be	roughly	translated	as:	“whatever	nonsense	I	write	there,	it	is	your	
responsibility	to	filter	it	out,	so	don’t	blame	me	if	it	doesn’t	work	for	you”	<wink	/>	

	
For	a	C++	project	there	
is	a	common	question	
whether	you'll	be	using	
printf()	or	ostream	for	
formatted	output	–	
regardless	of	your	
decision,	it	needs	to	be	
consistent	for	the	
whole	project	

As	a	result,	I	strongly	suggest	to	use	different	guidelines	for	different	parts	of	your	game	
even	if	all	of	them	are	written	in	the	same	programming	language;	at	the	very	least,	they	
should	be	quite	different	between	3D	engine,	network	engine,	payment	processing,	and	
simulation	code.	

Enforcement	and	Static	Analysis	Tools	

All	the	rules	and	guidelines	are	perfectly	useless	if	nobody	
cares	to	follow	them.	Even	if	only	a	few	people	on	the	team	
ignore	the	guidelines,	if	such	ignoring-guidelines-code	is	not	
rectified	soon	enough,	it	is	often	used	as	an	example	for	
some	other	piece	of	code,	and	so	on,	and	so	forth,	which	
means	a	slippery	road	towards	most	of	the	code	ignoring	the	
guidelines	<sad-face	/>.	

To	deal	with	all	such	guideline	violations,	there	is	no	real	
substitute	for	code	reviews.	However,	to	catch	some	of	them,	
it	is	usually	a	good	thing	to	use	an	automated	tool	which	
complains	about	most	obvious	violations.	Such	tools	are	
specific	to	the	programming	language;	list	of	such	"static	
analysis"	tools	which	(as	I've	heard,	no	warranties	of	any	
kind)	work	in	real-world	projects,	include:	

• checkstyle	(Java).	Checks	for	naming	convention	compliance	etc.	
• astyle	(C/C++/Objective-C/C#/Java).	Re-formats	your	source	according	to	your	

preferences.	Personally,	I	like	to	have	a	policy	of	"before	committing	to	develop	
branch,	all	the	code	should	be	run	through	astyle".	

o Supposedly	more	modern	alternatives	to	astyle	include	uncrustify	
and	clang-format.	I	won’t	go	into	discussions	which	one	is	better	(TBH,	I	
have	no	idea	myself	;-));	however,	what	is	perfectly	clear	is	that	using	some	of	
them	consistently	across	the	whole	project	is	MUCH	better	then	using	none.	

• StyleCop	(C#).	
• cpplint	(C++).	Style	checks	against	Google	C++	style	guide.	Not	to	be	confused	

with	lint.	

Actually,	static	analysis	tools	go	much	broader	than	mere	style	checking,	and	quite	a	few	of	
them	can	find	real	and	pretty	nasty	bugs.		Most	popular	static	analysis	tools	in	this	regard	
include:	

• cppcheck	(C++)	
• PMD	(Java)	
• PC-lint	(C/C++).	Commercial.	
• There	are	also	lots	of	other	static	analysis	tools	out	there	(see	

(Wikipedia.StaticCodeAnalysis.Tools)).	Keep	in	mind	though	that	quite	a	few	of	these	
tools	are	known	to	cause	too	much	trouble	compared	to	benefits-they-provide	(one	
of	common	problems	of	static	analysis	tools	is	having	too	many	false	positives,	which	

	
All	the	rules	and	
guidelines	are	perfectly	
useless	if	nobody	cares	
to	follow	them	

in	turn	leads	to	ignoring	all	their	warnings),	so	don't	hold	your	breath	until	you	
tested	the	tool	and	see	that	it	works	for	you.	

	
As	a	rule	of	thumb,	if	you	don’t	understand	what	these	tools	are	for	–	well,	probably	you’ll	
be	able	to	live	without	them.	On	the	other	hand	–	if	you	have	a	person	on	the	team	who	
wants	to	spend	time	running	them	on	regular	basis	–	it	is	usually	very	beneficial	in	the	long	
run	to	let	her	do	this.		
	
On	the	other	hand	–	beware	that	not	all	the	alleged	violations	reported	by	these	tools	need	
to	be	addressed.	As	such	tools	tend	to	be	overzealous	–	they	are	trying	to	report	everything	
and	even	more	–	and	blindly	trusting	them	in	this	regard	won’t	work.	As	a	result	–	take	all	
their	complaints	with	a	grain	of	salt,		

and	do	NOT	hesitate	to	raise	a	question	of	“this	complaint	of	this	tool	is	
stupid,	let’s	disable	it	for	the	whole	project”.	

	
Otherwise	–	you	can	easily	start	going	along	the	road	paved	with	good	intentions	(for	more	
discussions	on	“how	best	practices	can	become	witch-hunts”	–	see,	for	example,	(Hare	
2015)).	
	
Bibliography	
Baryshnikov,	Maksim.	n.d.	"Engineering	Decisions	Behind	World	of	Tanks	Server."	
Beardsley,	Jason.	n.d.	"Seamless	Servers:	The	Case	For	and	Against."	In	Massively	

Multiplayer	Game	Development.	
Bergsma,	Remi.	n.d.	Migrating	an	ip-address	to	another	server:	clear	the	arp	cache	of	your	

neighbors.	https://blog.remibergsma.com/2012/11/15/migrating-an-ip-address-to-
another-server-clear-the-arp-cache-of-your-neighbors/.	

Bongiovanni,	Francesco.	n.d.	
http://deptinfo.unice.fr/twiki/pub/Minfo/DistributedAlgo/Cours_FailuresDetectors-
Consensus-SelfStabilization.pdf.	

Bray,	Brandon.	n.d.	The	.NET	Framework	4.5	includes	new	garbage	collector	enhancements	
for	client	and	server	apps.	
https://blogs.msdn.microsoft.com/dotnet/2012/07/20/the-net-framework-4-5-
includes-new-garbage-collector-enhancements-for-client-and-server-apps/.	

chris@enemyhideout.	2016.	Why	Git	is	Not	Good	for	Games.	
http://enemyhideout.com/2016/06/why-git-is-not-good-for-games/.	

Corbet,	Jonathan.	n.d.	"NUMA	scheduling	progress".	https://lwn.net/Articles/568870/.	
Cybersource.	n.d.	"Linux	vs	Windows.	Total	Cost	of	Ownership	Comparison".	

https://static.lwn.net/images/pdf/cybersource-tco-study.pdf.	
n.d.	Determining	the	Availability	and	Reliability	of	Storage	Configurations.	

http://www.dell.com/content/topics/global.aspx/power/en/ps3q02_shetty?c=us.	
n.d.	DPDK.	http://dpdk.org.	
Driessen,	Vincent.	n.d.	"A	successful	Git	branching	model".	http://nvie.com/posts/a-

successful-git-branching-model/.	
Duquette,	Patrick.	n.d.	"6.2	Implementing	a	Seamless	World	Server."	In	Game	Programming	

Gems	5.	
n.d.	FAULT	TOLERANT	AVAILABILITY	FOR	CRITICAL	APPLICATIONS	AND	VIRTUALIZED	

WORKLOADS.	http://www.stratus.com/solutions/platforms/ftserver/.	

Fowler,	Martin.	n.d.	"Continuous	Integration."	
http://martinfowler.com/articles/continuousIntegration.html.	

Halliwell,	Luke.	n.d.	"The	Agile	Disease".	
https://lukehalliwell.wordpress.com/2008/11/16/the-agile-disease/.	

Hare,	'No	Bugs'.	2015.	"Best	Practices	vs	Witch	Hunts."	Overload	(125).	
HgGitMirror.	n.d.	"Create	a	Git	Mirror".	http://hgtip.com/tips/advanced/2009-11-09-create-

a-git-mirror/.	
Hoffman,	Chris.	n.d.	Why	big	open-source	projects	are	fleeing	SourceForge's	free	software	

hub.	https://www.pcworld.com/article/2938017/why-big-open-source-projects-are-
fleeing-sourceforges-free-software-hub.html.	

n.d.	How	Fault	Tolerance	Works.	https://pubs.vmware.com/vsphere-4-esx-
vcenter/index.jsp?topic=/com.vmware.vsphere.availability.doc_41/c_plan_understa
nd_ft.html.	

IDC.	n.d.	"Windows	2000	Versus	Linux	in	Enterprise	Computing".	
https://www.cetic.be/IMG/pdf/TCO.pdf.	

n.d.	Introduction	to	Receive	Side	Scaling.	https://msdn.microsoft.com/en-
us/windows/hardware/drivers/network/introduction-to-receive-side-scaling.	

kernel.RevertFaultyMerge.	n.d.	
https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-
merge.txt.	

Klitzke,	Evan.	2013.	Migrating	Uber	from	MySQL	to	PostgreSQL.	
https://www.yumpu.com/en/document/view/53683323/migrating-uber-from-
mysql-to-postgresql.	

—.	2016.	Why	Uber	Engineering	switched	from	Postgres	to	MySQL.	
https://eng.uber.com/mysql-migration/.	

Lameter,	Christoph.	n.d.	"NUMA	(Non-Uniform	Memory	Access):	An	Overview".	
https://queue.acm.org/detail.cfm?id=2513149.	

Lightstreamer.	n.d.	http://www.lightstreamer.com/.	
Ligoum,	Dmitry.	n.d.	"private	communications	with."		
n.d.	London	Stock	Exchange	gets	the	facts	and	dumps	Windows	for	Linux.	

http://www.itwire.com/opinion-and-analysis/the-linux-distillery/28359-london-
stock-exchange-gets-the-facts-and-dumps-windows-for-linux.	

n.d.	netmap	-	the	fast	packet	I/O	framework.	http://info.iet.unipi.it/~luigi/netmap/.	
n.d.	New	techniques	to	develop	low-latency	network	apps.	

https://channel9.msdn.com/Events/Build/BUILD2011/SAC-593T.	
'No	Bugs'	Hare.	n.d.	"Memory	Leaks	and	Memory	Leaks".	http://ithare.com/memory-leaks-

and-memory-leaks/.	
n.d.	NonStop	(server	computers).	

https://en.wikipedia.org/wiki/NonStop_(server_computers).	
Noyes,	Katherine.	n.d.	"Five	Reasons	Linux	Beats	Windows	for	Servers".	

http://www.pcworld.com/article/204423/why_linux_beats_windows_for_servers.ht
ml.	

OpenSource.	n.d.	"Open	Source	Initiative.	Licenses	by	Name".	
https://opensource.org/licenses/alphabetical.	

n.d.	Predicting	the	Performance	of	Virtual	Machine	Migration.	
https://www.cl.cam.ac.uk/~sa497/akoush-mascots10.pdf.	

Redis.CAS.	n.d.	http://redis.io/topics/transactions#cas.	

RFG.	n.d.	"TCO	for	Application	Servers:	Comparing	Linux	with	Windows	and	Solaris".	
http://www-
03.ibm.com/linux/whitepapers/robertFrancesGroupLinuxTCOAnalysis05.pdf.	

n.d.	Scaling	in	the	Linux	Networking	Stack.	
https://www.kernel.org/doc/Documentation/networking/scaling.txt.	

n.d.	Scripting	a	Cisco	switch	with	Python	and	Expect.	
https://www.electricmonk.nl/log/2014/07/26/scripting-a-cisco-switch-with-python-
and-expect/.	

SirGru.	2015.	Mercurial	with	Largefiles	Why	it	is	not	a	solution	for	game	development.	
http://www.ennoble-studios.com/tuts/mercurial-with-largefiles.html.	

StackOverflow.C#LambdaLoop.	n.d.	"Captured	variable	in	a	loop	in	C#"	
where="StackOverflow".	http://stackoverflow.com/questions/271440/captured-
variable-in-a-loop-in-c-sharp.	

StackOverflow.PythonLambdaLoop.	n.d.	"What	do	(lambda)	function	closures	capture	in	
Python?".	http://stackoverflow.com/questions/2295290/what-do-lambda-function-
closures-capture-in-python.	

StackOverflow.SvnAsGitSubmodule.	n.d.	"Is	it	possible	to	have	a	Subversion	repository	as	a	
Git	submodule?".	http://stackoverflow.com/questions/465042/is-it-possible-to-
have-a-subversion-repository-as-a-git-submodule.	

Steen	Larsen,	Parthasarathy	Sarangam,	Ram	Huggahalli.	n.d.	"Architectural	Breakdown	of	
End-to-End	Latency	in	a	TCP/IP	Network."	

Verma,	Abhishek.	2016.	Cassandra	on	Mesos	Across	Multiple	Datacenters	at	Uber	(Abhishek	
Verma).	C*	Summit	2016.	https://www.slideshare.net/DataStax/cassandra-on-
mesos-across-multiple-datacenters-at-uber-abhishek-verma-c-summit-2016.	

Wikipedia.	2017.	Cluster	Launch	Failure.	
https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure.	

Wikipedia.StaticCodeAnalysis.Tools.	n.d.	"List	of	tools	for	static	code	analysis".	
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis"	
where="Wikipedia.	

Zubek,	Robert.	n.d.	"Engineering	Scalable	Social	Games".	
http://gdcvault.com/play/1012230/Engineering-Scalable-Social.	

—.	n.d.	"Private	communications	with".		
	

--	Vol.	III:3rd	beta	--	NOT	A	FINAL	BOOK	--	Vol.	III:3rd	beta	--	
	

