
ptg16606381

ptg16606381

 Multiplayer Game
Programming

ptg16606381

Essential References for Game Designers and Developers

These practical guides, written by distinguished professors and industry gurus,
cover basic tenets of game design and development using a straightforward,

common-sense approach. The books encourage readers to try things on their own
and think for themselves, making it easier for anyone to learn how to design and
develop digital games for both computers and mobile devices.

Visit informit.com/series/gamedesign for a complete list of available publications.

Make sure to connect with us!
informit .com/socialconnect

The Addison-Wesley
Game Design and Development Series

http://www.informit.com/series/gamedesign
http://www.informit.com/socialconnect

ptg16606381

 Multiplayer Game
Programming

 Architecting Networked Games

 Joshua Glazer

 Sanjay Madhav

 New York • Boston • Indianapolis • San Francisco
 Toronto • Montreal • London • Munich • Paris • Madrid
 Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg16606381

 Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals

 The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

 For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.com .

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2015950053

 Copyright © 2016 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey 07675, or you
may fax your request to (201) 236-3290.

 ISBN-13: 978-013-403430-0
 ISBN-10: 0-134-03430-9

 Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing: November 2015

 Editor-in-Chief
Mark Taub

 Acquisitions Editor
Laura Lewin

 Development Editor
Michael Thurston

 Managing Editor
Kristy Hart

 Project Editor
Andy Beaster

 Copy Editor
Cenveo ® Publisher
Services

 Indexer
Cenveo® Publisher
Services

 Proofreader
Cenveo® Publisher
Services

 Technical Reader
Alexander Boczar
Jeff Tucker
Jonathan Rucker

 Editorial Assistant
Olivia Basegio

 Cover Designer
Chuti Prasertsith

 Compositor
Cenveo® Publisher
Services

http://www.informit.com/aw

ptg16606381

 To Grilled Cilantro and the Jellybean. You know who you are.
–Joshua Glazer

To my family for their support, and to all of my TAs over the years.
–Sanjay Madhav

ptg16606381

This page intentionally left blank

ptg16606381

 Contents

1 Overview of Networked Games . 1

A Brief History of Multiplayer Games 2

Starsiege: Tribes . 5

Age of Empires . 10

Summary . 13

Review Questions . 14

Additional Readings . 14

2 The Internet . 15

Origins: Packet Switching . 16

The TCP/IP Layer Cake . 17

The Physical Layer . 19

The Link Layer . 19

The Network Layer . 23

The Transport Layer . 39

The Application Layer . 52

NAT. . 53

Summary . 60

Review Questions . 61

Additional Readings . 62

3 Berkeley Sockets . 65

Creating Sockets . 66

API Operating System Differences 68

Socket Address . 71

UDP Sockets . 79

TCP Sockets . 83

Blocking and Non-Blocking I/O . 88

Additional Socket Options . 96

ptg16606381

Summary . 98

Review Questions . 98

Additional Readings . 99

4 Object Serialization . 101

The Need for Serialization . 102

Streams . 105

Referenced Data . 119

Compression . 124

Maintainability . 130

Summary . 136

Review Questions . 136

Additional Readings . 137

5 Object Replication . 139

The State of the World . 140

Replicating an Object . 140

Naïve World State Replication . 148

Changes in World State . 152

RPCs as Serialized Objects . 159

Custom Solutions . 162

Summary . 163

Review Questions. 163

Additional Readings . 164

6 Network Topologies and Sample Games 165

Network Topologies . 166

Implementing Client-Server . 170

Implementing Peer-to-Peer . 182

Summary . 196

Review Questions. 197

Additional Reading. 197

ptg16606381

7 Latency, Jitter, and Reliability . 199

Latency . 200

Jitter . 204

Packet Loss . 206

Reliability: TCP or UDP? . 207

Packet Delivery Notification . 209

Object Replication Reliability . 221

Simulating Real-World Conditions 228

Summary . 230

Review Questions . 231

Additional Readings . 232

8 Improved Latency Handling . 233

The Dumb Terminal Client . 234

Client Side Interpolation . 236

Client Side Prediction . 238

Server Side Rewind. 248

Summary . 249

Review Questions . 250

Additional Readings . 251

9 Scalability . 253

Object Scope and Relevancy . 254

Server Partitioning . 260

Instancing . 262

Prioritization and Frequency . 263

Summary . 263

Review Questions . 264

Additional Readings . 264

ptg16606381

10 Security . 265

Packet Sniffing . 266

Input Validation . 270

Software Cheat Detection . 271

Securing the Server . 274

Summary . 277

Review Questions . 278

Additional Readings . 278

11 Real-World Engines . 279

Unreal Engine 4 . 280

Unity . 284

Summary . 287

Review Questions . 288

Additional Readings . 288

12 Gamer Services . 289

Choosing a Gamer Service . 290

Basic Setup . 290

Lobbies and Matchmaking . 294

Networking . 298

Player Statistics . 300

Player Achievements . 305

Leaderboards . 307

Other Services . 308

Summary . 309

Review Questions . 310

Additional Readings . 310

ptg16606381

13 Cloud Hosting Dedicated Servers 311

To Host or Not To Host . 312

Tools of the Trade . 313

Overview and Terminology . 315

Local Server Process Manager . 318

Virtual Machine Manager . 324

Summary . 333

Review Questions . 334

Additional Readings . 334

Appendix A A Modern C++ Primer . 337

C++11 . 338

References . 339

Templates . 341

Smart Pointers . 343

STL Containers . 347

Iterators . 350

Additional Readings . 351

 Index . 353

ptg16606381

This page intentionally left blank

ptg16606381

PREFACE xiii

 PREFACE

 Networked multiplayer games are a huge part of the games industry today. The number of

players and amount of money involved are staggering. As of 2014, League of Legends boasts

67 million active players each month. The 2015 DoTA 2 world championship has a prize pool of

over $16 million at the time of writing. The Call of Duty series, popular in part due to the

multiplayer mode, regularly has new releases break $1 billion in sales within the first few days of

release. Even games that have historically been single-player only, such as the Grand Theft Auto

series, now include networked multiplayer components.

 This book takes an in-depth look at all the major concepts necessary to program a networked

multiplayer game. The book starts by covering the basics of networking—how the Internet

works and how to send data to other computers. Once the fundamentals are established, the

book discusses the basics of transmitting data for games—how to prepare game data to be

sent over the network, how to update game objects over the network, and how to organize the

computers involved in the game. The book next discusses how to compensate for unreliability

and lag on the Internet, and how to design game code to scale and be secure. Chapters 12 and

 13 cover integrating gamer services into and using cloud hosting for dedicated servers—two

topics that are extremely important for networked games today.

 This book takes a very practical approach. Most chapters not only discuss the concepts, they

walk you through the actual code necessary to get your networked game working. The full

source code for two different games is provided on the companion website—one game is an

action game and the other is a real-time strategy (RTS). To help with the progression of topics,

multiple versions of these two games are presented throughout the course of this book.

 Much of the content in this book is based on curriculum developed for a multiplayer-game

programming course at the University of Southern California. As such, it contains a proven

method for learning how to develop multiplayer games. That being said, this book is not

written solely for those in an academic setting. The approach taken by this book is just as

valuable to any game programmer interested in learning how to engineer for a networked

game.

 Who Should Read This Book?
 While Appendix A covers some aspects of modern C++ used in this book, it is assumed that

the reader already is comfortable with C++. It is further assumed that the reader is familiar with

ptg16606381

xiv PREFACE

the standard data structures typically covered in a CS2 course. If you are unfamiliar with C++ or

want to brush up on data structures, an excellent book to refer to is Programming Abstractions in
C++ by Eric Roberts.

 It is further assumed that the reader already knows how to program single-player games. The

reader should ideally be familiar with game loops, game object models, vector math, and basic

game physics. If you are unfamiliar with these concepts, you will want to first start with an

introductory game programming book such as Game Programming Algorithms and Techniques

by Sanjay Madhav.

 As previously mentioned, this book should be equally effective either in an academic

environment or for game programmers who simply want to learn about networked games.

Even game programmers in the industry who have not previously made networked games

should find a host of useful information in this book.

 Conventions Used in This Book
 Code is always written in a fixed-point font. Small code snippets may be presented either

 inline or in standalone paragraphs:

 std::cout << “Hello, world!” << std::endl;

 Longer code segments are presented in code listings, as in Listing 0.1.

 Listing 0.1 Sample Code Listing

 // Hello world program!
 int main()
 {
 std::cout << “Hello, world!” << std::endl;
 return 0;
 }

 For readability, code samples are color coded much like in an IDE.

 Throughout this book, you will see some paragraphs marked as notes, tips, sidebars, and

warnings. Samples of each are provided for the remainder of this section.

 note

 Notes contain useful information that is separate from the flow of the normal text

of the section. Notes should almost always be read.

ptg16606381

PREFACE xv

 tip

 Tips are used to provide helpful hints when implementing specific systems in your

game’s code.

 warning

 Warnings are very important to read, as they contain common pitfalls or issues to

watch out for, and ways to solve or work around these issues.

 SIDEBAR

 Sidebars contain lengthier discussions that usually are tangential to the main

content of the chapter. These can provide some interesting insight to a variety of

issues, but contain content that is deemed nonessential to the pedagogical goals

of the chapter.

 Why C++?
 The vast majority of this book uses C++ because it is still the de facto language used in the

game industry by game engine programmers. Although some engines allow a great deal

of code for a game to be written in other languages, such as Unity in C#, it is important to

remember that most of the lower-level code for these engines is still written in C++. Since

this book is focused on writing a networked multiplayer game from the ground up, it makes

the most sense to do so in the language that most game engines are written in. That being

said, even if you are writing all your game’s networking code in another language, all the core

concepts will still largely be the same. Still, it is recommended that you be familiar with C++,

otherwise the code samples may not make much sense.

 Why JavaScript?
 Since starting off life as a hastily hacked together scripting language to support the Netscape

browser, JavaScript has evolved into a standardized, full-featured, somewhat functional language.

Its popularity as a client-side language helped it make the leap to server side, where its first-class

procedures, simple closure syntax, and dynamically typed nature make it very efficient for the

rapid development of event-driven services. It’s a little hard to refactor and it provides worse

performance than C++, making it a bad choice for next-generation front-end development.

ptg16606381

xvi PREFACE

 That’s not an issue on the backend, where scaling up a service can mean nothing more

than dragging a slider to the right. The backend examples in Chapter 13 use JavaScript, and

understanding them will require a decent knowledge of the language. As of this writing,

JavaScript is currently the number one most active language on GitHub by a margin of almost

50%. Following trends for the sake of trends is rarely a good idea, but being able to program in

the world’s most popular language definitely has its benefits.

 Companion Website
 The companion website for this book is at https://github.com/MultiplayerBook. The website has

a link to the sample code used throughout the book. It also contains the errata, as well as links

to PowerPoint slides and a sample syllabus for use in an academic setting.

https://github.com/MultiplayerBook

ptg16606381

 ACKNOWLEDGMENTS

 We would like to thank the entire team at Pearson for guiding this book through completion.

This includes our Executive Editor, Laura Lewin, who convinced us to get the band together

and write this book. Olivia Basegio, our Assistant Editor, has been great to ensure the process

goes along smoothly. Michael Thurston, our Development Editor, has provided insight to help

us improve the content. We would also like to thank the entire production team, including Andy

Beaster, our production editor and Cenveo® Publisher Services.

 Our technical reviewers, Alexander Boczar, Jonathan Rucker, and Jeff Tucker, were instrumental

in ensuring the accuracy of this book. We would like to thank them for taking time out of their

busy schedule to review the chapters. Finally, we’d like to thank Valve Software for allowing us

to write about the Steamworks SDK, as well as reviewing Chapter 12 .

 Acknowledgments from Joshua Glazer
 Thank you so much Lori and McKinney for your infinite understanding, support, love, and smiles.

You are the best family ever. I lost a lot of time with you guys while writing this book, but hey, I’m

done now! Wooh! Thank you mom and dad for raising and loving me and making sure I could write

English at least within two orders of magnitude of how well I write code. Thank you Beth for the

innumerable amazing things you’ve done for the world and also for watching my cats sometimes.

Thank you all my extended family for the support and belief and for sounding impressed that

I’m writing a textbook. Thank you Charles and all my Naked Sky Pros (short for programmers) for

keeping me on my toes and pointing out whenever I’m being really daft. Thank you Tian and Sam

for dragging me into this ludicrous industry. Thank you Sensei Copping for teaching me that the

man who cleans his house by dirtying his closet has destroyed himself. And, of course, thank you

Sanjay for bringing me on board at USC and tackling this mega undertaking with me! I never could

have done this without your wisdom and cool-headedness, not to mention you writing half the

stuff! (Oh yeah, and thank you to Lori again, just in case you missed the first one!)

 Acknowledgments from Sanjay Madhav
 There is a correlation between the number of books an author has written and the length of

their acknowledgements. Since I wrote a lot of acknowledgements in my last book, I’ll keep

it short this time. I’d of course like to thank my parents and my sister. I’d also like to thank my

colleagues in the Information Technology Program at USC. Finally, I’d like to thank Josh for

agreeing to teach our “Multiplayer Game Programming” course, because this book would not

have happened were it not for that course.

ptg16606381

 ABOUT THE AUTHORS

 Joshua Glazer is a cofounder and CTO of Naked Sky Entertainment, the independent

development studio behind console and PC games such as RoboBlitz , MicroBot , Twister Mania ,

and more recently, the mobile hits Max Axe and Scrap Force . As a leader of the Naked Sky

team, he has consulted on several external projects including Epic Games’ Unreal Engine, Riot

Games’ League of Legends , THQ’s Destroy All Humans franchise, and numerous other projects for

Electronic Arts, Midway, Microsoft, and Paramount Pictures.

 Joshua is also a part-time lecturer at the University of Southern California, where he has

enjoyed teaching courses in multiplayer game programming and game engine development.

 Sanjay Madhav is a senior lecturer at the University of Southern California, where he teaches

several programming and video game programming courses. His flagship course is an

undergraduate-level game programming course that he has taught since 2008, but he has

taught several other course topics, including game engines, data structures, and compiler

development. He is also the author of Game Programming Algorithms and Techniques .

 Prior to joining USC, Sanjay worked as a programmer at several video game developers,

including Electronic Arts, Neversoft, and Pandemic Studios. His credited games include Medal of
Honor: Pacific Assault , Tony Hawk’s Project 8 , Lord of the Rings: Conquest , and The Saboteur— most

of which had networked multiplayer in one form or another.

ptg16606381

 C H A P T E R 1

 OVERVIEW OF

NETWORKED GAMES

 Although there are notable exceptions, the concept

of networked multiplayer games didn’t really catch

on with mainstream gamers until the 1990s. This

chapter first gives a brief history of how multiplayer

games evolved from the early networked games of

the 1970s to the massive industry today. Next, the

chapter provides an overview of the architecture

of two popular network games from the 1990s—

Starsiege: Tribes and Age of Empires . Many of the

techniques used in these games are still in use

today, so this discussion gives insight into the

overall challenges of engineering a networked

multiplayer game.

ptg16606381

2 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 A Brief History of Multiplayer Games
 The progenitor of the modern networked multiplayer game began on university mainframe

systems in the 1970s. However, this type of game didn’t explode until Internet access became

common in the mid-to-late 1990s. This section gives a brief overview of how networked games

first started out, and the many ways these types of games have evolved in the nearly half

century since the first such games.

 Local Multiplayer Games

 Some of the earliest video games featured local multiplayer , meaning they were designed

for two or more players to play the game on a single computer. This included some very early

games such as including Tennis for Two (1958) and Spacewar! (1962). For the most part, local

multiplayer games can be programmed in the same manner as single-player games. The only

differences typically are multiple viewpoints and/or supporting multiple input devices. Since

programming local multiplayer games is so similar to single-player games, this book does not

spend any time on them.

 Early Networked Multiplayer Games

 The first networked multiplayer games were run on small networks composed of mainframe

computers. What distinguishes a networked multiplayer game from a local multiplayer game is

that networked games have two or more computers connected to each other during an active

game session. One such early mainframe network was the PLATO system, which was developed

at the University of Illinois. It was on the PLATO system that one of the first networked games,

the turn-based strategy game Empire (1973), was created. Around the same time as Empire , the

first-person networked game Maze War was created, and there is not a clear consensus as to

which of these two games was created first.

 As personal computers started to gain some adoption in the latter part of the 1970s,

developers figured out ways to have two computers communicate with each other over

serial ports. A serial port allows for data to be transmitted one bit at a time, and its typical

purpose was to communicate with external devices such as printers or modems. However,

it was also possible to connect two computers to each other and have them communicate

via this connection. This made it possible to create a game session that persisted over

multiple personal computers, and led to some of the earliest networked PC games. The

December 1980 issue of BYTE Magazine featured an article on how to program so-called

Multimachine Games in BASIC (Wasserman and Stryker 1980).

 One big drawback of using serial ports was that computers typically did not have more than two

serial ports (unless an expansion card was used). This meant that in order to connect more than

two computers via serial port, a daisy chain scheme where multiple computers are connected

to each other in a ring had to be used. This could be considered a type of network topology, a

topic that is covered in far more detail in Chapter 6 , “Network Topologies and Sample Games.”

ptg16606381

A BRIEF HISTORY OF MULTIPLAYER GAMES 3

 So in spite of the technology being available in the early 1980s, most games released during

the decade did not really take advantage of local networking in this manner. It wasn’t until

the 1990s that the idea of locally connecting several computers to play a game really gained

traction, as discussed later in this chapter.

 Multi-User Dungeons

 A multi-user dungeon or MUD is a (usually text-based) style of multiplayer game where

several players are connected to the same virtual world at once. This type of game first gained

popularity on mainframes at major universities, and the term originates from the game MUD

(1978), which was created by Rob Trushaw at Essex University. In some ways, MUDs can be

thought of as an early computer version of the role-playing game Dungeons and Dragons ,

though not all MUDs are necessarily role-playing games.

 Once personal computers became more powerful, hardware manufacturers began to offer

modems that allowed two computers to communicate with each other over standard phone

lines. Although the transmission rates were extraordinarily slow by modern standards, this

allowed for MUDs to be played outside the university setting. Some ran MUD games on a

 bulletin board system (BBS), which allowed for multiple users to connect via modem to a

system that could run many things including games.

 Local Area Network Games

 A local area network or LAN is a term used to describe several computers connected to each

other within a relatively small area. The mechanism used for the local connection can vary—for

example, the serial port connections discussed earlier in this chapter would be one example

of a local area network. However, local area networks really took off with the proliferation of

Ethernet (a protocol which is discussed in more detail in Chapter 2 , “The Internet”).

 While by no means the first game to support LAN multiplayer, Doom (1993) was in many

ways the progenitor of the modern networked game. The initial version of the id Software

first-person shooter supported up to four players in a single game session, with the option to

play cooperatively or in a competitive “deathmatch.” Since Doom was a fast-paced action game,

it required implementation of several of the key concepts covered in this book. Of course, these

techniques have evolved a great deal since 1993, but the influence of Doom is widely accepted.

For much greater detail on the history and creation of Doom , read Masters of Doom (2003), listed

in the references at the conclusion of this chapter.

 Many games that support networked multiplayer over a LAN also supported networked

 multiplayer in other ways—whether by modem connection or an online network. For many years,

the vast majority of networked games also supported gaming on a LAN. This led to the rise of LAN

parties where people would meet at a location and connect their computers to play networked

games. Although some networked multiplayer games are still released with LAN play, the trend in

recent years seems to have developers forgoing LAN play for exclusively online multiplayer.

ptg16606381

4 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 Online Games

 In an online game , players connect to each other over some large network with geographically

distant computers. Today, online gaming is synonymous with Internet gaming, but the term

“online” is a bit broader and can include some of the earlier networks such as CompuServe that,

originally, did not connect to the Internet.

 As the Internet started to explode in the late 1990s, online games took off alongside it. Some

of the popular games in the earlier years included id Software’s Quake (1996) and Epic Game’s

 Unreal (1998).

 Although it may seem like an online game could be implemented in much the same way as a

LAN game, a major consideration is latency , or the amount of time it takes data to travel over

the network. In fact, the initial version of Quake wasn’t really designed to work over an Internet

connection, and it wasn’t until the QuakeWorld patch that the game was reliably playable over

the Internet. Methods to compensate for latency are covered in much greater detail in Chapter 7 ,

“Latency, Jitter, and Reliability” and Chapter 8 , “Improved Latency Handling.”

 Online games took off on consoles with the creation of services such as Xbox Live and

PlayStation Network in the 2000s, services that were direct descendants of PC-based services

such as GameSpy and DWANGO. These console services now regularly have several million

active users during peak hours (though with expansion of video streaming and other services

to consoles, not all of these active users may be playing a game). Chapter 12 , “Gamer Services,”

discusses how to integrate one such gamer service—Steam—into a PC game.

 Massively Multiplayer Online Games

 Even today, most online multiplayer games are limited to a small number of players per game

session—somewhere from 4 to 32 is commonly the number of supported players. In a Massively
Multiplayer Online Game (MMO), however, hundreds if not thousands of players can participate

in a single game session. Most MMO games are role-playing games and thus called MMORPGs .

However, there are certainly other styles of MMO games such as first-person shooters (MMOFPS).

 In many ways, MMORPGs can be thought of as the graphical evolution of multi-user dungeons.

Some of the earliest MMORPGs actually predated the widespread adoption of the Internet,

and instead functioned over dial-in networks such as Quantum Link (later America Online)

and CompuServe. One of the first such games was Habitat (1986) which implemented several

pieces of novel technology (Morningstar and Farmer 1991). However, it wasn’t until the Internet

became more widely adopted that the genre gained more traction. One of the first big hits was

 Ultima Online (1997).

 Other MMORPGs such as EverQuest (1999) were also successful, but the genre took the world by

storm with the release of World of Warcraft (2004). At one point, Blizzard’s MMORPG had over

ptg16606381

STARSIEGE: TRIBES 5

12 million active subscribers worldwide, and the game became such a large part of popular

culture that it was featured in a 2006 episode of the animated series South Park .

 Architecting an MMO is a complex technical challenge, and some of these challenges are

discussed in Chapter 9 , “Scalability.” However, most of the techniques necessary to create an

MMO are well beyond the scope of this book. That being said, the foundations of creating

a smaller-scale networked game are important to understand before it’s possible to even

consider creating an MMO.

 Mobile Networked Games

 As gaming has expanded to the mobile landscape, multiplayer games have followed right along.

Many multiplayer games on these platforms are asynchronous —typically turn-based games

that do not require real-time transmission of data. In this model, players are notified when it is

their turn, and have a large amount of time to make their move. The asynchronous model has

existed from the very beginning of networked multiplayer games. Some BBS only had one

incoming phone line connection, which meant that only one user could be connected at any

one time. Thus, a player would connect, take their turn, and disconnect. Then at some point in

the future, another player would connect and be able to respond and take their own turn.

 An example of a mobile game that uses asynchronous multiplayer is Words with Friends (2009).

From a technical standpoint, an asynchronous networked game is simpler to implement than a

real-time one. This is especially true on mobile platforms, because the platform APIs (application

program interfaces) have built-in functionality for asynchronous communication. Originally,

using an asynchronous model for mobile games was somewhat out of necessity because the

reliability of mobile networks is comparatively poor to wired connections. However, with the

proliferation of Wi-Fi–capable devices and improvements to mobile networks, more and more

real-time networked games are appearing on these devices. An example of a mobile game that

takes advantage of real-time network communication is Hearthstone: Heroes of Warcraft (2014).

 Starsiege: Tribes
 Starsiege: Tribes is a sci-fi first-person shooter that was released at the end of 1998. At the time of

release, it was well regarded as a game featuring both fast-paced combat and a comparatively

massive number of players. Some game modes supported 128 players over either a LAN or the

Internet. To gain some perspective on the magnitude of the challenge in implementing such a

game, keep in mind that during this time period, the vast majority of players with an Internet

connection used a dial-up service. At best, these dial-up users had a modem capable of speeds

up to 56.6 kbps. In the case of Tribes , it actually supported users with modem speeds of only

28.8 kbps. By modern standards, these are extremely slow connection speeds. Another factor

was that dial-up connections also had relatively high latency—a latency of several hundred

milliseconds was rather common.

ptg16606381

6 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 It may seem that a networking model designed for a game with low bandwidth constraints

would be irrelevant in the modern day. However, it turns out that the model used in Tribes still

has a great deal of validity even today. This section summarizes the original Tribes networking

model—for a more in-depth discussion, refer to the article by Frohnmayer and Gift referenced

at the end of this chapter.

 Do not be concerned if some of the concepts covered in this section don’t entirely make sense

right now. The intent is that by looking at a networked multiplayer game’s architecture at a high

level, you will gain an appreciation for the numerous technical challenges faced and decisions to

be made. All the topics touched on in this section are covered in much greater detail throughout

the remainder of this book. Furthermore, one of the sample games built throughout this book,

 RoboCat Action , ultimately uses a model similar to the Tribes networking model.

 One of the first choices made when engineering a networked game is to choose a

 communications protocol , or an established convention by which data is exchanged

between two computers. Chapter 2 , “The Internet,” covers how the Internet works and the

commonly used protocols. Chapter 3 , “Berkeley Sockets,” covers a ubiquitous library used to

facilitate communication via these protocols. For the sake of the current discussion, the only

thing you need to know is that, for efficiency reasons, Tribes uses an unreliable protocol. This

means that data sent over the network is not guaranteed to be received by the destination.

 However, using an unreliable protocol can be problematic when a game needs to send

information that is important to all the players in the game. Thus, the engineers needed to

consider the different types data they wanted to send out. The developers of Tribes ultimately

separated their data requirements into the following four categories:

 1. Non-guaranteed data. As one might expect, this is data that the game designates as

nonessential to the game. When bandwidth-starved, the game can choose to drop this

data first.

 2. Guaranteed data. This data guarantees both arrival and ordering of the data in question.

This is used for data deemed critical by the game, such as an event signifying when a player

has fired a weapon.

 3. “Most recent state” data. This type of data is for cases where only the most recent version

of the data is of importance. One example is the hit points of a particular player. A player’s

hit points 5 seconds ago are not terribly relevant if the game knows what their hit points

are right now.

 4. Guaranteed quickest data. This data is given the highest priority in order to transmit

as quickly as possible with guaranteed delivery. An example of this type of data is player

movement information, which is typically relevant for a very short period of time, and thus

should be transmitted quickly.

 Many of the implementation decisions made in the Tribes Networking Model center on

providing these four types of data transmission.

ptg16606381

STARSIEGE: TRIBES 7

 Another important design decision was to utilize a client-server model instead of a peer-to-peer

model. In a client-server model , players all connect to a central server, whereas in a

peer-to-peer model , every player connects to every other player. As discussed in Chapter 6 ,

“Network Topologies and Sample Games,” a peer-to-peer model requires O(n2) bandwidth. This

means that the bandwidth grows at a quadratic rate based on the number of users. In this case,

with n being as high as 128, using peer-to-peer would lead to very little bandwidth per player.

To avoid this issue, Tribes instead implemented a client-server model. In this configuration, the

bandwidth requirements of each player remain constant, while the server must handle only O(n)

bandwidth. However, this meant that the server needed to be on a network that would allow for

several incoming connections—the type of connection that only a company or university might

have owned at the time.

 Next, Tribes split up their networking implementation into several different layers—one can

think of this as a “layer cake” of the Tribes Networking Model. This is illustrated in Figure 1.1 . The

remainder of this section briefly describes the composition of each of these layers.

Game’s Simulation Layer

Stream Manager

Connection Manager

Platform Packet Module

Ghost
Manager

Move
Manager

Event
Manager

Other
…

 Figure 1.1 The main components of the Tribes Networking Model

 Platform Packet Module

 A packet is a formatted set of data sent over a network. In the Tribes model, the platform
packet module is the lowest layer. It is the only layer in the model that is platform-specific. In

essence, this layer is a wrapper for the standard socket APIs that can construct and send various

packet formats. The implementation of this layer might look rather similar to the systems

implemented in Chapter 3 , “Berkeley Sockets.”

 Since Tribes utilized an unreliable protocol, the developers needed to add some mechanism to

handle the data they decided needed to be guaranteed. Similar to the approach discussed

in Chapter 7 , “Latency, Jitter, and Reliability,” Tribes implemented a custom reliability layer.

However, this reliability layer is not handled by the platform packet module; instead the higher

level managers such as the ghost manager, move manager, or event manager are responsible

for adding any reliability.

ptg16606381

8 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 Connection Manager

 The job of the connection manager is to abstract the connection between two computers

over the network. It receives data from the layer above it, the stream manager, and transmits

data to the layer below it, the platform packet module.

 The connection manager level is still unreliable. It does not guarantee delivery of data sent to it.

However, the connection manager does guarantee a delivery status notification —that is to

say, the status of a request passed to the connection manager can be verified. In this way, it is

possible for the level above the connection manager (the stream manager) to know whether or

not particular data was successfully delivered.

 The delivery status notification is implemented with a sliding window bit field of

acknowledgments. Although the original Tribes Networking Model paper does not contain

a detailed discussion regarding the implementation of the connection manager, an

implementation of a similar system is discussed in Chapter 7 , “Latency, Jitter, and Reliability.”

 Stream Manager

 The primary job of the stream manager is to send data to the connection manager. One

important aspect of this is determining the maximum rate of data transmission that is allowed.

This will vary depending on the quality of the Internet connection. An example given in the

original paper is where a user on a 28.8-kbps modem might have their packet rate set to

10 packets per second with a maximum size of 200 bytes per packet, for approximately 2 kB of

data per second. This rate and size is sent to the server upon connection of the client, in order

to ensure that the server does not overwhelm the client’s connection with too much data.

 Since several other systems will ask the stream manager to send data, it is also the duty of the

stream manager to prioritize these requests. The move, event, and ghost managers are given

the highest priority when in a bandwidth-bound scenario. Once the stream manager decides

on what data to send, the packets are dispatched to the connection manager. In turn, the

higher-level managers will be informed by the stream manager regarding the status of delivery.

 Because of the set interval and packet size enforced by the stream manager, it is very much

possible for a packet to be dispatched with multiple types of data in it. For example, a packet

may have some data from the move manager, some data from the event manager, and some

data from the ghost manager.

 Event Manager

 The event manager maintains a queue of events that are generated by the game’s simulation.

These events can be thought of as a simple form of a remote procedure call or RPC , a

function that can be executed on a remote machine. RPCs are discussed in Chapter 5 , “Object

Replication.”

ptg16606381

STARSIEGE: TRIBES 9

 For example, when a player fires a weapon, this would likely cause a “player fired” event to be

sent to the event manager. This event can then be sent to the server, which will actually validate

and execute the weapon firing. It is also the purview of the event manager to prioritize the

events—it will try to write as many of the highest priority events as possible until any of the

following conditions are true: the packet is full, the event queue is empty, or there are currently

too many active events.

 The event manager also tracks the transmission records for each event marked as reliable.

In this way, it is very simple for the event manager to enforce reliability. If a reliable event is

 unacknowledged, then the event manager can simply prepend the event to the event queue

and try again. Of course, there will be some events that are marked as unreliable. For these

unreliable events, there is no need to even track their transmission records.

 Ghost Manager

 The ghost manager is perhaps the most important system in terms of supporting up to

128 players. At a high level, the job of the ghost manager is to replicate or “ghost” dynamic

objects that are deemed relevant to a particular client. In other words, the server sends

information about dynamic objects to the clients, but only the objects that the server thinks

the client needs to know about. The game’s simulation layer is responsible for determining

what a client absolutely needs to know and what a client ideally should know. This adds an

inherent prioritization to game objects in the world: “need to know” objects are the highest

priority, while “should know” objects are lower priority. In order to determine whether or not

an object is relevant to a particular client, there are several different approaches that can be

employed. Chapter 9 , “Scalability,” covers some of these approaches. In general, determining

object relevancy is very game-specific.

 Regardless of how the set of relevant objects is computed, the job of the ghost manager is to

transmit object state from server to client for as many relevant objects as possible. It’s very

important that the ghost manager guarantees that the most recent data is always successfully

transmitted to all of the clients. The reason for this is that the game object information that is

ghosted will often contain information such as health, weapons, ammo count, and so on—all

cases where the most recent data is the only information that matters.

 When an object becomes relevant (or “in scope”), the ghost manager will assign some

information to the object, which is appropriately called a ghost record . This record will include

items such as a unique ID, a state mask, the priority, and status change (whether or not the

object has been marked as in or out of scope).

 For transmission of the ghost records, the objects are prioritized first by status change and

then by the priority level. Once the ghost manager determines the objects that should be sent,

their data can be added to the outgoing packet using an approach similar to what is covered in

 Chapter 5 , “Object Replication.”

ptg16606381

10 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

 Move Manager

 The responsibility of the move manager is to transmit player movement data as quickly as

possible. If you’ve ever played a fast-paced multiplayer game, you are likely cognizant of the

fact that accurate movement information is extremely important. If the information regarding a

player’s position is slow to arrive, it could result in players shooting at where a player used to be

instead of where a player is, which can result in frustrating gameplay. Quick movement updates

can be an important way to reduce the perception of latency on the part of player.

 The other reason the move manager is assigned a high priority is because input data is

captured at 30 FPS. This means there is new input information available 30 times per second,

so the latest data is sent as quickly as possible. This higher priority also means that, when move

data is available, the stream manager will always first add any pending move manager data

to an outgoing packet. Each client is responsible for transmitting their move information to

the server. The server then applies this move information in its simulation of the game, and

acknowledges the receipt of the move information to the client who sent it.

 Other Systems

 There are a few other systems in the Tribes model, though these are less critical to the overarching

design. For example, there is a datablock manager, which handles transmission of game objects

that are relatively static in nature. This differs from the relatively dynamic objects that are handled

by the ghost manager. An example for this might be a static vehicle such as a turret—the object

doesn’t really move, but it exists to serve a purpose when a player interacts with it.

 Age of Empires
 As with Tribes , the real-time strategy (RTS) game Age of Empires was released in the late 1990s.

This means that Age of Empires faced many of the same bandwidth and latency constraints

of dial-up Internet access. Age of Empires uses a deterministic lockstep networking model.

In this model, all the computers are connected to each other, meaning it is peer-to-peer. A

guaranteed deterministic simulation of the game is concurrently performed by each of the

peers. It is lockstep because peers use communication to ensure that they remain synchronized

throughout the game. As with Tribes , even though the deterministic lockstep model has existed

for many years, it is still commonly used in modern RTS games. The other sample game built

during the course of this book, RoboCat RTS , implements a deterministic lockstep model.

 One of the largest differences between implementing networked multiplayer for an RTS

instead of an FPS is the number of relevant units. In Tribes , even though there are up to

128 players, at any particular point in time only a fraction of these players is going to be relevant

to a particular client. This means that the ghost manager in Tribes rarely has to send information

about more than 20 to 30 ghosts at a time.

ptg16606381

AGE OF EMPIRES 11

 Contrast this with an RTS such as Age of Empires . Although the player cap is much smaller

(limited to eight simultaneous players in the original game), each player can control a large

number of units. The original Age of Empires capped the number of units for each player at

50, whereas in later games the cap was as high as 200. Using the cap of 50, this means that

in a massive eight-player battle, there could be up to 400 units active at a time. Although it

is natural to wonder if some sort of relevancy system could reduce the number of units that

need to be synchronized, it’s important to consider the worst-case scenario. What if a battle

toward the end of a game featured the armies of all eight players? In this case, there are

going to be several hundred units that are relevant at the same time. It would be hard for the

synchronization to keep up even if a minimal amount of information is sent per unit.

 To alleviate this issue, the engineers for Age of Empires decided to synchronize the commands

each player issued, rather than synchronizing the units. There’s a subtle but important

distinction in this implementation—even a professional RTS player may be able to issue no

more than 300 commands per minute. This means that even in an extreme case, the game

need only transmit a few commands per second per each player. This requires a much more

manageable amount of bandwidth than transmitting information about several hundred units.

However, given that the game is no longer transmitting unit information over the network,

each instance of the game needs to independently apply the commands transmitted by each

player. Since each game instance is performing an independent simulation, it is of the utmost

importance that each game instance remains synchronized with the other game instances. This

ends up being the largest challenge of implementing the deterministic lockstep model.

 Turn Timers

 Since every game instance is performing an independent simulation, it makes sense to utilize

a peer-to-peer topology. As discussed in Chapter 6 , “Network Topologies and Sample Games,”

one advantage of a peer-to-peer model is that data can reach every computer more quickly.

This is because the server is not acting as a middleman. However, one disadvantage is that each

player needs to send their information to every other player, as opposed to just a single server.

So for example, if player A issues an attack command, then every game instance needs to be

aware of this attack command, or their simulations would diverge from each other.

 However, there is another key factor to consider. Different players are going to run the game

at different frame rates, and different players are going to have different quality connections.

Going back to the example where player A issues an attack command, it’s just as important

that player A does not immediately apply the attack command. Instead, player A should only

apply the attack command once players B, C, and D are all ready to simultaneously apply the

command. But this introduces a conundrum: If player A’s game waits too long to execute the

attack command, the game will seem very unresponsive.

 The solution to this problem is to introduce a turn timer to queue up commands. With the

turn timer approach, first a turn length is selected—in the case of Age of Empires , the default

ptg16606381

12 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

duration was 200 ms. All commands during these 200 ms are saved into a buffer. When the

200 ms are over, all the commands for that player’s turn are transmitted over the network to all

other players. Another key aspect of this system is a turn execution delay of two turns. What

this means is that, for example, commands that are issued by the player on turn 50 will not be

executed by any game until turn 52. In the case of a 200-ms turn timer, this means that the

 input lag , the amount of time it takes for a player’s command to be displayed on screen, could

be as high as 600 ms. However, the two turns of slack allows for every other player to receive

and acknowledge the commands for a particular turn. It may seem slightly counterintuitive for

an RTS game to actually have turns, but you can see the hallmarks of the turn timer approach in

many different RTS games, including StarCraft II . Of course, modern games can have the luxury

of shorter turn timers since bandwidth and latency are much better for most users today in

comparison to the late 1990s.

 There is one important edge case to consider with the turn timer approach. What happens

if one of the players experiences a lag spike and they can no longer keep up with the

200-ms timer? Some games might temporarily pause the simulation to see if the lag spike can

be overcome—eventually, the game may decide to drop the player if they continue to slow

down the game for everyone else. Age of Empires also tries to compensate for this scenario by

dynamically adjusting the rendering frame rate based on network conditions—thus a computer

with a particularly slow Internet connection might allocate more time to receive data over the

network, with less time being allotted for rendering graphics. For more detail on the dynamic

turn adjustment, consult the original Bettner and Terrano article listed in the references.

 There’s also an extra benefit of transmitting the commands issued by the clients. With such an

approach, it does not take much extra memory or work to save the commands issued over the

course of an entire match. This directly leads to the possibility of implementing savable match

replays, as in Age of Empires II . Replays are very popular in RTS games because it allows players

to evaluate matches to gain a deeper understanding of strategies. It would require significantly

more memory and overhead to create replays in an approach that transmitted unit information

instead of commands.

 Synchronization

 Turn timers alone are not enough to guarantee synchronization between each peer. Since each

machine is receiving and processing commands independently, it is of the utmost importance

that each machine arrives at an identical result. In their paper, Bettner and Terrano write that

“the difficulty with finding out-of-sync errors is that very subtle differences would multiply over

time. A deer slightly out of alignment when the random map was created would forage slightly

differently—and minutes later a villager would path a tiny bit off, or miss with his spear and

take home no meat.”

 One concrete example arises from the fact that most games have some amount of randomness

in actions. For instance, what if the game performs a random check in order to determine

ptg16606381

SUMMARY 13

whether or not an archer hits an infantry? It would be conceivable that player A’s instance

decides the archer does hit the infantry, whereas player B’s instance decides the archer doesn’t

hit the infantry. The solution to this problem is to exploit the “pseudo” prefix of the pseudo-
random number generator (PRNG). Since all PRNGs use some sort of seeding, the way you can

guarantee both players A and B arrive at the same random results is to synchronize the seed

value across all game instances. One should keep in mind, however, that a seed only guarantees

a particular sequence of numbers. So not only is it important that each game instance uses the

same seed, it’s equally important that each game instance makes the same number of calls to

the random generation number—otherwise the PRNG numbers will become out of sync. PRNG

synchronization in a peer-to-peer configuration is further elaborated in Chapter 6 , “Network

Topologies and Sample Games.”

 There is also an implicit advantage to checking for synchronization—it reduces the opportunity

for players to cheat. For example, if one player gives themselves 500 extra resources, the other

game instances could immediately detect the desynchronization in the game state. It would

then be trivial to kick the offending player out of the game. However, as with any system, there

are tradeoffs—the fact that each game state simulates each unit in the game means that it is

possible to create cheats that reveal information that should not be visible. This means that the

so-called “map hacks” that reveal the entire map are still a common issue in most RTS games.

This and other security concerns are covered in Chapter 10 , “Security.”

 Summary
 Networked multiplayer games have a lengthy history. They began as games playable on networks

of mainframe computers, such as Empire (1973), which was playable on the PLATO network.

Networked games later expanded to text-based multi-user dungeon games. These MUDs later

expanded to bulletin board systems which allowed for users to dial in over phone lines.

 In the early 1990s, local area network games, led by Doom (1993), took the computer gaming

world by storm. These games allowed for players to locally connect multiple computers and

play with or against each other. As adoption of the Internet expanded in the late 1990s, online

games such as Unreal (1998) became very popular. Online games also started to see adoption

on consoles in the early 2000s. One type of online game is the massively multiplayer online

game, which supports hundreds if not thousands of players in the same game session at once.

 Starsiege: Tribes (1998) implemented a network architecture still relevant to a modern-day

action game. It uses a client-server model, so each player in the game is connected to a server

that coordinates the game. At the lowest level, the platform packet module abstracts sending

packets over the network. Next, the connection manager maintains connections between the

players and the server, and provides delivery status notifications. The stream manager takes data

from the higher-level managers (including the event, ghost, and move managers), and based on

priority, adds this data to outgoing packets. The event manager takes important events, such as

“player fired” and ensures that this data is received by the relevant parties. The ghost manager

ptg16606381

14 CHAPTER 1 OVERVIEW OF NETWORKED GAMES

handles sending object updates for the set of objects deemed relevant for a particular player.

The move manager sends the most recent movement information for each player.

 Age of Empires (1997) implemented a deterministic lockstep model. All computers in the game

connect to each other in a peer-to-peer manner. Rather than sending information about each

unit over the network, the game instead sends commands to each peer. These commands are

then independently evaluated by each peer. In order to ensure the machines stay synchronized,

a turn timer is used to save up commands over a period of time before sending them over the

network. These commands are not executed until two turns later, which gives enough time for

each peer to send and receive turn commands. Additionally, it is important that each peer runs

a deterministic simulation, which means, for example, pseudo-random number generators

need to be synchronized.

 Review Questions
 1. What is the difference between a local multiplayer game and a networked multiplayer game?

 2. What are three different types of local network connections?

 3. What is a major consideration when converting a networked game that works over a LAN

to work over the Internet?

 4. What is an MUD, and what type of game did it evolve into?

 5. How does an MMO differ from a standard online game?

 6. In the Tribes model, which system(s) provide reliability?

 7. Describe how the ghost manager in the Tribes model reconstructs the minimal necessary

transmission in the event that a packet is dropped.

 8. In the Age of Empires peer-to-peer model, what is the purpose of the turn timer? What

 information is transmitted over the network to the other peers?

 Additional Readings
 Bettner, Paul and Mark Terrano. “1500 Archers on a 28.8: Network Programming in Age of

Empires and Beyond.” Presented at the Game Developer’s Conference, San Francisco, CA, 2001.

 Frohnmayer, Mark and Tim Gift. “The Tribes Engine Networking Model.” Presented at the Game

Developer’s Conference, San Francisco, CA, 2001.

 Koster, Raph. “Online World Timeline.” Raph Koster’s Website . Last modified February 20, 2002.

 http://www.raphkoster.com/gaming/mudtimeline.shtml .

 Kushner, David. Masters of Doom: How Two Guys Created an Empire and Transformed Pop Culture .

New York: Random House, 2003.

 Morningstar, Chip and F. Randall Farmer. “The Lessons of Lucasfilm’s Habitat.” In Cyberspace: First
Steps , edited by Michael Benedikt, 273-301. Cambridge: MIT Press, 1991.

 Wasserman, Ken and Tim Stryker. “Multimachine Games.” Byte Magazine , December 1980, 24-40.

http://www.raphkoster.com/gaming/mudtimeline.shtml

ptg16606381

 C H A P T E R 2

 THE INTERNET

 This chapter provides an overview of the TCP/IP

suite and the associated protocols and standards

involved in Internet communication, including a

deep dive into those which are most relevant for

multiplayer game programming.

ptg16606381

16 CHAPTER 2 THE INTERNET

 Origins: Packet Switching
 The Internet as we know it today is a far cry from the four-node network as which it started life

in late 1969. Originally known as ARPANET, it was developed by the United States Advanced

Research Projects Agency with the stated goal of providing geographically dispersed scientists

with access to uniquely powerful computers, similarly geographically dispersed.

 ARPANET was to accomplish its goal using a newly invented technology called packet
switching . Before the advent of packet switching, long-distance systems transmitted

information through a process known as circuit switching . Systems using circuit switching sent

information via a consistent circuit, created by dedicating and assembling smaller circuits into

a longer path that persisted throughout the duration of the transmission. For instance, to send

a large chunk of data, like a telephone call, from New York to Los Angeles, the circuit switching

system would dedicate several smaller lines between intermediary cities to this chunk of

information. It would connect them into a continuous circuit, and the circuit would persist

until the system was done sending the information. In this case, it might reserve a line from

New York to Chicago, a line from Chicago to Denver, and a line from Denver to Los Angeles. In

reality these lines themselves consisted of smaller dedicated lines between closer cities. The

lines would remain dedicated to this information until the transmission was complete; that is,

until the telephone call was finished. After that the system could dedicate the lines to other

information transmissions. This provided a very high quality of service for information transfer.

However, it limited the usability of the lines in place, as the dedicated lines could only be used

for one purpose at a time, as shown in Figure 2.1 .

New YorkChicago

Denver

Los Angeles

Boston
Seattle

In progress transmission from New York to Los Angeles

Obstructed transmission from Boston to Seattle

 Figure 2.1 Circuit switching

 Packet switching, however, provides increased usability by removing the requirement that

a circuit be dedicated to a single transmission at a time. It achieves this by breaking up

ptg16606381

THE TCP/IP LAYER CAKE 17

transmissions into small chunks called packets and sending them down shared lines using a

process called store and forward . Each node of the network is connected to other nodes in the

network using a line that can carry packets between the nodes. Each node can store incoming

packets and then forward them to a node closer to their final destination. For instance, in the

call from New York to Los Angeles, the call would be broken up into very short packets of data.

They would then be sent from New York to Chicago. When the Chicago node receives a packet,

it examines the packet’s destination and decides to forward the packet to Denver. The process

continues until the packets arrive in Los Angeles and then the call receiver’s telephone. The

important distinction from circuit switching is that other phone conversations can happen at

the same time, using the same lines. Other calls from New York to Los Angeles could have their

packets forwarded along the same lines at the same time, as could a call from Boston to Seattle,

or anywhere in between. Lines can hold packets from many, many transmissions at once,

increasing usability, as shown in Figure 2.2 .

New YorkChicago

Denver

Los Angeles

Boston
Seattle

In progress transmission from New York to Los Angeles

In progress transmission from Boston to Seattle

 Figure 2.2 Packet switching

 Packet switching itself is just a concept, though. Nodes on the network need a formal protocol

collection to actually define how data should be packaged into packets and forwarded

throughout the network. For the ARPANET, this protocol collection was defined in a paper known

as the BBN Report 1822 and referred to as the 1822 protocol. Over many years, the ARPANET grew

and grew and became part of the larger network now known as the Internet. During this time

the protocols of the 1822 report evolved as well, becoming the protocols that drive the Internet of

today. Together, they form a collection of protocols now known as the TCP/IP suite .

 The TCP/IP Layer Cake
 The TCP/IP suite is at once both a beautiful and frightening thing. It is beautiful because in

theory it consists of a tower of independent and well-abstracted layers, each supported by

ptg16606381

18 CHAPTER 2 THE INTERNET

a variety of interchangeable protocols, bravely fulfilling their duties to support dependent

layers and relay their data appropriately. It is frightening because these abstractions are often

flagrantly violated by protocol authors in the name of performance, expandability, or some

other worthwhile yet complexity-inducing excuse.

 As multiplayer game programmers, our job is to understand the beauty and horror of the TCP/

IP suite so that we can make our game functional and efficient. Usually this involves touching

only the highest layers of the stack, but to do that effectively, it is useful to understand the

underlying layers and how they affect the layers above them.

 There are multiple models which explain the interactions of the layers used for Internet

communication. RFC 1122 , which defined early Internet host requirements, uses four layers:

the link layer, the IP layer, the transport layer, and the application layer. The alternate Open

Systems Interconnection (OSI) model uses seven layers: the physical layer, the data link layer, the

network layer, the transport layer, the session layer, the presentation layer, and the application

layer. To focus on matters relevant to game developers, this book uses a combined, five-model

layer, consisting of the physical layer, the link layer, the network layer, the transport layer, and

the application layer, as shown in Figure 2.3 . Each layer has a duty, supporting the needs of the

layer directly above it. Typically that duty includes

 ■ Accepting a block of data to transmit from a higher layer

■ Packaging the data up with a layer header and sometimes a footer

■ Forwarding the data to a lower layer for further transmission

■ Receiving transmitted data from a lower layer

■ Unpackaging transmitted data by removing the header

■ Forwarding transmitted data to a higher layer for further processing

Application Layer
Application

Data

Transport Layer
Transport
Header

Network Layer
Network
Header

Link Layer
Link

Header
Link

Footer

Physical Layer Physical Medium

Data Flow

 Figure 2.3 A game developer’s view of the TCP/IP layer cake

 The way a layer performs its duty, however, is not built into the definition of the layer. In fact,

there are various protocols each layer can use to do its jobs, with some as old as the TCP/IP suite

ptg16606381

THE LINK LAYER 19

and others currently being invented. For those familiar with object-oriented programming, it

can be useful to think of each layer as an interface, and each protocol or collection of protocols

as an implementation of that interface. Ideally, the details of a layer’s implementation are

abstracted away from the higher layers in the suite, but as mentioned previously that is not

always true. The rest of this chapter presents an overview of the layers of the suite and some of

the most common protocols employed to implement them.

 The Physical Layer
 At the very bottom of the layer cake is the most rudimentary, supporting layer: the physical
layer . The physical layer’s job is to provide a physical connection between networked

computers, or hosts. A physical medium is necessary for the transmission of information.

Twisted pair Cat 6 cable, phone lines, coaxial cable, and fiber optic cable are all examples of

physical media that can provide the connection required by the physical layer.

 Note that it is not necessary that the physical connection be tangible. As anyone with a mobile

phone, tablet, or laptop can attest, radio waves also provide a perfectly good physical medium

for the transmission of information. Some day soon, quantum entanglement may provide a

physical medium for the transmission of information across great distances at instantaneous

speeds, and when it does, the great layer cake of the Internet will be ready to accept it as a

suitable implementation of its physical layer.

 The Link Layer
 The link layer is where the real computer science of the layer cake begins. Its job is to provide

a method of communication between physically connected hosts. This means the link layer

must provide a method through which a source host can package up information and transmit

it through the physical layer, such that the intended destination host has a sporting chance of

receiving the package and extracting the desired information.

 At the link layer, a single unit of transmission is known as a frame . Using the link layer, hosts

send frames to each other. Broken down more specifically, the duties of the link layer are to

■ Define a way for a host to be identified such that a frame can be addressed to a specific

destination.

■ Define the format of a frame that includes the destination address and the data to be sent.

■ Define the maximum size of a frame so that higher layers know how much data can be sent

in a single transmission.

■ Define a way to physically convert a frame into an electronic signal that can be sent over

the physical layer and probably received by the intended host.

ptg16606381

20 CHAPTER 2 THE INTERNET

 Note that delivery of the frame to the intended host is only probable, not guaranteed. There are

many factors which influence whether the electronic signal actually arrives uncorrupted at its

intended destination. A disruption in the physical medium, some kind of electrical interference,

or an equipment failure could cause a frame to be dropped and never delivered. The link

layer does not promise any effort will be made to determine if a frame arrives or resend it if it

does not. For this reason, communication at the link layer level is referred to as unreliable. Any

higher-layer protocol that needs guaranteed, or reliable, delivery of data must implement that

guarantee itself.

 For each physical medium which can be chosen to implement the physical layer, there is a

corresponding protocol or list of protocols which provide the services necessary at the link

layer. For instance, hosts connected by twisted pair cable can communicate using one of the

Ethernet protocols such as 1000BASET. Hosts connected by radio waves can communicate

using one of the short-range Wi-Fi protocols (e.g., 802.11g, 802.11n, 802.11ac) or one of the

longer-range wireless protocols such as 3G or 4G. Table 2.1 lists some popular physical medium

and link layer protocol combinations.

 Table 2.1 Physical Medium and Link Layer Protocol Pairings

 Physical Medium Link Layer Protocol

 Twisted pair Ethernet 10BASET, Ethernet 100BASET, Ethernet 1000BASET

 Twisted copper wire Ethernet over copper (EoC)

 2.4 GHz radio waves 802.11b, 802.11g, 802.11n

 5 GHz radio waves 802.11n, 802.11ac

 850 MHz radio waves 3G, 4G

 Fiber optic cable Fiber distributed data interface (FDDI), Ethernet 10GBASESR,
Ethernet 10GBASELR

 Coaxial cable Ethernet over coax (also EoC), data over cable service interface
specification (DOCSIS)

 Because the link layer implementation and physical layer medium are so closely linked, some

models group the two into a single layer. However, because some physical media support more

than one link layer protocol, it can be useful to think of them as different layers.

 It is important to note that an Internet connection between two distant hosts does not simply

involve a single physical medium and a single link layer protocol. As will be explained in the

following sections in the discussion of the remaining layers, several media and link layer

protocols may be involved in the transmission of a single chunk of data. As such, many of the

link layer protocols listed in the table may be employed while transmitting data for a networked

computer game. Luckily, thanks to the abstraction of the TCP/IP suite, the details of the link

ptg16606381

THE LINK LAYER 21

layer protocols used are mostly hidden from the game. Therefore, we will not explore in detail

the inner workings of each of the existing link layer protocols. However, above all the rest, there

is one link layer protocol group which both clearly illustrates the function of the link layer and is

almost guaranteed to impact the working life of a networked game programmer in some way,

and that is Ethernet .

 Ethernet/802.3

 Ethernet is not just a single protocol. It is a group of protocols all based on the original Ethernet

blue book standard, published in 1980 by DEC, Intel, and Xerox. Collectively, modern Ethernet

protocols are now defined under IEEE 802.3. There are varieties of Ethernet which run over fiber

optic cable, twisted pair cable, or straight copper cable. There are varieties that run at different

speeds: As of this writing, most desktop computers support gigabit speed Ethernet but 10 GB

Ethernet standards exist and are growing in popularity.

 To assign an identity to each host, Ethernet introduces the idea of the media access control

address or MAC address . A MAC address is a theoretically unique 48-bit number assigned

to each piece of hardware that can connect to an Ethernet network. Usually this hardware is

referred to as a network interface controller or NIC . Originally, NICs were expansion cards, but

due to the prevalence of the Internet, they have been built into most motherboards for the last

few decades. When a host requires more than one connection to a network, or a connection to

multiple networks, it is still common to add additional NICs as expansion cards, and such a host

then has multiple MAC addresses, one for each NIC.

 To keep MAC addresses universally unique, the NIC manufacturer burns the MAC address

into the NIC during hardware production. The first 24 bits are an organizationally unique
identifier or OUI , assigned by the IEEE to uniquely identify the manufacturer. It is then the

manufacturer’s responsibility to ensure the remaining 24 bits are uniquely assigned within the

hardware it produces. In this way, each NIC produced should have a hardcoded, universally

unique identifier by which it can be addressed.

 The MAC address is such a useful concept that it is not used in just Ethernet. It is in fact used in

most IEEE 802 link layer protocols, including Wi-Fi and Bluetooth.

 note

 Since its introduction, the MAC address has evolved in two significant ways. First, it

is no longer reliable as a truly unique hardware identifier, as many NICs now allow

software to arbitrarily change their MAC address. Second, to remedy a variety of

pending issues, the IEEE has introduced the concept of a 64-bit MAC style address,

called the extended unique identifier or EUI64. Where necessary, a 48-bit MAC

address can be converted to an EUI64 by inserting the 2 bytes FFFE right after the OUI.

ptg16606381

22 CHAPTER 2 THE INTERNET

 With a unique MAC address assigned to each host, Figure 2.4 specifies the format for an

Ethernet packet, which wraps an Ethernet link layer frame.

Bytes
Preamble SFD

Frame Check Sequence

Destination MAC Address
Length/Type

Payload (46–1500 bytes)…
Source MAC Address

0 4
0–7

8–13

14–21

22–...

...

 Figure 2.4 Ethernet packet structure

 The Preamble and start frame delimiter (SFD) are the same for each packet and consist of the

hex bytes 0×55 0×55 0×55 0×55 0×55 0×55 0×55 0×D5. This is a binary pattern that helps

the underlying hardware sync up and prepare for the incoming frame. The Preamble and SFD

are usually stripped from the packet by the NIC hardware, and the remaining bytes, comprising

the frame, are passed to the Ethernet module for processing.

 After the SFD are 6 bytes which represent the MAC address of the intended recipient of the

frame. There is a special destination MAC address, FF:FF:FF:FF:FF:FF, known as the broadcast
address , which indicates that the frame is intended for all hosts on the local area network.

 The length/type field is overloaded and can be used to represent either length or type. When the

field is used to represent length, it holds the size in bytes of the payload contained in the frame.

However, when it is used to represent type, it contains an EtherType number which uniquely

identifies the protocol that should be used to interpret the data inside the payload. When the

Ethernet module receives this field, it must determine the correct way to interpret it. To assist with

interpretation, the Ethernet standard defines the maximum length of the payload as 1500 bytes.

This is known as the maximum transmission unit , or MTU , because it is the maximum amount

of data that can be conveyed in a single transmission. The standard also defines the minimum

EtherType value to be 0x0600, which is 1536. Thus, if the length/type field contains a number

≤1500, it represents a length, and if it contains a number ≥1536, it represents a protocol type.

 note

 Although not a standard, many modern Ethernet NICs support frames with MTUs

higher than 1500 bytes. These jumbo frames can often have MTUs up to 9000 bytes.

To support this, they specify an EtherType in the frame header and then rely on the

underlying hardware to compute the size of the frame based on incoming data.

 The payload itself is the data transmitted by this frame. Typically it is a network layer packet,

having been passed onto the link layer for delivery to the appropriate host.

ptg16606381

THE NETWORK LAYER 23

 The frame check sequence (FCS) field holds a cyclic redundancy check (CRC32) value

generated from the two address fields, the length/type field, the payload, and any padding.

This way, as the Ethernet hardware reads in data, it can check for any corruption that occurred

in transit and discard the frame if it did. Although Ethernet does not guarantee delivery of data,

it makes a good effort to prevent delivery of corrupted data.

 The specifics of the manner in which Ethernet packets are transmitted along the physical layer

vary between media and are not relevant to the multiplayer game programmer. It suffices to

say that each host on the network receives the frame, at which point the host reads the frame

and determines if it is the intended recipient. If so, it extracts the payload data and processes

it accordingly based on the value of the length/type field.

 note

 Initially, most small Ethernet networks used hardware known as hubs to connect

multiple hosts together. Even older networks used a long coaxial cable strung

between computers. In these style networks, the electronic signal for the Ethernet

packet was literally sent to each host on the network, and it was up to the host

to determine whether the packet was addressed to that host or not. This proved

 inefficient as networks grew. With the cost of hardware declining, most modern

networks now use devices known as switches to connect hosts. Switches

remember the MAC addresses, and sometimes the IPs, of the hosts connected to

each of their ports, so most packets can be sent on the shortest path possible to

their intended recipient, without having to visit every host on the network.

 The Network Layer
 The link layer provides a clear way to send data from an addressable host to one or more

similarly addressable hosts. Therefore, it may be unclear why the TCP/IP suite requires any

further layers. It turns out the link layer has several shortcomings which require a superior layer

to address:

■ Burned in MAC addresses limit hardware flexibility. Imagine you have a very popular

webserver that thousands of users visit each day via Ethernet. If you were only using the

link layer, queries to the server would need to be addressed via the MAC address of its

Ethernet NIC. Now imagine that one day the NIC explodes in a very small ball of fire. When

you install a replacement NIC, it will have a different MAC address, and thus your server will

no longer receive requests from users. Clearly you need some easily configurable address

system that lives on top of the MAC address.

■ The link layer provides no support for segmenting the Internet into smaller, local area

networks. If the entire Internet were run using just the link layer, all computers would have

ptg16606381

24 CHAPTER 2 THE INTERNET

to be connected in a single continuous network. Remember that Ethernet delivers each

frame to every host on the network and allows the host to determine if it is the intended

recipient. If the Internet used only Ethernet for communication, then each frame would

have to travel to every single wired host on the planet. A few too many packets could bring

the entire Internet to its knees. Also, there would be no ability to sanction different areas

of the network into different security domains. It can be useful to easily broadcast a

message to just the hosts in a local office, or just share files with the various computers in

a house. With just the link layer there would be no ability to do this.

■ The link layer provides no inherent support for communication between hosts using

different link layer protocols. The fundamental idea behind allowing multiple physical and

link layer protocols is that different networks can use the best implementation for their

particular job. However, link layer protocols define no way of communicating from one link

layer protocol to another. Again, you find yourself requiring an address system which sits

on top of the hardware address system of the link layer.

 The network layer’s duty is to provide a logical address infrastructure on top of the link layer,

such that host hardware can easily be replaced, groups of hosts can be segregated into

subnetworks, and hosts on distant subnetworks, using different link layer protocols and

different physical media can send messages to each other.

 IPv4

 Today, the most common protocol used to implement the required features of the network

layer is Internet protocol version 4 or IPv4 . IPv4 fulfills its duties by defining a logical

addressing system to name each host individually, a subnet system for defining logical

subsections of the address space as physical subnetworks, and a routing system for forwarding

data between subnets.

 IP Address and Packet Structure

 At the heart of IPv4 is the IP address . An IPv4 IP address is a 32-bit number, usually displayed

to humans as four 8-bit numbers separated with periods. For example, the IP address of www

.usc.edu is 128.125.253.146 and the IP address of www.mit.edu is 23.193.142.184. When read

aloud, the periods are usually pronounced, “dot.” With a unique IP address for each host on

the Internet, a source host can direct a packet to a destination host simply by specifying the

destination host’s IP address in the header of the packet. There is an exception to IP address

uniqueness, explained later in the section “Network Address Translation.”

 With the IP address defined, IPv4 then defines the structure of an IPv4 packet. The packet

consists of a header, containing data necessary for implementing network layer functionality,

and a payload, containing a higher layer’s data to be transferred. Figure 2.5 gives the structure

for an IPv4 packet.

http://www.mit.edu
http://www.usc.edu
http://www.usc.edu

ptg16606381

THE NETWORK LAYER 25

 Version (4 bits) specifies which version of the IP this packet supports. For IPv4, this is 4.

 Header length (4 bits) specifies the length of the header in 32-bit words. Due to the optional

fields at the end of an IP header, the header may be a variable length. The length field specifies

exactly when the header ends and the encapsulated data begins. Because the length is

specified in only 4 bits, it has a maximum value of 15, which means a header can be a maximum

of 15 32-bit words, or 60 bytes. Because there are 20 bytes of mandatory information in the

header, this field will never be less than 5.

 Type of service (8 bits) is used to for a variety of purposes ranging from congestion control to

differentiated services identification. For more information, see RFC 2474 and RFC 3168 in the

“Additional Reading” section.

 Packet length (16 bits) specifies the length in bytes of the entire packet, including header and

payload. As the maximum number representable with 16 bits is 65535, the maximum packet

size is clamped at 65535. As the minimum size of an IP header is 20 bytes, this means the

maximum payload conveyable in an IPv4 packet is 65515 bytes.

 Fragment identification (16 bits), fragment flags (3 bits), and fragment offset (13 bits), are

used for reassembling fragmented packets, as explained later in the section “Fragmentation.”

 Time to live or TTL (8 bits) is used to limit the number of times a packet can be forwarded, as

explained later in the section “Subnets and Indirect Routing.”

 Protocol (8 bits) specifies the protocol which should be used to interpret the contents of the

payload. This is similar to the EtherType field in an Ethernet frame, in that it classifies a higher

layer’s encapsulated data.

 Header checksum (16 bits) specifies a checksum that can be used to validate the integrity of

the IPv4 header. Note that this is only for the header data. It is up to a higher layer to ensure

integrity of the payload if required. Often, this is unnecessary, as many link layer protocols

already contain a checksum to ensure integrity of their entire frame; for example, the FCS field

in the Ethernet header.

Bits

Destination Address

Time to Live
Identification

Options

Header Checksum
Source Address

Protocol
Fragment OffsetFlags

Total LengthType of ServiceVersion
Header
Length

0 16

0–31

32–63

64–95

96–127

128–159

160–...

 Figure 2.5 IPv4 header structure

ptg16606381

26 CHAPTER 2 THE INTERNET

 Source address (32 bits) is the IP address of the packet’s sender, and destination address

(32 bits) is either the IP address of the packet’s destination host, or a special address specifying

delivery to more than one host.

 note

 The confusing manner of specifying header length in 32-bit words, but packet

length in 8-bit words, suggests how important it is to conserve bandwidth.

Because all possible headers are a multiple of 4-bytes long, their byte lengths are

all evenly divisible by 4, and thus the last 2 bits of their byte lengths are always 0.

Thus specifying the header length as units of 32-bit words saves 2 bits. Conserving

bandwidth when possible is a golden rule of multiplayer game programming.

 Direct Routing and Address Resolution Protocol

 To understand how IPv4 allows packets to travel between networks with different link layer

protocols, one must first understand how it delivers packets within a single network with a

single link layer protocol. IPv4 allows packets to be targeted using an IP address. For the link

layer to deliver a packet to the proper destination, it needs to be wrapped in a frame with an

address the link layer can understand. Consider how Host A would send data to Host B in the

network in Figure 2.6 .

Host A
IP: 18.19.0.1

MAC: 01:01:01:00:00:10

Host B
IP: 18.19.0.2

MAC: 01:01:01:00:00:20

Host C
IP: 18.19.0.3

MAC: 01:01:01:00:00:30

 Figure 2.6 Three-host network

 The sample network shown in Figure 2.6 contains three hosts, each with a single NIC, all

connected by Ethernet. Host A wants to send a network layer packet to Host B at its IP address

of 18.19.0.2. So, Host A prepares an IPv4 packet with a source IP address of 18.19.0.1 and a

destination IP address of 18.19.0.2. In theory, the network layer should then hand off the packet

to the link layer to perform the actual delivery. Unfortunately, the Ethernet module cannot

deliver a packet purely by IP address, as IP is a network layer concept. The link layer needs some

way to figure out the MAC address which corresponds to IP address 18.19.0.2. Luckily, there is a

link layer protocol called the address resolution protocol (ARP), which provides a method for

doing just that.

ptg16606381

THE NETWORK LAYER 27

 note

 ARP is technically a link layer protocol because it sends out packets directly using

link layer style addresses and does not require the routing between networks

provided by the network layer. However, because the protocol violates some

network layer abstractions by including network layer IP addresses, it can be useful

to think of it more as a bridge between the layers than as a solely link layer protocol.

 ARP consists of two main parts: a packet structure for querying the MAC address of the NIC

associated with a particular IP address, and a table for keeping track of those pairings. A sample

ARP table is shown in Table 2.2 .

 Table 2.2 An ARP Table Mapping from IP Address to MAC Address

 IP Address MAC Address

 18.19.0.1 01:01:01:00:00:10

 18.19.0.3 01:01:01:00:00:30

 When the IP implementation needs to send a packet to a host using the link layer, it must first

query the ARP table to fetch the MAC address associated with the destination IP address. If it

finds the MAC address in the table, the IP module constructs a link layer frame using that MAC

address and passes the frame to the link layer implementation for delivery. However, if the MAC

address is not in the table, the ARP module attempts to determine the proper MAC address by

sending out an ARP packet (Figure 2.7) to all reachable hosts on the link layer network.

Bytes

Hardware Type Protocol Type

Sender Hardware Address
Sender Protocol

Address…

… Sender Protocol
Address

Target Hardware Address

Target Protocol Address

Hardware
Address
Length

Protocol
Address
Length

Operation

0 4

0–7

8–15

16–23

24–31

 Figure 2.7 ARP packet structure

 Hardware type (16 bits) defines the type of hardware on which the link layer is hosted. For

Ethernet, this is 1.

 Protocol type (16 bits) matches the EtherType value of the network layer protocol being used.

For instance, IPv4 is 0×0800.

ptg16606381

28 CHAPTER 2 THE INTERNET

 Hardware address length (8 bits) is the length in bytes of the link layer’s hardware address. In

most cases, this would be the MAC address size of 6 bytes.

 Protocol address length (8 bits) is the length in bytes of the network layer’s logical address.

For IPv4, this is the IP address size of 4 bytes.

 Operation (16 bits) is either 1 or 2, specifying whether this packet is a request for information

(1) or a response (2).

 Sender hardware address (variable length) is the hardware address of the sender of this packet

and sender protocol address (variable length) is the network layer address of the sender of this

packet. The lengths of these addresses match the lengths specified earlier in the packet.

 Target hardware address (variable length) and target protocol address (variable length) are

the corresponding addresses of the intended recipient of this packet. In the case of a request,

the target hardware address is unknown and ignored by the receiver.

 Continuing the previous example, if Host A doesn’t know the MAC address of Host B, it prepares

an ARP request packet with 1 in the Operation field, 18.19.0.1 in the sender protocol address

field, 01:01:01:00:00:10 in the sender hardware field, and 18.19.0.2 in the target protocol

address field. It then wraps this ARP packet in an Ethernet frame, which it sends to the Ethernet

broadcast address FF:FF:FF:FF:FF:FF. Recall that this address specifies that the Ethernet frame

should be delivered to and examined by each host on the network.

 When Host C receives the packet, it does not respond because its IP address does not match the

target protocol address in the packet. However, when Host B receives the packet, its IP does,

so it responds with its own ARP packet containing its own addresses as the source and Host

A’s addresses as the target. When Host A receives the packet, it updates its ARP table with Host

B’s MAC address, and then wraps the waiting IP packet in an Ethernet frame and sends it off to

Host B’s MAC address.

 note

 When Host A broadcasts its initial ARP request to all hosts on the network, it

includes both its MAC address and IP address. This gives all the other hosts on the

network an opportunity to update their ARP tables with Host A’s information even

though they don’t need it yet. This comes in handy if they ever have to talk to Host

A, as they won’t have to send out an ARP request packet first.

 You may notice this system creates an interesting security vulnerability! A malicious

host can send out ARP packets claiming to be any IP at all. Without a way to verify

the authenticity of the ARP information, a switch might unintentionally route

packets intended for one host to the malicious host. This not only allows sniffing

packets, but could prevent intercepted packets from ever arriving at their intended

host, thoroughly disrupting traffic on the network.

ptg16606381

THE NETWORK LAYER 29

 Subnets and Indirect Routing

 Imagine two large companies, Company Alpha and Company Bravo. They each have their

own large internal networks, Network Alpha and Network Bravo, respectively. Network Alpha

contains 100 hosts, Host A1 to A100, and Network Bravo contains 100 hosts, Host B1 to B100.

The two companies would like to connect their networks so they can send occasional messages

back and forth, but simply connecting the networks with an Ethernet cable at the link layer

presents a couple problems. Remember that an Ethernet packet must travel to each connected

host on a network. Connecting Networks Alpha and Bravo at the link layer would cause each

Ethernet packet to travel to 200 hosts instead of 100, effectively doubling the traffic on the

entire network. It also presents a security risk, as it means all of Network Alpha’s packets travel

to Network Bravo, not just the ones intended for Network Bravo’s hosts.

 To allow Company Alpha and Company Bravo to connect their networks efficiently, the network

layer introduces the ability to route packets between hosts on networks not directly connected

at the link layer level. In fact, the Internet itself was originally conceived as a federation of such

smaller networks throughout the country, joined by a few long-distance connections between

them. The “inter” prefix on Internet, meaning, “between,” represents these connections. It is the

network layer’s job to make this interaction between networks possible. Figure 2.8 illustrates a

network layer connection between Networks Alpha and Bravo.

Host B1
IP: 18.19.200.2

Host B2
IP: 18.19.200.3

Host B3
IP: 18.19.200.4

Host A1
IP: 18.19.100.2

Host A2
IP: 18.19.100.3

Host A3
IP: 18.19.100.4

Host R
NIC 0 IP: 18.19.100.1
NIC 1 IP: 18.19.200.1

Network
Alpha

Network
Bravo

 Figure 2.8 Connected networks Alpha and Bravo

 Host R is a special type of host known as a router . A router has multiple NICs, each with its

own IP address. In this case, one is connected to Network Alpha, and the other is connected

to Network Bravo. Notice that all the IP addresses on Network Alpha share the prefix 18.19.100

and all the addresses on Network Bravo share the prefix 18.19.200. To understand why this is

useful to our cause, we must now explore the subnet in more detail and define the concept of a

subnet mask.

ptg16606381

30 CHAPTER 2 THE INTERNET

 A subnet mask is a 32-bit number, usually written in the four-number, dotted notation typical

of IP addresses. Hosts are said to be on the same subnet if their IP addresses, when bitwise

ANDed with the subnet mask, yield the same result. For instance, if a subnet is defined as

having a mask of 255.255.255.0, then 18.19.100.1 and 18.19.100.2 are both valid IP addresses

on that subnet (Table 2.3). However, 18.19.200.1 is not on the subnet because it yields a

different result when bitwise ANDed with the subnet mask.

 Table 2.3 IP Addresses and Subnet Masks

 Host IP Address Subnet Mask IP Address ANDed with Subnet Mask

 A1 18.19.100.1 255.255.255.0 18.19.100.0

 A2 18.19.100.2 255.255.255.0 18.19.100.0

 B1 18.19.200.1 255.255.255.0 18.19.200.0

 Table 2.4 Sample Subnet Masks

 Subnet Mask Subnet Mask Binary
 Significant
Bits

 Potential
Host Count

 255.255.255.248 11111111111111111111111111111000 29 6

 255.255.255.192 11111111111111111111111111000000 26 62

 255.255.255.0 11111111111111111111111100000000 24 254

 255.255.0.0 11111111111111110000000000000000 16 65534

 255.0.0.0 11111111000000000000000000000000 8 16777214

 In binary form, subnet masks are usually a string of 1s followed by a string of 0s, as this makes

them easily human readable and human bitwise ANDable. Table 2.4 lists typical subnet masks

and the number of unique hosts possible on the subnet. Note that two addresses on a subnet

are always reserved and not usable by hosts. One is the network address , which is formed by

bitwise ANDing the subnet mask with any IP address on the subnet. The other is the broadcast
address , which is formed by bitwise ORing the network address with the bitwise complement

of the subnet mask. That is, every bit in the network address that does not define the subnet

should be set to 1. Packets addressed to the broadcast address for a subnet should be delivered

to every host on the subnet.

 Because a subnet is, by definition, a group of hosts with IP addresses that yield the same result

when bitwise ANDed with a subnet mask, a particular subnet can be defined simply by its

subnet mask and network address. For instance, the subnet of Network Alpha is defined by

network address 18.19.100.0 with subnet mask 255.255.255.0.

ptg16606381

THE NETWORK LAYER 31

 There is a common way to abbreviate this information, and that is known as classless
inter-domain routing (CIDR) notation. A subnet mask in binary form is typically n ones

followed by (32– n) zeroes. Therefore, a subnet can be notated as its network address followed

by a forward slash and then the number of significant bits set in its subnet mask. For instance,

the subnet of Network Alpha in Figure 2.8 is written using CIDR notation as 18.19.100.0/24.

 note

 The “classless” term in CIDR comes from the fact that inter-domain routing and

address block assignment used to be based on three specifically sized classes

of network. Class A networks had a subnet mask of 255.0.0.0, Class B networks

had a subnet mask of 255.255.0.0, and Class C networks had a subnet mask of

255.255.255.0. For more on the evolution to CIDR, see RFC 1518 mentioned in the

“Additional Reading” section.

 With subnets defined, the IPv4 specification provides a way to move packets between hosts

on different networks. This is made possible by the routing table present in the IP module of

each host. Specifically, when the IPv4 module of a host is asked to send an IP packet to a remote

host, it must decide whether to use the ARP table and direct routing, or some indirect route. To

aid in this process, each IPv4 module contains a routing table. For each reachable destination

subnet, the routing table contains a row with information on how packets should be delivered

to that subnet. For the network in Figure 2.8 , potential routing tables for Hosts A1, B1, and R are

given in Tables 2.5 , 2.6 , and 2.7 .

 Table 2.5 Host A1 Routing Table

 Row Destination Subnet Gateway NIC

 1 18.19.100.0/24 NIC 0 (18.19.100.2)

 2 18.19.200.0/24 18.19.100.1 NIC 0 (18.19.100.2)

 Table 2.6 Host B1 Routing Table

 Row Destination Subnet Gateway NIC

 1 18.19.200.0/24 NIC 0 (18.19.200.2)

 2 18.19.100.0/24 18.19.200.1 NIC 0 (18.19.200.2)

 Table 2.7 Host R Routing Table

 Row Destination Subnet Gateway NIC

 1 18.19.100.0/24 NIC 0 (18.19.100.1)

 2 18.19.200.0/24 NIC 1 (18.19.200.1)

ptg16606381

32 CHAPTER 2 THE INTERNET

 The destination subnet column refers to the subnet which contains the target IP address.

The gateway column refers to the IP address of the next host, on the current subnet, which

should be sent this packet via the link layer. It is required that this host be reachable through

direct routing. If the gateway field is blank, it means the entire destination subnet is reachable

through direct routing and the packet can be sent directly via the link layer. Finally, the NIC

column identifies the NIC which should actually forward the packet. This is the mechanism by

which a packet can be received from one link layer network and forwarded to another.

 When Host A1 at 18.19.100.2 attempts to send a packet to Host B1 at 18.19.200.2, the following

process occurs:

1. Host A1 builds an IP packet with source address 18.19.100.2 and destination address

18.19.200.2.

2. Host A1’s IP module runs through the rows of its routing table from top to bottom, until

it finds the first one with a destination subnet that contains the IP address 18.19.200.2. In

this case, that is row 2. Note that the order of the rows is significant, as multiple rows might

match a given address.

3. The gateway listed in row 2 is 18.19.100.1, so Host A1 uses ARP and its Ethernet module

to wrap the packet in an Ethernet frame and send it to the MAC address that matches IP

address 18.19.100.1. This arrives at Host R.

4. Host R’s Ethernet module, running for its NIC 0 with IP address 18.19.100.1, receives the

packet, detects the payload is an IP packet, and passes it up to its IP module.

5. Host R’s IP module sees the packet is addressed to 18.19.200.1, so it attempts to forward

the packet to 18.19.200.1.

6. Host R’s IP module runs through its routing table until it finds a row whose destination

subnet contains 18.19.200.1. In this case that is row 2.

7. Row 2 has no gateway, which means the subnet is directly routable. However, the NIC

column specifies the use of the NIC 1 with IP address 18.19.200.1. This is the NIC connected

to Network Bravo.

8. Host R’s IP module passes the packet to the Ethernet module running for Host R’s NIC 1. It

uses ARP and the Ethernet module to wrap the packet in an Ethernet frame and send it to

the MAC address that matches IP 18.19.200.1.

9. Host B1’s Ethernet module receives the packet, detects the payload is an IP packet, and

passes it up to its IP module.

 10. Host B1’s IP module sees that the destination IP address is its own. It sends the payload up

to the next layer for more processing.

 This example shows how two carefully configured networks communicate through indirect

routing, but what if these networks need to send packets to the rest of the Internet? In that

case, they first need a valid IP address and gateway from an Internet Service Provider (ISP).

ptg16606381

THE NETWORK LAYER 33

For our purposes, assume they are assigned an IP address of 18.181.0.29 and a gateway of

18.181.0.1 by the ISP. The network administrator must then install an additional NIC into Host

R and configure it with the IP address assigned. Finally, she must update the routing tables

on Host R and all hosts on the network. Figure 2.9 shows the new network configuration and

 Tables 2.8 , 2.9 , and 2.10 show amended routing tables.

 note

 An ISP is not a special construct as far as the Internet is concerned. It’s just a

large organization, with its own very large block of IP addresses. What makes it

interesting is that its main job is to take those IP addresses, break them into subnets,

and then lease the subnets out to other organizations for use.

Host B1
IP: 18.19.200.2

Host B2
IP: 18.19.200.3

Host B3
IP: 18.19.200.4

Host A1
IP: 18.19.100.2

Host A2
IP: 18.19.100.3

Host A3
IP: 18.19.100.4

Host R
NIC 0 IP: 18.19.100.1
NIC 1 IP: 18.19.200.1
NIC 2 IP: 18.181.0.29

Network
Alpha

Network
Bravo

ISP

 Figure 2.9 Networks Alpha and Bravo connected to the Internet

 Table 2.8 Host A1 Routing Table with Internet Access

 Row Destination Subnet Gateway NIC

 1 18.19.100.0/24 NIC 0 (18.19.100.2)

 2 18.19.200.0/24 18.19.100.1 NIC 0 (18.19.100.2)

 3 0.0.0.0/0 18.19.100.1 NIC 0 (18.19.100.2)

ptg16606381

34 CHAPTER 2 THE INTERNET

 Table 2.9 Host B1 Routing Table with Internet Access

 Row Destination Subnet Gateway NIC

 1 18.19.200.0/24 NIC 0 (18.19.200.2)

 2 18.19.100.0/24 18.19.200.1 NIC 0 (18.19.200.2)

 3 0.0.0.0/0 18.19.200.1 NIC 0 (18.19.200.2)

 Table 2.10 Host R Routing Table with Internet Access

 Row Destination Subnet Gateway NIC

 1 18.19.100.0/24 NIC 0 (18.19.100.1)

 2 18.19.200.0/24 NIC 1 (18.19.200.1)

 3 18.181.0.0/24 18.181.0.1 NIC 2 (18.181.0.29)

 4 0.0.0.0/0 18.181.0.1 NIC 2 (18.181.0.29)

 The destination 0.0.0.0/0 is known as the default address , because it defines a subnet which

contains all IP addresses. If Host R receives a packet for a destination which does not match

any of the first three rows, the destination will definitely match the subnet in the final row. In

that case, the packet will be forwarded, via the new NIC, to the ISP’s gateway, which should be

able to set the packet on a path, from gateway to gateway, which will eventually terminate at

the packet’s intended destination. Similarly, Hosts A1 and B1 have new entries with the default

address as their destination so that they can route Internet packets to Host R, which can then

route them to the ISP.

 Each time a packet is sent to a gateway and forwarded, the TTL field in the IPv4 header is

decreased. When the TTL reaches 0, the packet is dropped by whichever host’s IP module did

the final decrementing. This prevents packets from circling the Internet forever if there happens

to be cyclical routing information on the route. Changing the TTL requires recalculating the

header checksum, which contributes to the time it takes hosts to process and forward a packet.

 A TTL of 0 is not the only reason a packet might be dropped. For instance, if packets arrive

at a router’s NIC too rapidly for the NIC to process them, the NIC might just ignore them.

Alternatively if packets arrive at a router on several NICs, but all need to be forwarded through

a single NIC which isn’t fast enough to handle them, some might be dropped. These are just

some of the reasons an IP packet might be dropped on its journey from source to destination.

As such, all protocols in the network layer, including IPv4, are unreliable. This means there is

no guarantee that IPv4 packets, once sent, will arrive at their intended destination. Even if the

packets do arrive, there is no guarantee they will arrive in their intended order, or that they

will only arrive once. Network congestion may cause a router to route one packet onto one

path and another packet with the same destination onto another path. These paths might be

ptg16606381

THE NETWORK LAYER 35

different lengths and thus cause the latter packet to arrive first. Sometimes the same packet

might get sent on multiple routes, causing it to arrive once and then arrive again a little later!

Unreliability means no guarantee of delivery or delivery order.

 IMPORTANT IP ADDRESSES

 There are two special IP addresses worth mentioning. The first is the loopback or

 localhost address , 127.0.0.1. If an IP module is asked to send a packet to 127.0.0.1, it

doesn’t send it anywhere. It instead acts as if it just received the packet, and sends it up

to the next layer for processing. Technically, the entire 127.0.0.0/8 address block should

loopback, but some operating systems have firewall defaults which allow only packets

addressed to 127.0.0.1 to do so completely.

 The next is the zero network broadcast address , 255.255.255.255. This indicates the

packet should be broadcast to all hosts on the current local link layer network but should

not be passed through any routers. This is usually implemented by wrapping the packet

in a link layer frame and sending it to the broadcast MAC address FF:FF:FF:FF:FF:FF.

 Fragmentation

 As mentioned earlier, the MTU, or maximum payload size, of an Ethernet frame is 1500 bytes.

However, as noted previously, the maximum size of an IPv4 packet is 65535 bytes. This raises

a question: If an IP packet must be transmitted by wrapping it in a link layer frame, how can it

ever be larger than the link layer’s MTU? The answer is fragmentation . If an IP module is asked

to transmit a packet larger than the MTU of the target link layer, it can break the packet up into

as many MTU-sized fragments as necessary.

 IP packet fragments are just like regular IP packets, but with some specific values set in their

headers. They make use of the fragment identification, fragment flags, and fragment offset

fields of the header. When an IP module breaks an IP packet into a group of fragments, it

creates a new IP packet for each fragment and sets the fields accordingly.

 The fragment identification field (16 bits) holds a number which identifies the originally

fragmented packet. Each fragment in a group has the same number in this field.

 The fragment offset field (13 bits) specifies the offset, in 8-byte blocks, from the start of the

original packet to the location in which this fragment’s data belongs. This is necessarily a

different number for each fragment within the group. The crazy numbering scheme is chosen

so that any possible offset within a 65535-byte packet can be specified with only 13 bits. This

requires that all offsets be even multiples of 8 bytes, because there is no ability to specify an

offset with greater precision than that.

ptg16606381

36 CHAPTER 2 THE INTERNET

 The fragment flags field (3 bits) is set to 0x4 for every fragment but the final fragment. This

number is called the more fragments flag , representing that there are more fragments in the

fragment group. If a host receives a packet with this flag set, it must wait until all fragments in

the group are received before passing the reassembled packet up to a higher layer. This flag is

not necessary on the final fragment, because it has a nonzero fragment offset field, similarly

indicating that it is a member of a fragment group. In fact, the flag must be left off the final

fragment to indicate that there are no further fragments in the original packet.

 note

 The fragment flags field has one other purpose. The original sender of an IP packet

can set this to 0x2, a number known as the do not fragment flag . This specifies

that the packet should not be fragmented under any circumstances. Instead, if an

IP module must forward the packet on a link with an MTU smaller than the packet

size, the packet should be dropped instead of fragmented.

 Table 2.11 shows the relevant header fields for a large IP packet and the three packets into

which it must be fragmented in order to forward it over an Ethernet link.

 Table 2.11 IPv4 Packet Which Must Be Fragmented

 Field
 Original Packet
Values

 Fragment 1
Values

 Fragment 2
Values

 Fragment 3
Values

 Version 4 4 4 4

 Header length 20 20 20 20

 Total length 3020 1500 1500 60

 Identification 0 12 12 12

 Fragment flags 0 0x4 0x4 0

 Fragment offset 0 0 185 370

 Time to live 64 64 64 64

 Protocol 17 17 17 17

 Source address 18.181.0.29 18.181.0.29 18.181.0.29 18.181.0.29

 Destination
address

 181.10.19.2 181.10.19.2 181.10.19.2 181.10.19.2

 Payload 3000 bytes 1480 bytes 1480 bytes 40 bytes

 The fragment identification fields are all 12, indicating that the three fragments are all from the

same packet. The number 12 is arbitrary, but it’s likely this is the 12th fragmented packet this

host has sent. The first fragment has the more fragments flag set and a packet offset of 0,

ptg16606381

THE NETWORK LAYER 37

indicating that it contains the initial data from the unfragmented packet. Note that the packet

length field indicates a total length of 1500. The IP module usually chooses to create fragments

as large as possible to limit the number of fragments. Because the IP header is 20 bytes, this

leaves 1480 for the fragment data. That suggests the second fragment’s data should start at

an offset of 1480. However, because the fragment offset field is represented in 8-byte blocks,

and 1480/8 is 185, the actual number contained there is 185. The more fragments flag is also

set on the second fragment. Finally, the third fragment has a data offset of 370 and does not

have the more fragments flag set, indicating it is the final fragment. The total length of the third

fragment is only 60, as the original packet had 3000 bytes of data inside its total length of 3020.

Out of this 1480 bytes are in the first fragment, 1480 are in the second, and 40 are in the third.

 After these fragment packets are sent out, it is conceivable that any or all of them could be

further fragmented. This would happen if the route to the destination host involves traveling

along a link layer with an even smaller MTU.

 For the packet to be properly processed by the intended recipient, each of the packet

fragments has to arrive at that final host and be reconstructed into the original, unfragmented

packet. Because of network congestion, dynamically changing routing tables, or other reasons,

it is possible that the packets arrive out of order, potentially interleaved with other packets

from the same or other hosts. Whenever the first fragment arrives, the recipient’s IP module has

enough information to establish that the fragment is indeed a fragment and not a complete

packet: This is evident from either the more fragments flag being set or the nonzero packet

offset field. At this point, the recipient’s IP module creates a 64-kB buffer (maximum packet

size) and copies data from the fragment into the buffer at the appropriate offset. It tags the

buffer with the sender’s IP address and the fragment identification number, so that when

future fragments come in with a matching sender and fragment identification, the IP module

can fetch the appropriate buffer and copy in the new data. When a fragment arrives without

the more fragments flag set, the recipient calculates the total length of the original packet by

adding that fragment’s data length to its packet offset. When all data for a packet has arrived,

the IP module passes the fully reconstructed packet up to the next layer for further processing.

 tip

 Although IP packet fragmentation makes it possible to send giant packets, it

introduces two large inefficiencies. First, it actually increases the amount of data

which must be sent over the network. Table 2.11 illustrates that a 3020-byte packet

gets fragmented into two 1500-bytes packets and a 60-byte packet, for a total

of 3060 bytes. This isn’t a terrible amount, but it can add up. Second, if a single

fragment is lost in transit, the receiving host must drop the entire packet. This

makes it more likely that larger packets with many fragments get dropped. For this

reason, it is generally advisable to avoid fragmentation entirely by making sure all

IP packets are smaller than the link layer MTU. This is not necessarily easy, because

ptg16606381

38 CHAPTER 2 THE INTERNET

there can be several different link layer protocols in between two hosts: Imagine

a packet traveling from New York to Japan. It is very likely that at least one of the

link layers between the two hosts will use Ethernet, so game developers make the

approximation that the minimum MTU of the entire packet route will be 1500 bytes.

This 1500 bytes must encapsulate the 20-byte IP header, the IP payload, and any

additional data required by wrapper protocols like VPN or IPSec that may be in use.

For this reason, it is wise to limit IP payloads to around 1300 bytes.

 At first thought, it may seem better to limit packet size to something even smaller,

like 100 bytes. After all, if a 1500-byte packet is unlikely to require fragmentation,

a 100-byte packet is even less likely to require it, right? This may be true, but

remember that each packet requires a header of 20 bytes. A game sending out

packets that are only 100 bytes in length is spending 20% of its bandwidth on just

IP headers, which is very inefficient. For this reason, once you’ve decided that there

is a very good chance the minimum MTU is 1500, you want to send out packets

that are as close to 1500 in size as possible. This would mean that only 1.3% of your

bandwidth is wasted on IP headers, which is much better than 20%!

 IPv6

 IPv4, with its 32-bit addresses, allows for 4 billion unique IP addresses. Thanks to private

networks and network address translation (discussed later in this chapter) it is possible for

quite a few more hosts than that to actively communicate on the Internet. Nevertheless, due

to the way IP addresses are allotted, and the proliferation of PCs, mobile devices, and the

Internet of Things, the world is running out of 32-bit IP addresses. IPv6 was created to address

both this problem, and some inefficiencies that have become evident throughout the long life

of IPv4.

 For the next few years, IPv6 will probably remain of low importance to game developers. As

of July 2014, Google reports that roughly 4% of its users access its site through IPv6, which is

probably a good indication of how many end users in general are using devices connecting to

the Internet through IPv6. As such, games still have to handle all the idiosyncrasies and oddities

of IPv4 that IPv6 was designed to fix. Nevertheless, as next gen platforms like the Xbox One

gain in popularity, IPv6 will eventually replace IPv4, and it is worth briefly exploring what IPv6 is

all about.

 The most noticeable new feature of IPv6 is its new IP address length of 128 bits. IPv6 addresses

are written as eight groups of 4-digit hex numbers, separated by colons. Table 2.12 shows a

typical IPv6 address in three accepted forms.

ptg16606381

THE TRANSPORT LAYER 39

 When written, leading zeroes in each hextet may be dropped. Additionally, a single run of

zeroes may be abbreviated with a double colon. Because the address is always 16 bytes, it is

simple to reconstruct the original form by replacing all missing digits with zeroes.

 The first 64 bits of an IPv6 address typically represent the network and are called the network

 prefix , whereas the final 64 bits represent the individual host and are called the interface
identifier . When it is important for a host to have a consistent IP address, such as when acting

as a server, a network administrator may manually assign the interface identifier, similar to how

IP addresses are manually assigned for IPv4. A host that does not need to be easy to find by

remote clients can also chose its interface identifier at random and announce it to the network,

as chances of a collision in the 64-bit space are low. Most often, the interface identifier is

automatically set to the NIC’s EUI-64, as this is already guaranteed to be unique.

 Neighbor discovery protocol (NDP) replaces ARP as well as some of the features of DHCP, as

described later in this chapter. Using NDP, routers advertise their network prefixes and routing

table information, and hosts query and announce their IP addresses and link layer addresses.

More information on NDP can be found in RFC 4861, referenced in the “Additional Reading”

section.

 Another nice change from IPv4 is that IPv6 no longer supports packet fragmentation at the

router level. This enables the removal of all the fragmentation-related fields from the IP header

and saves some bandwidth on each packet. If an IPv6 packet reaches a router and is too big for

the outgoing link layer, the router simply drops the packet and responds to the sender that the

packet was too big. It is up to the sender to try again with a smaller packet.

 More information on IPv6 can be found in RFC 2460, referenced in the “Additional Reading”

section.

 The Transport Layer
 While the network layer’s job is to facilitate communication between distant hosts on remote

networks, the transport layer ’s job is to enable communication between individual processes

on those hosts. Because multiple processes can be running on a single host, it is not always

enough to know that Host A sent an IP packet to Host B: When Host B receives the IP packet,

 Table 2.12 Typical IPv6 Address Forms

 Form Address

 Unabbreviated 2001:4a60:0000:8f1:0000:0000:0000:1013

 Leading zeroes dropped 2001:4a60:0:8f1:0:0:0:1013

 Single run of zeroes removed 2001:4a60:0:8f1::1013

ptg16606381

40 CHAPTER 2 THE INTERNET

it needs to know which process should be passed the contents for further processing. To solve

this, the transport layer introduces the concept of ports . A port is a 16-bit, unsigned number

representing a communication endpoint at a particular host. If the IP address is like a physical

street address of a building, a port is a bit like a suite number inside that building. An individual

process can then be thought of as a tenant who can fetch the mail from one or more suites

inside that building. Using a transport layer module, a process can bind to a specific port,

telling the transport layer module that it would like to be passed any communication addressed

to that port.

 As mentioned, all ports are 16-bit numbers. In theory, a process can bind to any port and use

it for any communicative purpose it wants. However, problems arise if two processes on the

same host attempt to bind to the same port. Imagine that both a webserver program and an

email program bind to port 20. If the transport layer module receives data for port 20, should

it deliver that data to both processes? If so, the webserver might interpret incoming email data

as a web request, or the email program might interpret an incoming web request as email.

This will end up making either a web surfer, or an emailer very confused. For this reason, most

implementations require special flags for multiple processes to bind the same port.

 To help avoid processes squabbling over ports, a department of the Internet Corporation
for Assigned Names and Numbers (ICANN) known as the Internet Assigned Numbers
Authority (IANA) maintains a port number registry with which various protocol and

application developers can register the ports their applications use. There is only a single

registrant per port number per transport layer protocol. Port numbers 1024-49151 are known

as the user ports or registered ports . Any protocol and application developer can formally

request a port number from this range from IANA, and after a review process, the port

registration may be granted. If a user port number is registered with the IANA for a certain

application or protocol, then it is considered bad form for any other application or protocol

implementation to bind to that port, although most transport layer implementations do not

prevent it.

 Ports 0 to 1023 are known as the system ports or reserved ports . These ports are similar to

the user ports, but their registration with IANA is more restricted and subject to more thorough

review. These ports are special because most operating systems allow only root level processes

to bind system ports, allowing them to be used for purposes requiring elevated levels of

security.

 Finally, ports 49152 to 65535 are known as dynamic ports . These are never assigned by IANA

and are fair game for any process to use. If a process attempts to bind to a dynamic port and

finds that it is in use, it should handle that gracefully by attempting to bind to other dynamic

ports until an available one is found. As a good Internet citizen, you should use only dynamic

ports while building your multiplayer games, and then register with IANA for a user port

assignment if necessary.

ptg16606381

THE TRANSPORT LAYER 41

 Once an application has identified a port to use, it must employ a transport layer protocol to

actually send data. Sample transport layer protocols, as well as their IP protocol number, are

listed in Table 2.13 . As game developers we deal primarily with UDP and TCP.

 Table 2.13 Examples of Transport Layer Protocols

 Name Acronym Protocol Number

 Transmission control protocol TCP 6

 User datagram protocol UDP 17

 Datagram congestion control protocol DCCP 33

 Stream control transmission protocol SCTP 132

 tip

 IP addresses and ports are often combined with a colon to indicate a complete

source or destination address. So, a packet heading to IP 18.19.20.21 and port 80

would have its destination written as 18.19.20.21:80.

 UDP

 User datagram protocol (UDP) is a lightweight protocol for wrapping data and sending

it from a port on one host to a port on another host. A UDP datagram consists of an 8-byte

header followed by the payload data. Figure 2.10 shows the format of a UDP header.

Bits
Source Port Destination Port

ChecksumLength

0 16
0–31

32–63

 Figure 2.10 UDP header

 Source port (16 bits) identifies the port from which the datagram originated. This is useful if

the recipient of the datagram wishes to respond.

 Destination port (16 bits) is the target port of the datagram. The UDP module delivers the

datagram to whichever process has bound this port.

 Length (16 bits) is the length of the UDP header and payload.

ptg16606381

42 CHAPTER 2 THE INTERNET

 Checksum (16 bits) is an optional checksum calculated based on the UDP header, payload, and

certain fields of the IP header. If not calculated, this field is all zeroes. Often this field is ignored

because lower layers validate the data.

 UDP is very much a no-frills protocol. Each datagram is a self-contained entity, relying on no

shared state between the two hosts. It can be thought of as a postcard, dropped in the mail,

and then forgotten. UDP provides no effort to limit traffic on a clogged network, deliver data

in order, or guarantee that data is delivered at all. This is all very much in contrast to the next

transport layer we will explore, TCP.

 TCP

 Whereas UDP allows the transfer of discreet datagrams between hosts, transmission
control protocol (TCP) enables the creation of a persistent connection between two hosts

followed by the reliable transfer of a stream of data. The key word here is reliable. Unlike

every protocol discussed so far, TCP does its best to ensure all data sent is received, in its

intended order, at its intended recipient. To effect this, it requires a larger header than UDP, and

nontrivial connection state tracking at each host participating in the connection. This enables

recipients to acknowledge received data, and senders to resend any transmissions that are

unacknowledged.

 A TCP unit of data transmission is called a TCP segment . This refers to the fact that TCP is built for

transmitting a large stream of data and each lower layer packet wraps a single segment of that

stream. A segment consists of a TCP header followed by the data for that segment. Figure 2.11

shows its structure.

Bits
Source Port

Data
Offset

Checksum
Options

Urgent Pointer

Reserved Receive WindowControl Bits

Destination Port
Sequence Number

Acknowledgment Number

0 4 7 16
0–31

32–63

64–95

96–127

128–159

160–...

 Figure 2.11 TCP header

 Source port (16 bits) and destination port (16 bits) are transport layer port numbers.

 Sequence number (32-bits) is a monotonically increasing identifier. Each byte transferred via

TCP has a consecutive sequence number which serves as a unique identifier of that byte. This

way, the sender can label data being sent and the recipient can acknowledge it. The sequence

ptg16606381

THE TRANSPORT LAYER 43

number of a segment is typically the sequence number of the first byte of data in that segment.

There is an exception when establishing the initial connection, as explained in the “Three-Way

Handshake” section.

 Acknowledgment number (32-bits) contains the sequence number of the next byte of data

that the sender is expecting to receive. This acts as a de facto acknowledgment for all

data with sequence numbers lower than this number: Because TCP guarantees all data is

delivered in order, the sequence number of the next byte that a host expects to receive is

always one more than the sequence number of the previous byte that it has received. Be

careful to remember that the sender of this number is not actually acknowledging receipt

of the sequence number with this value, but actually of all sequence numbers lower than

this value.

 Data offset (4 bits) specifies the length of the header in 32-bit words. TCP allows for some

optional header elements at the end of its header, so there can be from 20 to 64 bytes between

the start of the header and the data of the segment.

 Control bits (9 bits) hold metadata about the header. They are discussed later where relevant.

 Receive window (16 bits) conveys the maximum amount of remaining buffer space the sender

has for incoming data. This is useful for maintaining flow control, as discussed later.

 Urgent pointer (16 bits) holds the delta between the first byte of data in this segment and the

first byte of urgent data. This is only relevant if the URG flag is set in the control bits.

 note

 Instead of using the loosely defined “byte” to refer to 8 bits, many RFCs, including

those that define the major transport layer protocols, unambiguously refer to 8-bit

sized chunks of data as octets . Some legacy platforms used bytes that contained

more or fewer than 8 bits, and the standardization around an octet of bits helped

ensure compatibility between platforms. This is less of an issue these days, as all

platforms relevant to game developers treat a byte as 8 bits.

 Reliability

 Figure 2.12 illustrates the general manner in which TCP brings about reliable data transfer

between two hosts. In short, the source host sends a uniquely identified packet to the

destination host. It then waits for a response packet from the destination host, acknowledging

receipt of the packet. If it does not receive the expected acknowledgment within a certain

amount of time, it resends the original packet. This continues until all data has been sent and

acknowledged.

ptg16606381

44 CHAPTER 2 THE INTERNET

Data sent long
ago but not

acknowledged?

Contains
expected
Sequence
Number?

Deliver it to
Application layer.

Increment expected
Sequence Number.

Note acknowledged
Sequence Numbers.

Send it. Note what
time it was sent.

Resend it

New data
to send?

Yes

Yes

Contains
ACK?

Yes

Yes

Yes

No

No

No

No

No

Data to
receive?

 Figure 2.12 TCP reliable data transfer flow chart

 The exact details of this process are slightly more complicated, but worth understanding

in depth, as they provide an excellent case study of a reliable data transfer system. Because

the TCP strategy involves resending data and tracking expected sequence numbers, each

host must maintain state for all active TCP connections. Table 2.14 lists some of the state

variables they must maintain and their standard abbreviations as defined by RFC 793.

The process of initializing that state begins with a three-way handshake between the

two hosts.

ptg16606381

THE TRANSPORT LAYER 45

 Three-Way Handshake

 Figure 2.13 illustrates a three-way handshake between Hosts A and B. In the figure, Host A

initiates the connection by sending the first segment. This segment has the SYN flag set and a

randomly chosen initial sequence number of 1000. This indicates to Host B that Host A would

like to initiate a TCP connection starting at sequence number 1000, and that Host B should

initialize resources necessary to maintain the connection state.

 Table 2.14 TCP State Variables

 Variable Abbreviation Definition

 Send Next SND.NXT The sequence number of the next segment the
host will send

 Send
Unacknowledged

 SND.UNA The sequence number of the oldest byte sent by
the host that has not yet been acknowledged

 Send Window SND.WND The current amount of data the host is allowed
to send before receiving an acknowledgment for
unacknowledged data

 Receive Next RCV.NXT The next sequence number the host expects to
receive

 Receive Window RCV.WND The current amount of data the host is able to
receive without overflowing its receive buffer

Time Host A

SND.NXT RCV.NXT SND.UNA

1000

Send

1001 1000

Receive

1001 3001 1001

Send

1001 3001 1001

Seq #: 1000
SYN

Seq #: 3000
Ack #: 1001
SYN, ACK

Seq #: 1001
Ack #: 3001

ACK

Host B

SND.NXT RCV.NXT SND.UNA

Receive

3000 1001

Send

3001 1001 3000

Receive

3001 1001 3001

 Figure 2.13 TCP three-way handshake

 Host B, if it is willing and able to open the connection, then responds with a packet with both

the SYN flag, and the ACK flag set. It acknowledges Host A’s sequence number by setting the

acknowledgment number on the segment to Host A’s initial sequence number plus 1. This

ptg16606381

46 CHAPTER 2 THE INTERNET

means the next segment Host B is expecting from Host A should have a sequence number one

higher than the previous segment. In addition, Host B picks its own random sequence number,

3000, to start its stream of data to Host A. It is important to note that Hosts A and B each picked

their own random starting sequence numbers. There are two separate streams of data involved

in the connection: One from Host A to Host B, which uses Host A’s numbering, and one from

Host B to Host A which uses Host B’s numbering. The presence of the SYN flag in a segment

means “Hey you! I’m going to start sending you a stream of data starting with a byte labeled

one plus the sequence number mentioned in this segment.” The presence of the ACK flag and

the acknowledgment number in the second segment means “Oh by the way, I received all data

you sent up until this sequence number, so this sequence number is what I’m expecting in the

next segment you send me.” When Host A receives this segment, all that’s left is for it to ACK

Host B’s initial sequence number, so it sends out a segment with the ACK flag set and Host B’s

sequence number plus 1, 3001, in the acknowledgment field.

 note

 When a TCP segment contains a SYN or FIN flag, the sequence number is incremented

by an extra byte to represent the presence of the flag. This is sometimes known as the

 TCP phantom byte .

 Reliability is established through the careful sending and acknowledgment of data. If a timeout

expires and Host A never receives the SYN-ACK segment, it knows that Host B either never

received the SYN segment, or Host B’s response was lost. Either way, Host A can resend the

initial segment. If Host B did indeed receive the SYN segment and therefore receives it for a

second time, Host B knows it is because Host A did not receive its SYN-ACK response, so it can

resend the SYN-ACK segment.

 Data Transmission

 To transmit data, hosts can include a payload in each outgoing segment. Each segment is tagged

with the sequence number of the first byte of data in the sequence. Remember that each byte

has a consecutive sequence number, so this effectively means that the sequence number of a

segment should be the sequence number of the previous segment plus the amount of data in

the previous segment. Meanwhile, each time an incoming data segment arrives at its destination,

the receiver sends out an acknowledgment packet with the acknowledgment field set to the

next sequence number it expects to receive. This would typically be the sequence number of the

most recently received segment plus the amount of data in that segment. Figure 2.14 shows a

simple transmission with no dropped segments. Host A sends 100 bytes in its first segment, Host

B acknowledges and sends 50 bytes of its own, Host A sends 200 bytes more, and then Host B

acknowledges those 200 bytes without sending any additional data.

 Things get slightly more complicated when a segment gets dropped or delivered out of order.

In Figure 2.15 , segment 1301 traveling from Host A to Host B is lost. Host A expects to receive

ptg16606381

THE TRANSPORT LAYER 47

Time Host A

SND.NXT RCV.NXT SND.UNA

1001 3001 1001

Send

1101 3001 1001

Receive

1101 3051 1101

Send

1301 3051 1101

Receive

1301 3051 1301

Seq #: 1001
Ack #: 3001
Length: 100

Host B

SND.NXT RCV.NXT SND.UNA

3001 1001 3001

Receive

3001 1101 3001

Send

3051 1101 3001

Receive

3051 1301 3051

Send

3051 1301 3051

Seq #: 3001
Ack #: 1101
Length: 50

Seq #: 1101
Ack #: 3051
Length: 200

Seq #: 3051
Ack #: 1301
Length: 0

 Figure 2.14 TCP transmission with no packet loss

Time Host A

SND.NXT RCV.NXT SND.UNA

1301 3051 1301

Send

1401 3051 1301

Timeout!

1401 3051 1301

Receive

1401 3051 1401

Seq #: 1301
Ack #: 3051
Length: 100

Host B

SND.NXT RCV.NXT SND.UNA

3051 1301 3051

Nothing To Receive

3001 1301 3051

Receive

3051 1401 3051

Send

3051 1401 3051

Seq #: 1301
Ack #: 3051
Length: 100

Seq #: 3051
Ack #: 1401
Length: 0

 Figure 2.15 TCP packet lost and retransmitted

an ACK packet with 1301 in the acknowledgment field. When a certain time limit expires and

Host A has not received the ACK, it knows something is wrong. Either segment 1301, or the ACK

from Host B has been dropped. Either way, it knows it needs to redeliver segment 1301 until

it receives an acknowledgment from Host B. To redeliver the segment, Host A needs to have a

ptg16606381

48 CHAPTER 2 THE INTERNET

copy of that segment’s data on hand, and this is a key component of TCP’s operation: The TCP

module must store every byte it sends out until that byte is acknowledged by the recipient.

Only once an acknowledgment for a segment is received can the TCP module purge that

segment’s data from its memory.

 TCP guarantees that data is delivered in order, so if a host receives a packet with a sequence

number it is not yet expecting, it has two options. The simple option is to just drop the packet

and wait for it to be resent in order. An alternative option is to buffer it while neither ACKing

it nor delivering it to the application layer for processing. Instead, the host copies it into its

local stream buffer at the appropriate position based on the sequence number. Then, when

all preceding sequence numbers have been delivered, the host can ACK the out of order

packet and send it to the application layer for processing without requiring the sender to

resend it.

 In the preceding examples, Host A always waits for an acknowledgment before sending

additional data. This is unusual and contrived just for the purpose of simplifying the examples.

There is no requirement that Host A must stall its transmission, waiting for an acknowledgment

after each segment it sends. In fact, if there were such a requirement, TCP would be a fairly

unusable protocol over long distances.

 Recall that the MTU for Ethernet is 1500 bytes. The IPv4 header takes up at least 20 of those

bytes and the TCP header takes up at least another 20 bytes, which means the most data that

can be sent in an unfragmented TCP segment that travels over Ethernet is 1460 bytes. This

is known as the maximum segment size (MSS). If a TCP connection could only have one

unacknowledged segment in flight at a time, then its bandwidth would be severely limited.

In fact, it would be the MSS divided by the amount of time it takes for the segment to go

from sender to receiver plus the time for the acknowledgment to return from receiver to

sender (round trip time or RTT). Round trip times across the country can be on the order of

30 ms. This means the maximum cross-country bandwidth achievable with TCP, regardless of

intervening link layer speed, would be 1500 bytes/0.03 seconds, or 50 kbps. That might be a

decent speed for 1993, but not for today!

 To avoid this problem, a TCP connection is allowed to have multiple unacknowledged segments

in flight at once. However, it cannot have an unlimited number of segments in flight, as this would

present another problem. When transport layer data arrives at a host, it is held in a buffer until

the process which has bound the corresponding port consumes it. At that point, it is removed

from the buffer. No matter how much memory is available on the host, the buffer itself is of some

fixed size. It is conceivable that a complex process on a slow CPU may not consume incoming data

as fast as it arrives. Thus, the buffer will fill up and incoming data will be dropped. In the case of

TCP, this means the data will not be acknowledged, and the rapidly transmitting sender will then

begin rapidly resending the data. In all likelihood, most of this resent data will be dropped as

well, because the receiving host still has the same slow CPU and is still running the same complex

process. This causes a big traffic jam and is a colossal waste of Internet resources.

ptg16606381

THE TRANSPORT LAYER 49

 To prevent this calamity, TCP implements a process known as flow control . Flow control

prevents a rapidly transmitting host from overwhelming a slowly consuming one. Each

TCP header contains a receive window field which specifies how much receive buffer space

the sender of the packet has available. This equates to telling the other host the maximum

amount of data it should send before stopping to wait for an acknowledgment. Figure 2.16

illustrates an exchange of packets between a rapidly transmitting Host A and a slowly

consuming Host B.

Time Host A

SND.
NXT

RCV.
NXT

SND.
UNA

SND.
WND

Send

1000

Receive

1001

Send

3001 1001 300

Send

3001 1001 300

Send

3001 1001 300

Receive

1301 3001

Receive

1301 3001

Send

3001 1201 150

Receive

3001

Seq#: 1000
SYN

Seq#: 3000 Ack#: 1001
Window: 300, SYN, ACK

Seq#: 1001 Ack#: 3001
Length: 100, ACK

Host B

SND.
NXT

RCV.
NXT

SND.
UNA

RCV.
WND

Receive

Send

1001

Receive

3001 1101

Send

Application Consumes 50 Bytes

3001 1101 3001

Receive

3001 3001

Send

Application Consumes 50 Bytes

3001 1201 3001

Receive

3001 3001

1000

1001

3001 1001 300

1101

1201

1301

1101 200

SND.NXT–SND.UNA
>= SND.WND

Stalled Until ACK

1201 150

1351

1351 1301 100

3000 1001 300

3001 3000

3001 200

250

1201 150

200

1301 100

Send

3001 1301 3001 100

Receive

Seq#: 1101 Ack#: 3001
Length: 100, ACK

Seq#: 3001Ack#: 1201
Window: 150, ACK

Seq#: 1301 Ack#: 3001
Length: 50, ACK

Seq#: 3001 Ack#: 1101
Window: 200, ACK

Seq#: 3001Ack#: 1301
Window: 100, ACK

Seq#: 1201 Ack#: 3001
Length: 100, ACK

 Figure 2.16 TCP flow control

ptg16606381

50 CHAPTER 2 THE INTERNET

 For demonstration purposes, an MSS of 100 bytes is used. Host B’s initial SYN-ACK flag specifies

a receive window of 300 bytes, so Host A only sends out three 100-byte segments before

pausing to wait for an ACK from Host B. When Host B finally sends an ACK, it knows it now has

100 bytes in its buffer which might not be consumed quickly, so it tells Host A to limit its receive

window to 200 bytes. Host A knows 200 more bytes are already on their way to B, so it doesn’t

send any more data in response. It must stall until it receives an ACK from Host B. By the time

Host B ACKs the second packet, 50 bytes of data from its buffer have been consumed, so it has

a total of 150 bytes remaining in its buffer and 150 bytes free. When it sends an ACK to Host A,

it tells Host A to limit the receive window to only 150 bytes. Host A knows at this point there

are still 100 unacknowledged bytes in flight, but the receive window is 150 bytes, so it sends an

additional 50-byte segment off to Host B.

 Flow control continues in this way, with Host B always alerting Host A to how much data it can

hold so that Host A never sends out more data than Host B can buffer. With that in mind, the

theoretical bandwidth limit for a TCP stream of data is given by this equation:

BandwidthLimit × ReceiveWindow
 RoundTripTime

 Having too small a receive window can create a bottleneck for TCP transmission. To avoid this, a

large enough receive window should be chosen such that the theoretical bandwidth maximum

is always greater than the maximum transmission rate of the link layer in between the hosts.

 Notice that in Figure 2.16 , Host B ends up sending two ACK packets in a row to Host A. This

is not a very efficient use of bandwidth, as the acknowledgment number in the second ACK

packet sufficiently acknowledges all the bytes that the first ACK packet acknowledges. Due

to the IP and TCP headers alone, this wastes 40 bytes of bandwidth from Host B to Host A.

When link layer frames are factored in, this wastes even more. To prevent this inefficiency,

TCP rules allow for something called a delayed acknowledgment . According to the

specification, a host receiving a TCP segment does not have to immediately respond with

an acknowledgment. Instead, it can wait up to 500 ms, or until the next segment is received,

whichever occurs first. In the previous example, if Host B receives the segment with sequence

number 1101 within 500 ms of the segment with sequence number 1001, Host B only has to

send an acknowledgment for segment 1101. For heavy data streams, this effectively cuts in half

the number of required ACKs, and always gives a receiving host time to consume some data

from its buffer and therefore include a larger receive window in its acknowledgments.

 Flow control helps TCP protect slow endpoint consumers from being overwhelmed with data,

but it does nothing to prevent slow networks and routers from being overwhelmed. Traffic

builds up on networks just like it does on highways, with jams getting especially bad at popular

routers, much like at popular entrances, exits, and interchanges. To avoid cluttering up networks

unnecessarily, TCP implements congestion control , which is very similar to the stop light meters

found at many highway entrances. To reduce congestion, the TCP module voluntarily limits the

ptg16606381

THE TRANSPORT LAYER 51

amount of unacknowledged data it will allow in flight. This is similar to what it does for flow

control, but instead of setting the limit to a window size dictated by the destination, it calculates

the limit itself based on the number of packets that have been acknowledged or dropped. The

exact algorithm is implementation dependent, but typically is some sort of additive increase,

multiplicative decrease system. That is, when a connection is established, the TCP module sets

the congestion avoidance limit to a low multiple of the MSS. Choosing two times the MSS is

typical. Then, for every segment acknowledged, it increases the limit by an additional MSS. For

an ideal connection, this means that a limit’s worth of packets are acknowledged every RTT

period, which causes the limit to double in size. However, if a packet is ever dropped, the TCP

module quickly cuts the limit in half, suspecting that the drop was due to network congestion. In

this way, an equilibrium is eventually reached such that a sender is transmitting as fast as it can

without causing so much traffic that packets begin to drop.

 TCP can also reduce network congestion by sending out packets as close in size to the MSS as

necessary. Because each packet requires a 40-byte header, sending several small segments

is much less efficient than coalescing the segments into a larger chunk and sending it

when ready. This means the TCP module needs to keep an outgoing buffer to accumulate

data that higher layers attempt to send. Nagle’s algorithm is a set of rules that many TCP

implementations use to decide when to accumulate data and when to finally send a segment.

Traditionally, if there is already unacknowledged data in flight, it accumulates data until the

amount is greater than the MSS or congestion control window, whichever is smaller. At that

point it sends the largest segment allowed by those two limits.

 tip

 Nagle’s algorithm is the bane of players whose games use TCP as a transport layer

protocol. Although it decreases bandwidth used, it can significantly increase the

delay before data is sent. If a real-time game needs to send small updates to a

server, it might be many frames of gameplay before enough updates accumulate

to fill an MSS. This can leave players feeling the game is laggy even though it’s just

Nagle’s algorithm at work. For this reason, most TCP implementations provide an

option to disable this congestion control feature.

 Disconnecting

 Shutting down a TCP connection requires a termination request and acknowledgment from

each end. When one host has no more data to send, it sends a FIN packet, indicating that it is

ready to cease sending data. All data pending in the outdoing buffer, including the FIN packet,

will be transmitted and retransmitted until acknowledged. However, the TCP module will

accept no new outgoing data from a higher layer. Data can still be received from the other

host, though, and all incoming data will be ACK’d. When the other side has no more data to

send, it too can send a FIN packet. When a closing host has received a FIN packet from the other

ptg16606381

52 CHAPTER 2 THE INTERNET

host and an ACK packet in response to its own FIN packet, or a timeout for the ACK has been

exceeded, then the TCP module fully shuts down and deletes its connection state.

 The Application Layer
 At the very top of the TCP/IP layer cake is the application layer, and this is where our multiplayer

game code lives. The application layer is also home to many fundamental protocols of the

Internet that rely on the transport layer for end-to-end communication, and we will explore

some here.

 DHCP

 Assigning unique IPv4 addresses to each host on a private subnet can be an administrative

challenge, especially when laptops and smart phones are introduced into the mix. Dynamic
host configuration protocol (DHCP) solves this problem by allowing a host to request

configuration information automatically when it attaches to the network.

 Upon connecting to the network, the host creates a DHCPDISCOVER message containing its

own MAC address and broadcasts it using UDP to 255.255.255.255:67. Because this goes to every

host on the subnet, any DHCP server present will receive the message. The DHCP server, if it

has an IP address to offer the client, prepares a DHCPOFFER packet. This packet contains both

the offered IP address and the MAC address of the client to be sent the offer. At this point, the

client has no IP address assigned, so the server can’t directly address a packet to it. Instead,

the server broadcasts the packet to the entire subnet on UDP port 68. All DHCP clients receive

the packet, and each checks the MAC address in the message to determine if it is the intended

recipient. When the correct client receives the message, it reads the offered IP address and

decides if it would like to accept the offer. If so, it responds, via broadcast, with a DHCPREQUEST

message requesting the offered address. If the offer is still available, the server responds, again

via broadcast, with a DHCPACK message. This message both confirms to the client that the IP

address is assigned, and conveys any additional network information necessary, such as the

subnet mask, router address, and any recommended DNS name servers to use.

 The exact format of DHCP packets and extended information on DHCP can be found in RFC

2131, referenced in the “Additional Reading” section.

 DNS

 Domain name system (DNS) protocol enables the translation of domain and subdomain

names into IP addresses. When an end user wants to perform a google search, she doesn’t

need to type 74.125.224.112 into her web browser, but can instead just type www.google.com .

To translate the domain name into an IP address, her web browser sends a DNS query to the IP

address of the name server which her computer has been configured to use.

http://www.google.com

ptg16606381

NAT 53

 A name server stores mappings from domain names to IP addresses. For instance, one might

store that www.google.com should resolve to the IP address 74.125.224.112. There are many

thousands of name servers in use on the Internet, and most are only authoritative for a small

subset of the Internet’s domains and subdomains. If a name server is queried about a domain

for which it is not an authority, it usually has a pointer to a more authoritative name server

which it queries in turn. The results of the second query are usually cached so that the next time

the name server must answer a query for that domain, it has the answer on hand.

 DNS queries and responses are usually sent via UDP on port 53. The format is defined in RFC

1035, referenced in the “Additional Reading” section.

 NAT
 Until now, every IP address discussed has been publically routable. An IP address qualifies as

 publically routable if any properly configured router on the Internet can set a packet on a

route such that the packet eventually arrives at the host with that IP address. This necessitates

that any publically routable address be uniquely assigned to a single host. If two or more hosts

shared the same IP address, then a packet addressed to one might end up at another. If one

of the hosts made a request to a webserver, the response could end up at the alternate host,

thoroughly confusing it.

 To keep publically routable addresses unique, ICANN and its subsidiaries allocate distinct blocks

of IPs to large institutions like megacorporations, universities, and Internet service providers,

who can then hand out those addresses to members and customers, ensuring that each

address is assigned uniquely.

 Because IPv4 supports only a 32-bit address space, there are a mere 4,294,967,296 potential

public IP addresses available. Due to the incredible number of networked devices in use today,

and the way IP addresses are distributed by ICANN, they have grown scarce. Oftentimes, a

network administrator or user may find herself allocated fewer public IP addresses than she has

hosts. For instance, as video game developers, we probably each have at least a smartphone,

laptop, and gaming console, yet only pay for a single public IP address from our ISP. How

annoying would it be if each device required its own dedicated public IP address? Each time we

connected a new gadget to the Internet, we would end up having to fight with other users for a

new IP address from our ISP, and then probably pay more for it as well.

 Luckily, it is possible to connect an entire subnet of hosts to the Internet through a single

shared public IP address. This is made possible by network address translation or NAT . To

configure a network for NAT, each host on the network must be assigned a privately routable

IP address. Table 2.15 lists some IP address blocks which IANA has reserved for private use,

guaranteeing that no address from those blocks will ever be assigned as a public IP address.

Thus, any user may set up their own private network using privately routable IP addresses,

http://www.google.com

ptg16606381

54 CHAPTER 2 THE INTERNET

without checking for uniqueness. Uniqueness between networks is not required because the

addresses are not publically routable. That is, no public router on the Internet should have

routing information regarding how to reach a private IP address, so it doesn’t matter if multiple

private networks employ the same private IP addresses internally.

 Table 2.15 Private IP Address Blocks

 IP Address Range Subnet

 10.0.0.0–10.255.255.255 10.0.0.0/8

 172.16.0.0–172.31.255.255 172.16.0.0/12

 192.168.0.0–192.168.255.255 192.168.0.0/16

 To understand how NAT works, consider the video gamer’s home network in Figure 2.17 . The

game console, smart phone, and laptop all have internally unique private IP addresses, assigned

by the owner of the network, without the need to consult any outside service provider. The

router also has a private IP address on its internal facing NIC, and it has a publically routable, ISP-

assigned IP address on its outward facing NIC. Because the privately addressed NIC is connected

to the local network, it is called a local area network (LAN) port, and because the publically

addressable NIC is connected worldwide, it is called the wide area network (WAN) port.

Game Console
IP: 192.168.1.2

Smart Phone
IP: 192.168.1.3

Laptop
IP: 192.168.1.4

Router
WAN NIC IP: 18.19.20.21
LAN NIC IP: 192.168.1.1

Internet

 Figure 2.17 Private network behind a NAT

 For this example, assume a host at the publically routable IP 12.5.3.2 is running a game server

bound to port 200. The game console with private IP 192.168.1.2 is running a game bound to port

100. The game console needs to send a message to the server via UDP, so it builds a datagram

as shown in Figure 2.18 , with 192.168.1.2:100 as the source, and 12.5.3.2:200 as the destination.

Without NAT enabled on the router, the console sends the datagram to the LAN port of the

router, which then forwards it from the WAN port to the Internet. The packet eventually arrives

at the server. At this point, though, there is a problem. Because the source address on the IP

packet is 192.168.1.2, the server is unable to send a packet back in response. Remember that

ptg16606381

NAT 55

192.168.1.2 is a private IP address, and thus no public router on the Internet can route to that

address. Even if some router did nonsensically have routing information for that IP address, it is

unlikely the packet would end up at our game console, as there are many thousands of hosts on

the Internet with the private IP address 192.168.1.2.

Src:
192.168.1.2:100

Dest:
12.5.3.2:200

Src:
192.168.1.2:100

Dest:
12.5.3.2:200

Src:
12.5.3.2:200

Dest:
192.168.1.2:100

Game Console

NIC

192.168.1.2

Send

Router

LAN NIC WAN NIC

192.168.1.2 18.19.20.21

Receive

Send

???

Server

NIC

12.5.3.2

Receive

Send

 Figure 2.18 Router without NAT

 To prevent this issue, the NAT module of the router can actually rewrite the IP packet as it

routes it, replacing the private IP address, 192.168.1.2 with the router’s own public IP address,

18.19.20.21. That solves part of the problem but not all of it: Rewriting only the IP address

creates the situation depicted in Figure 2.19 . The server sees the datagram as coming directly

from the router’s public IP address, so it can send a datagram back to the router successfully.

However, the router has no record of who sent the original datagram, so it doesn’t know where

to direct the response.

Router

LAN NIC WAN NIC

192.168.1.2 18.19.20.21

Receive

Rewrite Src IP

Send

Receive

????

Server

NIC

12.5.3.2

Receive

Send

Game Console

NIC

192.168.1.2

Send
Src:

192.168.1.2:100
Dest:

12.5.3.2:200
Src:

18.19.20.21:100
Dest:

12.5.3.2:200

Src:
12.5.3.2:200

Dest:
18.19.20.21:100

 Figure 2.19 NAT router with address rewriting

 To be able to return a reply to the proper internal host, the router needs some kind of

mechanism to identify the intended internal recipient of an incoming packet. One naïve way

is to build a table that records the source IP address of each outgoing packet. Then, when a

response is received from an external IP address, the router could look up which internal host

ptg16606381

56 CHAPTER 2 THE INTERNET

sent a packet to that address and then rewrite the packet to use that internal host’s IP address.

This would break down, though, if multiple internal hosts sent traffic to the same external host.

The router would not be able to identify which incoming traffic is for which internal host.

 The solution employed by all modern NAT routers is to violently break the abstraction barrier

between the network layer and the transport layer. By rewriting not only the IP addresses in the

IP header, but also the port numbers in the transport layer header, the router can create a much

more precise mapping and tagging system. It keeps track of these mapping in a NAT table .

Consider Figure 2.20 , which shows the traffic as a packet travels from the game console to the

server and a reply returns successfully to the game console.

Game Console

NIC

192.168.1.2

Send

Receive

Server

NIC

12.5.3.2

Receive

Send

NAT Table

Source External Port Destination

192.168.1.2:100 50000 18.19.20.21:200

Router

LAN NIC WAN NIC

192.168.1.2 18.19.20.21

Receive

Choose New Port

Update Table

Rewrite Src IP and Port

Send

Receive

Lookup Port 50000

Rewrite Dest IP and Port

Send

Src:
192.168.1.2:100

Dest:
12.5.3.2:200

Src:
12.5.3.2:200

Dest:
192.168.1.2:100

Src:
18.19.20.21:50000

Dest:
12.5.3.2:200

Src:
12.5.3.2:200

Dest:
18.19.20.21:50000

 Figure 2.20 NAT router with address and port rewriting

 When the game console’s outgoing packet reaches the router, the NAT module records both

the source IP address and the source port number into a new row in the NAT table. It then picks

a random, previously unused port number that is used to identify that source address and

source port combination, and writes that number into the same row. It rewrites the packet to

use the router’s own public IP address and the newly chosen port number. The rewritten packet

travels to the server, at which point the server sends a response back, addressed to the router’s

public IP address and newly chosen port. The NAT module then uses that port number to look

up the original source IP address and port. It rewrites the response packet and forwards it to the

correct host.

ptg16606381

NAT 57

 note

 For extra security, many routers add the original destination IP address and port

to the NAT table entry. This way, when a response packet comes into the router,

the NAT module can first look up the table entry using the source port of the

packet and it can then make sure the source IP address and port of the response

match the destination IP address and port of the original outgoing packet. If they

do not match, something fishy is going on, and the packet is dropped instead of

forwarded.

 NAT Traversal

 NAT is a fantastic boon for Internet users, but it can be a terrible headache for multiplayer

game developers. Considering how many users have their own private networks at home and

use NAT to connect their computers and game consoles to the Internet, it is not uncommon

that the situation in Figure 2.21 arises. Player A owns Host A, behind NAT A. She wants to

host a multiplayer game server on Host A. She wants her friend, Player B, to connect to her

server. Player B uses Host B, behind NAT B. Because of the NAT, Player B has no way to initiate

a connection with Host A. If Host B sends a packet to Host A’s router in an attempt to connect,

there will be no entry in Host A’s NAT table, so the packet will simply be dropped.

Host A
IP: 192.168.10.2:200

NAT A
WAN NIC IP: 18.19.20.21
LAN NIC IP: 192.168.1.1

Host B
IP: 192.168.20.2:200

NAT B
WAN NIC IP: 18.19.20.21
LAN NIC IP: 192.168.1.1

Internet

 Figure 2.21 Typical user gaming setup

 There are a few ways around this problem. One is to require Player A to manually configure

port forwarding on her router. This is something that requires a small amount of technical skill

and confidence and is not something nice to force players to do. The second way around the

problem is much more elegant and much more sneaky. It is known as simple traversal of UDP
through NAT or STUN .

 When using STUN, hosts communicate with a third-party host, such as an Xbox Live or

PlayStation Network server. That third party tells the hosts how to initiate connections with

each other such that the required entries are made in their routers’ NAT tables, and they can

proceed to communicate directly. Figure 2.22 shows the flow of communication, Figure 2.23

ptg16606381

58 CHAPTER 2 THE INTERNET

details the packets exchanged, and the NAT tables generated. Let us assume our game runs on

UDP port 200 so all communication to and from non-router hosts will be on port 200.

Host B
IP: 192.168.20.2

1

2

3

4

5

6

7

Host A
IP: 192.168.10.2

8

9

10

Host N
IP: 4.6.5.10

11

12

13

NAT A
WAN NIC IP: 18.19.20.21
LAN NIC IP: 192.168.1.1

NAT B
WAN NIC IP: 12.12.6.5

LAN NIC IP: 192.168.1.1

 Figure 2.22 STUN data flow

Actions

Packet
Number

Packet
Sender

Source
Address

Destination
Address

Packet
Receiver

Result

1 Host A 192.168.10.2:200 4.6.5.10:200 NAT A Make row 1 in NAT A Table, NAT A rewrites packet

2 Host A 18.19.20.21:60000 4.6.5.10:200 Host N Host N register Host A as game server at 18.19.20.21:60000

3 Host B 192.168.20.2:200 4.6.5.10:200 NAT B Make row 1 in NAT B Table, NAT B rewrites packet,

4 Host B 12.12.6.5:62000 4.6.5.10:200 Host N Host N registers Host B as client at 12.12.6.5:62000

5 Host N 4.6.5.10:200 18.19.20.21:60000 NAT A Matches row 1 in NAT A Table, NAT A rewrites packet

6 NAT A 4.6.5.10:200 192.168.10.2:200 Host A Host A learns Host B’s public address and sends packet

7 Host A 192.168.10.2:200 12.12.6.5:62000 NAT A Make row 2 in NAT A Table, reusing port from row 1, NAT A rewrites packet

8 Host A 18.19.20.21:60000 12.12.6.5:62000 NAT B NAT B not expecting packet, Drops it

9 Host N 4.6.5.10:200 12.12.6.5:62000 NAT B Matches row 1 in NAT B Table, NAT B rewrites packet.

10 NAT B 4.6.5.10:200 192.168.20.2:200 Host B Host B learns Host A’s public address, sends packet

11 Host B 192.168.20.2:200 18.19.20.21:60000 NAT B Make row 2 in NAT B Table, reusing port from row 1, NAT B rewrites packet

12 NAT B 12.12.6.5:62000 18.19.20.21:60000 NAT A Matches row 2 in NAT A Table. NAT A rewrites packet.

13 NAT A 12.12.6.5:62000 192.168.10.2:200 Host A Successful transmission from Host B to Host A

NAT A Table

Row Source External Port Destination

1 192.168.10.2:200 60000 4.6.5.10:200

2 192.168.10.2:200 60000 12.12.6.5:62000

NAT B Table

Row Source External Port Destination

1 192.168.20.2:200 62000 4.6.5.10:200

2 192.168.20.2:200 62000 18.19.20.21:60000

 Figure 2.23 STUN packet detail and NAT tables

 First, Host A sends a packet from port 200 to the negotiator service at IP 4.6.5.10 (Host N)

announcing it would like to be a server. When the packet passes through Router A, Router A

makes an entry in its NAT table and rewrites the packet to use its own public IP address as the

source and the random number 60000 as a source port. Router A then forwards the packet to

Host N. Host N receives the packet and makes note of the fact that Player A, playing on Host A,

at address 18.19.20.21:60000 wants to register as a server of a multiplayer game.

ptg16606381

NAT 59

 Host B then sends a packet to Host N, announcing that Player B would like to connect to Player

A’s game. When the packet passes through Router B, the NAT table at Router B is updated and

the packet is rewritten, similar to how NAT occurred at Router A. The rewritten packet is then

forwarded to Host N, who learns from the packet that Host B at 12.12.6.5:62000 would like to

connect to Host A.

 At this point, Host N knows Router A’s public IP address, as well as the destination port which

will result in Router A forwarding a packet to Host A. It could send this information to Host B in

a reply packet, and request that Host B attempt to connect directly using it. However, recall that

some routers check the origin of incoming packets to make sure they are expecting packets

from that location. Router A is only expecting a packet from Host N. If Host B tries to connect

to Host A at this point, Router A will block the packet because Router A is not expecting any

response from Host B.

 Luckily, Host N also knows Router B’s public IP address and the port number which will cause

a packet to be forwarded to Host B. So, it sends this information to Host A. Router A lets this

information pass, because its NAT table indicates that Host A is expecting a response from

Host N. Host A then sends an outgoing packet to Host B using the connection info received

from Host N. This may seem crazy, as it is the server attempting to contact the client, whereas

we would expect the reverse. It may seem even crazier, because we know that Router B is

not expecting any incoming packets from Host A and will thus not allow the packet through

anyway. Why would we waste a packet like that? We do it just to force an entry into Router A’s

NAT table!

 As the packet travels from Host A to Host B, it passes through Router A. Router A sees in the

NAT table that Host A’s address, 192.168.1.2:200, already maps to external port 60000, so

it chooses this port for the outgoing packet. It then makes an additional entry stating that

192.168.1.2:200 has sent traffic to 128.127.126.125:62000. This additional entry is the key. The

packet will probably never arrive at Host B, but after this has happened, Host N can reply to

Host B, telling it to connect directly to Host A at 18.19.20.21:51243. Host B does so, and when

the packet arrives at Router A, Router A sees that it is indeed expecting an incoming packet

from 128.127.126.125:62000. It rewrites the packet to be targeting 192.168.1.2:200 and sends it

to Host A. From that point on, Hosts A and B can communicate directly by using the public IP

address and port number they have exchanged.

 note

 There are a few more facts about NATs worth mentioning. First, the NAT traversal

technique described earlier will not work for all NATs. There are some NATs which

do not assign a consistent external port number to an internal host. These are

known as symmetric NATs . In a symmetric NAT, each outgoing request receives a

unique external port, even if originating from a source IP address and port already

ptg16606381

60 CHAPTER 2 THE INTERNET

in the NAT table. This breaks STUN because Router A will pick a new external port

to use when Host A sends its first packet to Host B. When Host B contacts Router A

on the original external port that Host A used to reach Host N, it will not match in

the NAT table and the packet will be dropped.

 Sometimes, less secure symmetric NATs assign external ports in a deterministic

order, so clever programs can use port assignment prediction to make STUN-like

techniques work on symmetric NATs. More secure symmetric NATs use randomized

port assignments that cannot easily be predicted.

 The STUN method works only for UDP. As described in Chapter 3 , “The Berkeley

Sockets,” TCP uses a different system of port assignment and necessarily transmits

data on a port different from the one on which it listens for incoming connections.

When TCP is in use, there is a technique called TCP hole punching which may

work if the NAT router acts in a way which supports it. RFC 5128, referenced in

“Additional Reading” gives a good survey of NAT traversal techniques, including

TCP hole punching.

 Finally, there is yet another popular way to enable traversal of a NAT router. It is

called Internet gateway device protocol (IGDP). This is a protocol that some

 Universal Plug and Play (UPnP) routers employ to allow LAN hosts to manually

set up mappings between external and internal ports. It is not always supported

and less academically interesting so it is not explained here. Its specification is also

referenced in the “Additional Reading” section.

 Summary
 This chapter provided an overview of the inner workings of the Internet. Packet switching

allows multiple transmissions to be sent simultaneously over the same line, giving rise to

ARPANET and eventually the Internet. The TCP/IP suite, the layer cake that powers the Internet,

consists of five layers, each of which provides a data channel for the layer above it.

 The physical layer provides the medium along which the signal travels, and is sometimes

considered part of the link layer above it. The link layer provides a method of communication

between connected hosts. It requires a hardware addressing system so that each host can be

uniquely addressed, and determines the MTU, the maximum amount of data which can be

transmitted in a single chunk. There are many protocols which can provide the primary link

layer services, but this chapter explored Ethernet in great depth, as it is the one most important

to game developers.

 The network layer, which provides a logical addressing system on top of the link layer’s

hardware addresses, allows hosts on different link layer networks to communicate. IPv4, the

ptg16606381

REVIEW QUESTIONS 61

primary network layer protocol of the day, provides direct and indirect routing systems, and

fragments packets too large for the link layer. IPv6, rising in prominence, solves the problem

of a limited address space and optimizes several of the biggest bottlenecks in IPv4 data

transmission.

 The transport layer and its ports provide end-to-end communication between processes on

remote hosts. TCP and UDP are the primary protocols in the transport layer, and fundamentally

different: UDP is lightweight, connectionless, and unreliable, whereas TCP has a heavier

footprint, requires stateful connections, and guarantees reliable, in-order delivery of all data.

TCP implements flow control and congestion control mechanisms to decrease packet loss.

 At the top of the cake is the application layer, containing DHCP, DNS, and your game code.

 To facilitate the creation of private networks with minimal oversight, NAT allows a single public

IP address to be shared by an entire network. A drawback of NAT is that it blocks unsolicited

incoming connections that a server might desire, but there are techniques such as STUN and

TCP hole punching which provide workarounds for this.

 This chapter has provided a theoretical basis for the workings of the Internet. This will prove

useful in Chapter 3 , which covers the functions and data structures used to write code that

actually communicates between hosts.

 Review Questions
1. List the five layers of the TCP/IP stack and briefly describe each. Which layer is not

considered a separate layer in some models?

2. For what is ARP used? How does it work?

3. Explain how a host with multiple NICs (i.e., a router) routes packets between different

subnets. Explain how a routing table works.

4. What does MTU stand for? What does it mean? What is the MTU of Ethernet?

5. Explain how packet fragmentation works. Assuming a link layer with an MTU of 400, give

the header of a packet which would be fragmented into two fragments, and then give the

headers of those fragments.

6. Why is it good to avoid IP fragmentation?

7. Why is it good to send packets that are as large as possible without fragmenting?

8. What is the difference between unreliable and reliable data transfer?

9. Describe the TCP handshake process to establish a connection. What important pieces of

data are exchanged?

 10. Describe how TCP effects reliable data transfer.

 11. What is the difference between a publically routable IP address and a privately routable one?

ptg16606381

62 CHAPTER 2 THE INTERNET

 12. What is NAT? What are some benefits of using a NAT? What are some costs?

 13. Explain how a client behind a NAT can send a packet to a publically routable server and

receive a response.

 14. What is STUN? Why would you need it? How does it work?

 Additional Readings
 Bell, Gordon. (1980, September). The Ethernet—A Local Area Network . Retrieved from http://

research.microsoft.com/en-us/um/people/gbell/ethernet_blue_book_1980.pdf . Accessed

September 12, 2015.

 Braden, R. (Ed). (1989, October). Requirements for Internet Hosts—Application and Support .
Retrieved from http://tools.ietf.org/html/rfc1123 . Accessed September 12, 2015.

 Braden, R. (Ed). (1989, October). Requirements for Internet Hosts—Communication Layers .

Retrieved from http://tools.ietf.org/html/rfc1122 . Accessed September 12, 2015.

 Cotton, M., L. Eggert, J. Touch, M. Westerlund, and S. Cheshire. (2011, August). Internet Assigned
Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport
Protocol Port Number Registry . Retrieved from http://tools.ietf.org/html/rfc6335 . Accessed

September 12, 2015.

 Deering, S., and R. Hinden. (1998, December). Internet Protocol, Version 6 (IPv6) Specification .

Retrieved from https://www.ietf.org/rfc/rfc2460.txt . Accessed September 12, 2015.

 Drom, R. (1997, March). Dynamic Host Configuration Protocol . Retrieved from http://tools.ietf.org

/html/rfc2131 . Accessed September 12, 2015.

 Google IPv6 Statistics. (2014, August 9). Retrieved from https://www.google.com/intl/en/ipv6

/statistics.html . Accessed September 12, 2015.

 Information Sciences Institute. (1981, September). Transmission Control Protocol. Retrieved from

 http://www.ietf.org/rfc/rfc793.txt . Accessed September 12, 2015.

 Internet Gateway Device Protocol . (2010, December). Retrieved from http://upnp.org/specs/gw

/igd2/ . Accessed September 12, 2015.

 Mockapetris, P. (1987, November). Domain Names—Concepts and Facilities . Retrieved from

 http://tools.ietf.org/html/rfc1034 . Accessed September 12, 2015.

 Mockapetris, P. (1987, November). Domain Names—Implementation and Specification . Retrieved

from http://tools.ietf.org/html/rfc1035 . Accessed September 12, 2015.

 Nagle, John. (1984, January 6). Congestion Control in IP/TCP Internetworks. Retrieved from

 http://tools.ietf.org/html/rfc896 . Accessed September 12, 2015.

 Narten, T., E. Nordmark, W. Simpson, and H. Soliman. (2007, September). Neighbor Discovery for IP
version 6 (IPv6) . Retrieved from http://tools.ietf.org/html/rfc4861 . Accessed September 12, 2015.

 Nichols, K., S. Blake, F. Baker, and D. Black. (1998, December). Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers . Retrieved from http://tools.ietf.org/html

/rfc2474 . Accessed September 12, 2015.

http://research.microsoft.com/en-us/um/people/gbell/ethernet_blue_book_1980.pdf
http://research.microsoft.com/en-us/um/people/gbell/ethernet_blue_book_1980.pdf
http://tools.ietf.org/html/rfc1123
http://tools.ietf.org/html/rfc1122
http://tools.ietf.org/html/rfc6335
https://www.ietf.org/rfc/rfc2460.txt
http://tools.ietf.org/html/rfc2131
https://www.google.com/intl/en/ipv6/statistics.html
http://www.ietf.org/rfc/rfc793.txt
http://upnp.org/specs/gw/igd2/
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc896
http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc2131
https://www.google.com/intl/en/ipv6/statistics.html
http://upnp.org/specs/gw/igd2/
http://tools.ietf.org/html/rfc2474
http://tools.ietf.org/html/rfc2474

ptg16606381

ADDITIONAL READINGS 63

 Port Number Registry . (2014, September 3). Retrieved from http://www.iana.org/assignments

/service-names-port-numbers/service-names-port-numbers.xhtml . Accessed September 12,

2015.

 Postel, J., and R. Reynolds. (1988, February). A Standard for the Transmission of IP Datagrams over
IEEE 802 Networks . Retrieved from http://tools.ietf.org/html/rfc1042 . Accessed September 12, 2015.

 Ramakrishnan, K., S. Floyd, and D. Black. (September 2001). The Addition of Explicit Congestion
Notification (ECN) to IP. Retrieved from http://tools.ietf.org/html/rfc3168 . Accessed September

12, 2015.

 Rekhter, Y., and T. Li. (1993, September). An Architecture for IP Address Allocation with CIDR .

Retrieved from http://tools.ietf.org/html/rfc1518 . Accessed September 12, 2015.

 Rosenberg, J., J. Weinberger, C. Huitema, and R. Mahy. (2003, March). STUN—Simple Traversal
of User Datagram Protocol (UDP). Retrieved from http://tools.ietf.org/html/rfc3489 . Accessed

September 12, 2015.

 Socolofsky, T., and C. Kale. (1991, January). A TCP/IP Tutorial . Retrieved from http://tools.ietf.org

/html/rfc1180 . Accessed September 12, 2015.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://tools.ietf.org/html/rfc1042
http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc1518
http://tools.ietf.org/html/rfc3489
http://tools.ietf.org/html/rfc1180
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://tools.ietf.org/html/rfc1180

ptg16606381

This page intentionally left blank

ptg16606381

 C H A P T E R 3

 BERKELEY SOCKETS

 This chapter introduces the most commonly

used networking construct for multiplayer game

development, the Berkeley Socket. It presents the

most common functions for creating, manipulating,

and disposing sockets, discusses differences

between platforms, and explores a type-safe, C++

friendly wrapper for socket functionality.

ptg16606381

66 CHAPTER 3 BERKELEY SOCKETS

 Creating Sockets
 Originally released as part of BSD 4.2, the Berkeley Sockets API provides a standardized way

for processes to interface with various levels of the TCP/IP stack. Since its release, the API has

been ported to every major operating system and most popular programming languages, so it

is the veritable standard in network programming.

 Processes use the API by creating and initializing one or more sockets , and then reading data

from or writing data to those sockets. To create a socket, use the aptly named socket function:

 SOCKET socket(int af, int type, int protocol);

 The af parameter, standing for address family, indicates the network layer protocol which the

socket should employ. Potential values are listed in Table 3.1 .

 Table 3.1 Address Family Values for Socket Creation

 Macro Meaning

 AF_UNSPEC Unspecified

 AF_INET Internet Protocol Version 4

 AF_IPX Internetwork Packet Exchange: An early network layer protocol popularized by
Novell and MS-DOS

 AF_APPLETALK Appletalk: An early network suite popularized by apple computer for use with
its Apple and Macintosh computers

 AF_INET6 Internet Protocol Version 6

 Table 3.2 Type Values for Socket Creation

 Macro Meaning

 SOCK_STREAM Packets represent segments of an ordered, reliable stream of data

 SOCK_DGRAM Packets represent discrete datagrams

 SOCK_RAW Packet headers may be custom crafted by the application layer

 SOCK_SEQPACKET Similar to SOCK_STREAM but packets may need to be read in their entirety
upon receipt

 Most games written these days support IPv4, so your code will most likely use AF_INET .

As more users switch to IPv6 Internet connections, it becomes more worthwhile to support

 AF_INET6 sockets as well.

 The type parameter indicates the meaning of packets sent and received through the socket. Each

transport layer protocol that the socket can use has a corresponding way in which it groups and

uses packets. Table 3.2 lists the most commonly supported values for this parameter.

ptg16606381

CREATING SOCKETS 67

 Creating a socket of type SOCK_STREAM informs the operating system that the socket will require

a stateful connection. It then allocates the necessary resources to support a reliable, ordered

stream of data. This is the appropriate socket type to use when creating a TCP socket. SOCK_

DGRAM , on the other hand, provides for no stateful connection and allocates only the minimal

resources necessary to send and receive individual datagrams. The socket should make no effort

to maintain reliability or ordering of packets. This is the appropriate socket type for a UDP socket.

 The protocol parameter indicates the specific protocol that the socket should use to send

data. This can include transport layer protocols, or various utility network layer protocols that

are part of the Internet protocol suite. Typically, the value passed in as the protocol is copied

directly into the protocol field of the IP header for each outgoing packet. This signifies to the

receiving operating system how to interpret data wrapped by the packet. Table 3.3 gives typical

values for the protocol parameter.

 Table 3.3 Protocol Values for Socket Creation

 Macro Required Type Meaning

 IPPROTO_UDP SOCK_DGRAM Packets wrap UDP datagrams

 IPPROTO_TCP SOCK_STREAM Packets wrap TCP segments

 IPPROTO_IP / 0 Any Use the default protocol for the given type

 Note that passing 0 as the protocol tells the OS to pick the default implemented protocol for

the given socket type. This means you can create an IPv4 UDP socket by calling

 SOCKET udpSocket = socket(AF_INET, SOCK_DGRAM, 0);

 You can create a TCP socket by calling

 SOCKET tcpSocket = socket(AF_INET, SOCK_STREAM, 0);

 To close a socket, regardless of type, use the closesocket function:

 int closesocket(SOCKET sock);

 When disposing of a TCP socket, it is important to do so in a manner that ensures all outgoing

and incoming data are transmitted and acknowledged. It is best to first cease transmitting on

the socket, then wait for all data to be acknowledged and all incoming data to be read, and

then to close the socket.

 To cease transmitting or receiving before closing, use the shutdown function:

 int shutdown(SOCKET sock, int how)

 For how , pass SD_SEND to cease sending, SD_RECEIVE to cease receiving, or SD_BOTH to

cease sending and receiving. Passing SD_SEND will cause a FIN packet to transmit once all data

ptg16606381

68 CHAPTER 3 BERKELEY SOCKETS

has been sent, which will notify the other end of the connection it can safely close its socket.

That will result in a FIN packet being sent back in response. Once your game receives the FIN

packet, it is safe to actually close the socket.

 This closes the socket and returns any associated resources to the operating system. Make sure

to close all sockets when they are no longer needed.

 note

 In most cases, the operating system creates the IP layer header and transport layer

header for each packet sent out over a socket. However, by creating a socket of

type SOCK_RAW and protocol 0, you can directly write each of the header values

for those two layers. This allows you to set header fields directly which are not

normally editable. For instance, you could easily specify a custom TTL for each

outgoing packet: That is exactly what the Traceroute utility does. Manually writing

the values for various header fields is often the only way to insert illegal values in

those fields, which can be particularly useful when fuzz testing your servers, as

mentioned in Chapter 10 , “Security.”

 Because raw sockets allow illegal values in header fields, they are a potential

security risk, and most operating systems allow the creation of raw sockets only in

programs with elevated security credentials.

 API Operating System Differences
 Although Berkeley Sockets are the standard low-level way to interface with the Internet on

various platforms, the API is not perfectly uniform across all operating systems. There are

several idiosyncrasies and differences worth understanding before jumping into cross-platform

socket development.

 The first of these is the data type used to represent the socket itself. The socket function as

listed earlier returns a result of type SOCKET , but this type actually exists only on Windows-

based platforms like Windows 10 and Xbox. A little digging into the Windows headers files

shows that SOCKET is a typedef for a UINT_PTR . That is, it points to an area of memory that

holds state and data about the socket.

 Contrariwise, on POSIX-based platforms like Linux, Mac OS X, and PlayStation, a socket is

represented by a single int . There is no socket data type per se: The socket function returns

an integer. This integer represents an index into the operating system’s list of open files and

sockets. In this way, a socket is very similar to a POSIX file descriptor, and in fact can be passed

to many OS functions that take file descriptors. Using sockets in this way limits some of the

flexibility provided by the dedicated socket functions, but in some cases provides an easy

ptg16606381

API OPERATING SYSTEM DIFFERENCES 69

path to porting a non-network based process to a network compatible one. One significant

drawback of the socket function returning an int is the lack of type safety, as the compiler

will not balk at code which passes any integral expression (e.g., 5 × 4) to a function that takes a

socket parameter. Several code examples in this chapter address this problem, as it is a general

weakness of the Berkeley Socket API on all platforms.

 Regardless of whether your platform represents a socket as an int or a SOCKET , it’s worth

noting that sockets should always be passed by value to functions in the socket library.

 The second major difference between platforms is the header file which contains the

declarations for the library. The Windows version of the socket library is known as Winsock2, and

thus files which use socket functionality must #include the file WinSock2.h. There is an older

version of the Winsock library called Winsock, and this version is actually included by default

in the overarching Windows.h file used in most Windows programs. The Winsock library is an

earlier, limited, less optimized version of the WinSock2 library, but it does contain several basic

library functions, such as the socket creation one discussed earlier. This creates a name conflict

when both Windows.h and WinSock2.h are included in the same translation unit: Multiple

declarations for the same functions cause the compiler to choke and spew errors confusing to

those who are unaware of this conflict. To avoid this, you must make sure to either #include

WinSocket2.h before Windows.h, or to #define the macro WIN32_LEAN_AND_MEAN before

including Windows.h. The macro causes the preprocesser to omit, among other things, the

inclusion of Winsock from the list of files contained in Windows.h, thus preventing the conflict.

 WinSock2.h only contains declarations for the functions and data types directly related to

sockets. For tangential functionality, you will have to include other files. For instance, to

use address conversion functionality discussed in this chapter, you will also need to include

Ws2tcpip.h.

 On POSIX platforms, there is only one version of the socket library and it is usually accessed by

including the file sys/socket.h. To use IPv4-specific functionality you may also have to include

netinet/in.h. To use address conversion functionality, include arpa/inet.h. To perform name

resolution you may have to include netdb.h.

 Initialization and shutdown of the socket library also differ between platforms. On POSIX

platforms, the library is active by default and nothing is required to enable socket functionality.

Winsock2, however, requires explicit startup and cleanup and allows the user to specify what

version of the library to use. To activate the socket library on Windows, use WSAStartup :

 int WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData);

 wVersionRequested is a 2-byte word in which the low-order byte specifies the major version

and the high-order byte specifies the minor version of the Winsock implementation desired.

The highest version supported as of this printing is 2.2, so typically you will pass MAKEWORD(2, 2)

for this parameter.

ptg16606381

70 CHAPTER 3 BERKELEY SOCKETS

 lpWSAData points to a Windows-specific data structure which the WSAStartup function fills

in with data about the activated library, including the version of the implementation provided.

Typically this will match the version requested and you will not usually need to check this data.

 WSAStartup returns either a 0, indicating success, or an error code, indicating why the library

could not be started up. Note that no Winsock2 functions will work properly unless your

process first invokes WSAStartup successfully.

 To shut down the library, call WSACleanup :

 int WSACleanup();

 WSACleanup takes no parameters and returns an error code. When a process invokes WSACleanup ,

all pending socket operations are terminated and all socket resources are deallocated, so it is a

good idea to make sure all sockets are closed and truly unused before shutting down Winsock.

 WSAStartup is reference counted, so you must call WSACleanup exactly as many times you called

 WSAStartup to make sure that anything is actually cleaned up.

 Error reporting is handled slightly differently between platforms. Most functions on all

platforms return −1 in the case of an error. On Windows, you can use the macro SOCKET_ERROR

instead of the magic number −1. A single −1 does little to reveal the source of the error, though,

so Winsock2 provides the function WSAGetLastError to fetch an additional code that

expands on the cause of the error:

 int WSAGetLastError();

 This function returns only the latest error code generated on the currently running thread, so

it is important to check it immediately after any socket library function returns a −1. Calling a

successive socket function after an error could cause a secondary error due to the initial one.

This would change the result returned by WSAGetLastError and mask the true cause of the

problem.

 POSIX-compatible libraries similarly provide a method to retrieve specific error information.

However, these use the C standard library global variable errno to report specific error codes.

To check the value of errno from code, you must include the file errno.h. After that, you can

read from errno like any other variable. Just like the result returned by WSAGetLastError,

errno can change after every function call, so it is important to check it at the first sign of error.

 tip

 Most platform-independent functions in the socket library use purely lowercase letters,

like socket . Most Windows-specific Winsock2 functions, however, begin with

capital letters, and sometimes the WSA prefix, to mark them as nonstandard. When

developing for Windows, try to keep capital letter Winsock2 functions isolated from

the cross-platform ones so that porting to POSIX platforms will be simpler.

ptg16606381

SOCKET ADDRESS 71

 There are additional Winsock2-specific functions that are not supported by the POSIX version of

the Berkeley Socket library, just like most POSIX-compatible operating systems have their own

platform-specific networking functions in addition to the POSIX standard ones. The standard

socket functions provide adequate functionality for a typical multiplayer networked game,

so for the rest of this chapter, we will explore only the standard, cross-platform functions. The

sample code for this book targets the Windows Operating System but uses Winsock2-specific

functions only when necessary, to start up, shut down, and check for errors. The text will call

out multiple versions whenever a function differs across platforms.

 Socket Address
 Every network layer packet requires a source address and a destination address. If the packet

wraps transport layer data, it also requires a source port and a destination port. To pass this

address information in and out of the socket library, the API provides the sockaddr data type:

 struct sockaddr {
 uint16_t sa_family;
 char sa_data[14];
 };

 sa_family holds a constant identifying the type of the address. When using this socket

address with a socket, the sa_family field should match the af parameter used to create the

socket. sa_data is 14 bytes which hold the actual address. The sa_data field is a necessarily

generic array of bytes because it must be able to hold the address format appropriate for

whatever address family is specified. Technically, you could fill in the bytes manually, but this

would require knowing the memory layout for various address families. To remedy this, the

API provides dedicated data types to help initialize addresses for common address families.

Because there were no classes or polymorphic inheritance at the time of the socket API’s

creation, these data types must be manually cast to the sockaddr type when passed into any

socket API function that requires an address. To create an address for an IPv4 packet, use the

 sockaddr_in type:

 struct sockaddr_in {
 short sin_family;
 uint16_t sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
 };

 sin_family overlaps sockaddr’s sa_family and thus has the same meaning.

 sin_port holds the 16-bit port section of the address.

 sin_addr holds the 4-byte IPv4 address. The in_addr type varies between socket libraries.

On some platforms, it is a simple 4-byte integer. IPv4 addresses are not usually written as

4-byte integers, but instead as 4 individual bytes separated with dots. For this reason, other

ptg16606381

72 CHAPTER 3 BERKELEY SOCKETS

platforms provide a structure that wraps a union of structs that can be used to set the address

in different formats:

 struct in_addr {
 union {
 struct {

uint8_t s_b1,s_b2,s_b3,s_b4;
 } S_un_b;
 struct {

uint16_t s_w1,s_w2;
 } S_un_w;
 uint32_t S_addr;
 } S_un;
 };

 By setting the s_b1 , s_b2 , s_b3, and s_b4 fields of the S_un_b struct inside the S_un union,

you can enter the address in a human readable form.

 sin_zero is unused and merely exists to pad the size of sockaddr_in to match the size of

 sockaddr . For consistency, it should be set to all zeroes.

 tip

 In general, when instancing any BSD socket struct, it is a wise idea to use memset

to zero out all its members. This can help prevent cross-platform errors from

uninitialized fields that arise when one platform uses fields that another platform

ignores.

 When setting the IP address as a 4-byte integer, or when setting the port number, it is

important to account for that fact the TCP/IP suite and the host computer may use different

standards for the ordering of bytes within multibyte numbers. Chapter 4 , “Object Serialization,”

provides an in-depth look at platform-dependent byte ordering, but for now, it is sufficient to

know that any multibyte numbers set in a socket address structure must be converted from

host byte order to network byte order. To facilitate this, the socket API provides the functions

 htons and htonl :

 uint16_t htons(uint16_t hostshort);
 uint32_t htonl(uint32_t hostlong);

 The htons function takes any unsigned, 16-bit integer in the host’s native byte order and

converts it to the same integer represented in the network’s native byte order. The htonl

function performs the same operation on 32-bit integers.

 On platforms where the host byte order and network byte order are the same, these functions

will do nothing. When optimizations are turned on, the compiler will recognize this fact and

ptg16606381

SOCKET ADDRESS 73

omit the function calls without generating any extra code. On platforms where the host byte

order does not match the network byte order, the returned values will have the same bytes

as the input parameters, but their order will be swapped. This means that if you are on such

a platform, and you use the debugger to examine the sa_port field of a properly initialized

 sockaddr_in , the decimal value represented there will not match that of your intended port.

Instead it will be the decimal value of a byte-swapped version of your port.

 Sometimes, as in the case of receiving a packet, the socket library fills in the sockaddr_in

structure for you. When this happens, the sockadd_in fields will still be in network byte order,

so if you wish to extract them and make sense of them, you should use the functions ntohs

and ntohl to convert the values from network byte order to host byte order:

 uint16_t ntohs(uint16_t networkshort);
 uint32_t ntohl(uint32_t networklong);

 These two functions work the same way as their host-to-network counterparts.

 Putting all these techniques together, Listing 3.1 shows how to create a socket address that

represents port 80 at IP address 65.254.248.180.

 Listing 3.1 Initializing a sockaddr_in

 sockaddr_in myAddr;
 memset(myAddr.sin_zero, 0, sizeof(myAddr.sin_zero));
 myAddr.sin_family = AF_INET;
 myAddr.sin_port = htons(80);
 myAddr.sin_addr.S_un.S_un_b.s_b1 = 65;
 myAddr.sin_addr.S_un.S_un_b.s_b2 = 254;
 myAddr.sin_addr.S_un.S_un_b.s_b3 = 248;
 myAddr.sin_addr.S_un.S_un_b.s_b4 = 180;

 note

 Some platforms add an extra field in the sockaddr to store the length of the

structure used. This is to enable longer-length sockaddr structures in the

future. On these platforms, just set the length to the sizeof the structure used.

For instance, on Mac OS X, initialize a sockaddr_in named myAddr by setting

 myAddr.sa_len = sizeof(sockaddr_in) .

 Type Safety

 Because there was very little consideration for type safety when the initial socket library was

created, it can be useful to wrap the basic socket data types and functions with custom object-

oriented ones, implemented at the application level. This also helps isolate the socket API from

ptg16606381

74 CHAPTER 3 BERKELEY SOCKETS

your game, in case you decide to change out the socket library for some alternative networking

library at a later date. In this book, we will be wrapping many structs and functions both as a way

to demonstrate proper use of the underlying API and to provide a more type-safe framework on

which you can build your own code. Listing 3.2 presents a wrapper for the sockaddr structure.

 Listing 3.2 Type-Safe SocketAddress Class

 class SocketAddress
 {
 public:
 SocketAddress(uint32_t inAddress, uint16_t inPort)
 {

GetAsSockAddrIn()->sin_family = AF_INET;
GetAsSockAddrIn()->sin_addr.S_un.S_addr = htonl(inAddress);
GetAsSockAddrIn()->sin_port = htons(inPort);

 }
 SocketAddress(const sockaddr& inSockAddr)
 {

memcpy(&mSockAddr, &inSockAddr, sizeof(sockaddr));
 }

 size_t GetSize() const {return sizeof(sockaddr);}

 private:
 sockaddr mSockAddr;

 sockaddr_in* GetAsSockAddrIn()
{return reinterpret_cast<sockaddr_in*>(&mSockAddr);}

 };
 typedef shared_ptr<SocketAddress> SocketAddressPtr;

 SocketAddress has two constructors. The first takes a 4-byte IPv4 address and port and

assigns the value to an internal sockaddr . The constructor automatically sets the address

family to AF_INET because the parameters are only sensible for an IPv4 address. To support

IPv6, you could extend this class with another constructor.

 The second constructor takes a native sockaddr and copies it into the internal mSockAddr

field. This is useful when the network API returns a sockaddr and you wish to wrap it with a

 SocketAddress .

 The GetSize helper method of SocketAddress keeps the code clean when dealing with

functions that need the size of the sockaddr .

 Finally, the shared pointer type to a socket address ensures there is an easy way to share

socket addresses without having to worry about cleaning up the memory. At the moment,

 SocketAddress wraps very little, but it provides a good base on which to add more

functionality as future examples require it.

ptg16606381

SOCKET ADDRESS 75

 Initializing sockaddr from a String

 It takes a bit of work just to feed an IP address and port into a socket address, especially

considering that the address information will probably be passed to your program as a string in

a config file or on a commandline. If you do have a string to turn into a sockaddr , you can skip

this work by using the inet_pton function on POSIX-compatible systems or the InetPton

function on Windows.

 int inet_pton(int af, const char* src, void* dst);
 int InetPton(int af, const PCTSTR src void* dst);

 Both functions take an address family, either AF_INET or AF_INET6 , and convert a string

representation of an IP address into an in_addr representation. src should point to a null

terminated character string containing the address in dotted notation and dst should point

to the sin_addr field of the sockaddr to be set. The functions return 1 on success, 0 if the

source string is malformed, or −1 if some other system error occurred. Listing 3.3 shows how to

initialize a sockaddr using one of these presentation-to-network functions.

 Listing 3.3 Initializing sockaddr with InetPton

 sockaddr_in myAddr;
 myAddr.sin_family = AF_INET;
 myAddr.sin_port = htons(80);
 InetPton(AF_INET, "65.254.248.180", &myAddr.sin_addr);

 Although inet_pton converts a human readable string to a binary IP address, the string must

be an IP address. It cannot be a domain name, as no DNS lookup is performed. If you wish to

perform a simple DNS query to translate a domain name into an IP address, use getaddrinfo :

 int getaddrinfo(const char *hostname, const char *servname, const addrinfo
*hints, addrinfo **res);

 hostname should be a null terminated string holding the name of the domain to look up. For

instance, “ live-shore-986.herokuapp.com .”

 servname should be a null terminated string containing either a port number, or the name of a

service which maps to a port number. For instance, you can send either “80” or “http” to request

a sockaddr_in containing port 80.

 hints should be a pointer to an addrinfo structure containing information about the results

you wish to receive. You can specify a desired address family or other requirement using this

parameter, or you can just pass nullptr to get all matching results.

 Finally, res should be a pointer to a variable that the function will set to point to the head of a

linked list of newly allocated addrinfo structures. Each addrinfo represents a section of the

response from the DNS server:

ptg16606381

76 CHAPTER 3 BERKELEY SOCKETS

 struct addrinfo {
 int ai_flags;
 int ai_family;
 int ai_socktype;
 int ai_protocol;
 size_t ai_addrlen;
 char *ai_canonname;
 sockaddr *ai_addr;
 addrinfo *ai_next;
 }

 ai_flags , ai_socktype, and ai_protocol are used to request certain types of responses

when you pass an addrinfo into getaddrinfo as a hint. They can be ignored in the

response.

 ai_family identifies the address family to which this addrinfo pertains. A value of AF_INET

indicates an IPv4 address and a value of AF_INET6 indicates an IPv6 address.

 ai_addrlen gives the size of the sockaddr pointed to by ai_addr.

 ai_canonname holds the canonical name of the resolved hostname, if the AI_CANONNAME

flag is set in the ai_flags field of the addrinfo passed as hints in the original call.

 ai_addr contains a sockaddr of the given address family, which addresses the host specified

by the hostname and the port specified by the servname parameters of the original call.

 ai_next points to the next addrinfo in the linked list. Because a domain name can map

to multiple IPv4 and IPv6 addresses, you should iterate through the linked list until you find

a sockaddr that suits your needs. Alternatively, you can specify the ai_family in the

 addrinfo passed as a hint and you will receive results for only the desired family. The final

 addrinfo in the list will have nullptr as its ai_next to indicate it is the tail.

 Because getaddrinfo allocates one or more addrinfo structures, you should call

 freeaddrinfo to release the memory once you have copied the desired sockaddr out of the

linked list:

 void freeaddrinfo(addrinfo* ai);

 In ai , pass only the very first addrinfo returned by getaddrinfo . The function will walk the

linked list freeing up all addrinfo nodes and all associated buffers.

 To resolve a host name into an IP address, getaddrinfo creates a DNS protocol packet and

sends it using either UDP or TCP to one of the DNS servers configured in the operating system.

It then waits for a response, parses the response, constructs the linked list of addrinfo

structures, and returns this to the caller. Because this process is dependent on sending

information to and receiving information from a remote host, it can take a significant amount

of time. Sometimes this is on the order of milliseconds, but more often it is on the order of

ptg16606381

SOCKET ADDRESS 77

seconds. getaddrinfo has no provisions for asynchronous operation built in, so it will block

the calling thread until it receives a response. This can cause an undesirable experience for

the user, so if you need to resolve hostnames into IP addresses, you should consider calling

 getaddrinfo on a thread other than the main thread of your game. On Windows, you can

alternatively call the Windows-specific GetAddrInfoEx function, which does allow for

asynchronous operation without manually creating a different thread.

 You can encapsulate the functionality of getaddrinfo nicely in the SocketAddressFactory

given in Listing 3.4.

 Listing 3.4 Name Resolution Using the SocketAddressFactory

 class SocketAddressFactory
 {
 public:
 static SocketAddressPtr CreateIPv4FromString(const string& inString)
 {

auto pos = inString.find_last_of(':');
string host, service;
if(pos != string::npos)
{

host = inString.substr(0, pos);
service = inString.substr(pos + 1);

}
else
{

host = inString;
//use default port...
service = "0";

}
addrinfo hint;
memset(&hint, 0, sizeof(hint));
hint.ai_family = AF_INET;

addrinfo* result;
int error = getaddrinfo(host.c_str(), service.c_str(),

&hint, &result);
if(error != 0 && result != nullptr)
{

freeaddrinfo(result);
return nullptr;

}

while(!result->ai_addr && result->ai_next)
{

result = result->ai_next;
}

ptg16606381

78 CHAPTER 3 BERKELEY SOCKETS

if(!result->ai_addr)
{

freeaddrinfo(result);
return nullptr;

}
auto toRet = std::make_shared< SocketAddress >(*result->ai_addr);

freeaddrinfo(result);

return toRet;
 }
 };

 SocketAddressFactory has a single static method to create a SocketAddress from a

string representing a host name and port. The function returns a SocketAddressPtr so that

it has the option of returning nullptr if anything goes wrong with the name conversion.

This is a nice alternative to making a SocketAddress constructor do the conversion because,

without requiring exception handling, it makes sure there is never an incorrectly initialized

 SocketAddress in existence: If CreateIPv4FromString returns a non-null pointer, then it is

guaranteed to be a valid SocketAddress .

 The method first separates the port from the name by searching for a colon. It then creates a

hint addrinfo to ensure that only IPv4 results are returned. It feeds all this into getaddrinfo

and iterates through the resulting list until a non-null address is found. It copies this address

into a new SocketAddress using the appropriate constructor and then frees the linked list. If

anything goes wrong, it returns null.

 Binding a Socket

 The process of notifying the operating system that a socket will use a specific address and

transport layer port is known as binding . To manually bind a socket to an address and port, use

the bind function:

 int bind(SOCKET sock, const sockaddr *address, int address_len);

 sock is the socket to bind, previously created by the socket function.

 address is the address to which the socket should bind. Note that this has nothing to do with

the address to which the socket will send packets. You can think of this as defining the return

address of any packets sent from the socket. It may seem curious that you must specify a return

address at all, since any packets sent from this host are clearly coming from this host’s address.

However, remember that a host can have multiple network interfaces, and each interface can

have its own IP address.

 Passing a specific address to bind allows you to determine which interface the socket should

use. This is especially useful for hosts that serve as routers or bridges between networks,

ptg16606381

UDP SOCKETS 79

as their different interfaces may be connected to entirely different sets of computers. For

multiplayer game purposes, it is usually not important to specify a network interface, and in

fact often desirable to bind a given port for all available network interfaces and IP addresses

that the host has. To do this, you can assign the macro INADDR_ANY to the sin_addr field of

the sockaddr_in that you pass to bind.

 address_len should contain the size of the sockaddr passed as the address .

 bind returns 0 on success, or −1 in case of an error.

 Binding a socket to a sockaddr serves two functions. First, it tells the OS that this socket

should be the target recipient for any incoming packet with a destination matching the socket’s

bound address and port. Second, it dictates the source address and port that the socket library

should use when creating network and transport layer headers for packets sent out from the

socket.

 Typically you can only bind a single socket to a given address and port. bind will return an

error if you try to bind to an address and port already in use. In that case, you can repeatedly try

binding different ports until you find one that is not in use. To automate this process, you can

specify 0 for the port to bind. This tells the library to find an unused port and bind that.

 A socket must be bound before it can be used to transmit or receive data. Because of this, if a

process attempts to send data using an unbound socket, the network library will automatically

bind that socket to an available port. Therefore, the only reason to manually call bind is to

specify the bound address and port. This is necessary when building a server that must listen

for packets on a publically announced address and port, but usually not necessary for a client.

A client can automatically bind to any available port: When it sends its first packet to the server,

the packet will contain the automatically chosen source address and port, and the server can

use those to address any return packets correctly.

 UDP Sockets
 You can send data on a UDP socket as soon as the socket is created. If it is not bound, the

network module will find a free port in the dynamic port range and automatically bind it. To

send data, use the sendto function:

 int sendto(SOCKET sock, const char *buf, int len, int flags,
const sockaddr *to, int tolen);

 sock is the socket from which the datagram should send. If the socket is unbound, the library

will automatically bind it to an available port. The socket’s bound address and port will be used

as the source address in the headers of the outgoing packet.

 buf is a pointer to the starting address of the data to send. It does not have to be an actual

 char* . It can be any type of data as long as it is cast appropriately to a char* . Because of this,

ptg16606381

80 CHAPTER 3 BERKELEY SOCKETS

 void * would have been a more appropriate data type for this parameter, so it is useful to think

of it that way.

 len is the length of data to send. Technically the maximum length of a UDP datagram including

its 8-byte header is 65535 bytes, because the length field in the header holds only 16 bits.

However, remember that the link layer’s MTU determines the largest packet that can be sent

without fragmentation. The MTU for Ethernet is 1500 bytes, but this must include not only

the game’s payload data, but also multiple headers and potentially any packet wrappers. As a

game programmer trying to avoid fragmentation, a good rule of thumb is to avoid sending

datagrams with data larger than 1300 bytes.

 flags is a bitwise OR collection of flags controlling the sending of data. For most game play

code, this should be 0.

 to is the sockaddr of the intended recipient. This sockaddr ’s address family must match the

one used to create the socket. The address and port from the to parameter are copied into the

IP header and UDP header as the destination IP address and destination port.

 len is the length of the sockaddr passed as the to parameter. For IPv4, just pass

 sizeof(sockaddr_in) .

 If the operation is successful, sendto returns the length of the data queued to send. Otherwise

it returns −1. Note that a nonzero return value doesn’t actually mean the datagram was sent,

just that it was successfully queued to be sent.

 Receiving data on a UDP socket is a simple matter of using the recvfrom function:

 int recvfrom(SOCKET sock, char *buf, int len, int flags, sockaddr *from,
int *fromlen);

 sock is the socket to query for data. By default, if no unread datagrams have been sent to the

socket, the thread will block until a datagram arrives.

 buf is the buffer into which the received datagram should be copied. By default, once a

datagram has been copied into a buffer through a recvfrom call, the socket library no longer

keeps a copy of it.

 len should specify the maximum number of bytes the buf parameter can hold. To avoid a

buffer overflow error, recvfrom will never copy more than this number of bytes into buf . Any

remaining bytes in the incoming datagram will be lost for good, so make sure to always use a

receiving buffer as large as the largest datagram you expect to receive.

 flags is a bitwise OR collection of flags controlling the receiving of data. For most game play

code, this should be 0. One occasionally useful flag is the MSG_PEEK flag. This will copy a received

datagram into the buf parameter without removing any data from the input queue. That way, the

next recvfrom call, potentially with a larger buffer, can refetch the same datagram.

ptg16606381

UDP SOCKETS 81

 from should be a pointer to a sockaddr structure that the recvfrom function can fill in

with the sender’s address and port. Note that this structure does not need to be initialized

ahead of time with any address information. It is a common misconception that one can

specifically request a packet from a particular address by filling in this parameter, but no

such thing is possible. Instead, datagrams are delivered to the recvfrom function in the

order received, and the from variable is set to the corresponding source address for each

datagram.

 fromlen should point to an integer holding the length of the sockaddr passed in as from .

 recvfrom may reduce this value if it doesn’t need all the space to copy the source address.

 After successful execution, recvfrom returns the number of bytes that were copied into buf . If

there was an error, it returns −1.

 Type-Safe UDP Sockets

 Listing 3.5 shows the type-safe UDPSocket class, capable of binding an address and sending

and receiving datagrams.

 Listing 3.5 Type-Safe UDPSocket Class

 class UDPSocket
 {
 public:
 ~UDPSocket();
 int Bind(const SocketAddress& inToAddress);
 int SendTo(const void* inData, int inLen, const SocketAddress& inTo);
 int ReceiveFrom(void* inBuffer, int inLen, SocketAddress& outFrom);
 private:
 friend class SocketUtil;
 UDPSocket(SOCKET inSocket) : mSocket(inSocket) {}
 SOCKET mSocket;
 };
 typedef shared_ptr<UDPSocket> UDPSocketPtr;

 int UDPSocket::Bind(const SocketAddress& inBindAddress)
 {
 int err = bind(mSocket, &inBindAddress.mSockAddr,

inBindAddress.GetSize());
 if(err != 0)
 {

SocketUtil::ReportError(L"UDPSocket::Bind");
return SocketUtil::GetLastError();

 }
 return NO_ERROR;
 }

ptg16606381

82 CHAPTER 3 BERKELEY SOCKETS

 int UDPSocket::SendTo(const void* inData, int inLen,
const SocketAddress& inTo)

 {
 int byteSentCount = sendto(mSocket,

static_cast<const char*>(inData),
inLen,
0, &inTo.mSockAddr, inTo.GetSize());

 if(byteSentCount >= 0)
 {

return byteSentCount;
 }
 else
 {

//return error as negative number
SocketUtil::ReportError(L"UDPSocket::SendTo");
return -SocketUtil::GetLastError();

 }
 }

 int UDPSocket::ReceiveFrom(void* inBuffer, int inLen,
 SocketAddress& outFrom)

 {
 int fromLength = outFromAddress.GetSize();
 int readByteCount = recvfrom(mSocket,

static_cast<char*>(inBuffer),
inMaxLength,
0, &outFromAddress.mSockAddr,
&fromLength);

 if(readByteCount >= 0)
 {

return readByteCount;
 }
 else
 {

SocketUtil::ReportError(L"UDPSocket::ReceiveFrom");
return -SocketUtil::GetLastError();

 }
 }

 UDPSocket::~UDPSocket()
 {
 closesocket(mSocket);
 }

 The UDPSocket class has three main methods: Bind , SendTo , and ReceiveFrom . Each makes

use of the SocketAddress class previously defined. To make this possible, SocketAddress must

declare UDPSocket a friend class so that the methods can access the private sockaddr member

variable. Treating SocketAddress this way makes sure no code outside of this socket wrapper

module can edit sockaddr directly, which reduces dependencies and prevents potential errors.

ptg16606381

TCP SOCKETS 83

 A nice benefit of the object-oriented wrapper is the ability to create destructors. In this case,

 ~UDPSocket automatically closes the internally wrapped socket to prevent sockets from

leaking.

 The UDPSocket code in Listing 3.5 introduces a dependency on the SocketUtil class

for reporting errors. Isolating error reporting code this way makes it easy to change error

handling behavior and cleanly wraps the fact that some platforms take their errors from

 WASGetLastError and some from errno .

 The code does not provide a way to create a UDPSocket from scratch. The only constructor

on UDPSocket is private. Similarly to the SocketAddressFactory pattern, this is so

that there is no way to create a UDPSocket with an invalid mSocket inside it. Instead, the

 SocketUtil::CreateUDPSocket function in Listing 3.6 will create a UDPSocket only after

the underlying socket call succeeds.

 Listing 3.6 Creating a UDP Socket

 enum SocketAddressFamily
 {
 INET = AF_INET,
 INET6 = AF_INET6
 };
 UDPSocketPtr SocketUtil::CreateUDPSocket(SocketAddressFamily inFamily)
 {
 SOCKET s = socket(inFamily, SOCK_DGRAM, IPPROTO_UDP);
 if(s != INVALID_SOCKET)
 {

return UDPSocketPtr(new UDPSocket(s));
 }
 else
 {

ReportError(L"SocketUtil::CreateUDPSocket");
return nullptr;

 }
 }

 TCP Sockets
 UDP is stateless, connectionless, and unreliable, so it needs only a single socket per host to

send and receive datagrams. TCP, on the other hand is reliable, and requires a connection to

be established between two hosts before data transmission can take place. In addition, it must

maintain state to resend dropped packets and it has to store that state somewhere. In the

Berkeley Socket API, the socket itself stores the connection state. This means a host needs an

additional, unique socket for each TCP connection it maintains.

ptg16606381

84 CHAPTER 3 BERKELEY SOCKETS

 TCP requires a three-stage handshake to initiate a connection between a client and a server. For

the server to receive the initial stage of the handshake, it must first create a socket, bind it to a

designated port, and then listen for any incoming handshakes. Once it has created and bound

the socket using socket and bind , it begins listening using the listen function:

 int listen(SOCKET sock, int backlog);

 sock is the socket to set into listen mode. Each time a socket in listen mode receives the first

stage of a TCP handshake, it stores the request until the owning process makes a call to accept

the connection and continue the handshake.

 backlog is the maximum number of incoming connections that should be allowed to queue

up. Once the maximum number of handshakes are pending, any further incoming connection

is dropped. Pass SOMAXCONN to use the default backlog value.

 The function returns 0 on success, or −1 in case of error.

 To accept an incoming connection and continue the TCP handshake, call accept :

 SOCKET accept(SOCKET sock, sockaddr* addr, int* addrlen);

 sock is the listening socket on which an incoming connection should be accepted.

 addr is a pointer to a sockaddr structure that will be filled in with the address of the remote

host requesting the connection. Similarly to the address passed into recvfrom , this sockaddr

does not need to be initialized and it does not control which connection is accepted. It merely

receives the address of the accepted connection.

 addrlen should be a pointer to the size in bytes of the addr buffer. It will be updated by

 accept with the size of the address actually written.

 If accept succeeds, it creates and returns a new socket which can be used to communicate

with the remote host. This new socket is bound to the same port as the listening socket. When

the OS receives a packet destined for the bound port, it uses the source address and source

port to determine which socket should receive the packet: Remember that TCP requires a host

to have a unique socket for each remote host to which it is connected.

 The new socket returned by accept is associated with the remote host which initiated the

connection. It stores the remote host’s address and port, and tracks all outgoing packets so

they can be resent if dropped. It is also the only socket which can communicate with the remote

host: A process should never attempt to send data to a remote host using the initial socket in

listen mode. That will fail, as the listen socket is never connected to anything. It only acts as a

dispatcher to help create new sockets in response to incoming connection requests.

 By default, if there are no connections ready to accept, accept will block the calling thread

until an incoming connection is received or the attempt times out.

ptg16606381

TCP SOCKETS 85

 The process of listening for and accepting connections is an asymmetrical one. Only the passive

server needs a listen socket. A client wishing to initiate a connection should instead create a

socket and use the connect function to begin the handshake process with a remote server:

 int connect(SOCKET sock, const sockaddr *addr, int addrlen);

 sock is the socket on which to connect.

 addr is a pointer to the address of the desired remote host.

 addrlen is the length of the addr parameter.

 On success, connect returns 0. If there is an error, it returns −1.

 Calling connect initiates the TCP handshake by sending the initial SYN packet to a target

host. If that host has a listen socket bound to the appropriate port, it can proceed with the

handshake by calling accept . By default, a call to connect will block the calling thread until

the connection is accepted or the attempt times out.

 Sending and Receiving via Connected Sockets

 A connected TCP socket stores the remote host’s address information. Because of this, a process

does not need to pass an address with each call to transmit data. Instead of using sendto , send

data through a connected TCP socket using the send function:

 int send(SOCKET sock, const char *buf, int len, int flags)

 sock is the socket on which the data should be sent.

 buf is a buffer of data to write to the stream. Note that unlike for UDP, buf is not a datagram

and not guaranteed to be transferred as a single data unit. Instead, the data is just appended

to the socket’s outgoing buffer, and transferred sometime in the future at the socket library’s

whim. If the Nagle algorithm is active, as described in Chapter 2 , this may not happen until an

MSS worth of data has accumulated.

 len is the number of bytes to transmit. Unlike for UDP, there is no reason to keep this value

below the expected MTU of the link layer. As long as there is room in the socket’s send buffer,

the network library will append the data and then send it out in whatever chunk sizes it deems

appropriate.

 flags is a bitwise OR collection of flags controlling the sending of data. For most game play

code, this should be 0.

 If the send call succeeds, it returns the amount of data sent. This may be less than the len

parameter, if the socket’s send buffer had some space free but not enough to hold the entire

 buf . If there is no room at all, then by default the calling thread will block until the call times out,

ptg16606381

86 CHAPTER 3 BERKELEY SOCKETS

or enough packets are sent for there to be room. If there is an error, send returns −1. Note that a

nonzero return value does not imply any data was sent, just that data was queued to be sent.

 To receive data on a connected TCP socket, call recv :

 int recv(SOCKET sock, char *buf, int len, int flags);

 sock is the socket to check for data.

 buf is the buffer into which the data should be copied. The copied data is removed from the

socket’s receive buffer.

 len is the maximum amount of received data to copy into buf .

 flags is a bitwise OR collection of flags controlling the receiving of data. Any flags usable with

 recvfrom are also usable with recv . For most game play code, this should be 0.

 If the recv call is successful, it returns the number of bytes received. This will be less than or

equal to len . It is not possible to predict the amount of data received based on remote calls to

 send: The network library on the remote host accumulates the data and sends out segments

sized as it sees fit. If recv returns zero when len is nonzero, it means the other side of the

connection has sent a FIN packet and promises to send no more data. If recv returns zero

when len is zero, it means there is data on the socket ready to be read. With many sockets in

use, this can be a handy way to check for the presence of data without having to dedicate a

buffer to the task. Once recv has indicated there is data available, you can reserve a buffer and

then call recv again, passing the buffer and a nonzero len .

 If there is an error, recv returns −1.

 By default, if there is no data in the socket’s receive buffer, recv blocks the calling thread until

the next segment in the stream arrives or the call times out.

 note

 You can actually use sendto and recvfrom on a connected socket if you want.

However, the address parameters will be ignored and this can be confusing.

 Similarly, on some platforms it is possible to call connect on a UDP socket to store

a remote host’s address and port in the socket’s connection data. This doesn’t

 establish a reliable connection, but it does allow the use of send to transmit data to

the stored host without having to specify the address each time. It also causes the

socket to discard incoming datagrams from any host other than the stored one.

 Type-Safe TCP Sockets

 The type-safe TCPSocket looks similar to UDPSocket , but with additional connection-

oriented functionality wrapped. Listing 3.7 gives the implementation.

ptg16606381

TCP SOCKETS 87

 Listing 3.7 Type-Safe TCPSocket Class

 class TCPSocket
 {
 public:
 ~TCPSocket();
 int Connect(const SocketAddress& inAddress);
 int Bind(const SocktetAddress& inToAddress);
 int Listen(int inBackLog = 32);
 shared_ptr< TCPSocket > Accept(SocketAddress& inFromAddress);
 int Send(const void* inData, int inLen);
 int Receive(void* inBuffer, int inLen);
 private:
 friend class SocketUtil;
 TCPSocket(SOCKET inSocket) : mSocket(inSocket) {}
 SOCKET mSocket;
 };
 typedef shared_ptr<TCPSocket> TCPSocketPtr;

 int TCPSocket::Connect(const SocketAddress& inAddress)
 {
 int err = connect(mSocket, &inAddress.mSockAddr, inAddress.GetSize());
 if(err < 0)
 {

SocketUtil::ReportError(L"TCPSocket::Connect");
return -SocketUtil::GetLastError();

 }
 return NO_ERROR;
 }
 int TCPSocket::Listen(int inBackLog)
 {
 int err = listen(mSocket, inBackLog);
 if(err < 0)
 {

SocketUtil::ReportError(L"TCPSocket::Listen");
return -SocketUtil::GetLastError();

 }
 return NO_ERROR;
 }

 TCPSocketPtr TCPSocket::Accept(SocketAddress& inFromAddress)
 {
 int length = inFromAddress.GetSize();
 SOCKET newSocket = accept(mSocket, &inFromAddress.mSockAddr, &length);

 if(newSocket != INVALID_SOCKET)
 {

return TCPSocketPtr(new TCPSocket(newSocket));
 }

ptg16606381

88 CHAPTER 3 BERKELEY SOCKETS

 else
 {

SocketUtil::ReportError(L"TCPSocket::Accept");
return nullptr;

 }
 }

 int TCPSocket::Send(const void* inData, int inLen)
 {
 int bytesSentCount = send(mSocket,

static_cast<const char*>(inData),
inLen, 0);

 if(bytesSentCount < 0)
 {

SocketUtil::ReportError(L"TCPSocket::Send");
return -SocketUtil::GetLastError();

 }
 return bytesSentCount;
 }

 int TCPSocket::Receive(void* inData, int inLen)
 {
 int bytesReceivedCount = recv(mSocket,

static_cast<char*>(inData), inLen, 0);
 if(bytesReceivedCount < 0)
 {

SocketUtil::ReportError(L"TCPSocket::Receive");
return -SocketUtil::GetLastError();

 }
 return bytesReceivedCount;
 }

 TCPSocket contains the TCP-specific methods: Send , Receive , Connect , Listen, and

 Accept . Bind and the destructor are no different from the UDPSocket versions, so they are

not shown. Accept returns a TCPSocketPtr to ensure the new socket closes automatically

when no longer referenced. Send and Receive do not require addresses because they

automatically use the address stored in the connected socket.

 To enable creation of a TCPSocket , you must add a CreateTCPSocket function to

 SocketUtils .

 Blocking and Non-Blocking I/O
 Receiving from a socket is typically a blocking operation. If there is no data ready to be

received, the thread will block until data comes in. This is undesirable if you are polling for

packets on the main thread. Sending, accepting, and connecting can also block if the socket is

ptg16606381

BLOCKING AND NON-BLOCKING I/O 89

not ready to perform the operation. This raises issues for a real-time application, like a game,

that needs to check for incoming data without reducing the frame rate. Imagine a game server

with TCP connections to five clients. If the server calls recv on one of its sockets to check

for new data from the corresponding client, the server’s thread will pause until that client

sends some data. This prevents the server from checking on its other sockets, accepting new

connections on its listen socket, and running the game simulation. Clearly a game cannot ship

that way. Luckily there are three common ways to work around this issue: multithreading,

non-blocking I/O, and the select function.

 Multithreading

 One way to work around the problem of blocking I/O is to put each potentially blocking call

on its own thread. In the example mentioned earlier, the server would need at least seven

threads total: one for each client connection, one for the listen socket, and one or more for the

simulation. Figure 3.1 shows the process.

Block until
client
connects

Main Thread
Start

Spawn Listen
Thread

Simulate Game

Process Input
from Clients

Listen Thread
Start

Create Socket
and Bind

Listen

Accept

Spawn Thread
for New Socket

Per-Client
Thread Start

Receive

Block until
client sends

Send Data to
Main Thread

 Figure 3.1 Multithreading process

 At startup, the listen thread creates a socket, binds it, calls listen, and then calls accept .

The accept call blocks until a client tries to connect. When a client does connect, the accept

call returns a new socket. The server process spawns a new thread for this socket, which loops

ptg16606381

90 CHAPTER 3 BERKELEY SOCKETS

calling recv . The recv call blocks until the client sends data. When the client sends data, the

 recv call unblocks and the unblocked thread uses some callback mechanism to send the new

client data to the main thread before looping back and calling recv again. Meanwhile, the

listen socket keeps blocking while accepting new connections, and the main thread runs the

simulation.

 This works, but has the drawback of requiring one thread per client, which does not scale

well as the number of clients grows. It also can get hard to manage, as all client data comes in

on parallel threads and needs to be passed to the simulation in a safe manner. Finally, if the

simulation thread tries to send data on a socket at the same time the receive thread is receiving

on that socket, it will still block the simulation. These are not insurmountable problems, but

there are simpler alternatives.

 Non-Blocking I/O

 By default, sockets operate in blocking mode, as previously mentioned. However, sockets also

support non-blocking mode. When a socket in non-blocking mode is asked to perform an

operation that would otherwise require blocking, it instead returns immediately, with a result

of −1. It also sets the system error code, errno or WSAGetLastError , to return a value of

EAGAIN or WASEWOULDBLOCK, respectively. This code signifies that the previous socket action

would have blocked and was aborted without taking place. The calling process can then react

accordingly.

 To set a socket into non-blocking mode on Windows, use the ioctlsocket function:

 int ioctlsocket(SOCKET sock, long cmd, u_long *argp);

 sock is the socket to place in non-blocking mode.

 cmd is the socket parameter to control. In this case, pass FIONBIO .

 argp is the value to set for the parameter. Any nonzero value will enable non-blocking mode,

and zero will disable it.

 On a POSIX-compatible operating system, use the fcntl function:

 int fcntl(int sock, int cmd, . . .);

 sock is the socket to place in non-blocking mode.

 cmd is the command to issue to the socket. On newer POSIX systems, you must first use

 F_GETFL to fetch the flags currently associated with the socket, bitwise OR them with

the constant O_NONBLOCK , and then use the F_SETFL command to update the flags on

the socket. Listing 3.8 shows how to add a method to enable non-blocking mode on the

 UDPSocket .

ptg16606381

BLOCKING AND NON-BLOCKING I/O 91

 Listing 3.8 Enabling Non-Blocking Mode for a Type-Safe Socket

 int UDPSocket::SetNonBlockingMode(bool inShouldBeNonBlocking)
 {
 #if _WIN32
 u_long arg = inShouldBeNonBlocking ? 1 : 0;
 int result = ioctlsocket(mSocket, FIONBIO, &arg);
 #else
 int flags = fcntl(mSocket, F_GETFL, 0);
 flags = inShouldBeNonBlocking ?

(flags | O_NONBLOCK):(flags & ~O_NONBLOCK);
 fcntl(mSocket, F_SETFL, flags);
 #endif

 if(result == SOCKET_ERROR)
 {

SocketUtil::ReportError(L"UDPSocket::SetNonBlockingMode");
return SocketUtil::GetLastError();

 }
 else
 {

return NO_ERROR;
 }
 }

 When a socket is in non-blocking mode, it is safe to call any usually blocking function and know

that it will return immediately if it cannot complete without blocking. A typical game loop

using a non-blocking socket might look something like Listing 3.9.

 Listing 3.9 Game Loop Using a Non-Blocking Socket

 void DoGameLoop()
 {
 UDPSocketPtr mySock = SocketUtil::CreateUDPSocket(INET);
 mySock->SetNonBlockingMode(true);

 while(gIsGameRunning)
 {

char data[1500];
SocketAddress socketAddress;

int bytesReceived = mySock->ReceiveFrom(data, sizeof(data),
socketAddress);

if(bytesReceived> 0)
{

ProcessReceivedData(data, bytesReceived, socketAddress);
}
DoGameFrame();

 }
 }

ptg16606381

92 CHAPTER 3 BERKELEY SOCKETS

 With the socket set to non-blocking mode, the game can check in each frame to see if any

data is ready to be received. If there is data, the game processes the first pending datagram. If

there is none, the game immediately moves on to the rest of the frame without waiting. If you

want to process more than just the first datagram, you can add a loop which reads pending

datagrams until it has read a maximum number, or there are no more present. It is important

to limit the number of datagrams read per frame. If you do not, a malicious client could send a

slew of single-byte datagrams faster than the server can process them, effectively halting the

server from simulating the game.

 Select

 Polling non-blocking sockets each frame is a simple and straightforward way to check for

incoming data without blocking a thread. However, when the number of sockets to poll is large,

this can become inefficient. As an alternative, the socket library provides a way to check many

sockets at once, and take action as soon as any one of them becomes ready. To do this, use the

 select function:

 int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
const timeval *timeout);

 On POSIX platforms, nfds should be the socket identifier of the highest numbered socket to

check. On POSIX, each socket is just an integer, so this is simply the maximum of all sockets

passed in to this function. On Windows, where sockets are represented by pointers instead of

integers, this parameter does nothing and can be ignored.

 readfds is a pointer to a collection of sockets, known as an fd_set, which should contain

sockets to check for readability. Information on how to construct an fd_set follows. When

a packet arrives for a socket in the readfds set, select returns control to the calling thread

as soon as it is able to. It first removes all sockets from the set that have not received a packet.

Thus, when select returns, a read from any socket still in the readfds set is guaranteed not

to block. Pass nullptr for readfds to skip checking any sockets for readability.

 writefds is a pointer to an fd_set filled with sockets to check for writability. When select

returns, any sockets that remain in the writefds are guaranteed to be writable without

causing the calling thread to block. Pass nullptr for writefds to skip checking any sockets

for writability. Typically a socket will block on writing only when its outgoing send buffer is too

full of data.

 exceptfds is a pointer to an fd_set filled with sockets to check for errors. When select

returns, any sockets that remain in exceptfds have had errors occur. Pass nullptr for

 exceptfds to skip checking any sockets for errors.

 timeout is a pointer to the maximum time to wait before timing out. If the timeout expires

before any socket in the readfds becomes readable, any socket in the writefds becomes

ptg16606381

BLOCKING AND NON-BLOCKING I/O 93

writable, or any socket in the exceptfds experiences an error, all the sets are emptied and

 select returns control to the calling thread. Pass nullptr for timeout to never time out.

 select returns the number of sockets which remain in readfds , writefds, and exceptfds

after its execution completes. In the case of a timeout, this value is 0.

 To initialize an empty fd_set , declare one on the stack and zero it out with the FD_ZERO macro:

 fd_set myReadSet;
 FD_ZERO(&myReadSet);

 To add a socket to a set, use the FD_SET macro:

 FD_SET(mySocket, &myReadSet);

 To check if a socket is in a set after select returns, use the FD_ISSET macro:

 FD_ISSET(mySocket, &myReadSet);

 select is not a function of a single socket, so it does not fit as a method of the type-safe

socket. It belongs more correctly as a utility method in the SocketUtils class. Listing 3.10

shows a Select function to work with the type-safe TCPSocket .

 Listing 3.10 Using select with a Type-Safe TCPSocket

 fd_set* SocketUtil::FillSetFromVector(fd_set& outSet,
const vector<TCPSocketPtr>*
inSockets)

 {
 if(inSockets)

 {
FD_ZERO(&outSet);
for(const TCPSocketPtr& socket : *inSockets)
{

FD_SET(socket->mSocket, &outSet);
}
return &outSet;

 }
 else
 {

return nullptr;
 }
 }

 void SocketUtil::FillVectorFromSet(vector<TCPSocketPtr>* outSockets,
const vector<TCPSocketPtr>*
inSockets,
const fd_set& inSet)

{

ptg16606381

94 CHAPTER 3 BERKELEY SOCKETS

 if(inSockets && outSockets)
 {

outSockets->clear();
for(const TCPSocketPtr& socket : *inSockets)
{

if(FD_ISSET(socket->mSocket, &inSet))
{

outSockets->push_back(socket);
}

}
 }
 }

 int SocketUtil::Select(const vector<TCPSocketPtr>* inReadSet,
vector<TCPSocketPtr>* outReadSet,
const vector<TCPSocketPtr>* inWriteSet,
vector<TCPSocketPtr>* outWriteSet,
const vector<TCPSocketPtr>* inExceptSet,
vector<TCPSocketPtr>* outExceptSet)

 {
 //build up some sets from our vectors
 fd_set read, write, except;

 fd_set *readPtr = FillSetFromVector(read, inReadSet);
 fd_set *writePtr = FillSetFromVector(read, inWriteSet);
 fd_set *exceptPtr = FillSetFromVector(read, inExceptSet);

 int toRet = select(0, readPtr, writePtr, exceptPtr, nullptr);

 if(toRet > 0)
 {

FillVectorFromSet(outReadSet, inReadSet, read);
FillVectorFromSet(outWriteSet, inWriteSet, write);
FillVectorFromSet(outExceptSet, inExceptSet, except);

 }
 return toRet;
 }

 The helper functions FillSetFromVector and FillVectorFromSet convert between

a vector of sockets and an fd_set . They allow null to be passed for the vector to support

cases where the user would pass null for the fd_set . This can be mildly inefficient but is

probably not an issue compared to the time required to block on sockets. For slightly better

performance, wrap fd_set with a C++ data type that provides a good way of iterating through

any sockets that remain after the select call returns. Keep all relevant sockets in an instance of

that data type and remember to pass a duplicate of it to select so that select does not alter

the original set.

ptg16606381

BLOCKING AND NON-BLOCKING I/O 95

 Using this Select function, Listing 3.11 shows how to set up a simple TCP server loop to listen

for and accept new clients while receiving data from old clients. This could run either on the

main thread or on a single dedicated thread.

 Listing 3.11 Running a TCP Server Loop

 void DoTCPLoop()
 {
 TCPSocketPtr listenSocket = SocketUtil::CreateTCPSocket(INET);
 SocketAddress receivingAddres(INADDR_ANY, 48000);
 if(listenSocket->Bind(receivingAddres) != NO_ERROR)
 {

return;
 }
 vector<TCPSocketPtr> readBlockSockets;
 readBlockSockets.push_back(listenSocket);

 vector<TCPSocketPtr> readableSockets;

 while(gIsGameRunning)
 {

if(SocketUtil::Select(&readBlockSockets, &readableSockets,
nullptr, nullptr,
nullptr, nullptr))

{
//we got a packet—loop through the set ones...
for(const TCPSocketPtr& socket : readableSockets)
{

if(socket == listenSocket)
{

//it's the listen socket, accept a new connection
SocketAddress newClientAddress;
auto newSocket = listenSocket->Accept(newClientAddress);
readBlockSockets.push_back(newSocket);
ProcessNewClient(newSocket, newClientAddress);

}
else
{

//it's a regular socket—process the data...
char segment[GOOD_SEGMENT_SIZE];
int dataReceived =

socket->Receive(segment, GOOD_SEGMENT_SIZE);
if(dataReceived > 0)
{

ProcessDataFromClient(socket, segment,
dataReceived);

ptg16606381

96 CHAPTER 3 BERKELEY SOCKETS

}
}

}
}

 }
 }

 The routine begins by creating a listen socket and adding it into the list of sockets to check for

readability. Then it loops until the application requests it do otherwise. The loop uses Select

to block until a packet comes in on any socket in the readBlockSockets vector. When a

packet does come in, Select ensures that readableSockets contains only sockets that have

incoming data. The function then loops over each socket Select has identified as readable.

If the socket is the listen socket, it means a remote host has called Connect . The function

accepts the connection, adds the new socket to readBlockSockets , and notifies the

application via ProcessNewClient . If the socket is not a listen socket, however, the function

calls Receive to obtain a chunk of the newly arrived data and passes it to the application via

 ProcessDataFromClient .

 note

 There are other ways to handle incoming data on multiple sockets, but they are

platform specific and less commonly used. On Windows, I/O completion ports

are a viable choice when supporting many thousands of concurrent connections.

More on I/O completion ports can be found in the “Additional Reading” section.

 Additional Socket Options
 Various configuration options control the sending and receiving behavior of the sockets. To set

these values for these options, call setsockopt :

 int setsockopt(SOCKET sock, int level, int optname, const char *optval, int
optlen);

 sock is the socket to configure.

 level and optname describe the option to be set. level is an integer identifying the level at

which the option is defined and optname defines the option.

 optval is a pointer to the value to set for the option.

 optlen is the length of the data. For instance, if the particular option takes an integer, optlen

should be 4.

 setsockopt returns 0 if successful or −1 if an error occurs.

ptg16606381

ADDITIONAL SOCKET OPTIONS 97

 Table 3.4 lists some useful options available at the SOL_SOCKET level.

 Table 3.4 SOL_SOCKET Options

 Macro
 Value Type
(Windows/POSIX) Description

 SO_RCVBUF int Specifies the buffer space this socket allocates for
received packets. Incoming data accumulates in the
receive buffer until the owning process calls recv
or recvfrom to receive it. Remember that TCP
 bandwidth is limited by the receive window’s size,
which can never be larger than the receive buffer of
the receiving socket. Thus, controlling this value can
have a significant impact on bandwidth.

 SO_REUSEADDR BOOL/int Specifies that the network layer should allow this
socket to bind an IP address and port already bound
by another socket. This is useful for debugging
or packet-sniffing applications. Some operating
 systems require the calling process to have elevated
 privileges.

 SO_RECVTIMEO DWORD/timeval Specifies the time (in milliseconds on Windows) after
which a blocking call to receive should time out and
return.

 SO_SNDBUF int Specifies the buffer space this socket allocates for
outgoing packets. Outgoing bandwidth is limited
based on the link layer. If the process sends data
 faster than the link layer can accommodate, the
socket stores it in its send buffer. Sockets using
 reliable protocols, like TCP, also use the send buffer to
store outgoing data until it is acknowledged by the
receiver. When the send buffer is full, calls to send
and sendto block until there is room.

 SO_SNDTIMEO DWORD/timeval Specifies the time (in milliseconds on Windows) after
which a blocking call to send should time out and
return.

 SO_KEEPALIVE BOOL/int Valid only for sockets using connection-oriented
protocols, like TCP; this option specifies that the
socket should automatically send periodic keep alive
packets to the other end of the connection. If these
packets are not acknowledged, the socket raises an
error state, and the next time the process attempts
to send data using the socket, it is notified that the
connection has been lost. This is not only useful for
detecting dropped connections, but also for
 maintaining connections through firewalls and
NATs that might time out otherwise.

ptg16606381

98 CHAPTER 3 BERKELEY SOCKETS

 Table 3.5 describes the TCP_NODELAY option available at the IPPROTO_TCP level. This option

is only settable on TCP sockets.

 Table 3.5 IPPROTO_TCP Options

 Macro
 Value Type
(Windows/POSIX) Description

 TCP_NODELAY BOOL/int Specifies whether the Nagle algorithm should be
ignored for this socket. Setting this to true will decrease
the delay between the process requesting data to be
sent and the actual sending of that data. However, it
may increase network congestion as a result. For more
on the Nagle algorithm, see Chapter 2 , “The Internet.”

 Summary
 The Berkeley Socket is the most commonly used construct for transmitting data over the Internet.

While the library interface differs across platforms, the core fundamentals are the same.

 The core address data type is the sockaddr , and it can represent addresses for a variety of

network layer protocols. Use it any time it is necessary to specify a destination or source address.

 UDP sockets are connectionless and stateless. Create them with a call to socket and send

datagrams on them with sendto . To receive UDP packets on a UDP socket, you must first use

 bind to reserve a port from the operating system, and then recvfrom to retrieve incoming data.

 TCP sockets are stateful and must connect before they can transmit data. To initiate a

connection, call connect . To listen for incoming connections, call listen . When a connection

comes in on a listening socket, call accept to create a new socket as the local endpoint of the

connection. Send data on connected sockets using send and receive it using recv .

 Socket operations can block the calling thread, creating problems for real-time applications.

To prevent this, either make potentially blocking calls on non–real-time threads, set sockets to

non-blocking mode, or use the select function.

 Configure socket options using setsockopt to customize socket behavior. Once created

and configured, sockets provide the communication pathway that makes networked gaming

possible. Chapter 4 , “Object Serialization” will begin to deal with the challenge of making the

best use of that pathway.

 Review Questions
1. What are some differences between POSIX-compatible socket libraries and the Windows

implementation?

2. To what two TCP/IP layers does the socket enable access?

ptg16606381

ADDITIONAL READINGS 99

3. Explain how and why a TCP server creates a unique socket for each connecting client.

4. Explain how to bind a socket to a port and what it signifies.

5. Update SocketAddress and SocketAddressFactory to support IPv6 addresses.

6. Update SocketUtils to support creation of a TCP socket.

7. Implement a chat server that uses TCP to allow a single host to connect and relays

messages back and forth.

8. Add support for multiple clients to the chat server. Use non-blocking sockets on the client

and select on the server.

9. Explain how to adjust the maximum size of the TCP receive window.

 Additional Readings
 Information Sciences Institute. (1981, September). Transmission Control Protocol. Retrieved from

 http://www.ietf.org/rfc/rfc793 . Accessed September 12, 2015.

 I/O Completion Ports. Retrieved from https://msdn.microsoft.com/en-us/library/windows

/desktop/aa365198(v=vs.85).aspx . Accessed September 12, 2015.

 Porting Socket Applications to WinSock. Retrieved from http://msdn.microsoft.com/en-us/library

/ms740096.aspx . Accessed September 12, 2015.

 Stevens, W. Richard, Bill Fennerl, and Andrew Rudoff. (2003, November 24) Unix Network
Programming Volume 1: The Sockets Networking API, 3rd ed . Addison-Wesley.

 WinSock2 Reference . Retrieved from http://msdn.microsoft.com/en-us/library/windows

/desktop/ms740673%28v=vs.85%29.aspx . Accessed September 12, 2015.

http://www.ietf.org/rfc/rfc793
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms740096.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740673%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms740096.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740673%28v=vs.85%29.aspx

ptg16606381

This page intentionally left blank

ptg16606381

 C H A P T E R 4

 OBJECT SERIALIZATION

 To transmit objects between networked instances

of a multiplayer game, the game must format the

data for those objects such that it can be sent by a

transport layer protocol. This chapter discusses the

need for and uses of a robust serialization system. It

explores ways to handle the issues of self-referential

data, compression, and easily maintainable code,

while working within the runtime performance

requirements of a real-time simulation.

ptg16606381

102 CHAPTER 4 OBJECT SERIALIZATION

 The Need for Serialization
 Serialization refers to the act of converting an object from its random access format in memory

into a linear series of bits. These bits can be stored on disk or sent across a network and later

restored to their original format. Assume that in the Robo Cat game, a player’s RoboCat is

represented by the following code:

 class RoboCat: public GameObject
 {
 public:
 RoboCat(): mHealth(10), mMeowCount(3) {}

 private:
 int32_t mHealth;
 int32_t mMeowCount;
 };

 As mentioned in Chapter 3 , “Berkeley Sockets,” the Berkeley Socket API uses the send and

 sentdo functions to send data from one host to another. Each of these functions takes

a parameter which points to the data to transmit. Therefore, without writing any special

serialization code, the naïve way to send and receive a RoboCat from one host to another

would look something like this:

 void NaivelySendRoboCat(int inSocket, const RoboCat* inRoboCat)
 {
 send(nSocket,

reinterpret_cast<const char*>(inRoboCat),
sizeof(RoboCat), 0);

 }

 void NaivelyReceiveRoboCat(int inSocket, RoboCat* outRoboCat)
 {
 recv(inSocket,

reinterpret_cast<char*>(outRoboCat),
sizeof(RoboCat), 0);

 }

 NaivelySendRoboCat casts the RoboCat to a char* so that it can pass it to send . For the

length of the buffer, it sends the size of the RoboCat class, which in this case is eight. The

receiving function again casts the RoboCat to a char* , this time so that it can receive directly

into the data structure. Assuming a TCP connection using the sockets exists between two hosts,

the following process will send the state of a RoboCat between those hosts:

1. Call NaivelySendRoboCat on the source host, passing in the RoboCat to be sent.

2. On the destination host, create or find an existing RoboCat object that should receive the

state.

3. On the destination host, call NaivelyReceiveRoboCat , passing in a pointer to the

 RoboCat object chosen in Step 2.

ptg16606381

THE NEED FOR SERIALIZATION 103

 Chapter 5 , “Object Replication” deals in depth with Step 2, explaining how and when to find or

create a destination RoboCat . For now, assume that a system is in place to locate or spawn the

target RoboCat on the receiving host.

 Once the transfer procedure completes, assuming the hosts are running on identical hardware

platforms, the state from the source RoboCat successfully copies into the destination

 RoboCat . The memory layout for a sample RoboCat , as displayed in Table 4.1 , demonstrates

why the naïve send and receive functions are effective for a class that is this simple.

 The RoboCat on the destination host has an mHealt h of 10 and an mMeowCount of 3, as set

by the RoboCat constructor. The RoboCat on the source host has lost half its health, leaving

it at 5, and has used up one of its meows, due to whatever game logic has run on that host.

Because mHealth and mMeowCoun t are primitive data types, the naïve send and receive works

correctly, and the RoboCat on the destination host ends up with the proper values.

 Table 4.1 Sample RoboCat in Memory

 Address Field Source Value
 Destination Initial
Value

 Destination Final
Value

 Bytes 0–3 mHealth 0x00000005 0x0000000A 0x00000005

 Bytes 4–7 mMeowCount 0x00000002 0x00000003 0x00000002

 However, objects representing key elements of a game are rarely as simple as the RoboCat in

 Table 4.1 . Code for a more likely version of RoboCat presents challenges that cause the naïve

process to break down, introducing the need for a more robust serialization system:

 class RoboCat: public GameObject
 {
 public:
 RoboCat(): mHealth(10), mMeowCount(3),

mHomeBase(0)
 {

mName[0] = '\0';
 }
 virtual void Update();

 void Write(OutputMemoryStream& inStream) const;
 void Read(InputMemoryStream& inStream);

 private:
 int32_t mHealth;
 int32_t mMeowCount;
 GameObject* mHomeBase;
 char mName[128];
 std::vector<int32_t> mMiceIndices;

 };

ptg16606381

104 CHAPTER 4 OBJECT SERIALIZATION

 These additions to RoboCat create complications that must be considered when serializing.

 Table 4.2 shows the memory layout before and then after the transfer.

 Table 4.2 A Complicated RoboCat in Memory

 Address Field Source Value
 Destination
Initial Value

 Destination
Final Value

 Bytes 0–3 vTablePtr 0x0A131400 0x0B325080 0x0A131400

 Bytes 4–7 mHealth 0x00000005 0x0000000A 0x00000005

 Bytes 8–11 mMeowCount 0x00000002 0x00000003 0x00000002

 Bytes 12–15 mHomeBase 0x0D124008 0x00000000 0x0D124008

 Bytes 16–143 mName “Fuzzy\0” “\0” “Fuzzy\0”

 Bytes 144–167 mMiceIndices ?????? ?????? ??????

 The first 4 bytes of RoboCat are now a virtual function table pointer. This assumes

compilation for a 32-bit architecture—on a 64-bit system this would be the first 8 bytes. Now

that RoboCat has the virtual method RoboCat::Update() , each RoboCat instance needs to

store a pointer to the table that contains the locations of the virtual method implementations

for RoboCat . This causes a problem for the naïve serialization implementation because

the location of that table can be different for each instance of the process. In this case,

receiving replicated state into the destination RoboCat replaces the correct virtual function

table pointer with the value 0x0B325080. After that, invoking the Update method on the

destination RoboCat would at best result in a memory access exception and at worst result in

the invocation of random code.

 The virtual function table pointer is not the only pointer overwritten in this instance. Copying

the mHomeBase pointer from one process to another provides a similarly nonsensical result.

Pointers, by their nature, refer to a location in a particular process’s memory space. It is not safe

to blindly copy a pointer field from one process to another process and hope that the pointer

references relevant data in the destination process. Robust replication code must either copy

the referenced data and set the field to point to the copy or find an existing version of the data

in the destination process and set the field to point there. The section “Referenced Data” later

in this chapter discusses these techniques further.

 Another issue evident in the naïve serialization of the RoboCat is the mandatory copying of all

128 bytes of the mName field. Although the array holds up to 128 characters, it may sometimes

hold fewer, as it does in the sample RoboCat with mName equal to “Fuzzy.” To fulfill the

multiplayer game programmer’s mandate of optimized bandwidth usage, a good serialization

system should avoid serializing unnecessary data when possible. In this case, that requires the

ptg16606381

STREAMS 105

system to understand that the mName field is a null-terminated c string and to only serialize

the characters up to and including the null termination. This is one of several techniques for

compressing runtime data during serialization, more of which are discussed in detail later in this

chapter in the section “Compression.”

 The final serialization issue illustrated in the new version of RoboCat occurs when copying

the std::vector<int32_t> mMiceIndices . The internals of the STL’s vector class

are not specified by the C++ standard, and thus it is not clear whether it is safe to naïvely

copy the field’s memory from one process to another. In all likelihood, it is not: There are

probably one or more pointers inside the vector data structure referencing the vector ’s

elements, and there may be initialization code that must be run once these pointers are set

up. It is almost certain that naïve serialization would fail to copy the vector properly. In fact,

it should be assumed that naïve serialization would fail when copying any black box data

structure: Because it is not specified what’s inside the structure, it is not safe to copy it bit for

bit. Properly handling the serialization of complex data structures is addressed throughout

this chapter.

 The three problems enumerated earlier suggest that instead of sending a single blob of

 RoboCat data to the socket, each field should be serialized individually to ensure correctness

and efficiency. It is possible to create one packet per field, calling a unique send function for

each field’s data, but this would cause chaos for the network connection, wasting scads of

bandwidth for all the unnecessary packet headers. Instead, it is better to gather up all the

relevant data into a buffer and then send that buffer as a representation of the object. To

facilitate this process, we introduce the concept of the stream.

 Streams
 In computer science, a stream refers to a data structure that encapsulates an ordered set of

data elements and allows the user to either read or write data into the set.

 A stream can be an output stream , input stream , or both. An output stream acts as an output

sink for user data, allowing the user of the stream to insert elements sequentially, but not to

read them back. Contrariwise, an input stream acts as a source of data, allowing the user to

extract elements sequentially, but does not expose functionality for inserting them. When a

stream is both an input and output stream, it exposes methods for inserting and extracting

data elements, potentially concurrently.

 Often, a stream is an interface to some other data structure or computing resource. For

instance, a file output stream could wrap a file that has been opened for writing, providing

a simple method of sequentially storing different data types to disk. A network stream could

wrap a socket, providing a wrapper for the send() and recv() functions, tailored for specific

data types relevant to the user.

ptg16606381

106 CHAPTER 4 OBJECT SERIALIZATION

 Memory Streams

 A memory stream wraps a memory buffer. Typically, this is a buffer dynamically allocated on

the heap. The output memory stream has methods for writing sequentially into the buffer, as

well as an accessor that provides read access to the buffer itself. By calling the buffer accessor, a

user can take all data written into the stream at once and pass it to another system, such as the

 send function of a socket. Listing 4.1 shows an implementation of an output memory stream.

 Listing 4.1 Output Memory Stream

 class OutputMemoryStream
 {
 public:
 OutputMemoryStream():
 mBuffer(nullptr), mHead(0), mCapacity(0)
 {ReallocBuffer(32);}
 ~OutputMemoryStream() {std::free(mBuffer);}

 //get a pointer to the data in the stream
 const char* GetBufferPtr() const {return mBuffer;}

uint32_t GetLength() const {return mHead;}

 void Write(const void* inData, size_t inByteCount);
 void Write(uint32_t inData) {Write(&inData, sizeof(inData));}
 void Write(int32_t inData) {Write(&inData, sizeof(inData));}

 private:
 void ReallocBuffer(uint32_t inNewLength);

 char* mBuffer;
 uint32_t mHead;
 uint32_t mCapacity;
 };

 void OutputMemoryStream::ReallocBuffer(uint32_t inNewLength)
 {
 mBuffer = static_cast<char*>(std::realloc(mBuffer, inNewLength));
 //handle realloc failure
 //...
 mCapacity = inNewLength;
 }

 void OutputMemoryStream::Write(const void* inData,
size_t inByteCount)

 {
 //make sure we have space...
 uint32_t resultHead = mHead + static_cast<uint32_t>(inByteCount);
 if(resultHead > mCapacity)
 {

ptg16606381

STREAMS 107

ReallocBuffer(std::max(mCapacity * 2, resultHead));
 }

 //copy into buffer at head
 std::memcpy(mBuffer + mHead, inData, inByteCount);

 //increment head for next write
 mHead = resultHead;
 }

 The Write(const void* inData, size_t inByteCount) method is the primary

way to send data to the stream. The overloads of the Write method take specific data types

so that the byte count does not always need to be sent as a parameter. To be more complete, a

templated Write method could allow all data types, but it would need to prevent nonprimitive

types from being serialized: Remember that nonprimitive types require special serialization. A

static assert with type traits provides one way to safely template the Write method:

 template<typename T> void Write(T inData)
 {
 static_assert(std::is_arithmetic<T>::value ||

std::is_enum<T>::value,
"Generic Write only supports primitive data types");

 Write(&inData, sizeof(inData));
 }

 Regardless of the method chosen, building a helper function to automatically select byte count

helps to prevent errors by reducing the chance that a user will pass the incorrect byte count for

a data type.

 Whenever there is not enough capacity in the mBuffer to hold new data being written, the

buffer automatically expands to the maximum of either double the current capacity or to the

amount necessary to contain the write. This is a common memory expansion technique, and

the multiple can be adjusted to suit a specific purpose.

 warning

 Although the GetBufferPtr function provides a read-only pointer to the

stream’s internal buffer, the stream retains ownership of the buffer. This means the

pointer is invalid once the stream is deallocated. If a use case calls for the pointer

returned by GetBufferPtr to persist once the stream is deallocated, the buffer

could be implemented as std::shared_ptr<std::vector<uint8_t> >, but

this is left as an exercise at the end of the chapter.

ptg16606381

108 CHAPTER 4 OBJECT SERIALIZATION

 Using the output memory stream, it is possible to implement more robust RoboCat send

functions:

 void RoboCat::Write(OutputMemoryStream& inStream) const
 {
 inStream.Write(mHealth);
 inStream.Write(mMeowCount);
 //no solution for mHomeBase yet
 inStream.Write(mName, 128);
 //no solution for mMiceIndices yet
 }

 void SendRoboCat(int inSocket, const RoboCat* inRoboCat)
 {
 OutputMemoryStream stream;
 inRoboCat->Write(stream);
 send(inSocket, stream.GetBufferPtr(),

stream.GetLength(), 0);
 }

 Adding a Write method to the RoboCat itself allows access to private internal fields and

abstracts the task of serialization away from the task of sending data over the network. It also

allows a caller to write a RoboCat instance as one of many elements inserted into the stream.

This proves useful when replicating multiple objects, as described in Chapter 5 .

 Receiving the RoboCat at the destination host requires a corresponding input memory stream

and RoboCat::Read method, as shown in Listing 4.2.

 Listing 4.2 Input Memory Stream

 class InputMemoryStream
 {
 public:
 InputMemoryStream(char* inBuffer, uint32_t inByteCount):
 mCapacity(inByteCount), mHead(0),
 {}

 ~InputMemoryStream() {std::free(mBuffer);}

 uint32_t GetRemainingDataSize() const {return mCapacity - mHead;}

 void Read(void* outData, uint32_t inByteCount);
 void Read(uint32_t& outData) {Read(&outData, sizeof(outData));}
 void Read(int32_t& outData) {Read(&outData, sizeof(outData));}

 private:
 char* mBuffer;
 uint32_t mHead;
 uint32_t mCapacity;
 };

ptg16606381

STREAMS 109

 void RoboCat::Read(InputMemoryStream& inStream)
 {
 inStream.Read(mHealth);
 inStream.Read(mMeowCount);
 //no solution for mHomeBase yet
 inStream.Read(mName, 128);
 //no solution for mMiceIndices
 }

 const uint32_t kMaxPacketSize = 1470;

 void ReceiveRoboCat(int inSocket, RoboCat* outRoboCat)
 {
 char* temporaryBuffer =

static_cast<char*>(std::malloc(kMaxPacketSize));
 size_t receivedByteCount =

recv(inSocket, temporaryBuffer, kMaxPacketSize, 0);

 if(receivedByteCount > 0)
 {

InputMemoryStream stream(temporaryBuffer,
static_cast<uint32_t> (receivedByteCount));

outRoboCat->Read(stream);
 }
 else
 {

std::free(temporaryBuffer);
 }
 }

 After ReceiveRoboCat creates a temporary buffer and fills it by calling recv to read pending

data from the socket, it passes ownership of the buffer to the input memory stream. From

there, the stream’s user can extract data elements in the order in which they were written. The

 RoboCat::Read method then does just this, setting the proper fields on the RoboCat .

 tip

 When using this paradigm in a complete game, you would not want to allocate the

memory for the stream each time a packet arrives, as memory allocation can be

slow. Instead you would have a stream of maximum size preallocated. Each time a

packet comes in, you would receive directly into that preallocated stream’s buffer,

process the packet by reading out of the stream, and then reset the mHead to 0 so

that the stream is ready to be received into when the next packet arrives.

 In this case, it would also be useful to add functionality to the MemoryInputStream

to allow it to manage its own memory. A constructor that takes only a max capacity

could allocate the stream’s mBuffer , and then an accessor that returns the mBuffer

would allow the buffer to be passed directly to recv .

ptg16606381

110 CHAPTER 4 OBJECT SERIALIZATION

 This stream functionality solves the first of the serialization issues: It provides a simple way

to create a buffer, fill the buffer with values from individual fields of a source object, send

that buffer to a remote host, extract the values in order, and insert them into the appropriate

fields of a destination object. Additionally, the process does not interfere with any areas of the

destination object that should not be changed, such as the virtual function table pointer.

 Endian Compatibility

 Not all CPUs store the bytes of a multibyte number in the same order. The order in which bytes

are stored on a platform is referred to as the platform’s endianness , with platforms being

either little-endian or big-endian . Little-endian platforms store multibyte numbers with their

low-order bytes at the lowest memory address. For instance, an integer containing the value

0x12345678 with an address of 0x01000000 would be stored in memory as shown in Figure 4.1 .

Value 0x78
0x01000000

0x56
0x01000001

0x34
0x01000002

0x12
0x01000003Address

 Figure 4.1 Little-endian 0x12345678

 The least significant byte, the 0x78, is first in memory. This is the “littlest” part of the number,

and why the arrangement strategy is called “little” endian. Platforms that use this strategy

include Intel’s x86, x64, and Apple’s iOS hardware.

 Big-endian, alternatively, stores the most significant byte in the lowest memory address. The

same number would be stored at the same address as shown in Figure 4.2 .

Value 0x12
0x01000000

0x34
0x01000001

0x56
0x01000002

0x78
0x01000003Address

 Figure 4.2 Big-endian 0x12345678

 Platforms that use this strategy include the Xbox 360, the PlayStation 3, and IBM’s PowerPC

architecture.

 tip

 Endian order is usually irrelevant when programming a single-platform, single-player

game, but when transferring data between platforms with different endianness, it

becomes a factor which must be considered. A good strategy to use when transferring

data using a stream is to decide on an endianness for the stream itself. Then, when

writing a multibyte data type, if the platform endianness does not match the chosen

stream endianness, the byte order of the data should be reversed when being written

into the stream. Similarly, when data is read from the stream, if the platform endian-

ness differs from the stream endianness, the byte order should be reversed.

ptg16606381

STREAMS 111

 Most platforms provide efficient byte swapping algorithms, and some even have intrinsics or

assembly instructions. However if you need to roll your own, Listing 4.3 provides effective byte

swapping functions.

 Listing 4.3 Byte Swapping Functions

 inline uint16_t ByteSwap2(uint16_t inData)
 {
 return (inData >> 8) | (inData << 8);
 }
 inline uint32_t ByteSwap4(uint32_t inData)
 {
 return ((inData >> 24) & 0x000000ff)|

((inData >> 8) & 0x0000ff00)|
((inData << 8) & 0x00ff0000)|
((inData << 24) & 0xff000000);

 }

 inline uint64_t ByteSwap8(uint64_t inData)
 {
 return ((inData >> 56) & 0x00000000000000ff)|

((inData >> 40) & 0x000000000000ff00)|
((inData >> 24) & 0x0000000000ff0000)|
((inData >> 8) & 0x00000000ff000000)|
((inData << 8) & 0x000000ff00000000)|
((inData << 24) & 0x0000ff0000000000)|
((inData << 40) & 0x00ff000000000000)|
((inData << 56) & 0xff00000000000000);

 }

 These functions handle basic unsigned integers of the given size, but not other data types that

need to be byte swapped, such as floats, doubles, signed integers, large enums, and more. To

do that, it takes some tricky type aliasing:

 template <typename tFrom, typename tTo>
 class TypeAliaser
 {
 public:
 TypeAliaser(tFrom inFromValue):

mAsFromType(inFromValue) {}
 tTo& Get() {return mAsToType;}

 union
 {

tFrom mAsFromType;
tTo mAsToType;

 };
 };

ptg16606381

112 CHAPTER 4 OBJECT SERIALIZATION

 This class provides a method to take data of one type, such as a float , and treat it as a type for

which there is already a byte swap function implemented. Templating some helper functions

as in Listing 4.4 then enables swapping any type of primitive data using the appropriate

function.

 Listing 4.4 Templated Byte Swapping Functions

 template <typename T, size_t tSize> class ByteSwapper;

 //specialize for 2...
 template <typename T>
 class ByteSwapper<T, 2>
 {
 public:
 T Swap(T inData) const
 {

uint16_t result =
ByteSwap2(TypeAliaser<T, uint16_t>(inData).Get());

return TypeAliaser<uint16_t, T>(result).Get();
 }
 };

 //specialize for 4...
 template <typename T>
 class ByteSwapper<T, 4>
 {
 public:
 T Swap(T inData) const
 {

uint32_t result =
ByteSwap4(TypeAliaser<T, uint32_t>(inData).Get());

return TypeAliaser<uint32_t, T>(result).Get();
 }
 };

 //specialize for 8...
 template <typename T>
 class ByteSwapper<T, 8>
 {
 public:
 T Swap(T inData) const
 {

uint64_t result =
ByteSwap8(TypeAliaser<T, uint64_t>(inData).Get());

return TypeAliaser<uint64_t, T>(result).Get();
 }
 };

ptg16606381

STREAMS 113

 template <typename T>
 T ByteSwap(T inData)
 {

 return ByteSwapper<T, sizeof(T) >().Swap(inData);
 }

 Calling the templated ByteSwap function creates an instance of ByteSwapper , templated

based on the size of the argument. This instance then uses the TypeAliaser to call

the appropriate ByteSwap function. Ideally, the compiler optimizes the intermediate

invocations away, leaving a few operations that just swap the order of some bytes in

a register.

 note

 Not all data needs to be byte swapped just because the platform endianness

doesn’t match the stream endianness. For instance, a string of single-byte

characters doesn’t need to be byte swapped because even though the string is

multiple bytes, the individual characters are only a single byte each. Only primitive

data types should be byte swapped, and they should be swapped at a resolution

that matches their size.

 Using the ByteSwapper , the generic Write and Read functions can now properly support a

stream with endianness that differs from that of the runtime platform:

 template<typename T> void Write(T inData)
 {
 static_assert(

std::is_arithmetic<T>::value||
std::is_enum<T>::value,
"Generic Write only supports primitive data types");

 if(STREAM_ENDIANNESS == PLATFORM_ENDIANNESS)
 {

Write(&inData, sizeof(inData));
 }
 else
 {

T swappedData = ByteSwap(inData);
Write(&swappedData, sizeof(swappedData));

 }

 }

ptg16606381

114 CHAPTER 4 OBJECT SERIALIZATION

 Bit Streams

 One limitation of the memory streams described in the previous section is that they can only

read and write data that is an integral number of bytes. When writing networking code, it is

often desirable to represent values with as few bits as possible, and this can require reading and

writing with single-bit precision. To this end, it is helpful to implement a memory bit stream ,

able to serialize data that is any number of bits. Listing 4.5 contains a declaration of an output
memory bit stream .

 Listing 4.5 Declaration of an Output Memory Bit Stream

 class OutputMemoryBitStream
 {
 public:

 OutputMemoryBitStream() {ReallocBuffer(256);}
 ~OutputMemoryBitStream() {std::free(mBuffer);}

 void WriteBits(uint8_t inData, size_t inBitCount);
 void WriteBits(const void* inData, size_t inBitCount);

 const char* GetBufferPtr() const {return mBuffer;}
 uint32_t GetBitLength() const {return mBitHead;}
 uint32_t GetByteLength() const {return (mBitHead + 7) >> 3;}

 void WriteBytes(const void* inData, size_t inByteCount
{WriteBits(inData, inByteCount << 3);}

 private:
 void ReallocBuffer(uint32_t inNewBitCapacity);

 char* mBuffer;
 uint32_t mBitHead;
 uint32_t mBitCapacity;
 };

 The interface of the bit stream is similar to that of the byte stream, except it includes the ability

to pass a number of bits to write instead of the number of bytes. The construction, destruction,

and reallocation for expansion are similar as well. The new functionality lies in the two new

 WriteBits methods shown in Listing 4.6.

 Listing 4.6 Implementation of an Output Memory Bit Stream

 void OutputMemoryBitStream::WriteBits(uint8_t inData,
size_t inBitCount)

 {
 uint32_t nextBitHead = mBitHead + static_cast<uint32_t>(inBitCount);
 if(nextBitHead > mBitCapacity)

ptg16606381

STREAMS 115

 {
ReallocBuffer(std::max(mBitCapacity * 2, nextBitHead));

 }

 //calculate the byteOffset into our buffer
 //by dividing the head by 8
 //and the bitOffset by taking the last 3 bits
 uint32_t byteOffset = mBitHead >> 3;
 uint32_t bitOffset = mBitHead & 0x7;

 //calculate which bits of the current byte to preserve
uint8_t currentMask = ˜(0xff << bitOffset);

 mBuffer[byteOffset] = (mBuffer[byteOffset] & currentMask)
|(inData << bitOffset);

 //calculate how many bits were not yet used in
 //our target byte in the buffer
 uint32_t bitsFreeThisByte = 8 - bitOffset;

 //if we needed more than that, carry to the next byte
 if(bitsFreeThisByte < inBitCount)
 {

//we need another byte
mBuffer[byteOffset + 1] = inData >> bitsFreeThisByte;

 }

 mBitHead = nextBitHead;
 }

 void OutputMemoryBitStream::WriteBits(const void* inData, size_t inBitCount)
 {
 const char* srcByte = static_cast<const char*>(inData);
 //write all the bytes
 while(inBitCount > 8)
 {

WriteBits(*srcByte, 8);
++srcByte;
inBitCount -= 8;

 }
 //write anything left
 if(inBitCount > 0)
 {

WriteBits(*srcByte, inBitCount);
 }
 }

 The innermost task of writing bits to the stream is handled by the WriteBits(uint8_t

inData, size_t inBitCount) method, which takes a single byte and writes a given

ptg16606381

116 CHAPTER 4 OBJECT SERIALIZATION

 Therefore, when the code is run, the memory pointed to by mbs.mBuffer should be left

containing the two values, as in Figure 4.4 .

number of bits from that byte into the bit stream. To understand how this works, consider what

happens when the following code is executed:

 OutputMemoryBitStream mbs;

 mbs.WriteBits(13, 5);
 mbs.WriteBits(52, 6);

 This should write the number 13 using 5 bits and then the number 52 using 6 bits. Figure 4.3

shows these numbers in binary.

Value13:

Bit

0

7

0

6

0

5

0

4

1

3

1

2

0

1

1

0

Value52:

Bit

0

7

0

6

1

5

1

4

0

3

1

2

0

1

0

0

 Figure 4.3 Binary representation of 13 and 52

Value 1

7

0

6

0

5

0

4

1

3

1

2

0

1

1

0

0

7

0

6

0

5

0

4

0

3

10

1

2

1

1

0

0Bit

Byte

 Figure 4.4 Stream buffer containing 5 bits of 13 and 6 bits of 52

 Notice the 5 bits of the number 13 take up the first 5 bits of byte 0, and then the 6 bits of the

number 52 take up the last 3 bits of byte 0 and the first 3 bits of byte 1.

 Stepping through the code shows how the method achieves this. Assume the stream has been

freshly constructed, so mBitCapacity is 256, mBitHead is 0, and there is enough room in

the stream to avoid reallocation. First, the mBitHead , which represents the index of the next

bit in the stream to be written, is decomposed into a byte index and a bit index within that

byte. Because a byte is 8 bits, the byte index can always be found by dividing by 8, which is

the same as shifting right by 3. Similarly, the index of the bit within that byte can be found by

examining those same 3 bits that were shifted away in the previous step. Because 0x7 is 111 in

binary, bitwise ANDing the mBitHead with 0x7 yields just the 3 bits. In the first call to write the

number 13, mBitHead is 0, so byteOffset and bitOffset are both 0 as well.

ptg16606381

STREAMS 117

 At this point, mBitHead is 5. That means byteOffset is 0 and bitOffset is 5.

 Shifting 52 left by 5 bits yields the result shown in Figure 4.6 .

 Once the method calculates the byteOffset and bitOffset , it uses the byteOffset as

an index into the mBuffer array to find the target byte. Then it shifts the data left by the bit

offset and bitwise ORs it into the target byte. This is all elementary when writing the number

13 because both offsets are 0. However, consider how the stream looks at the beginning of the

 WriteBits(52, 6) call, as shown in Figure 4.5 .

Value 0
7

0
6

0
5

0
4

1
3

1
2

0
1

1
0

0
7

0
6

0
5

0
4

0
3

10

0
2

0
1

0
0Bit

Byte

 Figure 4.5 Stream buffer immediately before the second WriteBits call

Value

Bit

1

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

 Figure 4.6 Binary representation of 52

shifted left by 5 bits

 Note the high-order bits are shifted out of range, and the low-order bits become the high bits.

 Figure 4.7 shows the result of bitwise ORing those bits into byte 0 of the buffer.

Value 1
7

0
6

0
5

0
4

1
3

1
2

0
1

1
0

0
7

0
6

0
5

0
4

0
3

10

0
2

0
1

0
0Bit

Byte

Figure 4.7 52, shifted left by 5 bits, bitwise ORed into the stream buffer

 Byte 0 is complete, but only three of the necessary 6 bits have been written to the stream due

to the overflow when shifting left. The next lines of WriteBits detect and handle this issue.

The method calculates how many bits were initially free in the target byte by subtracting the

 bitOffset from 8. In this case, that yields 3, which is the number of bits that were able to fit.

If the number of bits free is less than the number of bits to be written, the overflow branch

executes.

 In the overflow branch, the next byte is targeted. To calculate what to OR into the next byte, the

method shifts inData right by the number of bits that were free. Figure 4.8 shows the result of

shifting 52 to the right by 3 bits.

ptg16606381

118 CHAPTER 4 OBJECT SERIALIZATION

 The high-order bits that overflowed when shifted left are now shifted to the right to become

the low-order bits of the higher-order byte. When the method ORs the right-shifted bits into

the byte at mBuffer[byteOffset + 1] , it leaves the stream in the final state expected (see

 Figure 4.9).

Value

Bit

0

7

0

6

0

5

0

4

0

3

1

2

1

1

0

0

 Figure 4.8 52, Shifted to the right by 3 bits

Value 1
7

0
6

0
5

0
4

1
3

1
2

0
1

1
0

0
7

0
6

0
5

0
4

0
3

10

1
2

1
1

0
0Bit

Byte

 Figure 4.9 Proper final state of the stream’s buffer

 With the hard work done by WriteBits(uint8_t inData, uint32_t inBitCount) , all

that remains is for WriteBits(const void* inData, uint32_t inBitCount) to break

the data up into bytes and call the previous WriteBits method 1 byte at a time.

 This output memory bit stream is functionally complete, but not ideal. It requires specifying

a number of bits for every piece of data written into the stream. However, in most cases,

the upper bound for the number of bits depends on the type of data being written. Only

sometimes it is useful to use fewer than the upper bound. For this reason, it increases code

clarity and maintainability to add some methods for basic data types:

 void WriteBytes(const void* inData, size_t inByteCount)
 {WriteBits(inData, inByteCount << 3);}

 void Write(uint32_t inData, size_t inBitCount = sizeof(uint32_t) * 8)
 {WriteBits(&inData, inBitCount);}
 void Write(int inData, size_t inBitCount = sizeof(int) * 8)
 {WriteBits(&inData, inBitCount);}
 void Write(float inData)
 {WriteBits(&inData, sizeof(float) * 8);}

 void Write(uint16_t inData, size_t inBitCount = sizeof(uint16_t) * 8)
 {WriteBits(&inData, inBitCount);}
 void Write(int16_t inData, size_t inBitCount = sizeof(int16_t) * 8)
 {WriteBits(&inData, inBitCount);}

 void Write(uint8_t inData, size_t inBitCount = sizeof(uint8_t) * 8)
 {WriteBits(&inData, inBitCount);}

ptg16606381

REFERENCED DATA 119

 void Write(bool inData)
 {WriteBits(&inData, 1);}

 With these methods, most primitive types can be written by simply passing them to the Write

method. The default parameter takes care of supplying the corresponding number of bits.

For cases where the caller desires a fewer number of bits, the methods accept an override

parameter. A templated function and type traits again provide even more generality than

multiple overloads:

 template<typename T>
 void Write(T inData, size_t inBitCount = sizeof(T) * 8)
 {
 static_assert(std::is_arithmetic<T>::value||

std::is_enum<T>::value,
"Generic Write only supports primitive data types");

 WriteBits(&inData, inBitCount);
 }

 Even with the templated Write method, it is still useful to implement a specific overload

for bool because its default bit count should be 1, not sizeof(bool) * 8 , which

would be 8.

 warning

 This implementation of the Write method works only on little-endian platforms

due to the way it addresses individual bytes. If the method needs to operate on a

big-endian platform, it should either byte swap the data in the templated Write

function before the data goes into WriteBits , or it should address the bytes

using a big-endian compatible method.

 The input memory bit stream , which reads bits back out of the stream, works in a similar

manner to the output memory bit stream. Implementation is left as an exercise and can also be

found at the companion website.

 Referenced Data
 The serialization code can now handle all kinds of primitive and POD data, but it falls apart

when it needs to handle indirect references to data, through pointers or other containers. Recall

the RoboCat class (as shown next):

ptg16606381

120 CHAPTER 4 OBJECT SERIALIZATION

 class RoboCat: public GameObject
 {
 public:
 RoboCat() mHealth(10), mMeowCount(3),

mHomeBase(0)
 {

mName[0] = '\0';
 }
 virtual void Update();

 void Write(OutputMemoryStream& inStream) const;
 void Read(InputMemoryStream& inStream);

 private:
 int32_t mHealth;
 int32_t mMeowCount;
 GameObject* mHomeBase;
 char mName[128];
 std::vector<int32_t> mMiceIndices;

 Vector3 mPosition;
 Quaternion mRotation;
 };

 There are two complex member variables which the current memory stream implementation

cannot yet serialize— mHomeBase and mMiceIndices . Each calls for a different serialization

strategy, as discussed in the following sections.

 Inlining or Embedding

 Sometimes network code must serialize member variables that reference data not

shared with any other object. mMiceIndices in RoboCat is a good example. It is

a vector of integers tracking the indices of various mice in which the RoboCat is

interested. Because the std::vector<int> is a black box, it is unsafe to use the

standard OutputMemoryStream::Write function to copy from the address of the

 std::vector<int> into the stream. Doing so would serialize the values of any pointers that

are in std::vector , which when deserialized on a remote host would point to garbage.

 Instead of serializing the vector itself, a custom serialization function should write only

the data contained within the vector. That data in RAM may actually be far away from the

data of the RoboCat itself. However, when the custom function serializes it, it does so into

the stream inline, embedded right in the middle of the RoboCat data. For this reason,

this process is known as inlining or embedding . For instance, a function to serialize a

 std::vector<int32_t> would look like this:

 void Write(const std::vector<int32_t>& inIntVector)
 {
 size_t elementCount = inIntVector.size();

ptg16606381

REFERENCED DATA 121

 Write(elementCount);
 Write(inIntVector.data(), elementCount * sizeof(int32_t));
 }

 First, the code serializes the length of the vector, and then all the data from the vector. Note

that the Write method must serialize the length of the vector first so that the corresponding

 Read method can use it to allocate a vector of the appropriate length before deserializing the

contents. Because the vector is just primitive integers, the method serializes it all in one straight

 memcpy . To support more complex data types, a templated version of the std::vector

 Write method serializes each element individually:

 template<typename T>
 void Write(const std::vector<T>& inVector)
 {
 size_t elementCount = inVector.size();
 Write(elementCount);
 for(const T& element: inVector)
 {

Write(element);
 }
 }

 Here, after serializing the length, the method individually embeds each element from the

vector. This allows it to support vectors of vectors, or vectors of classes that contain vectors, and

so on. Deserializing requires a similarly implemented Read function:

 template<typename T>
 void Read(std::vector<T>& outVector)
 {
 size_t elementCount;
 Read(elementCount);
 outVector.resize(elementCount);
 for(const T& element: outVector)
 {

Read(element);
 }
 }

 Additional specialized Read and Write functions can support other types of containers, or

any data referenced by a pointer, as long as that data is wholly owned by the parent object

being serialized. If the data needs to be shared with or pointed to by other objects, then a more

complex solution, known as linking, is required.

 Linking

 Sometimes serialized data needs to be referenced by more than one pointer. For instance,

consider the GameObject* mHomeBase in RoboCat . If two RoboCat s share the same home

base, there is no way to represent that fact using the current toolbox. Embedding would just

ptg16606381

122 CHAPTER 4 OBJECT SERIALIZATION

embed a copy of the same home base in each RoboCat when serialized. During deserialization,

this would result in the creation of two different home bases!

 Other times, the data is structured in such a way that embedding is just impossible. Consider

the HomeBase class:

 class HomeBase: public GameObject
 {
 std::vector<RoboCat*> mRoboCats;
 };

 The HomeBase contains a list of all its active RoboCat s. Consider a function to serialize a

 RoboCat using only embedding. While serializing a RoboCat , the function would embed its

 HomeBase , which would then embed all its active RoboCats , including the RoboCat it was

currently serializing. This is a recipe for stack overflow due to infinite recursion. Clearly another

tool is necessary.

 The solution is to give each multiply referenced object a unique identifier and then to serialize

references to those objects by serializing just the identifier. Once all the objects are deserialized

on the other end of the network, a fix-up routine can use the identifiers to find the referenced

objects and plug them into the appropriate member variables. It is for this reason the process is

commonly referred to as linking .

 Chapter 5 discusses how to assign unique IDs to each object sent over the network and how to

maintain maps from IDs to objects and vice versa. For now, assume each stream has access to a

 LinkingContext (as shown in Listing 4.7) that contains an up-to-date map between network

IDs and game objects.

 Listing 4.7 Linking Context

 class LinkingContext
 {
 public:

 uint32_t GetNetworkId(GameObject* inGameObject)
 {

auto it = mGameObjectToNetworkIdMap.find(inGameObject);
if(it != mGameObjectToNetworkIdMap.end())
{

return it->second;
}
else
{

return 0;
}

 }

 GameObject* GetGameObject(uint32_t inNetworkId)

ptg16606381

REFERENCED DATA 123

 {
auto it = mNetworkIdToGameObjectMap.find(inNetworkId);
if(it != mNetworkIdToGameObjectMap.end())
{

return it->second;
}
else
{

return nullptr;
}

 }
 private:
 std::unordered_map<uint32_t, GameObject*>

mNetworkIdToGameObjectMap;
 std::unordered_map<GameObject*, uint32_t>

mGameObjectToNetworkIdMap;
 };

 The LinkingContext enables a simple linking system in the memory stream:

 void Write(const GameObject* inGameObject)
 {
 uint32_t networkId =

mLinkingContext->GetNetworkId(inGameObject);
 Write(networkId);
 }

 void Read(GameObject*& outGameObject)
 {
 uint32_t networkId;
 Read(networkId);
 outGameObject = mLinkingContext->GetGameObject(networkId);
 }

 note

 When fully implemented, a linking system, and the gameplay code that uses it,

must be tolerant of receiving a network ID for which there is no object mapped.

Because packets can be dropped, a game might receive an object with a member

variable that refers to an object not yet sent. There are many different ways to

handle this—the game could either ignore the entire object, or it could deserialize

the object and link up whatever references are available, leaving the missing ones

as null. A more complex system might keep track of the member variable with the

null link so that when an object for the given network ID is received, it can link it in.

The choice depends on the specifics of the game’s design.

ptg16606381

124 CHAPTER 4 OBJECT SERIALIZATION

 Compression
 With the tools to serialize all types of data, it is possible to write code to send game objects

back and forth across the network. However, it will not necessarily be efficient code that

functions within the bandwidth limitations imposed by the network itself. In the early days

of multiplayer gaming, games had to make do with 2400 bytes per second connections, or

less. These days, game engineers are luckier to have high-speed connections many orders of

magnitude faster, but they must still concern themselves with how to use that bandwidth as

efficiently as possible.

 A large game world can have hundreds of moving objects, and sending real-time exhaustive

data about those objects to the potentially hundreds of connected players is enough to

saturate even the highest bandwidth connection. This book examines many ways to make

the most of the available bandwidth. Chapter 9 , “Scalability,” looks at high-level algorithms

which determine who should see what data and which object properties need to be updated

for which clients. This section, however, starts at the lowest level by examining common

techniques for compressing data at the bit and byte level. That is, once a game has determined

that a particular piece of data needs to be sent, how can it send it using as few bits as possible?

 Sparse Array Compression

 The trick to compressing data is to remove any information that does not need to be sent over

the network. A good place to look for this kind of information is in any sparse or incompletely

filled data structures. Consider the mName field in RoboCat . For whatever reason, the original

 RoboCat engineer decided that the best way to store the name of a RoboCat is with a 128-

byte character array in the middle of the data type. The stream method WriteBytes(const

void* inData, uint32_t inByteCount) can already embed the character array, but if

used judiciously, it can most likely serialize the necessary data without writing a full 128 bytes.

 Much of compression strategy comes down to analyzing the average case and implementing

algorithms to take advantage of it, and that is the approach to take here. Given typical names

in the English language, and the game design of Robo Cat , the odds are good that a user won’t

need all 128 characters to name her RoboCat . The same could be said about the array no

matter what length it is: Just because it allows space for a worst case, serialization code doesn’t

have to assume that every user will exploit that worst case. As such, a custom serializer can save

space by looking at the mName field and counting how many characters are actually used by

the name. If mName is null terminated, the task is made trivial by the std :: strlen function. For

instance, a more efficient way to serialize the name is shown here:

 void RoboCat::Write(OutputMemoryStream& inStream) const
 {
 ...//serialize other fields up here

 uint8_t nameLength =
static_cast<uint8_t>(strlen(mName));

ptg16606381

COMPRESSION 125

 inStream.Write(nameLength);
 inStream.Write(mName, nameLength);
 ...
 }

 Notice that, just as when serializing a vector, the method first writes the length of the serialized

data before writing the data itself. This is so the receiving end knows how much data to read

out of the stream. The method serializes the length of the string itself as a single byte. This is

only safe because the entire array holds a maximum of 128 characters.

 In truth, assuming the name is infrequently accessed compared to the rest of the RoboCat ’s

data, it is more efficient from a cache perspective to represent an object’s name with an

 std::string , allowing the entire RobotCat data type to fit in fewer cache lines. In this case,

a string serializing method similar to the vector method implemented in the previous section

would handle the name serialization. That makes this particular mName example a bit contrived

for clarity’s sake, but the lesson holds true, and sparse containers are a good low-hanging

target for compression.

 Entropy Encoding

 Entropy encoding is a subject of information theory which deals with compressing data based

on how unexpected it is. According to information theory, there is less information or entropy

in a packet that contains expected values than in a packet that contains unexpected values.

Therefore, code should require fewer bits to send expected values than to send unexpected ones.

 In most cases, it is more important to spend CPU cycles simulating the actual game than to

calculate the exact amount of entropy in a packet to achieve optimal compression. However,

there is a very simple form of entropy encoding that is quite efficient. It is useful when

serializing a member variable that has a particular value more frequently than any other value.

 As an example, consider the mPosition field of RoboCat . It’s a Vector3 with an X, Y, and

Z component. X and Z represent the cat’s position on the ground, and Y represents the cat’s

height above ground. A naïve serialization of the position would look like so:

 void OutputMemoryBitStream::Write(const Vector3& inVector)
 {
 Write(inVector.mX);
 Write(inVector.mY);
 Write(inVector.mZ);
 }

 As written, it requires 3 × 4 = 12 bytes to serialize a RoboCat ’s mPosition over the network.

However, the naïve code does not take advantage of the fact that cats can often be found on

the ground. This means that the Y coordinate for most mPosition vectors is going to be 0. The

method can use a single bit to indicate whether the mPosition has the common value of 0, or

some other, less common value:

ptg16606381

126 CHAPTER 4 OBJECT SERIALIZATION

 void OutputMemoryBitStream::WritePos(const Vector3& inVector)
 {
 Write(inVector.mX);
 Write(inVector.mZ);

 if(inVector.mY == 0)
 {

Write(true);
 }
 else
 {

Write(false);
Write(inVector.mY);

 }
 }

 After writing the X and Y components, the method checks if the height off the ground is 0 or

not. If it is 0, it writes a single true bit, indicating, “yes, this object has the usual height of 0.”

If the Y component is not 0, it writes a single false bit, indicating, “the height is not 0, so the

next 32 bits will represent the actual height.” Note that in the worst case, it now takes 33 bits

to represent the height—the single flag to indicate whether this is a common or uncommon

value, and then the 32 to represent the uncommon value. At first, this may seem inefficient, as

serialization now may use more bits than ever before. However, calculating the true number

of bits used in the average case requires factoring in exactly how common it is that a cat is on

the ground.

 In-game telemetry can log exactly how often a user’s cat is on the floor—either from testers

playing on site or from actual users playing an earlier version of the game and submitting

analytics over the Internet. Assume such an experiment determines that players are on the

ground 90% of the time. Basic probability then dictates the expected number of bits required

to represent the height:

 POnGround *BitsOnGround + PInAir *BitsInAir + 0.9*1 + 0.1*33 + 4.2

 The expected number of bits to serialize the Y component has dropped from 32 to 4.2: That

saves over 3 bytes per position. With 32 players changing positions 30 times a second, this can

add up to a significant savings from just this one member variable.

 The compression can be even more efficient. Assume that analytics show that whenever the cat is

not on the floor, it is usually hanging from the ceiling, which has a height of 100. The serialization

code can then support a second common value to compress positions on the ceiling:

 void OutputMemoryBitStream::WritePos(const Vector3& inVector)
 {
 Write(inVector.mX);
 Write(inVector.mZ);

 if(inVector.mY == 0)

ptg16606381

COMPRESSION 127

 {
Write(true);
Write(true);

 }
 else if(inVector.mY == 100)
 {

Write(true);
Write(false);

 }
 else
 {

Write(false);
Write(inVector.mY);

 }
 }

 The method still uses a single bit to indicate whether the height contains a common value or

not, but then it adds a second bit to indicate which of the common values it’s using. Here the

common values are hardcoded into the function, but with too many more values this technique

can get quite messy. In that case, a simplified implementation of Huffman coding could use a

lookup table of common values, with a few bits to a store an index into that lookup table.

 The question remains, though, of whether this optimization is a good one—just because the

ceiling is a second common location for a cat, it’s not necessarily an efficient optimization to

make, so it is necessary to check the math. Assume that analytics show cats are on the ceiling

7% of the time. In that case, the new expected number of bits used to represent a height can be

calculated using this equation:

POnGround *BitsOnGround + PInAir *BitsInAir + POnCeiling *BitsOnCeiling + 0.9 * 2 + 0.07 * 2 + 0.03 * 33 + 2.93

 The expected number of bits is 2.93, which is 1.3 bits fewer than the first optimization.

Therefore the optimization is worthwhile.

 There are many forms of entropy encoding, ranging from the simple, hardcoded one described

here, to the more complex and popular Huffman coding, arithmetic coding, gamma coding, run

length encoding, and more. As for everything in game development, the amount of CPU power

to allocate to entropy encoding versus the amount to allocate elsewhere is a design decision.

Resources on other encoding methods can be found in the “Additional Readings” section.

 Fixed Point

 Lightning fast calculations on 32-bit floating point numbers are the boon and the benchmark

of the modern computing era. However, just because the game simulation performs floating

point computations doesn't mean it needs all 32 bits to represent the numbers when sent

across the network. A common and useful technique is to examine the known range and

precision requirements of the numbers being sent and convert them to a fixed point format so

that the data can be sent with the minimum number of bits necessary. To do this, you have to

ptg16606381

128 CHAPTER 4 OBJECT SERIALIZATION

sit down with designers and gameplay engineers and figure out exactly what your game needs.

Once you know, you can begin to build a system that provides that as efficiently as possible.

 As an example, consider the mLocation field again. The serialization code already compresses

the Y component quite a bit, but it does nothing for the X and Z components: They are still

using a full 32 bits each. A talk with the designers reveals that the Robo Cat game world’s size is

4000 game units by 4000 game units, and the world is centered at the origin. This means that

the minimum value for an X or Z component is −2000, and the maximum value is 2000. Further

discussion and gameplay testing reveal that client-side positions only need to be accurate to

within 0.1 game units. That’s not to say that the authoritative server’s position doesn't have to

be more accurate, but when sending a value to the client, it only needs to do so with 0.1 units of

precision.

 These limits provide all the information necessary to determine exactly how many bits should

be necessary to serialize this value. The following formula provides the total number of possible

values the X component might have:

 (MaxValue + MinValue)/Precision + 1 + (2000 + +2000)/0.1 + 1 + 40001

 This means there are 40001 potential values for the serialized component. If there is a mapping

from an integer less than 40001 to a corresponding potential floating point value, the method

can serialize the X and Z components simply by serializing the appropriate integers.

 Luckily, this is a fairly simple task using something called fixed point numbers. A fixed point

number is a number that looks like an integer, but actually represents a number equal to that

integer divided by a previously decided upon constant. In this case, the constant is equal

to the required level of precision needed. At that point, the method only needs to serialize

the number of bits that is required to store an integer guaranteed to be less than 40001.

Because log
2
 40001 is 15.3, the routine should require only 16 bits each to serialize the X and Z

components. Putting that all together results in the following code:

 inline uint32_t ConvertToFixed(
 float inNumber, float inMin, float inPrecision)
 {
 return static_cast<uint32_t> (

(inNumber - inMin)/inPrecision);
 }

 inline float ConvertFromFixed(
 uint32_t inNumber, float inMin, float inPrecision)
 {
 return static_cast<float>(inNumber) *

inPrecision + inMin;
 }

ptg16606381

COMPRESSION 129

 void OutputMemoryBitStream::WritePosF(const Vector3& inVector)
 {
 Write(ConvertToFixed(inVector.mX, -2000.f, 0.1f), 16);
 Write(ConvertToFixed(inVector.mZ, -2000.f, 0.1f), 16);
 ... //write Y component here ...
 }

 The game stores the vector’s components as full floating point numbers, but when it needs

to send them over the network, the serialization code converts them to fixed point numbers

between 0 and 40000 and sends them using only 16 bits a piece. This saves another full 32 bits

on the vector, cutting its expected size down to 35 bits from the original 96.

 note

 On some CPUs, such as the PowerPC in the Xbox 360 and PS3, it can be

computationally expensive to convert from a floating point to an integer and back.

However, it is often worth the cost, given the amount of bandwidth it conserves.

As with most optimizations, it is a tradeoff which must be decided upon based on

the specifics of the individual game being developed.

 Geometry Compression

 Fixed point compression takes advantage of game-specific information to serialize data with

as few bits as possible. Interestingly, this is just information theory at work again: Because

there are constraints on the possible values for a variable, it requires a smaller number of bits

to represent that information. This technique applies when serializing any data structure with

known constraints on its contents.

 Many geometric data types fall under just this case. This section discusses the quaternion and

the transformation matrix. A quaternion is a data structure containing four floating point

numbers, useful for representing a rotation in three dimensions. The exact uses of the quaternion

are beyond the scope of this text, but more information can be found in the references in the

“Additional Readings” section. What is important for this discussion is that when representing a

rotation, a quaternion is normalized, such that each component is between −1 and 1, and the sum

of the squares of each component is 1. Because the sum of the squares of the components is fixed,

serializing a quaternion requires serializing only three of the four components, as well as a single

bit to represent the sign of the fourth component. Then the deserializing code can reconstruct

the final component by subtracting the squares of the other components from 1.

 In addition, because all components are between −1 and 1, fixed point representation can

further improve compression of the components, if there is an acceptable precision loss that

does not affect gameplay. Often, 16 bits of precision are enough, giving 65535 possible values

to represent the range from −1 to 1. This means that a four-component quaternion, which takes

128 bits in memory, can be serialized fairly accurately with as few as 49 bits:

ptg16606381

130 CHAPTER 4 OBJECT SERIALIZATION

 void OutputMemoryBitStream::Write(const Quaternion& inQuat)
 {
 float precision = (2.f / 65535.f);
 Write(ConvertToFixed(inQuat.mX, -1.f, precision), 16);
 Write(ConvertToFixed(inQuat.mY, -1.f, precision), 16);
 Write(ConvertToFixed(inQuat.mZ, -1.f, precision), 16);
 Write(inQuat.mW < 0);
 }

 void InputMemoryBitStream::Read(Quaternion& outQuat)
 {
 float precision = (2.f / 65535.f);

 uint32_t f = 0;

 Read(f, 16);
 outQuat.mX = ConvertFromFixed(f, -1.f, precision);
 Read(f, 16);
 outQuat.mY = ConvertFromFixed(f, -1.f, precision);
 Read(f, 16);
 outQuat.mZ = ConvertFromFixed(f, -1.f, precision);

 outQuat.mW = sqrtf(1.f -
outQuat.mX * outQuat.mX +
outQuat.mY * outQuat.mY +
outQuat.mZ * outQuat.mZ);

 bool isNegative;
 Read(isNegative);

 if(isNegative)
 {

outQuat.mW *= -1;
 }
 }

 Geometric compression can also help when serializing an affine transformation matrix. A

transformation matrix is 16 floats, but to be affine, it must decompose into a 3-float translation,

a quaternion rotation, and a 3-float scale, for a total of 10 floats. Entropy encoding can then

help save even more bandwidth if there are more constraints on the typical matrix to serialize.

For instance, if the matrix is usually unscaled, the routine can indicate this with a single bit. If

the scale is uniform, the routine can indicate this with a different bit pattern and then serialize

only one component of the scale instead of all three.

 Maintainability
 Focusing solely on bandwidth efficiency can yield some slightly ugly code in some places.

There are a few tradeoffs worth considering, sacrificing a little efficiency for ease of

maintainability.

ptg16606381

MAINTAINABILITY 131

 Abstracting Serialization Direction

 Every new data structure or compression technique discussed in the previous sections has

required both a read method and a write method. Not only does that mean implementing two

methods for each new piece of functionality, but the methods must remain in sync with each

other: If you change how a member variable is written, you must change how it’s read. Having

two such tightly coupled methods for each data structure is a bit of a recipe for frustration.

It would be much cleaner if it were possible somehow to have only one method per data

structure that could handle both reading and writing.

 Luckily, through the use of inheritance and virtual functions, it is indeed possible. One way to

implement this is to make OutputMemoryStream and InputMemoryStream both derive

from a base MemoryStream class with a Serialize method:

 class MemoryStream
 {
 virtual void Serialize(void* ioData,

uint32_t inByteCount) = 0;
 virtual bool IsInput() const = 0;
 };

 class InputMemoryStream: public MemoryStream
 {
 ...//other methods above here
 virtual void Serialize(void* ioData, uint32_t inByteCount)
 {

Read(ioData, inByteCount);
 }
 virtual bool IsInput() const {return true;}

 };

 class OutputMemoryStream: public MemoryStream
 {
 ...//other methods above here
 virtual void Serialize(void* ioData, uint32_t inByteCount)
 {

Write(ioData, inByteCount);
 }

 virtual bool IsInput() const {return false;}
 }

 By implementing Serialize , the two child classes can take a pointer to data and a size and

then perform the appropriate action, either reading or writing. Using the IsInput method,

a function can check whether it has been passed an input stream or output stream. Then, the

base MemoryStream class can implement a templated Serialize method assuming that the

non-templated version is properly implemented by a subclass:

ptg16606381

132 CHAPTER 4 OBJECT SERIALIZATION

 template<typename T> void Serialize(T& ioData)
 {
 static_assert(std::is_arithmetic<T>::value||

std::is_enum<T>::value,
 "Generic Serialize only supports primitive data types");

 if(STREAM_ENDIANNESS == PLATFORM_ENDIANNESS)
 {

Serialize(&ioData, sizeof(ioData));
 }
 else
 {

if(IsInput())
{

T data;
Serialize(&data, sizeof(T));
ioData = ByteSwap(data);

}
else
{

T swappedData = ByteSwap(ioData);
Serialize(&swappedData, sizeof(swappedData));

}
 }
 }

 The templated Serialize method takes generic data as a parameter and will either read it

or write it, depending on the child class’s non-templated Serialize metho d . This facilitates

the replacement of each pair of custom Read and Write methods with a corresponding

 Serialize method. The custom Serialize method needs to take only a MemoryStream

as a parameter and it can read or write appropriately using the stream’s virtual Serialize

method. This way, a single method handles both reading and writing for a custom class,

ensuring that input and output code never get out of sync.

 warning

 This implementation is slightly more inefficient than the previous one because

of all the virtual function calls required. This system can be implemented using

templates instead of virtual functions to regain some of the performance hit, but

that is left as an exercise for you to try.

 Data-Driven Serialization

 Most object serialization code follows the same pattern: For each member variable in an

object’s class, serialize that member variable’s value. There may be some optimizations, but the

general structure of the code is usually the same. In fact, it is so similar that if a game somehow

ptg16606381

MAINTAINABILITY 133

had data at runtime about what member variables were in an object, it could use a single

serialization method to handle most of serialization needs.

 Some languages, like C# and Java, have built-in reflection systems that allow runtime

access to class structure. In C++, however, reflecting class members at runtime requires

a custom built system. Luckily, building a basic reflection system is not too complicated

(see Listing 4.8).

 Listing 4.8 Basic Reflection System

 enum EPrimitiveType
 {
 EPT_Int,
 EPT_String,
 EPT_Float
 };

 class MemberVariable
 {
 public:
 MemberVariable(const char* inName,

EPrimitiveType inPrimitiveType, uint32_t inOffset):
 mName(inName),
 mPrimitiveType(inPrimitiveType),
 mOffset(inOffset) {}

 EPrimitiveType GetPrimitiveType() const {return mPrimitiveType;}
 uint32_t GetOffset() const {return mOffset;}

 private:
 std::string mName;
 EPrimitiveType mPrimitiveType;
 uint32_t mOffset;
 };

 class DataType
 {
 public:
 DataType(std::initializer_list<const MemberVariable& > inMVs):
 mMemberVariables(inMVs)
 {}

 const std::vector<MemberVariable>& GetMemberVariables() const
 {

return mMemberVariables;
 }
 private:
 std::vector< MemberVariable > mMemberVariables;
 };

ptg16606381

134 CHAPTER 4 OBJECT SERIALIZATION

 EPrimitiveType represents the primitive type of a member variable. This system supports

only int , float , and string , but it is easy to extend with any primitive type desired.

 The MemberVariable class represents a single member variable in a compound data type.

It holds the member variable’s name (for debugging purposes), its primitive type, and its

memory offset in its parent data type. Storing the offset is a critical: Serialization code can

add the offset to the base address of a given object to find the location in memory of the

member variable’s value for that particular object. This is how it will read and write the

member variable’s data.

 Finally, the DataType class holds all the member variables for a particular class. For each class

that supports data-driven serialization, there is one corresponding instance of DataType .

With the reflection infrastructure in place, the following code loads up the reflection data for a

sample class:

 #define OffsetOf(c, mv) ((size_t) & (static_cast<c*>(nullptr)->mv)))

 class MouseStatus
 {
 public:
 std::string mName;
 int mLegCount, mHeadCount;
 float mHealth;

 static DataType* sDataType;
 static void InitDataType()
 {

sDataType = new DataType(
{

MemberVariable("mName",
EPT_String, OffsetOf(MouseStatus,mName)),

MemberVariable("mLegCount",
EPT_Int, OffsetOf(MouseStatus, mLegCount)),

MemberVariable("mHeadCount",
EPT_Int, OffsetOf(MouseStatus, mHeadCount)),

MemberVariable("mHealth",
EPT_Float, OffsetOf(MouseStatus, mHealth))

});
 }
 };

 Here, a sample class tracks a RoboMouse ’s status. The static InitDataType function must be

called at some point to initialize the sDataType member variable. That function creates the

 DataType that represents the MouseStatus and fills in the mMemberVariables entries.

Notice the use of a custom OffsetOf macro to calculate the proper offset of each member

variable. The built-in C++ offsetof macro has undefined behavior for non-POD classes. As

ptg16606381

MAINTAINABILITY 135

such, some compilers actually return compile errors when offsetof is used on classes with

virtual functions or other non-POD types. As long as the class doesn't define a custom unary &

operator, and the class hierarchy doesn't use virtual inheritance or have any member variables

that are references, the custom macro will work. Ideally, instead of having to fill in the reflection

data with handwritten code, a tool would analyze the C++ header files and automatically

generate the reflection data for the classes.

 From here, implementing a simple serialize function is just a matter of looping through the

member variables in a data type:

 void Serialize(MemoryStream* inMemoryStream,
const DataType* inDataType, uint8_t* inData)

 {
 for(auto& mv: inDataType->GetMemberVariables())
 {

void* mvData = inData + mv.GetOffset();
switch(mv.GetPrimitiveType())
{

EPT_Int:
inMemoryStream->Serialize(*(int*) mvData);
break;

EPT_String:
inMemoryStream->Serialize(*(std::string*) mvData);
break;

EPT_Float:
inMemoryStream->Serialize(*(float*) mvData);
break;

}
 }
 }

 The GetOffset method of each member variable calculates a pointer to the instance’s data for

that member. Then the switch on GetPrimitiveType casts the data to the appropriate type

and lets the typed Serialize function take care of the actual serialization.

 This technique can be made more powerful by expanding the metadata tracked in the

 MemberVariable class. For instance, it could store the number of bits to use for each variable

for automatic compression. Additionally, it could store potential common values for the

member variable to support a procedural implementation of some entropy encoding.

 As a whole, this method trades performance for maintainability: There are more branches

that might cause pipeline flushes, but there is less code to write overall and, therefore, fewer

chances for errors. As an extra benefit, a reflection system is useful for many things besides

network serialization. It can be helpful when implementing serialization to disk, garbage

collection, a GUI object editor, and more.

ptg16606381

136 CHAPTER 4 OBJECT SERIALIZATION

 Summary
 Serialization is the process of taking a complex data structure and breaking it down into a

linear array of bytes, which can be sent to another host across a network. The naïve approach

of simply using memcpy to copy the structure into a byte buffer does not usually work. The

stream, the basic workhorse for serialization makes it possible to serialize complex data

structures, including those that reference other data structures and relink those references after

deserialization.

 There are several techniques for serializing data efficiently. Sparse data structures can be

serialized into more compact forms. Expected values of member variables can be compressed

losslessly using entropy encoding. Geometric or other similarly constrained data structures

can also be compressed losslessly by making use of the constraints to send only the data that

is necessary to reconstruct the data structure. When slightly lossy compression is acceptable,

floating point numbers can be turned into fixed point numbers based on the known range and

necessary precision of the value.

 Efficiency often comes at the cost of maintainability, and sometimes it is worthwhile to reinject

some maintainability into a serialization system. Read and Write methods for a data structure

can be collapsed into a single Serialize method which reads or writes depending on the

stream on which it is operating, and serialization can be data-driven, using auto- or hand-

generated metadata to serialize objects without requiring custom, per-data structure read and

write functions.

 With these tools, you have everything you need to package up an object and send it to a

remote host. The next chapter discusses both how to frame this data so that the remote host

can create or find the appropriate object to receive the data, and how to efficiently handle

partial serialization when a game requires that only a subset of an object’s data be serialized.

 Review Questions
1. Why is it not necessarily safe to simply memcpy an object into a byte buffer and send that

buffer to a remote host?

2. What is endianness? Why is it a concern when serializing data? Explain how to handle

endian issues when serializing data.

3. Describe how to efficiently compress a sparse data structure.

4. Give two ways to serialize an object with pointers in it. Give an example of when each way

is appropriate.

5. What is entropy encoding? Give a basic example of how to use it.

6. Explain how to use fixed point numbers to save bandwidth when serializing floating point

numbers.

ptg16606381

ADDITIONAL READINGS 137

7. Explain thoroughly why the WriteBits function as implemented in this chapter only

works properly on little-endian platforms. Implement a solution that will work on big-

endian platforms as well.

8. Implement MemoryOutputStream :: Write(const unordered_map<int, int >&)

that allows the writing of a map from integer to integer into the stream.

9. Write the corresponding MemoryOutputStream::Read(unordered_map<int, int >&)

method.

10. Template your implementation of MemoryOutputStream::Read from Question 9 so it

works properly for template <tKey, tValue> unordered_map<tKey, tValue> .

11. Implement an efficient Read and Write for an affine transformation matrix, taking

advantage of the fact that the scale is usually 1, and when not 1, is usually at least uniform.

12. Implement a serialization module with a generic serialize method that relies on templates

instead of virtual functions.

 Additional Readings
 Bloom, Charles. (1996, August 1). Compression: Algorithms: Statistical Coders . Retrieved from

 http://www.cbloom.com/algs/statisti.html . Accessed September 12, 2015.

 Blow, Jonathan. (2004, January 17). Hacking Quaternions . Retrieved from http://number-none

.com/product/Hacking%20Quaternions/ . Accessed September 12, 2015.

 Ivancescu, Gabriel. (2007, December 21). Fixed Point Arithmetic Tricks . Retrieved from

 http://x86asm.net/articles/fixed-point-arithmetic-and-tricks/ . Accessed September 12, 2015.

http://www.cbloom.com/algs/statisti.html
http://number-none.com/product/Hacking%20Quaternions/
http://x86asm.net/articles/fixed-point-arithmetic-and-tricks/
http://number-none.com/product/Hacking%20Quaternions/

ptg16606381

This page intentionally left blank

ptg16606381

 C H A P T E R 5

 OBJECT REPLICATION

 Serializing object data is only the first step in

transmitting state between hosts. This chapter

investigates a generalized replication framework

which supports synchronization of world and object

state between remote processes.

ptg16606381

140 CHAPTER 5 OBJECT REPLICATION

 The State of the World
 To be successful, a multiplayer game must make concurrent players feel like they are playing

in the same world. When one player opens a door or kills a zombie, all players in range need to

see that door open, or that zombie explode. Multiplayer games provide this shared experience

by constructing a world state at each host and exchanging any information necessary to

maintain consistency between each host’s state.

 Depending on the game’s network topology, discussed more in Chapter 6 , “Network

Topologies and Sample Games,” there are various ways to create and enforce consistency

between remote hosts’ world states. One common method is to have a server transmit the state

of the world to all connected clients. The clients receive this transmitted state and update their

own world state accordingly. In this way, all players on client hosts eventually experience the

same world state.

 Assuming some kind of object-oriented game object model, the state of the world can be

defined as the state of all game objects in that world. Thus, the task of transmitting the world

state can be decomposed into the task of transmitting the state of each of those objects.

 This chapter addresses the task of transmitting object state between hosts in an effort to

maintain a consistent world state for multiple, remote players.

 Replicating an Object
 The act of transmitting an object’s state from one host to another is known as replication .

Replication requires more than just the serialization discussed in Chapter 4 , “Object

Serialization.” To successfully replicate an object, a host must take three preparatory steps

before serializing the object’s internal state:

1. Mark the packet as a packet containing object state.

2. Uniquely identify the replicated object.

3. Indicate the class of the object being replicated.

 First the sending host marks the packet as one containing object state. Hosts may need to

communicate in ways other than object replication, so it is not safe to assume that each

incoming datagram contains object replication data. As such, it is useful to create an enum

 PacketType to identify the type of each packet. Listing 5.1 gives an example.

 Listing 5.1 PacketType Enum

 enum PacketType
 {
 PT_Hello,
 PT_ReplicationData,

ptg16606381

REPLICATING AN OBJECT 141

 PT_Disconnect,
 PT_MAX
 };

 For every packet it sends, the host first serializes the corresponding PacketType into the

packet’s MemoryStream . This way, the receiving host can read the packet type immediately

off each incoming datagram and then determine how to process it. Traditionally, the first

packet exchanged between hosts is flagged as some kind of “hello” packet, used to initiate

communication, allocate state, and potentially begin an authentication process. The presence

of PT_Hello as the first byte in an incoming datagram signifies this type of packet. Similarly,

 PT_Disconnect as the first byte indicates a request to begin the disconnect process. PT_MAX

is used later by code that needs to know the maximum number of elements in the packet type

enum. To replicate an object, a sending host serializes PT_ReplicationData as the first byte

of a packet.

 Next, the sending host needs to identify the serialized object to the receiving host. This is so

the receiving host can determine if it already has a copy of the incoming object. If so, it can

update the object with the serialized state instead of instantiating a new object. Remember

that the LinkingContext described in Chapter 4 already relies on objects having unique

identifier tags. These tags can also identify objects for the purpose of state replication. In fact,

the LinkingContext can be expanded, as shown in Listing 5.2, to assign unique network

identifiers to objects that don’t currently have them.

 Listing 5.2 Enhanced LinkingContext

 class LinkingContext
 {
 public:
 LinkingContext():
 mNextNetworkId(1)
 {}

 uint32_t GetNetworkId(const GameObject* inGameObject,
bool inShouldCreateIfNotFound)

 {
auto it = mGameObjectToNetworkIdMap.find(inGameObject);
if(it != mGameObjectToNetworkIdMap.end())
{

return it->second;
}

 else if(inShouldCreateIfNotFound)
{

uint32_t newNetworkId = mNextNetworkId++;
AddGameObject(inGameObject, newNetworkId);
return newNetworkId;

}

ptg16606381

142 CHAPTER 5 OBJECT REPLICATION

else
{

return 0;
}

 }

 void AddGameObject(GameObject* inGameObject, uint32_t inNetworkId)
 {

mNetworkIdToGameObjectMap[inNetworkId] = inGameObject;
mGameObjectToNetworkIdMap[inGameObject] = inNetworkId;

 }

 void RemoveGameObject(GameObject *inGameObject)
 {

uint32_t networkId = mGameObjectToNetworkIdMap[inGameObject];
mGameObjectToNetworkIdMap.erase(inGameObject);
mNetworkIdToGameObjectMap.erase(networkId);

 }

 //unchanged ...
 GameObject* GetGameObject(uint32_t inNetworkId);

 private:
 std::unordered_map<uint32_t, GameObject*> mNetworkIdToGameObjectMap;
 std:: unordered_map<const GameObject*, uint32_t>

mGameObjectToNetworkIdMap;

 uint32_t mNextNetworkId;
 }

 The new member variable mNextNetworkId keeps track of the next unused network

identifier, and increments each time one is used. Because it is a 4-byte unsigned integer, it is

usually safe to assume it will not overflow: In cases where more than 4 billion unique replicated

objects might be necessary over the duration of a game, you will need to implement a more

complex system. For now, assume that incrementing the counter safely provides unique

network identifiers.

 When a host is ready to write inGameObject ’s identifier into an object state packet, it calls

 mLinkingContext->GetNetworkId(inGameObject, true) , telling the linking context

to generate a network identifier if necessary. It then writes this identifier into the packet after

the PacketType . When the remote host receives this packet, it reads the identifier and uses its

own linking context to look up the referenced object. If the receiving host finds an object, it can

deserialize the data into it directly. If it does not find the object, it needs to create it.

 For a remote host to create an object, it needs information regarding what class of object to

create. The sending host provides this by serializing some kind of class identifier after the object

ptg16606381

REPLICATING AN OBJECT 143

identifier. One brute force way to achieve this is to select a hardcoded class identifier from a set

using dynamic casts, as show in Listing 5.3. The receiver would then use a switch statement like

the one shown in Listing 5.4 to instantiate the correct class based on the class identifier.

 Listing 5.3 Hardcoded, Tightly Coupled Class Identification

 void WriteClassType(OutputMemoryBitStream& inStream,
const GameObject* inGameObject)

 {
 if(dynamic_cast<const RoboCat*>(inGameObject))
 {

inStream.Write(static_cast<uint32_t>('RBCT'));
 }
 else if(dynamic_cast<const RoboMouse*>(inGameObject))
 {

inStream.Write(static_cast<uint32_t>('RBMS'));
 }

 else if(dynamic_cast<const RoboCheese*>(inGameObject))
 {

inStream.Write(static_cast<uint32_t>('RBCH'));
 }
 }

Listing 5.4 Hardcoded, Tightly Coupled Object Instantiation

 GameObject* CreateGameObjectFromStream(InputMemoryBitStream& inStream)
 {
 uint32_t classIdentifier;
 inStream.Read(classIdentifier);
 switch(classIdentifier)
 {

case 'RBCT':
return new RoboCat();
break;

case 'RBMS':
return new RoboMouse();
break;

case 'RBCH':
return new RoboCheese();
break;

 }

 return nullptr;
 }

 Although this works, it is inadequate for several reasons. First, it uses a dynamic_cast , which

usually requires C++’s built-in RTTI to be enabled. RTTI is often disabled in games because it

ptg16606381

144 CHAPTER 5 OBJECT REPLICATION

requires extra memory for every polymorphic class type. More importantly, this approach is

inferior because it couples the game object system with the replication system. Every time you

add a new gameplay class that may be replicated, you have to edit both the WriteClassType

and CreateGameObjectFromStream functions in the networking code. This is easy to forget,

and can cause the code to grow out of sync. Also, if you want to reuse your replication system

in a new game, it requires completely rewriting these functions, which reference the gameplay

code of your old game. Finally, the coupling makes unit testing more difficult, as tests cannot

load the network unit without also loading the gameplay unit. In general, it is fine for gameplay

code to depend on network code, but network code should almost never depend on gameplay.

 One clean way to reduce the coupling between gameplay and network code is to abstract the

object identification and creation routines from the replication system using an object creation

registry.

 Object Creation Registry

 An object creation registry maps a class identifier to a function that creates an object of the

given class. Using the registry, the network module can look up the creation function by id and

then execute it to create the desired object. If your game has a reflection system, you probably

already have such a system implemented, but if not, it is not difficult to create.

 Each replicable class must be prepared for the object creation registry. First, assign each class a

unique identifier and store it in a static constant named kClassId . Each class could use a GUID

to ensure no overlap between identifiers, though 128-bit identifiers can be unnecessarily heavy

considering the small subset of classes that need to be replicated. A good alternative is to use a

four-character literal based on the name of the class and then check for conflicting names when

the classes are submitted to the registry. A final alternative is to create class ids at compile time

using a build tool which autogenerates the code to ensure uniqueness.

 warning

 Four-character literals are implementation dependent. Specifying 32-bit values with

a literal using four characters like ‘DXT5’ or ‘GOBJ’ can be a simple way to come up

with well-differentiated identifiers. They are also nice because they stick out clearly

when present in a memory dump of your packets. For this reason, many third-party

engines, from Unreal to C4, use them as markers and identifiers. Unfortunately, they

are classified as implementation dependent in the C++ standard, which means not

all compilers handle the conversion of a string literal into an integer in the same

way. Most compilers, including GCC and Visual Studio, use the same convention,

but if you are using multicharacter literals to communicate between processes

compiled with different compilers, run some tests first to make sure both compilers

translate the literals the same way.

ptg16606381

REPLICATING AN OBJECT 145

 Once each class has a unique identifier, add a GetClassId virtual function to GameObject .

Override this function for each child class of GameObject so that it returns the identifier of the

class. Finally, add a static function to each child class which creates and returns an instance of

the class. Listing 5.5 shows how GameObject and two child classes should be prepared for the

registry.

 Listing 5.5 Classes Prepared for the Object Creation Registry

 class GameObject
 {
 public:
 //...
 enum{kClassId = 'GOBJ'};
 virtual uint32_t GetClassId() const {return kClassId;}
 static GameObject* CreateInstance() {return new GameObject();}
 //...
 };

 class RoboCat: public GameObject
 {
 public:
 //...
 enum{kClassId = 'RBCT'};
 virtual uint32_t GetClassId() const {return kClassId;}
 static GameObject* CreateInstance() {return new RoboCat();}
 //...
 };

 class RoboMouse: public GameObject
 {
 //...
 enum{kClassId = 'RBMS'};
 virtual uint32_t GetClassId() const {return kClassId;}
 static GameObject* CreateInstance() {return new RoboMouse();}
 //...
 };

 Note that each child class needs the GetClassId virtual function implemented. Even

though the code looks identical, the value returned changes because the kClassId constant

is different. Because the code is similar for each class, some developers prefer to use a

preprocessor macro to generate it. Complex preprocessor macros are generally frowned on

because modern debuggers do not handle them well, but they can lessen the chance of errors

that come from copying and pasting code over and over. In addition, if the copied code needs

to change, just changing the macro will propagate the changes through to all classes. Listing

5.6 demonstrates how to use a macro in this case.

ptg16606381

146 CHAPTER 5 OBJECT REPLICATION

 Listing 5.6 Classes Prepared for the Object Creation Registry Using a Macro

 #define CLASS_IDENTIFICATION(inCode, inClass)\
 enum{kClassId = inCode}; \
 virtual uint32_t GetClassId() const {return kClassId;} \
 static GameObject* CreateInstance() {return new inClass();}

 class GameObject
 {
 public:
 //...
 CLASS_IDENTIFICATION('GOBJ', GameObject)
 //...
 };

 class RoboCat: public GameObject
 {
 //...
 CLASS_IDENTIFICATION('RBCT', RoboCat)
 //...
 };
 class RoboMouse: public GameObject
 {
 //...
 CLASS_IDENTIFICATION('RBMS', RoboMouse)
 //...
 };

 The backslashes at the end of each line of the macro definition instruct the compiler that the

definition continues to the following line.

 With the class identification system in place, create an ObjectCreationRegistry to hold

the map from class identifier to creation function. Gameplay code, completely independent

from the replication system, can fill this in with replicable classes, as show in Listing 5.7.

 ObjectCreationRegistry doesn’t technically have to be a singleton as shown, it just needs

to be accessible from both gameplay and network code.

Listing 5.7 ObjectCreationRegistry Singleton and Mapping

 typedef GameObject* (*GameObjectCreationFunc)();

 class ObjectCreationRegistry
 {
 public:
 static ObjectCreationRegistry& Get()
 {

static ObjectCreationRegistry sInstance;
return sInstance;

 }

ptg16606381

REPLICATING AN OBJECT 147

 template<class T>
 void RegisterCreationFunction()
 {

//ensure no duplicate class id
assert(mNameToGameObjectCreationFunctionMap.find(T::kClassId) ==

mNameToGameObjectCreationFunctionMap.end());
mNameToGameObjectCreationFunctionMap[T::kClassId] =

T::CreateInstance;
 }

 GameObject* CreateGameObject(uint32_t inClassId)
 {

//add error checking if desired- for now crash if not found
GameObjectCreationFunc creationFunc =

mNameToGameObjectCreationFunctionMap[inClassId];
GameObject* gameObject = creationFunc();
return gameObject;

 }

 private:
 ObjectCreationRegistry() {}
 unordered_map<uint32_t, GameObjectCreationFunc>

mNameToGameObjectCreationFunctionMap;
 };

 void RegisterObjectCreation()
 {
 ObjectCreationRegistry::Get().RegisterCreationFunction<GameObject>();
 ObjectCreationRegistry::Get().RegisterCreationFunction<RoboCat>();
 ObjectCreationRegistry::Get().RegisterCreationFunction<RoboMouse>();
 }

 The GameObjectCreationFunc type is a function pointer which matches the signature of the

 CreateInstance static member functions in each class. The RegisterCreationFunction

is a template used to prevent a mismatch between class identifier and creation function.

Somewhere in the gameplay startup code, call RegisterObjectCreation to populate the

object creation registry with class identifiers and instantiation functions.

 With this system in place, when a sending host needs to write a class identifier for a

 GameObject , it just calls its GetClassId method. When the receiving host needs to create an

instance of a given class, it simply calls Create on the object creation registry and passes the

class identifier.

 In effect, this system represents a custom-built version of C++’s RTTI system. Because it is hand

built for this purpose, you have more control over its memory use, its type identifier size, and its

cross-compiler compatibility than you would just using C++’s typeid operator.

ptg16606381

148 CHAPTER 5 OBJECT REPLICATION

 tip

 If your game uses a reflection system like the one described in the generalized

serialization section of Chapter 4 , you can augment that system instead of

using the one described here. Just add a GetDataType virtual function to each

 GameObject which returns the object’s DataType instead of a class identifier.

Then add a unique identifier to each DataType , and an instantiation function.

Instead of mapping from class identifier to creation function, the object creation

registry becomes more of a data type registry , mapping from data type

identifier to DataType . To replicate an object, get its DataType through the

 GetDataType method and serialize the DataType ’s identifier. To Instantiate it,

look up the DataType by identifier in the registry and then use the DataType ’s

instantiation function. This has the advantage of making the DataType available

for generalized serialization on the receiving end of the replication.

 Multiple Objects per Packet

 Remember it is efficient to send packets as close in size to the MTU as possible. Not all objects

are big, so there is an efficiency gain in sending multiple objects per packet. To do so, once a

host has tagged a packet as a PT_ReplicationData packet, it merely repeats the following

steps for each object:

1. Writes the object’s network identifier

2. Writes the object’s class identifier

3. Writes the object’s serialized data

 When the receiving host finishes deserializing an object, any unused data left in the packet

must be for another object. So, the host repeats the receiving process until there is no

remaining unused data.

 Naïve World State Replication
 With multi-object replication code in place, it is straightforward to replicate the entire world

state by replicating each object in the world. If you have a small enough game world, like that

of the original Quake , then the entire world state can fit entirely within a single packet. Listing

5.8 introduces a replication manager that replicates the entire world in this manner.

 Listing 5.8 Replicating World State

 class ReplicationManager
 {
 public:
 void ReplicateWorldState(OutputMemoryBitStream& inStream,

const vector<GameObject*>& inAllObjects);

ptg16606381

NAÏVE WORLD STATE REPLICATION 149

 private:
 void ReplicateIntoStream(OutputMemoryBitStream& inStream,

GameObject* inGameObject);

 LinkingContext* mLinkingContext;
 };

 void ReplicationManager::ReplicateIntoStream(
 OutputMemoryBitStream& inStream,
 GameObject* inGameObject)
 {
 //write game object id
 inStream.Write(mLinkingContext->GetNetworkId(inGameObject, true));

 //write game object class
 inStream.Write(inGameObject->GetClassId());

 //write game object data
 inGameObject->Write(inStream);
 }

 void ReplicationManager::ReplicateWorldState(
 OutputMemoryBitStream& inStream,
 const vector<GameObject*>& inAllObjects)
 {
 //tag as replication data
 inStream.WriteBits(PT_ReplicationData, GetRequiredBits<PT_MAX>::Value);

 //write each object
 for(GameObject* go: inAllObjects)
 {

ReplicateIntoStream(inStream, go);
 }
 }

 ReplicateWorldState is a public function which a caller can use to write replication

data for a collection of objects into an outgoing stream. It first tags the data as replication

data and then uses the private ReplicateIntoStream to write each object individually.

 ReplicateIntoStream uses the linking context to write the network ID of each object and

the virtual GetClassId to write the object’s class identifier. It then depends on a virtual Write

function on the game object to serialize the actual data.

 GETTING THE REQUIRED BITS TO SERIALIZE A VALUE

 Remember that the bit stream allows serialization of a field’s value using an arbitrary

number of bits. The number of bits must be large enough to represent the maximum

value possible for the field. When serializing an enum, the compiler can actually calculate

ptg16606381

150 CHAPTER 5 OBJECT REPLICATION

the best number of bits at compile time, removing the chance for error when elements

are added or removed from the enum. The trick is to make sure that the final element

of the enum is always suffixed as a _ MAX element. For instance, for the PacketType

enum, it is named PT_MAX . This way, the value of the _ MAX element will always

increment or decrement automatically when elements are added or removed, and you

have an easy way to track the maximum value for the enum.

 The ReplicateWorldState method passes this final enum value as a template

argument to GetRequiredBits to calculate the number of bits required to represent

the maximum packet type. To do so most efficiently, at compile time, it uses something

known as template metaprogramming , a somewhat dark art of C++ engineering. It

turns out the language of C++ templates is so complex it is actually Turing universal,

and a compiler can calculate any arbitrary function as long as the inputs are known

at compile time. In this case, the code for calculating the number of bits required to

represent a maximum value is as follows:

 template<int tValue, int tBits>
 struct GetRequiredBitsHelper
 {

 enum {Value = GetRequiredBitsHelper<(tValue >> 1),
tBits + 1>::Value};

 };

 template<int tBits>
 struct GetRequiredBitsHelper<0, tBits>
 {

 enum {Value = tBits};
 };

 template<int tValue>
 struct GetRequiredBits
 {
 enum {Value = GetRequiredBitsHelper<tValue, 0>::Value};
 };

 Template metaprogramming has no explicit loop functionality, so it must use recursion in lieu

of iteration. Thus, GetRequiredBits relies on the recursive GetRequiredBitsHelper

to find the highest bit set in the argument value and thus calculate the number of bits

necessary for representation. It does so by incrementing the tBits argument each time

it shifts the tValue argument one bit to the right. When tValue is finally 0, the base case

specialization is invoked, which simply returns the accumulated value in tBits .

 With the advent of C++11, the constexpr keyword allows some of the functionality

of template metaprogramming with less complexity, but at the time of writing it is not

currently supported by all modern compilers (i.e., Visual Studio 2013) so it is safer to go

with templates for compatibility.

ptg16606381

NAÏVE WORLD STATE REPLICATION 151

 When the receiving host detects a replication state packet, it passes it to the replication manager,

which loops through each serialized game object in the packet. If a game object does not exist,

the client creates it and deserializes the state. If a game object does exist, the client finds it and

deserializes state into it. When the client is done processing the packet, it destroys any local

game objects that did not have data in the packet, as the lack of data means the game object

no longer exists in the world of the sending host. Listing 5.9 shows additions to the replication

manager that allow it to process an incoming packet identified as containing replication state.

 Listing 5.9 Replicating World State

 class ReplicationManager
 {
 public:
 void ReceiveReplicatedObjects(InputMemoryBitStream& inStream);

 private:
 GameObject* ReceiveReplicatedObject(InputMemoryBitStream& inStream);

 unordered_set<GameObject*> mObjectsReplicatedToMe;
 };

 void ReplicationManager::ReceiveReplicatedObjects(
 InputMemoryBitStream& inStream)
 {
 unordered_set<GameObject*> receivedObjects;

 while(inStream.GetRemainingBitCount() > 0)
 {

GameObject* receivedGameObject = ReceiveReplicatedObject(inStream);
receivedObjects.insert(receivedGameObject);

 }

 //now run through mObjectsReplicatedToMe.
 //if an object isn’t in the recently replicated set,
 //destroy it
 for(GameObject* go: mObjectsReplicatedToMe)
 {

if(receivedObjects.find(go)!= receivedObjects.end())
{

mLinkingContext->Remove(go);
go->Destroy();

}
 }

 mObjectsReplicatedToMe = receivedObjects;
 }

 GameObject* ReplicationManager::ReceiveReplicatedObject(
 InputMemoryBitStream& inStream)

ptg16606381

152 CHAPTER 5 OBJECT REPLICATION

 {
 uint32_t networkId;
 uint32_t classId;
 inStream.Read(networkId);
 inStream.Read(classId);

 GameObject* go = mLinkingContext->GetGameObject(networkId);
 if(!go)
 {

go = ObjectCreationRegistry::Get().CreateGameObject(classId);
mLinkingContext->AddGameObject(go, networkId);

 }

 //now read update
 go->Read(inStream);

 //return gameobject so we can track it was received in packet
 return go;
 }

 Once the packet receiving code reads the packet type and determines the packet

is replication data, it can pass the stream to ReceiveWorld . ReceiveWorld uses

 ReceiveReplicatedObject to receive each object and tracks each received object in a set.

Once all objects are received, it checks for any objects that were received in the previous packet

that were not received in this packet and destroys them to keep the world in sync.

 Sending and receiving world state in this manner is simple, but is limited by the requirement

that the entire world state must fit within each packet. To support larger worlds, you need an

alternate method of replicating state.

 Changes in World State
 Because each host maintains its own copy of the world state, it is not necessary to replicate

the entire world state in a single packet. Instead, the sender can create packets that represent

changes in world state, and the receiver can then apply these changes to its own world state.

This way, a sender can use multiple packets to synchronize a very large world with a remote host.

 When replicating world state in this manner, each packet can be said to contain a world state
delta . Because the world state is composed of object states, a world state delta contains one

 object state delta for each object that needs to change. Each object state delta represents one

of three replication actions:

1. Create game object

2. Update game object

3. Destroy game object

 Replicating an object state delta is similar to replicating an entire object state, except the sender

needs to write the object action into the packet. At this point, the prefix to serialized data is getting

ptg16606381

CHANGES IN WORLD STATE 153

so complex that it can be useful to create a replication header that incorporates the object’s

network identifier, replication action, and class if necessary. Listing 5.10 shows an implementation.

 Listing 5.10 Replication Header

 enum ReplicationAction
 {
 RA_Create,
 RA_Update,
 RA_Destroy,
 RA_MAX
 };

 class ReplicationHeader
 {
 public:
 ReplicationHeader() {}

 ReplicationHeader(ReplicationAction inRA, uint32_t inNetworkId,
uint32_t inClassId = 0):

 mReplicationAction(inRA),
 mNetworkId(inNetworkId),
 mClassId(inClassId)
 {}

 ReplicationAction mReplicationAction;
 uint32_t mNetworkId;
 uint32_t mClassId;

 void Write(OutputMemoryBitStream& inStream);
 void Read(InputMemoryBitStream& inStream);
 };

 void ReplicationHeader::Write(OutputMemoryBitStream& inStream)
 {
 inStream.WriteBits(mReplicationAction, GetRequiredBits<RA_MAX>::Value);
 inStream.Write(mNetworkId);
 if(mReplicationAction!= RA_Destroy)
 {

inStream.Write(mClassId);
 }
 }

 void ReplicationHeader::Read(InputMemoryBitStream& inStream)
 {
 inStream.Read(mReplicationAction, GetRequiredBits<RA_MAX>::Value);
 inStream.Read(mNetworkId);
 if(mReplicationAction!= RA_Destroy)
 {

inStream.Read(mClassId);
 }
 };

ptg16606381

154 CHAPTER 5 OBJECT REPLICATION

 The Read and Write methods aid in serializing the header into a packet’s memory stream

ahead of the object’s data. Note that it is not necessary to serialize the object’s class identifier in

the case of object destruction.

 When a sender needs to replicate a collection of object state deltas, it creates a memory stream,

marks it as a PT_ReplicationData packet, and then serializes a ReplicationHeader

and appropriate object data for each change. The ReplicationManager should have three

distinct methods to replicate creation, update, and destruction, as shown in Listing 5.11. These

encapsulate the ReplicationHeader creation and serialization so that they aren’t exposed

outside the ReplicationManager .

 Listing 5.11 Replicating Sample Object State Deltas

 ReplicationManager::ReplicateCreate(OutputMemoryBitStream& inStream,
GameObject* inGameObject)

 {
 ReplicationHeader rh(RA_Create,

mLinkingContext->GetNetworkId(inGameObject,
true),

inGameObject->GetClassId());
 rh.Write(inStream);
 inGameObject->Write(inStream);
 }

 void ReplicationManager::ReplicateUpdate(OutputMemoryBitStream& inStream,
GameObject* inGameObject)

 {
 ReplicationHeader rh(RA_Update,

mLinkingContext->GetNetworkId(inGameObject,
false),

inGameObject->GetClassId());
 rh.Write(inStream);
 inGameObject->Write(inStream);
 }

 void ReplicationManager::ReplicateDestroy(OutputMemoryBitStream&inStream,
GameObject* inGameObject)

 {
 ReplicationHeader rh(RA_Destroy,

mLinkingContext->GetNetworkId(inGameObject,
false));

 rh.Write(inStream);
 }

 When a receiving host processes a packet, it now must appropriately apply each action. Listing

5.12 shows how.

ptg16606381

CHANGES IN WORLD STATE 155

 Listing 5.12 Processing Replication Actions

 void ReplicationManager::ProcessReplicationAction(
 InputMemoryBitStream& inStream)
 {
 ReplicationHeader rh;
 rh.Read(inStream);

 switch(rh.mReplicationAction)
 {

case RA_Create:
{

GameObject* go =
ObjectCreationRegistry::Get().CreateGameObject(rh.mClassId);
mLinkingContext->AddGameObject(go, rh.mNetworkId);
go->Read(inStream);
break;

}
case RA_Update:
{

GameObject* go =
mLinkingContext->GetGameObject(rh.mNetworkId);

 //we might have not received the create yet,
//so serialize into a dummy to advance read head
if(go)
{

go->Read(inStream);
}
else
{

uint32_t classId = rh.mClassId;
go =
ObjectCreationRegistry::Get().CreateGameObject(classId);
go->Read(inStream);
delete go;

}
break;

}
case RA_Destroy:
{

GameObject* go = mLinkingContext->GetGameObject(rh.mNetworkId);
mLinkingContext->RemoveGameObject(go);
go->Destroy();
break;

}
default:

//not handled by us
break;

 }
 }

ptg16606381

156 CHAPTER 5 OBJECT REPLICATION

 After identifying a packet as one containing object state, the receiver loops through each

header and chunk of serialized object data. If the header indicates creation, the receiver

ensures that the object does not already exist. If it does not, it creates the object with the

serialized data.

 If the replication header indicates an object update, the receiver finds the object and

deserializes the data into it. Due to any number of factors, including unreliability of the

network, it is possible that the receiver might not find the target game object. In this case, the

receiver still needs to process the rest of the packet, so it must advance the memory stream’s

read head by an appropriate amount. It can do this by creating a temporary dummy object,

serializing the object state into the dummy, and then deleting the dummy object. If this is too

inefficient, or not possible due to the way in which objects are constructed, you can add a field

to the object replication header indicating the size of the serialized data. Then, the receiver

can look up the size of the serialized data for the unlocatable object and advance the memory

stream’s current read head by that amount.

 warning

 Partial world and object state replication only work if the sender has an accurate

representation of the receiver’s current world state. This accuracy helps the sender

determine which changes it needs to replicate. Because the Internet is inherently

unreliable, this is not as simple as assuming that the receiver’s world state is based

on the latest packets transmitted by the sender. Either hosts need to send packets

via TCP, so reliability is guaranteed, or they need to use an application level protocol

designed on top of UDP to provide reliability. Chapter 7 , “Latency, Jitter, and

Reliability,” addresses this topic.

 Partial Object State Replication

 When sending an object update, the sender might not need to send every property in the object.

The sender may want to serialize only the subset of properties that have changed since the last

update. To enable this, you can use a bit-field to represent the serialized properties. Each bit can

represent a property or group of properties to be serialized. For instance, the MouseStatus class

from Chapter 4 might use the enum in listing 5.13 to assign properties to bits.

 Listing 5.13 MouseStatus Properties Enum

 enum MouseStatusProperties
 {
 MSP_Name = 1 << 0,
 MSP_LegCount = 1 << 1,

ptg16606381

CHANGES IN WORLD STATE 157

 MSP_HeadCount = 1 << 2,
 MSP_Health = 1 << 3,
 MSP_MAX
 };

 These enum values can be bitwise ORed together to represent multiple properties. For

instance, an object state delta containing values for mHealth and mLegCount would use

 MSP_Health | MSP_LegCount . Note that a bit-field containing a 1 for each bit indicates that

all properties should be serialized.

 The Write method of a class should be amended to take a property bit-field indicating which

properties to serialize into the stream. Listing 5.14 provides an example for the MouseStatus

class.

 Listing 5.14 Using Property Bit-Fields to Write Properties

 void MouseStatus::Write(OutputMemoryBitStream& inStream,
uint32_t inProperties)

 {
 inStream.Write(inProperties, GetRequiredBits<MSP_MAX >::Value);
 if((inProperties & MSP_Name) != 0)
 {

inStream.Write(mName);
 }
 if((inProperties & MSP_LegCount)!= 0)
 {

inStream.Write(mLegCount);
 }
 if((inProperties & MSP_HeadCount) != 0)
 {

inStream.Write(mHeadCount);
 }
 if((inProperties & MSP_Health)!= 0)
 {

inStream.Write(mHealth);
 }
 }

 Before writing any properties, the method writes inProperties into the stream so that the

deserialization procedure can read only the written properties. It then checks the individual

bits of the bit-field to write the desired properties. Listing 5.15 demonstrates the deserialization

process.

ptg16606381

158 CHAPTER 5 OBJECT REPLICATION

 Listing 5.15 Deserialization of Partial Object Update

 void MouseStatus::Read(InputMemoryBitStream& instream)
 {
 uint32_t writtenProperties;
 inStream.Read(writtenProperties, GetRequiredBits<MSP_MAX>::Value);
 if((writtenProperties & MSP_Name) != 0)
 {

inStream.Read(mName);
 }
 if((writtenProperties & MSP_LegCount) != 0)
 {

inStream.Read(mLegCount);
 }
 if((writtenProperties & MSP_HeadCount) != 0)
 {

inStream.Read(mHeadCount);
 }
 if((writtenProperties & MSP_Health) != 0)
 {

inStream.Read(mHealth);
 }
 }

 The Read method first reads the writtenProperties field so it can use the value to

deserialize only the correct properties.

 This bit-field approach to partial object state replication also works with the more abstract,

bidirectional, data-driven serialization routines given at the end of Chapter 4 . Listing 5.16

extends that chapter’s implementation of Serialize to support a bit-field for partial object

state replication.

Listing 5.16 Bidirectional, Data-Driven Partial Object Update

 void Serialize(MemoryStream* inStream, const DataType* inDataType,
uint8_t* inData, uint32_t inProperties)

 {
 inStream->Serialize(inProperties);

 const auto& mvs = inDataType->GetMemberVariables();
 for(int mvIndex = 0, c = mvs.size(); mvIndex < c; ++mvIndex)
 {

if(((1 << mvIndex) & inProperties) != 0)
{

const auto& mv = mvs[mvIndex];
void* mvData = inData + mv.GetOffset();
switch(mv.GetPrimitiveType())
{

ptg16606381

RPCS AS SERIALIZED OBJECTS 159

case EPT_Int:
inStream->Serialize(*reinterpret_cast<int*>(mvData));
break;

case EPT_String:
inStream->Serialize(

reinterpret_cast<string>(mvData));
break;

case EPT_Float:
inStream->Serialize(

reinterpret_cast<float>(mvData));
break;

}
}

 }
 }

 Instead of manually defining the meaning of each bit using an enum, the data-driven approach

uses the index of the bit to represent the index of the member variable being serialized. Note

that Serialize is called on the inProperties value right away. For an output stream, this

will write the bit-field into the stream. However, for an input stream, this will read the written

properties into the variable, overwriting anything that was passed in. This is correct behavior,

as an input operation needs to use the serialized bit-field that corresponds to each of the

serialized properties. If there are more than 32 potential properties to serialize, use a uint64_t

for the properties. If there are more than 64 properties, consider grouping several properties

under the same bit or splitting up the class.

 RPCs as Serialized Objects
 In a complex multiplayer game, a host might need to transmit something other than object

state to another host. Consider the case of a host wanting to transmit the sound of an explosion

to another host, or to flash another host’s screens. Actions like this are best transmitted using

 remote procedure calls , or RPCs . A remote procedure call is the act of one host causing a

procedure to execute on one or more remote hosts. There are many application-level protocols

available for this, ranging from text-based ones like XML-RPC to binary ones like ONC-RPC.

However, if a game already supports the object replication system described in this chapter, it is

a simple matter to add an RPC layer on top of it.

 Each procedure invocation can be thought of as a unique object, with a member variable for

each parameter. To invoke an RPC on a remote host, the invoking host replicates an object

of the appropriate type, with the member variables filled in correctly, to the target host. For

instance, for the function PlaySound ,

 void PlaySound(const string& inSoundName, const Vector3& inLocation,
float inVolume);

ptg16606381

160 CHAPTER 5 OBJECT REPLICATION

 The PlaySoundRPCParams struct would have three member variables:

 struct PlaySoundRPCParams
 {
 string mSoundName;
 Vector3 mLocation;
 float mVolume;
 };

 To invoke PlaySound on a remote host, the invoker creates a PlayerSoundRPCParams object,

sets the member variables, and then serializes the object into an object state packet. This can result

in spaghetti code if many RPCs are used, as well as run through a lot of network object identifiers

that aren’t really necessary, as RPC invocation objects don’t need to be uniquely identified.

 A cleaner solution is to create a modular wrapper around the RPC system and then integrate it

with the replication system. To do this, first add an additional replication action type, RA_RPC .

This replication action identifies the serialized data that follows it as an RPC invocation,

and allows the receiving host to direct it to a dedicated RPC processing module. It also tells

the ReplicationHeader serialization code that a network identifier is not necessary

for this action and thus should not be serialized. When the ReplicationManager’s

 ProcessReplicationAction detects an RA_RPC action, it should pass the packet to the RPC

module for further processing.

 The RPC module should contain a data structure that maps from each RPC identifier to an

unwrapping glue function that can deserialize parameters for and then invoke the appropriate

function. Listing 5.17 shows a sample RPCManager .

 Listing 5.17 An Example RPCManager

 typedef void (*RPCUnwrapFunc)(InputMemoryBitStream&)

 class RPCManager
 {
 public:
 void RegisterUnwrapFunction(uint32_t inName, RPCUnwrapFunc inFunc)
 {

assert(mNameToRPCTable.find(inName) == mNameToRPCTable.end());
mNameToRPCTable[inName] = inFunc;

 }

 void ProcessRPC(InputMemoryBitStream& inStream)
 {

uint32_t name;
inStream.Read(name);
mNameToRPCTable[name](inStream);

 }
 unordered_map<uint32_t, RPCUnwrapFunc> mNameToRPCTable;
 };

ptg16606381

RPCS AS SERIALIZED OBJECTS 161

 In this example, each RPC is identified with a four-character code unsigned integer. If desired,

the RPCManager can use full strings instead: While strings allow for more variety, they use

more bandwidth. Note the similarity to the object creation registry. Registering functions

through a hash map is a common way to decouple seemingly dependent systems.

 When the ReplicationManager detects the RA_RPC action, it passes the received memory

stream to the RPC module for processing, which then unwraps and calls the correct function

locally. To support this, game code must register an unwrap function for each RPC. Listing 5.18

shows how to register the PlaySound function.

 Listing 5.18 Registering an RPC

 void UnwrapPlaySound(InputMemoryBitStream& inStream)
 {
 string soundName;
 Vector3 location;
 float volume;

 inStream.Read(soundName);
 inStream.Read(location);
 inStream.Read(volume);
 PlaySound(soundName, location, volume);
 }

 void RegisterRPCs(RPCManager* inRPCManager)
 {
 inRPCManager->RegisterUnwrapFunction('PSND', UnwrapPlaySound);
 }

 UnwrapPlaySound is a glue function which handles the task of deserializing the parameters

and invoking PlaySound with them. Gameplay code should invoke the RegisterRPCs

function and pass it an appropriate RPCManager . Other RPCs can be added to the

 RegisterRPCs function as desired. Presumably the PlaySound function is implemented

elsewhere.

 Finally, to invoke an RPC, the caller needs a function to write the appropriate

 ObjectReplicationHeader and parameters into an outgoing packet. Depending on the

implementation, it can either create the packet and send it, or check with the gameplay code

or the networking module to see if any packet is already pending to go out to the remote host.

Listing 5.19 gives an example of a wrapper function that writes an RPC call into an outgoing

packet.

ptg16606381

162 CHAPTER 5 OBJECT REPLICATION

 Listing 5.19 Writing PlaySoundRPC into a Pending Packet

 void PlaySoundRPC(OutputMemoryBitStream& inStream,
const string&inSoundName,
const Vector3& inLocation, float inVolume)

 {
 ReplicationHeader rh(RA_RPC);
 rh.Write(inStream);
 inStream.Write(inSoundName);
 inStream.Write(inLocation);
 inStream.Write(inVolume);
 }

 It can be a lot of work to manually generate the wrapping and unwrapping glue functions,

register them with the RPCManager, and keep their parameters in sync with the underlying

functions. For this reason, most engines that support RPCs use build tools to autogenerate the

glue functions and register them with an RPC module.

 note

 Sometimes, a host may wish to remotely invoke a method on a specific object instead

of just calling a free function. While similar, this is technically known as a Remote
Method Invocation , or RMI , as opposed to a remote procedural call. A game that

supports these could use the network identifier in the ObjectReplicationHeader

to identify the target object of the RMI. An identifier of zero would indicate a free

function RPC and a nonzero value would indicate an RMI on the specified game

object. Alternatively, to conserve bandwidth at the expense of code size, a new

replication action, RA_RMI , could indicate the relevance of the network identifier

field, whereas the RA_RPC action would continue to ignore it.

 Custom Solutions
 No matter how many general-purpose object replication or RPC invocation tools an engine

includes, some games still call for custom replication and messaging code. Either some

desired functionality is not available, or, for certain rapidly changing values, the framework of

generalized object replication is just too bulky and bandwidth inefficient. In these cases, you

can always add custom replication actions by extending the ReplicationAction enum and

adding cases to the switch statement in the ProcessReplicationFunction . By special

casing the ReplicationHeader serialization for your object, you can include or omit the

corresponding network identifier and class identifier as desired.

 If your customization falls outside the purview of the ReplicationManager entirely,

you can also extend the PacketType enum to create entirely new packet types and

ptg16606381

REVIEW QUESTIONS 163

managers to handle them. Following the design pattern of the registration maps used in the

 ObjectCreationRegistry and RPCManager , it is easy to inject higher-level code to handle

these custom packets without polluting the lower-level networking system.

 Summary
 Replicating an object involves more than just sending its serialized data from one host to another.

First, an application-level protocol must define all possible packet types, and the network module

should tag packets containing object data as such. Each object needs a unique identifier, so that

the receiving host can direct incoming state to the appropriate object. Finally, each class of object

needs a unique identifier so that the receiving host can create an object of the correct class if one

does not exist already. Networking code should not depend on gameplay classes, so use an indirect

map of some sort to register replicable classes and creation functions with the network module.

 Small-scale games can create a shared world between hosts by replicating each object in the

world in each outgoing packet. Larger games cannot fit replication data for all objects in every

packet, so they must employ a protocol that supports transmission of world state deltas. Each

delta can contain replication actions to create an object, update an object, or destroy an object.

For efficiency, update-object actions may send serialization data for only a subset of object

properties. The appropriate subset depends on the overall network topology and reliability of

the application-level protocol.

 Sometimes, games need to replicate more than just object state data between hosts. Often,

they need to invoke remote procedure calls on each other. One simple way to support RPC

invocation is to introduce the RPC replication action and fold RPC data into replication

packets. An RPC module can handle registration of RPC wrapping, unwrapping, and invocation

functions, and the replication manager can channel any incoming RPC requests to this module.

 Object replication is a key piece of the low-level multiplayer game tool chest, and will be a

critical ingredient when implementing support for some of the higher-level network topologies

described in Chapter 6 .

 Review Questions
1. What three key values should be in a packet replicating object state, other than the

object’s serialized data?

2. Why is it undesirable for networking code to depend on gameplay code?

3. Explain how to support creation of replicated objects on the receiving host without giving

the networking code a dependency on gameplay classes.

4. Implement a simple game with five moving game objects in it. Replicate those objects to a

remote host by sending the remote host a world state packet 15 times a second.

ptg16606381

164 CHAPTER 5 OBJECT REPLICATION

5. Regarding the game in Question 4, what problem develops as the number of game objects

increase? What is a solution to this problem?

6. Implement a system which supports sending updates of only some of an object’s

properties to a remote host.

7. What is an RPC? What is an RMI? How are they different?

8. Using the chapter’s framework, implement an RPC SetPlayerName(const string&

inName) which tells other hosts the local player’s name.

9. Implement a custom packet type that replicates which keys a player is currently holding

down on the keyboard, using a reasonably efficient amount of bandwidth. Explain how to

integrate this into this chapter’s replication framework.

 Additional Readings
 Carmack, J. (1996, August). Here Is the New Plan . Retrieved from http://fabiensanglard.net/

quakeSource/johnc-log.aug.htm . Accessed September 12, 2015.

 Srinivasan, R. (1995, August). RPC: Remote Procedure Call Protocol Specification Version 2 .

Retrieved from http://tools.ietf.org/html/rfc1831 . Accessed September 12, 2015.

 Van Waveren, J. M. P. (2006, March 6). The DOOM III Network Architecture . Retrieved from http://

mrelusive.com/publications/papers/The-DOOM-III-Network-Architecture.pdf . Accessed

September 12, 2015.

 Winer, Dave (1999, June 15). XML-RPC Specification . Retrieved from http://xmlrpc.scripting.com/

spec.html . Accessed September 12, 2015.

http://fabiensanglard.net/quakeSource/johnc-log.aug.htm
http://tools.ietf.org/html/rfc1831
http://mrelusive.com/publications/papers/The-DOOM-III-Network-Architecture.pdf
http://mrelusive.com/publications/papers/The-DOOM-III-Network-Architecture.pdf
http://xmlrpc.scripting.com/spec.html
http://fabiensanglard.net/quakeSource/johnc-log.aug.htm
http://xmlrpc.scripting.com/spec.html

ptg16606381

 C H A P T E R 6

 NETWORK TOPOLOGIES

AND SAMPLE GAMES

 The first part of this chapter takes a look at the two

main configurations that can be used when multiple

computers must communicate in a networked game:

client-server and peer-to-peer. The remainder of the

chapter combines all the topics covered up to this

point in the book, and creates initial versions of two

sample games.

ptg16606381

166 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 Network Topologies
 By and large, Chapters 1 to 5 have focused specifically on the issue of two computers

communicating over the Internet and sharing information in a manner that is conducive to

networked games. Although there absolutely are networked two-player games, many of

the more popular games feature higher player counts. But even with only two players, some

important questions arise. How will the players send game updates to each other? Will there

be object replication as in Chapter 5 , or will only the input state be replicated? What happens

if the computers disagree on the game state? These are all important questions that must be

answered for any networked multiplayer game.

 A network topology determines how the computers in a network are connected to each other.

In the context of a game, the topology determines how the computers participating in the

game will be organized in order to ensure all players can see an up-to-date version of the game

state. As with the decision of network protocol, there are tradeoffs regardless of the selected

topology. This section explores the two main types of topologies used by games, client-server

and peer-to-peer, and the small variations that can also exist within these types.

 Client-Server

 In a client-server topology, one game instance is designated the server, and all of the other

game instances are designated as clients. Each client only ever communicates with the server,

while the server is responsible for communicating with all of the clients. Figure 6.1 illustrates

this topology.

Client F

Client A

Client B

Client C

Client D

Client E

Server

 Figure 6.1 Client-server topology

 In a client-server topology, given n clients there are a total of O(2n) connections. However,

it is asymmetric in that the server will have O(n) connections (one to each client), while each

client will only have one connection to the server. In terms of bandwidth, if there are n clients

and each client sends b bytes per second of data, the server must have enough bandwidth to

ptg16606381

NETWORK TOPOLOGIES 167

handle b ̇ n incoming bytes per second. Similarly, if the server needs to send c bytes per second

of data to each client, the server must support c ̇ n outgoing bytes per second. However, each

client need only support c bytes per second downstream and b bytes per second upstream.

This means that as the number of clients increase, the bandwidth required for the server will

increase linearly. In theory, the bandwidth requirements for the client will not change based on

the number of clients. However, in practice, supporting more clients leads to more objects in

the world to replicate, which may lead to a slight increase in bandwidth for each client.

 Although by no means the only approach to client-server, most games that implement client-

server utilize an authoritative server. This means that the game server’s simulation of the

game is considered to be correct. If the client ever finds itself in disagreement with the server,

it should update its game state based on what the server says is the game state. For instance,

in the sample Robo Cat Action game discussed later in this chapter, each player cat can throw

a ball of yarn. But with an authoritative server model, the client is forbidden from making a

determination of whether or not the yarn hits another player. Instead, the client must inform

the server that it wants to throw a ball of yarn. The server then decides both if the client is even

allowed to throw a ball of yarn and, if so, whether or not the other player is hit by the ball of yarn.

 By placing the server as an authority, this means there is some amount of “lag” or delay in

actions performed by the client. The topic of latency is discussed in great detail in Chapter 7 ,

“Latency, Jitter, and Reliability,” but a brief discussion is in order. In the case of the ball throw,

the server is the only game instance allowed to make a decision on what happens. But it will

take some time to send a ball throw request to the server, which in turn will process it before

sending the result to all of the clients. One contributing factor of this delay will be the round
trip time , or RTT , which is the amount of time (typically expressed in milliseconds) that it

takes for packets to travel to and back from a particular computer on the network. In an ideal

scenario, this RTT is 100 ms or less, though even on modern Internet connections there are

many factors that may not allow for such a low RTT.

 Suppose there is a game with a server and two clients, Clients A and B. Because the server

sends all game data to each client, this means that if Client A throws a ball of yarn, the packet

containing the yarn throw request must first travel to the server. Then the server will process

the throw before sending the result back to Clients A and B. In this scenario, the worst case

network latency experienced by Client B would be equal to ½ Client A’s RTT, plus the server

processing time, plus ½ Client B’s RTT. In fast network conditions, this may not be an issue, but

realistically, most games must use a variety of techniques to hide this latency. This is covered in

detail in Chapter 8 , “Improved Latency Handling.”

 There is also a subclassification of types of servers. Some servers are dedicated , meaning

they only run the game state and communicate with all of the clients. The dedicated server

process is completely separate from any client processes running the game. This means that the

dedicated server typically is headless and does not actually display any graphics. This type of

server is often used by big-budget games such as Battlefield , which allows the developer to run

multiple dedicated server processes on a single powerful machine.

ptg16606381

168 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 The alternative to a dedicated server is a listen server . In this configuration, the server is also

an active participant in the game itself. One advantage of a listen server configuration is that

it may reduce deployment costs, because it is not necessary to rent servers in a data center—

instead, one of the players can use their machine as both a server and a client. However, the

disadvantage of a listen server is that a machine running as a listen server must be powerful

enough and have a fast enough connection to handle this increased load. The listen server

approach is sometimes erroneously referred to as a peer-to-peer connection, but a more

precise term is peer hosted. There is still a server, it just so happens that the server is hosted by a

player in the game.

 One caution about a listen server is that assuming it is authoritative it will have a complete

picture of the game state. This means that the player running the listen server could potentially

use this information to cheat. Furthermore, in a client-server model typically only the server

knows the network address of all of the active clients. This can be a huge issue in the event that

the server disconnects—whether due to a network issue or perhaps an angry player deciding

to exit their game. Some games that utilize a listen server implement the concept of host
migration , which means that if a listen server disconnects, one of the clients is promoted to

be the new server. In order for this to be possible, however, there must be some amount of

communication between the clients. This means that host migration requires a hybrid model

where there are both a client-server and a peer-to-peer topology.

 Peer-to-Peer

 In a peer-to-peer topology, each individual participant is connected to every other participant.

As is apparent from Figure 6.2 , this means that there is a great deal of data transmitted back and

forth between clients. The number of connections is a quadratic function, or in other words,

Peer A

Peer C

Peer D Peer B

 Figure 6.2 Peer-to-peer topology

ptg16606381

NETWORK TOPOLOGIES 169

given n peers, each peer must have O(n – 1) connections, which leads to O(n2) connections

across the network. This also means that the bandwidth requirements for each peer increases

as more and more peers connect to the game. However, unlike in client-server, the bandwidth

requirements are symmetric, so every peer will require the same amount of available

bandwidth upstream and downstream.

 The concept of authority is much more nebulous in a peer-to-peer game. One possible

approach is that certain peers have authority over certain parts of the game, but in practice

such a system can be difficult to implement. A more common approach in peer-to-peer games

is to share all actions across every peer, and have every peer simulate these actions. This model

is sometimes called an input sharing model.

 One aspect of the peer-to-peer topology that makes input sharing more viable is the fact that

there is less latency to be concerned about. As opposed to the client-server model, which has

an intermediary between clients, in a peer-to-peer game all peers are communicating with

each other directly. This means that at worst, the latency between peers is ½ RTT. However,

there still is some latency, which can lead to what is the largest technical challenge in a peer-to-

peer game: ensuring that all peers remain synchronized with each other.

 Recall that the discussion of the deterministic lockstep model in Chapter 1 presented one

such approach. To recap, in the Age of Empires implementation, the game was broken down

into “turns” of 200 ms. All input commands during these 200 ms are queued up, and when the

200 ms ends, the commands are sent to all of the peers. Furthermore, there is a one turn delay

such that when each peer is displaying the results of turn 1, the commands are being queued

to be executed on turn 3. Although this type of turn synchronization is conceptually simple,

the actual implementation details can be far more complex. The Robo Cat RTS sample game,

discussed later in this chapter, implements a very similar model.

 Furthermore, it is important to ensure that the game state is consistent between all peers. This

means that the game implementation needs to be fully deterministic. In other words, a given

set of inputs must always result in the same outputs. A few important aspects of this include

using checksums to verify consistency of the game state across peer and synchronizing random

number generation across all peers, both topics that are covered in detail later in this chapter.

 Another issue that arises in peer-to-peer is connecting new players. Since every peer must

know the address of every other peer, in theory a new player could connect to any peer.

However, matchmaking services that list available games typically only accept a single

address—in this case, one peer may be selected as a so-called master peer, who is the only peer

that greets new players.

 Finally, the server disconnection problem that is a concern in server-client doesn’t really exist

in peer-to-peer. Typically, if communication is lost with a peer, the game may pause for a

few seconds before removing the peer from the game. Once the peer is disconnected, the

remaining peers can continue simulating the game.

ptg16606381

170 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 Implementing Client-Server
 Combining all of the concepts that have been covered to this point in the book, it is now

possible to create an initial version of a networked game. This section discusses one such

game, Robo Cat Action , a top-down game featuring cats competing to collect as many mice as

possible, all while throwing balls of yarn at each other. The game is shown in action in Figure

 6.3 . This first version of this game code is in the Chapter6/RoboCatAction directory of the

online code repository.

RTT 216 ms

Sanjay 5

Josh 3

Health 10

 Figure 6.3 The initial version of Robo Cat Action

 The controls for Robo Cat Action are not very complex. The D and A keys can be used to rotate the

cat clockwise and counterclockwise, respectively. The W and S keys can be used to move the cat

forward and back. The K key can be used to throw a ball of yarn that damages other cats. Mice can

also be collected by moving over them.

 This first version of the game code makes a large assumption: That there is little-to-no network

latency, and that all packets will arrive at their destinations. This is clearly an unrealistic

assumption for any networked game, and subsequent chapters, especially Chapter 7 , “Latency,

Jitter, and Reliability,” discuss how to remove these assumptions. But for now, it is useful to

discuss the basics of a client-server game without worrying about the added complexity of

handling latency or packet loss.

 Separating Server and Client Code

 One of the cornerstones of the client-server model with an authoritative server is that the code

that executes on the server is different from the code that executes on each client. Take the

ptg16606381

IMPLEMENTING CLIENT-SERVER 171

example of the main character, the robo-cat. One of the properties of the cat is the mHealth

variable that tracks its remaining health. The server needs to know about the health of the cat,

because if the health hits zero, then the cat should go into its respawn state (cats have at least

nine lives, after all). Similarly, the client needs to know how much health the cat has because it

will display the remaining health in the top right corner. Even though the server’s instance of

 mHealth is the authoritative version of the variable, the client will need to cache the variable

locally in order to display it in the user interface.

 The same can be said about functions. There may be some member functions of the

 RoboCat class that are needed only for the server, some that are needed only for the client,

and some that are needed for both. To account for this, Robo Cat Action takes advantage of

inheritance and virtual functions. Thus, there is a RoboCat base class and two derived classes:

 RoboCatServer and RoboCatClient , both of which override and implement new member

functions as necessary. From a performance standpoint, using virtual functions in this manner

may not give the highest possible performance, but from the perspective of ease-of-use, an

inheritance hierarchy is perhaps the simplest.

 The concept of splitting up the code into separate classes is taken a step further—inspecting

the code will reveal that the code is separated into three separate targets. The first target

is the RoboCat library that contains the shared code that is used by both the server and

the client. This includes classes such as the UDPSocket class as implemented in Chapter 3

and the OutputMemoryBitSteam class as implemented in Chapter 4 . Next, there are two

executable targets—RoboCatServer for the server, and RoboCatClient for the client.

 note

 Because there are two separate executables for the server and client, in order to

test Robo Cat Action , you must run both executables separately. The server takes a

single command line parameter to specify the port to accept connections on. For

example:

 RoboCatServer 45000

 This specifies that the server should listen for connecting clients on port 45000.

 The client executable takes in two command line parameters: the full address

of the server (including the port) and the name of the connecting client. So for

instance:

 RoboCatClient 127.0.0.1:45000 John

 This specifies that the client wants to connect to the server at localhost port 45000,

with a player name of “John.” Naturally, multiple clients can connect to one server,

and because the game does not use very many resources, multiple instances of the

game can be run on one machine for the purposes of testing.

ptg16606381

172 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 For the example of the RoboCat class hierarchy, the three individual classes reside in different

targets—the base RoboCat class is in the shared library, and the RoboCatServer and

 RoboCatClient classes are unsurprisingly in their corresponding executable. This approach

leads to a very clean separation of the code, and it makes it clear which code is specific to only

the server or the client. To help visualize the approach, Figure 6.4 presents the class hierarchy

for the GameObject class in Robo Cat Action .

MouseRoboCatYarn

Yarn
Server

Yarn
Client

RoboCat
Server

RoboCat
Client

Mouse
Server

Mouse
Client

GameObject

 Figure 6.4 Hierarchy of the GameObject class in Robo Cat Action (items in gold are in the shared

library, items in blue are in the client executable, and items in green are in the server executable)

 Network Manager and Welcoming New Clients

 The NetworkManager and the derived classes NetworkManagerClient and

 NetworkManagerServer do much of the heavy lifting in terms of interacting with the

network. For example, all of the code that reads in available packets into a queue of

packets to be processed is placed in the base NetworkManager class. The code to handle

packets is very similar to what was covered in Chapter 3 , “Berkeley Sockets,” so it won’t be

covered again here.

 One of the other responsibilities of the NetworkManager is to handle new clients joining the

game. Robo Cat Action is designed for drop in/drop out multiplayer, so at any time a new client

can try to join the match. As you might imagine, the responsibilities when welcoming new

clients are different between the server and the client, and thus the functionality is split up

between NetworkManagerClient and NetworkManagerServer .

 Before we dive into the code, it’s worthwhile to look at the connecting process at a high level. In

essence, there are four steps to the procedure:

ptg16606381

IMPLEMENTING CLIENT-SERVER 173

1. When a client wants to join a game, it sends the server a “hello” packet. This packet only

contains the literal “HELO” (to identify the type of packet) and the serialized string

representing the player’s name. The client will keep sending these hello packets until it is

acknowledged by the server.

2. Once the server receives the hello packet, it assigns a player ID to the new player, and also

does some bookkeeping such as associating the incoming SocketAddress with the

player ID. Then the server sends a “welcome” packet to the client. This packet contains the

literal “WLCM” and the ID assigned to the player.

3. When the client receives the welcome packet, it saves its player ID, and starts sending and

receiving replication information to the server.

4. At some point in the future, the server sends the information about any objects spawned

for the new client to both the new client and all of the existing clients.

 In this particular case, it is fairly straightforward to build redundancy into the system in

the event of packet loss. If the client doesn’t receive the welcome packet, it will continue

sending hello packets to the server. If the server receives a hello packet from a client whose

 SocketAddress is already on file, it will simply resend the welcome packet.

 Looking at the code more closely, there are two literals used to identify the packets, and so

these are initialized as constants in the base NetworkManager class:

 static const uint32_t kHelloCC = 'HELO';
 static const uint32_t kWelcomeCC = 'WLCM';

 Specifically on the client side of things, the NetworkManagerClient defines an enum to

specify the current state of the client:

 enum NetworkClientState
 {
 NCS_Uninitialized,
 NCS_SayingHello,
 NCS_Welcomed
 };

 When the NetworkManagerClient is initialized, it sets its mState member variable to

 NCS_SayingHello . While in the NCS_SayingHello state, the client will keep sending hello

packets to the server. On the other hand, if the client has been welcomed, then it needs to start

sending updates to the server. In this case, the updates are input packets, which are covered shortly.

 Furthermore, the client also knows the type of packets it is receiving based on the four-

character literals that identify the packet. In the case of Robo Cat Action , there are only two

types of packets it might receive: a welcome packet, and a state packet, which contains

replication data. The code to handle sending and receiving packets is implemented in a manner

similar to a state machine, as shown in Listing 6.1.

ptg16606381

174 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 Listing 6.1 Client Sending and Receiving Packets

 void NetworkManagerClient::SendOutgoingPackets()
 {
 switch(mState)
 {
 case NCS_SayingHello:

UpdateSayingHello();
break;

 case NCS_Welcomed:
UpdateSendingInputPacket();
break;

 }
 }

 void NetworkManagerClient::ProcessPacket
 (
 InputMemoryBitStream& inInputStream,
 const SocketAddress& inFromAddress
)
 {
 uint32_t packetType;
 inInputStream.Read(packetType);
 switch(packetType)
 {
 case kWelcomeCC:

HandleWelcomePacket(inInputStream);
break;

 case kStateCC:
HandleStatePacket(inInputStream);
break;

 }
 }

 In terms of sending the hello packets, the only wrinkle is that the client ensures that it

does not send hello packets too frequently. It does this by checking the elapsed time since

the last hello packet. The actual packet itself is very straightforward, as the client need

only to write the 'HELO' literal and its name. Similarly, the welcome packet only contains

the player ID as a payload, so the client only needs to save this ID. This code is shown in

Listing 6.2. Notice how HandleWelcomePacket tests to ensure that the client is in the

expected state for a welcome packet. This is to ensure no bugs can result in the event that

a welcome packet is received after the client has already been welcomed. A similar test is

used in HandleStatePacket .

ptg16606381

IMPLEMENTING CLIENT-SERVER 175

 Listing 6.2 Client Sending Hello Packets and Reading Welcome Packets

 void NetworkManagerClient::UpdateSayingHello()
 {
 float time = Timing::sInstance.GetTimef();

 if(time > mTimeOfLastHello + kTimeBetweenHellos)
 {

SendHelloPacket();
mTimeOfLastHello = time;

 }
 }

 void NetworkManagerClient::SendHelloPacket()
 {
 OutputMemoryBitStream helloPacket;

 helloPacket.Write(kHelloCC);
 helloPacket.Write(mName);

 SendPacket(helloPacket, mServerAddress);
 }

 void NetworkManagerClient::HandleWelcomePacket(InputMemoryBitStream&
inInputStream)

 {
 if(mState == NCS_SayingHello)
 {

//if we received a player id, we’ve been welcomed!
int playerId;
inInputStream.Read(playerId);
mPlayerId = playerId;
mState = NCS_Welcomed;
LOG(“‘%s’ was welcomed on client as player %d”,

mName.c_str(), mPlayerId);
 }
 }

 The server side of things is a bit more complex. First, the server has a hash map called

 mAddressToClientMap that it uses to track all known clients. The key for the map is the

 SocketAddress , and the value is a pointer to a ClientProxy . We’ll discuss client proxies in

more detail later in this chapter, but for now, you can think of it as a class that the server uses to

track the state of all known clients. Keep in mind that because we are using the socket address

directly, there could potentially be NAT traversal issues as previously discussed in Chapter 2 . We

will not worry about handling the traversal in the code for Robo Cat .

 When the server first receives a packet, it performs a lookup into the address map to see

whether or not the sender is known. If the sender is unknown, the server will then check to

see if the packet is a hello packet. If the packet isn’t a hello packet, it will simply be ignored.

ptg16606381

176 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

Otherwise, the server will create a client proxy for the new client and send it a welcome packet.

This is shown in Listing 6.3, though the code for sending a welcome packet is omitted as it is as

straightforward as sending the hello packet.

 Listing 6.3 Server Handling New Clients

 void NetworkManagerServer::ProcessPacket
 (
 InputMemoryBitStream& inInputStream,
 const SocketAddress& inFromAddress
)
 {
 //do we know who this client is?
 auto it = mAddressToClientMap.find(inFromAddress);
 if(it == mAddressToClientMap.end())
 {

HandlePacketFromNewClient(inInputStream, inFromAddress);
 }
 else
 {

ProcessPacket((*it).second, inInputStream);
 }
 }

 void NetworkManagerServer::HandlePacketFromNewClient
 (
 InputMemoryBitStream& inInputStream,
 const SocketAddress& inFromAddress
)
 {
 uint32_t packetType;
 inInputStream.Read(packetType);
 if(packetType == kHelloCC)
 {

string name;
inInputStream.Read(name);

//create a client proxy
// ...

//and welcome the client ...
SendWelcomePacket(newClientProxy);

//init replication manager for this client
// ...

 }
 else
 {

LOG(“Bad incoming packet from unknown client at socket %s”,
inFromAddress.ToString().c_str());

 }

ptg16606381

IMPLEMENTING CLIENT-SERVER 177

 Input Sharing and Client Proxies

 The implementation of replication for game objects in Robo Cat Action is very similar to the

approach discussed in Chapter 5 , “Object Replication.” There are three replication commands:

create, update, and destroy. Furthermore, a partial object replication system is implemented

to reduce the amount of information sent in an update packet. Since the game uses an

authoritative server model, objects are only ever replicated from the server to the client—

thus the server is responsible for sending the replication update packets (assigned the literal

 ‘STAT’), and the client is responsible for processing the replication commands as necessary.

There’s a bit of work that needs to be done in order to ensure that the appropriate commands

are sent to each of the clients, which will be covered later in this section.

 For now, consider what the client needs to send to the server. Since the server is the authority,

the client ideally should not be sending any replication commands for objects. However, in

order for the server to accurately simulate each client, it needs to know what each client is

trying to do. This leads to the concept of an input packet. In every frame, the client processes

the input events. If any of these input events lead to something that needs to be processed

server side—such as movement of the cat or throwing of a ball of yarn—the client will send the

input events to the server. The server then accepts the input packet, and saves the input state

into a client proxy— an object used by the server to track a particular client. Finally, when the

sever updates the simulation, it will take into account any input stored in a client proxy.

 The InputState class tracks a snapshot of the client input on a particular frame. Every frame,

the InputManager class updates the InputState based on the client’s input. What is stored

in the InputState will vary from game to game. In this particular case, the only information

stored is the desired movement offsets in each of the four cardinal directions, and whether

or not the player pressed the button to throw a ball of yarn. This leads to a class with only a

handful of members, as shown in Listing 6.4.

 Listing 6.4 InputState Class Declaration

 class InputState
 {
 public:
 InputState():
 mDesiredRightAmount(0),
 mDesiredLeftAmount(0),
 mDesiredForwardAmount(0),
 mDesiredBackAmount(0),
 mIsShooting(false)
 {}

 float GetDesiredHorizontalDelta() const
 {return mDesiredRightAmount - mDesiredLeftAmount;}
 float GetDesiredVerticalDelta() const
 {return mDesiredForwardAmount - mDesiredBackAmount;}
 bool IsShooting() const
 {return mIsShooting;}

ptg16606381

178 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 bool Write(OutputMemoryBitStream& inOutputStream) const;
 bool Read(InputMemoryBitStream& inInputStream);

 private:
 friend class InputManager;
 float mDesiredRightAmount, mDesiredLeftAmount;
 float mDesiredForwardAmount, mDesiredBackAmount;
 bool mIsShooting;
 };

 The GetDesiredHorizontalDelta and GetDesiredVerticalDelta functions are helper

functions that determine the overall offset on each axis. So for example, if the player holds

both the A and D keys, the overall horizontal delta should be zero. The code for the Read and

 Write functions is not included in Listing 6.4—these functions just read and write the member

variables to the provided memory bit stream.

 Keep in mind that the InputState is updated every single frame by the InputManager .

For most games, it would be impractical to send the InputState to the server at the same

frequency. Ideally, the InputState over the course of several frames should be combined into

a single move. To keep things simple, Robo Cat Action doesn’t combine the InputState in any

way—instead, every x seconds, it will grab the current InputState and save this as a Move .

 The Move class is essentially a wrapper for the InputState , with the addition of two floats:

one to track the timestamp of the Move , and one to track the amount of delta time between the

current move and the previous move. This is shown in Listing 6.5.

 Listing 6.5 Move Class

 class Move
 {
 public:
 Move() {}
 Move(const InputState& inInputState, float inTimestamp,

float inDeltaTime):
mInputState(inInputState),
mTimestamp(inTimestamp),
mDeltaTime(inDeltaTime)

 {}

 const InputState& GetInputState() const {return mInputState;}
 float GetTimestamp() const {return mTimestamp;}
 float GetDeltaTime() const {return mDeltaTime;}
 bool Write(OutputMemoryBitStream& inOutputStream) const;
 bool Read(InputMemoryBitStream& inInputStream);
 private:
 InputState mInputState;

ptg16606381

IMPLEMENTING CLIENT-SERVER 179

 float mTimestamp;
 float mDeltaTime;
 };

 The Read and Write functions here will read and write both the input state and the timestamp

from/to the provided stream.

 note

 Although the Move class is just a thin wrapper for InputState with additional

time variables, the distinction is made in order to allow for cleaner code on a

frame-to-frame basis. The InputManager polls the keyboard every frame, and

saves the data into an InputState . Only when the client actually needs to create

a Move does the timestamp matter.

 Next, a series of moves is stored in a MoveList . This class contains, unsurprisingly, a list of

moves, as well as the timestamp of the last move in the list. On the client side, when the

client determines it should store a new move, it will add the move to the move list. Then the

 NetworkManagerClient will write out the sequence of moves into an input packet when it

is time to do so. Note that the code for writing the sequence of moves optimizes the bit count

by assuming that there will never be more than three moves to write at a time. It can make

this assumption based on the constant factors that dictate the frequency of moves and input

packets. The client code related to move lists is shown in Listing 6.6.

 Listing 6.6 Client-Side Code for Move Lists

 const Move& MoveList::AddMove(const InputState& inInputState,
float inTimestamp)

 {
 //first move has 0 delta time
 float deltaTime = mLastMoveTimestamp >= 0.f ?

inTimestamp - mLastMoveTimestamp: 0.f;

 mMoves.emplace_back(inInputState, inTimestamp, deltaTime);
 mLastMoveTimestamp = inTimestamp;
 return mMoves.back();
 }

 void NetworkManagerClient::SendInputPacket()
 {
 //only send if there's any input to send!
 MoveList& moveList = InputManager::sInstance->GetMoveList();

 if(moveList.HasMoves())
 {

OutputMemoryBitStream inputPacket;
inputPacket.Write(kInputCC);

ptg16606381

180 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

//we only want to send the last three moves
int moveCount = moveList.GetMoveCount();
int startIndex = moveCount > 3 ? moveCount - 3 - 1: 0;
inputPacket.Write(moveCount - startIndex, 2);
for(int i = startIndex; i < moveCount; ++i)
{

moveList[i].Write(inputPacket);
}

SendPacket(inputPacket, mServerAddress);
moveList.Clear();

 }
 }

 Note that the code for SendInputPacket uses the array indexing operator on the MoveList .

The MoveList internally uses a deque data structure, so this operation is constant time. In

terms of redundancy, SendInputPacket really is not very fault tolerant. The client only ever

sends the moves once. So for example, if an input packet contains a “throw” input command,

but that packet never reaches the server, the client will never actually throw a ball of yarn.

Clearly, this is not a tenable situation in a multiplayer game.

 In Chapter 7 , “Latency, Jitter, and Reliability,” you will see how some redundancy can be added

to the input packets. In particular, each move will be sent three times in order to give the server

three opportunities to recognize the move. This adds a bit of complexity on the server side of

things, because the server needs to recognize whether or not it has already processed a move

when it receives it.

 As previously mentioned, the client proxy is what the server uses to track the state of each

client. Among one of the client proxy’s most important responsibilities is that it contains a

separate replication manager for each client. This allows the server to have a complete picture

of what information it has or has not sent to each client. Since the server will most likely not

send a replication packet to every client every frame, a separate replication manager for each

client is necessary. This especially becomes important when redundancy is added, because it

will allow the server to know the exact variables that need to be resent for a particular client.

 Each client proxy also stores the socket address, name, and ID of each player. The client proxy

is also where the move information for each client is stored. When an input packet is received,

all of the moves associated with a client are added to the ClientProxy instance representing

that client. Listing 6.7 shows a partial declaration of the ClientProxy class.

 Listing 6.7 Partial Declaration of the ClientProxy Class

 class ClientProxy
 {
 public:

ptg16606381

IMPLEMENTING CLIENT-SERVER 181

 ClientProxy(const SocketAddress& inSocketAddress, const string& inName,
int inPlayerId);

 // Functions omitted
 // ...
 MoveList& GetUnprocessedMoveList() {return mUnprocessedMoveList;}
 private:
 ReplicationManagerServer mReplicationManagerServer;
 // Variables omitted
 // ...
 MoveList mUnprocessedMoveList;
 bool mIsLastMoveTimestampDirty;
 };

 Finally, the RoboCatServer class will use the unprocessed move data in its Update function,

as shown in Listing 6.8. It is important to note that the delta time passed to each call of

 ProcessInput and SimulateMovement is based on the delta time between the moves, as

opposed to the delta time of the server’s frame. This is how the server can try to ensure the

simulation stays as close to the client’s actions as possible, even if it receives multiple moves

in one packet. It also allows for the server and client to run at different frame rates. This can

potentially add some complications for physics objects that must be simulated at set time

steps. If this is the case for your game, you will want to lock the physics frame rate separate from

other frame rates.

 Listing 6.8 Updating the RoboCatServer Class

 void RoboCatServer::Update()
 {
 RoboCat::Update();
 // Code omitted
 // ...

 ClientProxyPtr client = NetworkManagerServer::sInstance->
GetClientProxy(GetPlayerId());

 if(client)
 {

MoveList& moveList = client->GetUnprocessedMoveList();
for(const Move& unprocessedMove: moveList)
{

const InputState& currentState = unprocessedMove.GetInputState();
float deltaTime = unprocessedMove.GetDeltaTime();
ProcessInput(deltaTime, currentState);
SimulateMovement(deltaTime);

}

moveList.Clear();
 }
 HandleShooting();

ptg16606381

182 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

// Code omitted
// ...

 }

 Implementing Peer-to-Peer
Robo Cat RTS is a real-time strategy game that supports up to four players. Each player is

given a herd of three cats. Cats can be controlled by first left clicking to select a cat, and

then right clicking on a target. If the target is a location, the cat will move to that location.

If the target is an enemy cat, the cat will move into range of the enemy cat before beginning

to attack. As in the action game, the cats attack each other by throwing balls of yarn. Robo
Cat RTS is shown in action in Figure 6.5 . The code for the initial version of the game is in

Chapter6/RoboCatRTS .

Turn 332:2

Sanjay 3

Josh 3

Zach 3

Figure 6.5 Robo Cat RTS in action

 Although both games utilize UDP, the network model used for Robo Cat RTS is very different

from Robo Cat Action . As with the action game, this initial version of the RTS assumes there is no

packet loss. However, due to the nature of lockstep turns, the game will still function with some

amount of latency—though there definitely is a degradation in the quality of the experience if

the latency becomes too high.

 Because Robo Cat RTS uses a peer-to-peer model, there is no need to separate the code into

multiple projects. Each peer uses the same exact code. This reduces the number of files

somewhat, and also means that the same executable is used by all players in the game.

ptg16606381

IMPLEMENTING PEER-TO-PEER 183

 note

 There are two different ways to launch Robo Cat RTS , although both use the same

executable. To initialize as a master peer, specify a port number and player name:

 RoboCatRTS 45000 John

 To initialize as a normal peer, specify the full address of the master peer (including

the port number), as well as a player name:

 RoboCatRTS 127.0.0.1:45000 Jane

 Note that if the address specified is of a non-master peer, the player will still suc-

cessfully connect, though it is faster if the master peer is specified.

 However, Robo Cat RTS does employ the idea of a master peer . The primary purpose of

the master peer is to provide a known IP address of a peer in the game. This is especially

relevant when using a matchmaking service that maintains a list of known available games.

Furthermore, the master peer is the only peer who is allowed to assign a player ID to a new

player. This is mostly to avoid a race condition that could occur if multiple peers were contacted

by two different new players simultaneously. Other than this one special case, the master

peer behaves in the same manner as all of the other peers. Because each peer independently

maintains the state of the entire game, the game can still continue if the master peer

disconnects.

 Welcoming New Peers and Game Start

 The welcoming process for a peer-to-peer game is bit more complex than in a client-server

game. As in Robo Cat Action , the new peer first sends a “hello” packet with their player name.

However, the hello packet ('HELO') can now have one of three responses:

 1. Welcome (' WLCM')— This means that the hello packet was received by the master peer,

and the new peer is welcomed into the game. The welcome packet contains the new peer’s

player ID, the player ID of the master peer, and the number of players in the game (not

including the new peer). Furthermore, the packet contains the names and IP addresses of

all of the peers.

 2. Not joinable ('NOJN')— This means that either the game is already in progress, or the

game is full. If the new peer receives this packet, the game exits.

 3. Not master peer ('NOMP')— This happens if the hello packet was sent to a peer who is not

the master peer. In this instance, the packet will contain the address of the master peer so

that the new peer can send a hello packet to the master peer.

 However, once a new peer receives the welcome packet, the process is not complete. It is also

the responsibility of the new peer to send an introduction packet (“INTR”) to every other peer

in the game. This packet contains the new peer’s player ID and name. This way, each peer in

ptg16606381

184 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

the game is guaranteed to have the new peer stored in their data structures used to track the

players in the game.

 Because the addresses stored by each peer are based on addresses gleaned from

incoming packets, there is potential for issue when one or more peer is connected on a

local network. For example, suppose that Peer A is the master peer and Peer B is on the

same local network as Peer A. This means that Peer A’s map of peers will include the local

network address of Peer B. Now suppose a new peer, Peer C, connects to Peer A via an

external IP address. Peer A will welcome Peer C to the game, and give Peer C the address

of Peer B. However, the address of Peer B that is provided is not reachable by Peer C,

because Peer C is not on the same local network as Peer A and Peer B. Thus Peer C will fail

to communicate with Peer B, and will not be able to properly join the game. This problem

is shown in Figure 6.6 a.

 Recall that Chapter 2 , “The Internet,” described one such solution to this problem via NAT

punchthrough. Other approaches involve the use of an external server in some way. In one

approach, the external server, sometimes called a rendezvous server , only facilitates the

initial connection between peers. In this way, it is guaranteed that every peer connects

to every other peer via an externally reachable IP address. Use of a rendezvous server is

illustrated in Figure 6.6 b.

(a) (b)

Local Network Local Network

Peer A
Local: 192.x.x.x

Global: 128.5.3.2

Peer A
Local: 192.x.x.x

Global: 128.5.3.2

Peer B
Local: 192.x.x.x

Global: ??

Peer C
Local: ??

Global: 231.3.2.1

Peer C
Local: ??

Global: 231.3.2.1

Peer B
Local: 192.x.x.x

Global: 128.5.4.4

Rendezvous
Server

Global: 8.3.2.1

 Figure 6.6 (a) Peer C is unable to connect to Peer B; (b) A rendezvous server facilitates initial

communication between peers

ptg16606381

IMPLEMENTING PEER-TO-PEER 185

 Another approach used by some gaming services is to have a central server handle the entire

packet routing between peers. What this means is that all peer traffic goes to the central server,

and then is routed to the correct peer. Although this second approach requires a far more

powerful server, it ensures that no peer will ever know the public IP address of any other peer.

From a security standpoint, this may be preferred as it would, for instance, prevent one peer

from trying to disconnect another peer via a distributed denial of service attack.

 One other edge case worth considering is what should happen if a peer is only able to connect

to some of the players in the game? This could happen even in the event of a rendezvous server

or a central server routing packets. The simplest solution is to just not let this peer join the

game, but you would need additional code to track this case. Since this chapter assumes that

there are no connection issues to worry about, there is no code provided to handle this. But a

commercial peer-to-peer game would absolutely need to include code to handle such a case.

 When each peer is added to a game, their NetworkManager goes into a lobby state. When the

master peer presses the return key, this will send a start packet (‘STRT’) to every peer in the

game. This will signal all peers to enter a 3-second countdown. Once the countdown hits zero,

the game officially begins.

 Note that this starting approach is naïve in that the timer does not really compensate for any

latency between the master peer and the other peers. Thus, the master peer will always end up

starting the game before the other peers. This does not affect the synchronization of the game

due to the lockstep model, but it may mean that the master peer’s game has to temporarily

pause to allow the other peers to catch up. One way to solve this issue would be for each peer

to subtract ½ RTT time from the timer duration. So if the master peer’s RTT to Peer A were

100 ms, Peer A could subtract 50 ms from the total time duration, which should allow it to be

better synchronized.

 Command Sharing and Lockstep Turns

 To simplify things, Robo Cat RTS runs at a locked 30 FPS, with a locked delta time of ~33 ms. This

means that even if a particular peer takes greater than 33 ms to render a frame, the simulation

still runs as if it were a 33-ms frame. Robo Cat RTS refers to each of these 33-ms ticks as a “sub-

turn.” There are three sub-turns per full turn. Thus, each full turn is 100 ms in length, or in other

words, there are 10 turns per second. Ideally, the duration of sub-turns and full turns would

be variable based on network and performance conditions. In fact, this is one of the topics of

discussion in the Bettner and Terrano paper on Age of Empires . However, to keep things simple

 Robo Cat RTS never adjusts the length of turns or sub-turns.

 In terms of replication, each peer runs a full simulation of the game world. This means that

objects are not replicated in any way whatsoever. Instead, during gameplay only “turn” packets

are transmitted. These packets contain a list of the commands issued by each peer on a

particular turn, along with a couple of other key pieces of data.

ptg16606381

186 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 It should be noted that there is a clear delineation between “commands” and input. For

example, left clicking on a cat selects a particular cat. However, as this selection does not

affect the game state in any way, it does not generate a command. On the other hand, if a cat

is selected and the player right clicks, this means the player wants the cat to either move or

attack. Since both of these actions would affect the game state, both will generate commands.

 Furthermore, no command is executed the very instant it is issued. Rather, each peer queues

up all commands issued on a particular turn. At the end of a turn, each peer will send its

command list to every other peer. This command list is scheduled for execution on a future

turn. Specifically, a command issued by a peer on turn x is not executed until turn x + 2. This

allows for roughly 100 ms for turn packets to be received and processed by every peer. What

this means is that in normal conditions, there is a delay of up to 200 ms from when a command

is issued to when it is executed. However, because the delay is consistent, this does not really

negatively affect the game experience, at least in the case of an RTS.

 The concept of commands lends itself naturally to an inheritance hierarchy. Specifically, there is

a base Command class, which is declared in Listing 6.9.

 Listing 6.9 Declaration of the Command Class

 class Command
 {
 public:
 enum ECommandType
 {

CM_INVALID,
CM_ATTACK,
CM_MOVE

 };

 Command():
 mCommandType(CM_INVALID),
 mNetworkId(0),
 mPlayerId(0)
 {}

 //given a buffer, will construct the appropriate command subclass
 static shared_ptr<Command> StaticReadAndCreate(

InputMemoryBitStream& inInputStream);

 //getters/setters
 // ...

 virtual void Write(OutputMemoryBitStream& inOutputStream);
 virtual void ProcessCommand() = 0;
 protected:
 virtual void Read(InputMemoryBitStream& inInputStream) = 0;

ptg16606381

IMPLEMENTING PEER-TO-PEER 187

 ECommandType mCommandType;
 uint32_t mNetworkId;
 uint32_t mPlayerId;
 };

 The implementation of the Command class is mostly self-explanatory. There is an enum

specifying the type of command, and an unsigned integer to store the network ID of the unit

to whom the command was issued. The ProcessCommand pure virtual function is used when

a command is actually executed. The Read and Write functions are used to read/write the

commands to memory bit streams. The StaticReadAndCreate function first reads the

command type enum from the memory bit stream. Then based on the value of the enum, it will

construct an instance of an appropriate subclass and call the subclass’ Read function.

 There are only two subclasses in this case. The “move” command moves a cat to the targeted

location. The “attack” command tells a cat to attack an enemy cat. In the case of the move

command, it has an additional member variable that is a Vector3 containing the target of the

move. Each subclass command also has a custom StaticCreate function that is used as

a helper to create a shared_ptr to a command. The implementation StaticCreate and

 ProcessCommand for the move command is shown in Listing 6.10.

 Listing 6.10 Select Functions from MoveCommand

 MoveCommandPtr MoveCommand::StaticCreate(uint32_t inNetworkId,
const Vector3& inTarget)

 {
 MoveCommandPtr retVal;
 GameObjectPtr go = NetworkManager ::sInstance->

GetGameObject(inNetworkId);
 uint32_t playerId = NetworkManager::sInstance->GetMyPlayerId();

 //can only issue commands to this unit if I own it, and it’s a cat
 if (go && go->GetClassId() == RoboCat::kClassId &&

go->GetPlayerId() == playerId)
 {

retVal = std::make_shared<MoveCommand>();
retVal->mNetworkId = inNetworkId;
retVal->mPlayerId = playerId;
retVal->mTarget = inTarget;

 }
 return retVal;
 }

 void MoveCommand::ProcessCommand()
 {
 GameObjectPtr obj = NetworkManager ::sInstance->

GetGameObject(mNetworkId);

ptg16606381

188 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 if (obj && obj->GetClassId() == RoboCat::kClassId &&
obj->GetPlayerId() == mPlayerId)

 {
RoboCat* rc = obj->GetAsCat();
rc->EnterMovingState(mTarget);

 }
 }

 The StaticCreate function takes in the network ID of the cat who is receiving the command,

as well as the target location. It also does some validation to ensure that the command is only

being issued to a game object that exists, that the object is a cat, and that it is controlled by the

peer issuing the command. The ProcessCommand function does some basic validation to ensure

that the network ID it receives is that of a cat, and that the player ID corresponds to the player

controlling the cat. The call to EnterMovingState simply tells the cat to start executing its

moving behavior, which will occur over the course of one or more sub-turns. The moving state is

implemented much like it would be in a single-player game, so it is not explained in this text.

 Commands are stored in a CommandList . As with the MoveList class in the action game, the

 CommandList is just a wrapper for a deque of commands. It also has a ProcessCommands

function that calls ProcessCommand on each command in the list.

 Each peer’s input manager has an instance of CommandList . When a local peer either uses the

keyboard or mouse to request a command, the input manager adds the command to its list. A

class called TurnData is used to encapsulate a peer’s command list, as well as data related to

synchronization, for each completed 100-ms turn. The network manager then has a vector

where the index corresponds to a turn number. At each index, the network manager stores

a map where the key is the player ID, and the value is the TurnData for that player. This way,

for each turn, each player’s turn data is separate. This is what allows the network manager to

validate it has received data from each peer.

 When each peer completes a sub-turn, it checks to see whether or not the full turn is over. If the

turn is over, then it prepares turn packets to send to each peer. This function is a bit involved,

and therefore is shown in Listing 6.11.

 Listing 6.11 Sending Turn Packets to Each Peer

 void NetworkManager::UpdateSendTurnPacket()
 {
 mSubTurnNumber++;
 if (mSubTurnNumber == kSubTurnsPerTurn)
 {

 //create our turn data
TurnData data(mPlayerId,

RandGen::sInstance->GetRandomUInt32(0, UINT32_MAX),
ComputeGlobalCRC(),
InputManager::sInstance->GetCommandList());

ptg16606381

IMPLEMENTING PEER-TO-PEER 189

//we need to send a turn packet to all of our peers
OutputMemoryBitStream packet;
packet.Write(kTurnCC);

 //we’re sending data for 2 turns from now
packet.Write(mTurnNumber + 2);
packet.Write(mPlayerId);
data.Write(packet);

for (auto &iter: mPlayerToSocketMap)
{

SendPacket(packet, iter.second);
}

//save our turn data for turn + 2
mTurnData[mTurnNumber + 2].emplace(mPlayerId, data);
InputManager::sInstance->ClearCommandList();

if (mTurnNumber >= 0)
{

TryAdvanceTurn();
}
else
{

//a negative turn means there’s no possible commands yet
mTurnNumber++;
mSubTurnNumber = 0;

}
 }
 }

 Two of the parameters passed to the TurnData constructor—the random value and the CRC—

are discussed in the next section. The main item to note for now is that the peer prepares a turn

packet that includes a list of all the commands to be executed two turns from now. This turn

packet is then sent to all of the peers. Furthermore, the peer locally keeps its own turn data

before clearing the input manager’s command list.

 Finally, there is code that checks for a negative turn number. When the game begins, the

turn number is set to −2. This way, commands that are issued on turn −2 will be scheduled

for execution on turn 0. This means that no commands are executed for the first 200 ms,

but there is no way to avoid this initial delay—it is a property of the lockstep turn

mechanism.

 The TryAdvanceTurn function, shown in Listing 6.12, is named as such because it does not

guarantee that the turn advances. This is because it is the responsibility of TryAdvanceTurn

to enforce the lockstep nature of the turns. In essence, if it is currently turn x , TryAdvanceTurn

ptg16606381

190 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

will only advance to turn x + 1 if all of the turn data for turn x + 1 has been received. If some turn

data for turn x + 1 is still missing, the network manager will enter into a delay state.

 Listing 6.12 TryAdvanceTurn Function

 void NetworkManager::TryAdvanceTurn()
 {

 //only advance the turn IF we received the data for everyone
 if (mTurnData[mTurnNumber + 1].size() == mPlayerCount)
 {

if (mState == NMS_Delay)
{

//throw away any input accrued during delay
InputManager::sInstance->ClearCommandList();
mState = NMS_Playing;
//wait 100ms to give the slow peer a chance to catch up
SDL_Delay(100);

}

mTurnNumber++;
mSubTurnNumber = 0;

if (CheckSync(mTurnData[mTurnNumber]))
{

//process all the moves for this turn
for (auto& iter: mTurnData[mTurnNumber])
{

iter.second.GetCommandList().ProcessCommands(iter.first);
}

}
else
{

 //for simplicity, just end the game if it desyncs
Engine::sInstance->SetShouldKeepRunning(false);

}
 }
 else
 {

 //don’t have all player’s turn data, we have to delay:(
mState = NMS_Delay;

 }
 }

 While in the delay state, objects in the world are not updated. Instead, the network manager

will wait for the turn packets it still needs to receive. Every time a new turn packet is received

while in delay, the network manager will again call TryAdvanceTurn , hoping that the new

turn packet fills in the gap in turn data. This process will repeat until all necessary data is

received. Similarly, if a connection is reset while in delay, the reset peer will be removed from

the game and all other peers will attempt to continue.

ptg16606381

IMPLEMENTING PEER-TO-PEER 191

 Don’t forget that this first version of Robo Cat RTS is assuming that all packets are eventually

received. To account for packet loss, the delay state could be augmented so that while in delay,

the peer determines whose command data is missing. It could then send a request to the peer

in question to resend the command data. If several such resend requests are ignored, the peer

would eventually be dropped. Furthermore, future turn packets could contain previous turn

data, so in the event that a prior turn packet was dropped, a subsequent incoming turn packet

may contain the required data.

 Maintaining Synchronization

 One of the largest challenges in designing a peer-to-peer game in which each peer simulates

the game independently is ensuring that each instance of the game stays synchronized. Even

minor discrepancies such as inconsistent positions can propagate into more serious issues in

the future. If these discrepancies are allowed to persist, over time the simulations will diverge.

At some point, the simulations may be so different that it seems like the peers are playing a

different game! Clearly, this cannot be allowed, so ensuring and verifying synchronization is

very important.

 Synchronizing Pseudo-Random Number Generators

 Some sources of desynchronization are more apparent than others. For example, using a

 pseudo-random number generator (PRNG) is the only way for a computer to acquire

numbers that are seemingly random. Random elements are a cornerstone of many games, so

eliminating random numbers altogether typically is not a viable option. However, in a peer-to-

peer game, it is necessary to guarantee that on any particular turn, two peers will always receive

the same results from a random number generator.

 If you have ever used random numbers in a C/C++ program, you are likely familiar with the

 rand and srand functions. The rand function generates a pseudo-random number, while

the srand function seeds the PRNG. Given a particular seed, a particular PRNG guarantees to

always produce the same sequence of numbers. A typical approach is to use the current time as

a seed passed to srand . In theory, this means that the numbers will be different every time.

 In terms of keeping the peers in sync, this means there are two main things that need to be

done in order to ensure each peer generates the same numbers:

 ■ Each peer’s random number generator should be seeded to the same initial value. In the

case of Robo Cat RTS , the master peer selects a seed when it sends out the start packet. The

seed is then included inside the start packet, so every peer will know what seed value to

start the game with.

■ It must be guaranteed that each peer will always make the same number of calls to the

PRNG every turn, in the same order, and in the same location in the code. This means there

cannot be different versions of the build that may use the PRNG more or less, such as for

different hardware in cross-platform play.

ptg16606381

192 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 However, there is a third issue that may not be apparent at first. It turns out that rand

and srand are not particularly suitable for guaranteeing synchronization. The C standard

does not specify which PRNG algorithm rand must use. This means that different

implementations of the C library on different platforms (or even just in different compilers),

are not guaranteed to use the same PRNG algorithm. If this is the case, it makes no

difference whether or not the seeds are the same—different algorithms will give different

results. Furthermore, because there are no guarantees regarding the PRNG algorithm used

by rand , this means that the quality of the random numbers, or entropy of the values, is

dubious.

 In the past, the poorly defined nature of rand meant that most games implemented their own

PRNG. Thankfully, C++11 introduced standardized and higher-quality pseudo-random number

generators. Though the provided PRNGs are not considered cryptographically secure—

meaning safe to use when random numbers are a part of security protocol—they are more

than sufficient for the purposes of a game. Specifically, the code for Robo Cat RTS uses the

C++11 implementation of the Mersenne Twister PRNG algorithm. The 32-bit Mersenne Twister,

referred to as MT19937, has a period of 2 19937 , meaning that the sequence of numbers will

realistically never repeat during the course of a given game.

 The interface for the C++11 random number generators is slightly more complex than the

old rand and srand functions, so Robo Cat RTS wraps this in a RandGen class, as declared in

Listing 6.13.

 Listing 6.13 Declaration of the RandGen Class

 class RandGen
 {
 public:
 static std::unique_ptr<RandGen> sInstance;

 RandGen();
 static void StaticInit();
 void Seed(uint32_t inSeed);
 std::mt19937& GetGeneratorRef() {return mGenerator;}

 float GetRandomFloat();
 uint32_t GetRandomUInt32(uint32_t inMin, uint32_t inMax);
 int32_t GetRandomInt(int32_t inMin, int32_t inMax);
 Vector3 GetRandomVector(const Vector3& inMin, const Vector3& inMax);
 private:
 std::mt19937 mGenerator;
 std::uniform_real_distribution<float> mFloatDistr;
 };

 The implementation of a handful of the RandGen functions is likewise shown in Listing 6.14.

ptg16606381

IMPLEMENTING PEER-TO-PEER 193

 Listing 6.14 Select Functions from RandGen

 void RandGen::StaticInit()
 {
 sInstance = std::make_unique<RandGen>();
 //just use a default random seed, we’ll reseed later

 std::random_device rd;
 sInstance->mGenerator.seed(rd());
 }

 void RandGen::Seed(uint32_t inSeed)
 {
 mGenerator.seed(inSeed);
 }

 uint32_t RandGen::GetRandomUInt32(uint32_t inMin, uint32_t inMax)
 {
 std::uniform_int_distribution<uint32_t> dist(inMin, inMax);
 return dist(mGenerator);
 }

 Note that when the RandGen is first initialized, it seeds using the random_device class.

This will yield a platform-specific random value. Random devices are intended to be used for

seeding a random number generator, but the device itself should not be used as a generator.

The uniform_int_distribution class used in one of the functions simply is a way to

specify a range of numbers, and receive a pseudo-random number within this range. This

approach is preferable to the commonplace practice of taking an integer modulus of a random

result. C++11 introduces several additional types of distributions.

 To synchronize the random numbers, the master peer generates a random number to use as

the new seed when the countdown begins. This random number is transmitted to all of the

other peers to ensure that when turn −2 begins, all peers will have their generators seeded to

the same value:

 //select a seed value
 uint32_t seed = RandGen::sInstance->GetRandomUInt32(0, UINT32_MAX);
 RandGen::sInstance->Seed(seed);

 Furthermore, when creating a turn packet at the end of a turn, each peer generates a random

integer. This random integer is sent as part of the turn data inside the turn packet. This makes it

easy for the peers to verify that all the random number generators remain in sync as the turns

progress.

 Keep in mind that if your game code requires random numbers that do not affect the game

state in any way, it is possible to keep a different generator for these cases. One example is

simulating random packet loss—this should not use the game’s generator, because it means

ptg16606381

194 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

every peer would simulate packet loss at the same time. However, be very careful when having

multiple generators. You must make sure that any other programmers working on your game

understand when to use which PRNG.

 Verifying Game Synchronization

 Other sources of desynchronization may not be as readily apparent as a PRNG. For example,

while floating point implementations are deterministic, there can be discrepancies depending

on the hardware implementations. For example, faster SIMD instructions may yield different

results than regular floating point instructions. There typically are also different flags that

can be set on a processor to change floating point behavior, such as whether or not it strictly

follows the IEEE 754 implementation.

 Other issues in synchronization may just be the result of an unintended error by a programmer.

Perhaps the programmer wasn’t aware how the synchronization worked, or perhaps they

just made a mistake. Either way, it is important that the game has code that checks for

synchronization on a regular basis. This way, desynchronization bugs can hopefully be caught

soon after they are introduced.

 A common approach is to utilize a checksum , much like how network packets use checksums

in order to validate integrity of packet data. In essence, at the end of each turn, a checksum

of the game state is computed. This checksum is transmitted inside the turn packet so that

every peer can validate that all game instances arrive compute the same checksum at the end

of a turn.

 In terms of selecting an algorithm for the checksum, there are many different choices. Robo
Cat RTS uses the cyclic redundancy check (CRC), which yields a 32-bit checksum value.

Rather than implement a CRC function from scratch, this game uses the crc32 function from

the open-source zlib library. This was a matter of convenience, because zlib was already a

dependency due to use of PNG image files. Furthermore, because zlib is designed to handle

large amounts of data at once, it stands to reason that the CRC implementation is both vetted

and performant.

 In the spirit of further code reuse, the code for ComputeGlobalCRC , shown in Listing 6.15,

uses the OutputMemoryBitStream class. Each game object in the world writes its relevant

data into the provided bit stream via the WriteForCRC function. These objects are written

in ascending order by network ID. Once every object has written its relevant data, the CRC is

computed on the stream buffer as a whole.

 Listing 6.15 ComputeGlobalCRC Function

 uint32_t NetworkManager::ComputeGlobalCRC()
 {
 OutputMemoryBitStream crcStream;

 uint32_t crc = crc32(0, Z_NULL, 0);

ptg16606381

IMPLEMENTING PEER-TO-PEER 195

 for (auto& iter: mNetworkIdToGameObjectMap)
 {

iter.second->WriteForCRC(crcStream);
 }

 crc = crc32 (crc, reinterpret_cast<const Bytef*>
(crcStream.GetBufferPtr()),
crcStream.GetByteLength());

 return crc;
 }

 There are a couple of additional items to consider regarding ComputeGlobalCRC . First, not

every value for every game object is written into the stream. In the case of the RoboCat class,

the values written are the controlling player ID, network ID, location, health, state, and target

network ID. Some of the other member variables, such as the variable that tracks the cooldown

between yarn throws, are not synchronized. This selectivity reduces the amount of time spent

computing the CRC.

 Furthermore, because the CRC function can be computed partially, it is not actually necessary

to write all the data to a stream prior to computing the CRC. In fact, copying the data may be

less efficient than computing the CRC of every value on the fly. It even would be possible to

write an interface similar to OutputMemoryBitStream —essentially an instance of a class that

only computes the CRC of values fed into it, but does not save it into a memory buffer. However,

to keep the code simple, the existing OutputMemoryBitStream class was reused.

 Back to the task at hand, recall that the TryAdvanceTurn function in Listing 6.12 makes a

call to a CheckSync function when it advances the turn. This function loops through all of

the random numbers and CRC values in every peer’s turn data, and ensures that every peer

computed the same random number and same CRC value when the turn packet was sent out.

 In the event that CheckSync detects a desynchronization, Robo Cat RTS simply ends the game

immediately. A more robust system would be to utilize a form of voting. Suppose there are four

players in the game. In the event that players 1 to 3 computed checksum value A and player 4

computed checksum value B, this means that three of the players are still in sync. Thus it may

be possible for the game to continue if player 4 is dropped from the game.

 warning

 When developing a peer-to-peer game with independent simulation, desynchro-

nization is the source of much angst. Desynchronization bugs often are the most

difficult to troubleshoot. In order to help debug these bugs, it is important to

implement a logging system that can be enabled in order to see the commands

executed by each peer in excruciating detail.

ptg16606381

196 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

 While developing the sample code for Robo Cat RTS , a desynchronization would

occur if a client went into the delay state while a cat was moving. It turned out

that the cause was that when the delayed player resumed the game, they would

skip a sub-turn. This was determined, thanks to a logging system that wrote when

a peer was executing a sub-turn as well as the location of each cat at the end of

each a sub-turn. This made it possible to see that one of the peers was skipping a

sub-turn. Without the logging, it would have been much more time consuming to

locate and fix this issue.

 In the same scenario, a much more complex approach would be to actually replicate the entire

game state back to player 4 in an effort to resynchronize them with the game. Depending on

the amount of data in a game, this may be impractical. But it is something to keep in mind if it is

important that players are not dropped from the game when they desync.

 Summary
 Selecting a network topology is one of the most important decisions made when creating a

networked game. In the client-server topology, one game instance is denoted as the server,

and it is generally the authority of the entire game. All other game instances are clients, and

only communicate with the server. This usually means that object replication data is sent from

the server to the client. In a peer-to-peer topology, each game instance is more or less on

equal footing. One approach in a peer-to-peer game is to have each peer simulate the game

independently.

 The deep dive of the code for Robo Cat Action covered several different topics. To help

modularize the code, the code was split up into three separate targets: a shared library, a

server, and a client. The process of the server welcoming new clients involves transmission of

a hello packet to the server, and a welcome packet back to the client. The input systems has

the client sending input packets that contain “moves” executed by a client, including moving a

cat around and throwing balls of yarn. The server maintains a client proxy for each client, both

in order to track what replication data needs to be sent to each client and to have an object in

which pending moves can be stored.

 The section on Robo Cat RTS discussed many of the major challenges in designing a peer-

to-peer game with independent simulation. The use of a master peer allows for a known IP

address to be associated with a particular game. Each peer maintains a list of the addresses

of all the other peers in the game. The welcoming of new peers is a bit more complex than a

client-server game, because the new peer needs to inform all other peers of their existence.

The peers maintain a lockstep by transmitting turn packets at the end of each 100-ms turn.

The commands in these turn packets are scheduled for execution two turns later. Each peer

continues on to the next turn only after all of turn data for the next turn has been received.

ptg16606381

ADDITIONAL READING 197

Finally, synchronizing random number generation and using checksums of the game state are

necessary to keep each peer’s game instance in sync.

 Review Questions
1. In the client-server model, how do the responsibilities of a client differ from the

responsibilities of the server?

2. What is the worst possible latency in a client-server game, and how does it compare to the

worst possible latency in a peer-to-peer game?

3. How many connections does a peer-to-peer game require in comparison to a client-server

game?

4. What is one approach to simulating the game state in a peer-to-peer game?

5. The current implementation of Robo Cat Action does not average the input state over

several frames when creating a move. Implement this functionality.

6. In what manner could the start procedure be improved in Robo Cat RTS ? Implement this

improvement.

 Additional Reading
 Bettner, Paul and Mark Terrano. 1500 Archers on a 28.8: Network Programming in Age of Empires
and Beyond. Presented at the Game Developer’s Conference, San Francisco, CA, 2001.

ptg16606381

This page intentionally left blank

ptg16606381

 C H A P T E R 7

 LATENCY, JITTER,

AND RELIABILITY

 Networked games live in a harsh environment,

competing for bandwidth on aging networks,

sending packets to servers and clients scattered

throughout the world. This results in data loss and

delay not typically experienced during development

on a local network. This chapter explores some of

the networking problems multiplayer games face

and suggests workarounds and solutions for those

problems, including how to build a custom reliability

layer on top of the UDP transport protocol.

ptg16606381

200 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

 Latency
 Your game, once released into the wild, must contend with a few negative factors not present

in the tightly controlled environment of your local network. The first of these factors is latency .

The word latency has different meanings in different situations. In the context of computer

games, it refers to the amount of time between an observable cause and its observable effect.

Depending on the type of game, this can be anything from the period between a mouse click

and a unit responding to its orders in a real-time strategy (RTS) game, to the period between a

user moving her head and a virtual reality (VR) display updating in response.

 Some amount of latency is unavoidable, and different genres of games have different latency

acceptability thresholds. VR games are typically the most sensitive to latency, because we as

humans expect our eyes to see different things as soon as our heads swivel. In these cases, a

latency of less than 20 ms is typically required for the user to remain present in the simulated

reality. Fighting games, first-person shooters, and other twitchy action games are the next

most sensitive to latency. Latency in these games can range from 16 to 150 ms before the user

starts to feel, regardless of frame rate, that the game is sluggish and unresponsive. RTS games

have the highest tolerance for latency, and this tolerance is often exploited to good effect, as

described in Chapter 6 , “Network Topologies and Sample Games.” Latency in these games can

grow as high as 500 ms without being detrimental to the user experience.

 As a game engineer, decreasing latency is one manner in which you can improve your users’

play experience. To do so, it helps to understand the many factors that contribute to this

latency in the first place.

 Non-Network Latency

 It is a commonly held misconception that networking delay is the primary source for latency

in gameplay. While packet exchange over the network is a significant source for latency, it is

definitely not the only one. There are at least five other sources of latency, some of which are

not under your control:

 ■ Input sampling latency. The time between when a user pushes a button and when the

game detects that button press can be significant. Consider a game running at 60 frames

per second that polls a gamepad for input at the beginning of each frame, then updates

all objects accordingly before finally rendering the game world. As shown in Figure 7.1 a,

if a user presses the jump button 2 ms after the game checks for input, it will be almost an

entire frame before the game updates anything based on that button press. For inputs that

drive view rotation, it is possible to sample the input again at the end of a frame and mildly

warp the rendered output based on altered rotation, but this is typically only done in the

most latency-sensitive applications. That means that on average, there is half a frame of

latency between a button press and the game’s response to that press.

■ Render pipeline latency. GPUs do not perform draw commands the moment the CPU

batches those commands. Instead, the driver inserts the commands into a command

ptg16606381

LATENCY 201

buffer, and the GPU executes those commands at some point in the future. If there is a lot

of rendering to do, the GPU may lag an entire frame behind the CPU before it displays the

rendered image to the user. Figure 7.1 b shows such a timeline common in single-threaded

games. This introduces another frame of latency.

■ Multithreaded render pipeline latency. Multithreaded games introduce even more

latency into the render pipeline. Typically, one or more threads run the game simulation,

updating a world that they pass to one or more render threads. These render threads then

batch GPU commands while the simulation threads are already simulating the next frame.

 Figure 7.1 c demonstrates how multithreaded rendering can add yet another frame of

latency to the user experience.

Game samples input

User presses button

2 ms 4 ms
a)

b)

c)

Frame 0

17 ms 33 ms 50 ms

17 ms

CPU Frame 0

Game Thread Frame 0 Game Thread Frame 1

Render Thread Frame 0

GPU Finishes Frame 0

Render Thread Frame 1

Game Thread Frame 2

CPU Frame 1

GPU Finishes Frame 0 GPU Finishes Frame 1

CPU Frame 2

33 ms 50 ms

17 ms 33 ms 50 ms

Game presents Frame 0 Game presents
Frame 1

Game presents
Frame 0

19 ms
Frame 1 Frame 2

Game samples input,
detecting button press

Game presents Frame 1
image showing result of
button press

 Figure 7.1 Latency timing diagrams

■ VSync. To avoid screen tearing, it is common practice to change the image displayed by

a video card only during a monitor’s vertical blanking interval. This way, the monitor will

never show part of one frame and part of the next frame at the same time. This means

that a present call on the GPU must wait until the vertical blanking interval for the user’s

monitor, which is typically once every 1/60 of a second. If your game’s frames take only

16 ms, this is not a problem. However, if a frame takes even 1 ms longer to render, the

rendering will not be complete by the time the video card is ready to update the display.

In this case, the command to present the back buffer to the front will stall, waiting an extra

15 ms until the next vertical blanking interval. When this happens, your user experiences

an extra frame of latency.

ptg16606381

202 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

 note

 Screen tearing is what happens when a GPU presents a back buffer while the

monitor is in the middle of refreshing the image on its screen. Monitors typically

update the image on screen one horizontal row at a time, from top bottom. If the

image being drawn to the screen changes in the middle of the update, the user

observes the bottom half of the screen showing the new image while the top half

still shows the previous image. If the camera is scrolling rapidly across the world,

this can result in a shearing effect that makes it look as if the image were printed

on a piece of paper, torn in half, and then one-half slightly shifted.

 Most PC games give the user an option to disable vsync for enhanced perfor-

mance, and some newer LCD monitors, known as G-SYNC, actually have variable

refresh rates that can adjust to match frame rate and avoid the potential latency of

vsyncing.

■ Display lag. Most HDTVs and LCD monitors process their input to some extent before

actually displaying an image. This processing can include de-interlacing, HDCP as well as

other DRM, and image effects like video scaling, noise cancellation, adaptive luminance,

image filtering, and more. This processing comes at a cost, and can easily add tens of

milliseconds to the latency users perceive. Some televisions have a “game” mode that

decreases video processing to minimize latency, but you cannot count on this to be enabled.

■ Pixel response time. LCD displays have the additional problem that pixels just take time

to change brightness. Typically this duration is in the single digits of milliseconds, but with

older displays, this can easily add an extra half frame of latency. Luckily, the latency here

presents more as image ghosting than absolute latency—the transition starts right away,

but doesn’t complete for several milliseconds.

 Non-network latency is a serious issue and can negatively impact a user’s perception of a game.

John Carmack famously once tweeted “I can send an IP packet to Europe faster than I can

send a pixel to the screen. How f’d up is that?” Given the amount of latency already present in

a single-player game, there is strong pressure to mitigate any network-influenced latency as

much as possible when introducing multiplayer functionality. To do that, it helps to understand

the root causes of network latency.

 Network Latency

 Although there are many sources of latency, the delay experienced by a packet as it travels from

a source host to its destination is usually the most significant cause of latency in multiplayer

gaming. There are four main delays a packet experiences during its lifetime:

 1. Processing delay. Remember that a network router works by reading packets from a

network interface, examining the destination IP address, figuring out the next machine

ptg16606381

LATENCY 203

that should receive the packet, and then forwarding it out of an appropriate interface. The

time spent examining the source address and determining an appropriate route is known

as the processing delay. Processing delay can also include any extra functionality the router

provides, such as NAT or encryption.

 2. Transmission delay. For a router to forward a packet, it must have a link layer interface

that allows it to forward the packet along some physical medium. The link layer protocol

controls the average rate at which bits can be written to the medium. For instance, a 1-MB

Ethernet connection allows for roughly 1 million bits to be written to an Ethernet cable per

second. Thus it takes about one millionth of a second (1 μs) to write a bit to a 1-MB Ethernet

cable, and therefore 12.5 ms to write a whole 1500-byte packet. This time spent writing the

bits to physical medium is known as the transmission delay.

 3. Queuing delay. A router can only process a limited number of packets at a time. If packets

arrive at a rate faster than the router can process them, they go into a receive queue, wait-

ing to be processed. Similarly, a network interface can only output one packet at a time,

so after a packet is processed, if the appropriate network interface is busy, it goes into a

transmission queue. The time spent in these queues is known as the queuing delay.

 4. Propagation delay. For the most part, regardless of the physical medium, information can-

not travel faster than the speed of light. Thus, the latency when sending a packet is at least

0.3-ns times the number of meters the packet must travel. This means, even under ideal

conditions, it takes at least 12 ms for a packet to travel across the United States. This time

spent traveling is known as the propagation delay.

 You can optimize some of these delays, and some you cannot. Processing delay is typically a

minor factor, as most router processors these days are very fast.

 Transmission delay is usually dependent on the type of link layer connection the end user

employs. Because bandwidth capability typically increases as the packet moves closer to the

backbone of the Internet, it is at the edges of the Internet where transmission delay is greatest.

Making sure your servers use high-bandwidth connections is most important. After that, you

can best reduce transmission delay by encouraging end users to upgrade to fast Internet

connections. Sending packets that are as large as possible will also help, since you reduce the

amount of bytes spent on headers. If those headers are a significant portion of your packet size,

they translate to a significant portion of your transmission delay.

 Queuing delay is a result of packets backing up waiting to be transmitted or processed.

Minimizing processing and transmission delay will help minimize queuing delay. It’s worth

noting that because typical routing requires examining only the header of a packet, you can

decrease the queuing delay for all your packets by sending few large packets instead of many

small packets. For instance, a packet with a 1400-byte payload typically experiences as much

processing delay as a packet with a 200-byte payload. If you send seven 200-byte packets, the

final packet will have to sit in the queue during the processing of the six prior packets and thus

will experience more cumulative network delay than a single large packet.

ptg16606381

204 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

 Propagation delay is often a very good target for optimization. Because it is based on the

length of wire between hosts exchanging data, the best way to optimize it is to move the

hosts closer together. In peer-to-peer games, this means prioritizing geographical locality

when match making. In client-server games, this means making sure game servers are

available close to your players. Be aware that sometimes physical locality isn’t enough to

ensure low-propagation delay: Direct connections between locations may not exist, requiring

routers to route traffic in roundabout paths instead of via a straight line. It is important to

take existing and future routes into account when planning the locations of your game

servers.

 note

 In some cases, it is not feasible to disperse game servers throughout a geographi-

cal area, because you want all players on an entire continent to be able to play

with each other. Riot games famously encountered such a situation with their

title, League of Legends . Because dispersing game servers throughout the country

was not an option, they took the reverse approach and built their own network

infrastructure, peering with ISPs across North America to ensure they could control

traffic routes and reduce network latency as much as possible. This is a significant

undertaking, but if you can afford it, it is a clear and reliable way to reduce all four

network delays.

 In the context of networking, engineers sometimes use the term latency to describe the

combination of these four delays. Because latency is such an overloaded term though, game

developers more commonly discuss round trip time , or RTT . RTT refers to the time it takes

for a packet to travel from one host to another, and then for a response packet to travel all the

way back. This ends up reflecting not only the two-way processing, queuing, transmission,

and propagation delays, but also the frame rate of the remote host, as this contributes to how

quickly it can send the response packet. Note that traffic does not necessarily travel the same

speed in each direction. The RTT is rarely exactly double the time it takes for a packet to go

from one host to another. Regardless, games do often approximate one-way travel time by

cutting the RTT in half.

 Jitter
 Once you have a good estimation of the RTT, you can take steps, as explained in Chapter 8 ,

“Improved Latency Handling,” to mitigate this delay and give clients the best experience

possible for their given latency. However, when writing network code, you must be mindful

that the RTT is not necessarily a constant value. For any two hosts, the RTT between them does

typically hover around a certain value based on the average delays involved. However, any of

these delays can change over time, leading to a deviation in RTT from the expected value. This

deviation is known as jitter .

ptg16606381

JITTER 205

 Any of the four network delays can contribute to jitter, although some are more likely to vary

than others:

■ Processing delay. As the least significant component of network latency, processing

delay is also the least significant contributor to jitter. Processing delays may vary as routers

dynamically adjust packet pathways, but this is a minor concern.

■ Transmission delay and propagation delay. These two delays are both a function of the

route a packet takes: Link layer protocols determine transmission delay and route length

determines propagation delay. Thus these delays change when routers dynamically load

balance traffic and alter routes to avoid heavily congested areas. This can fluctuate rapidly

during times of heavy traffic and route changes can significantly alter round trip times.

■ Queuing delay. Queuing delay is a function of the number of packets a router must process.

Thus as the number of packets arriving at a router varies, the queuing delay will vary as well.

Heavy traffic bursts can cause significant queuing delays and alter round trip times.

 Jitter can negatively affect RTT mitigation algorithms, but even worse, it can cause packets to

arrive completely out of order. Figure 7.2 illustrates how this can happen. Host A dispatches

Packet 1, Packet 2, and Packet 3, in order, 5 ms apart, bound for a remote Host B. Packet 1 takes

45 ms to reach Host B, but due to a sudden influx of traffic on the route, Packet 2 takes 60 ms

to reach Host B. Shortly after the traffic influx, the routers dynamically adjust the route causing

Packet 3 to take only 30 ms to arrive at Host B. This results in Host B receiving Packet 3 first, then

Packet 1, and then Packet 2.

0 ms

0 ms 40 ms

Receive
Packet 3

Receive
Packet 1

Receive
Packet 2

45 ms 65 ms

Host A

Host B

Dispatch
Packet 1

Dispatch
Packet 2

Dispatch
Packet 3

5 ms 10 ms

 Figure 7.2 Jitter causing out of order packet delivery

 To prevent errors due to packets arriving out of order, you must either use a reliable transport

protocol, like TCP, that guarantees ordered packet delivery, or implement a custom system for

ordering packets, as discussed in the latter half of this chapter.

 Because of the problems jitter can cause, you should try to reduce it as much as possible to

improve gameplay experience. Techniques that lower jitter are very similar to those that lower

overall latency. Send as few packets as possible to keep traffic low. Locate servers near players to

reduce the chance of encountering heavy traffic. Keep in mind that frame rate also affects RTT, so

wild variations in frame rate will negatively impact clients. Make sure that complex operations are

appropriately aggregated across multiple frames to prevent frame rate induced jitter.

ptg16606381

206 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

 Packet Loss
 More significant than latency and jitter, the largest problem facing network game developers is

packet loss. It’s one thing if a packet takes a long time to get where it’s going, but quite another

if the packet never gets there at all.

 Packets may drop for a variety of reasons:

■ Unreliable physical medium . At its root, data transfer is the transfer of electromagnetic

energy. Any external electromagnetic interference can cause corruption of this data. In the

case of corrupted data, the link layer detects the corruption when validating checksums and

discards the containing frames. Macroscale physical problems, such as a loose connection or

even a nearby microwave oven, can also cause signal corruption and data loss.

■ Unreliable link layer . Link layers have rules about when they can and cannot send data.

Sometimes a link layer channel is completely full and an outgoing frame must be dropped.

Because the link layer makes no guarantee of reliability, this is a perfectly acceptable

response.

■ Unreliable network layer . Recall that when packets arrive at a router faster than they

can be processed, they are placed in a receiving queue. This queue has a fixed number of

packets it can hold. When the queue is full, the router starts dropping either queued or

incoming packets.

 Dropped packets are a fact of life, and you must design your networking architecture to

account for them. Regardless of packet loss mitigation, gameplay experience will be better with

fewer dropped packets. When architecting at a high level, try to reduce the potential for packet

loss. Use a data center with servers as close to your players as possible, because fewer routers

and wires means a lower chance that one of them drops your data. Also, send as few packets

as you can: Many routers base queue capacity on packet count, not total data. In these cases

your game has a higher chance of flooding routers and overflowing queues if it sends many

small packets than fewer large ones. Sending seven 200-byte packets through a clogged router

requires there be seven free slots in the queue to avoid packet loss. However, sending the same

1400 bytes in a single packet only requires one free queue slot.

 warning

 Not all routers base queue slots on packet count—some allot queue space to

individual sources based on incoming bandwidth, in which case smaller packets

can actually be beneficial. If only one packet of the seven gets dropped due to

bandwidth allocation instead of slot allocation, at least the other six get queued.

It’s worthwhile to know the routers in your data center and along heavily trafficked

routes, especially because small packets waste bandwidth from headers, as men-

tioned in earlier chapters.

ptg16606381

RELIABILITY: TCP OR UDP? 207

 When its queues are full, a router does not necessarily drop each incoming packet. Instead, it

may drop a previously queued packet. This happens when the router determines the incoming

packet has higher priority or is more important than the queued one. Routers make priority

decisions based on QoS data in the network layer header, and also sometimes on deeper

information gleaned by inspecting the packet’s payload. Some routers are even configured to

make greedy decisions intended to reduce the overall traffic they must handle: They sometimes

drop UDP packets before TCP packets because they know dropped TCP packets will just

automatically be resent. Understanding the router configurations around your data centers

and around ISPs throughout your target market can help you tune your packet types and traffic

patterns to reduce packet loss. Ultimately, the simplest way to reduce dropped packets is to

make sure your servers are on fast, stable Internet connections and are as close to your clients

as possible.

 Reliability: TCP or UDP?
 Given the need for some level of networking reliability in almost every multiplayer game, an

important decision to make early during development is that between TCP and UDP. Should

your game rely on the existing reliability system built into TCP, or should you attempt to

develop your own, customized reliability system on top of UDP? To answer this question, you

need to consider the benefits and costs of each transport protocol.

 The primary advantage of TCP is that it provides a time-tested, robust, and stable

implementation of reliability. With no extra engineering effort, it guarantees all data will not

only be delivered, but delivered in order. Additionally, it provides complex congestion control

features which limit packet loss by sending data at a rate that does not overwhelm intermediate

routers.

 The major drawback of TCP is that everything it sends must be sent reliably and processed in

order. In a multiplayer game with rapidly changing state, there are three different scenarios in

which this mandatory, universally reliable transmission can cause problems:

 1. Loss of low-priority data interfering with the reception of high-priority data. Consider

a brief exchange between two players in a client-server first-person shooter. Player A on

Client A and Player B on Client B are facing off against each other. Suddenly a rocket from

some other source explodes in the distance, and the server sends a packet to Client A to

play the distant explosion sound. Very shortly thereafter, Player B jumps in front of Player

A and fires, and the server sends a packet containing this information to Client A. Due to

fluctuating network traffic, the first packet gets dropped, but the second packet, containing

Player B’s movement, does not. The explosion sound is of low priority to Player A, whereas

an enemy shooting him in the face is of high priority. Player A would probably not mind

if the lost packet remained lost, and he never found out about the explosion. However,

because TCP processes all packets in order, the TCP module will not pass the movement

ptg16606381

208 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

packet to the game when it is received. Instead, it will wait until the server retransmits the

lower-priority dropped packet before allowing the application to process the high-priority

movement packet. This may, understandably, make Player A upset.

 2. Two separate streams of reliably ordered data interfering with each other. Even in

a game with no low-priority data, in which all data must be transmitted reliably, TCP’s

ordering system can still cause problems. Consider the prior scenario, but instead of an

explosion, the first packet contains a chat message directed at Player A. Chat messages

can be of critical importance so should be sent in some way that guarantees their receipt.

In addition, chat messages need to be processed in order, because out of order chat

messages can be quite confusing. However, chat messages only need to be processed in

order relative to other chat messages. Player A would likely find it undesirable if the loss

of a chat message packet prevented the processing of a headshot packet. In a game using

TCP, this is exactly what happens.

 3. Retransmission of stale game state. Imagine Player B runs all the way across the map

to shoot Player A. She starts at position x = 0 and over the course of 5 seconds, runs

to position x = 100. The server sends packets to Player A five times per second, each

containing the latest x coordinate of Player B’s position. If the server discovers that any

or all of those packets get dropped, it will resend them. This means that while Player B is

approaching her final position of x = 100, the server may be retransmitting old state data

that had Player B closer to x = 0. This leads to Player A viewing a very stale position of Player

B, and getting shot before receiving any information that Player B is nearby. This is not an

acceptable experience for Player A.

 In addition to enforcing mandatory reliability, there are a few other drawbacks to using TCP.

Although congestion control helps prevent lost packets, it is not uniformly configurable on all

platforms, and at times may result in your game sending packets at a slower rate than you’d

like. The Nagle algorithm is a particularly bad offender here, as it can delay packets up to half

a second before sending them out. In fact, games that use TCP as a transport protocol usually

disable the Nagle algorithm to avoid this exact problem, though at the same time, giving up

the benefit of the reduced packet count it provides.

 Finally, TCP allocates a lot of resources to manage connections and track all data that may have

to be resent. These allocations are usually managed by the OS and can be difficult to track or

route through a custom memory manager if desired.

 UDP, on the other hand, offers none of the built-in reliability and flow control that TCP provides.

It does, however, present a blank canvas onto which you can paint any sort of custom reliability

system your game requires. You can allow for the sending of reliable and unreliable data, or the

interweaving of separately ordered streams of reliable data. You can also build a system that

sends only the newest information when replacing dropped packets, instead of retransmitting

the exact data that was lost. You can manage your memory yourself and have fine-grained

control over how data is grouped into network layer packets.

ptg16606381

PACKET DELIVERY NOTIFICATION 209

 All this comes at a cost of engineering and testing time. A custom spun implementation will

naturally not be as mature and bug free as that of TCP. You can decrease some of this risk and

cost by using a third-party UDP networking library, such as RakNet or Photon, though you may

sacrifice some flexibility going that route. Additionally, UDP comes with an increased risk of

packet loss, because routers may be configured to deprioritize UDP packets as described earlier.

 Table 7.1 sums up the differences between the protocols.

 Table 7.1 Comparison of TCP to UDP

 Column Heading TCP UDP

 Reliability Native. Everything is delivered
and processed in the order it
was sent.

 None. Requires custom
implementation but allows
fine-grained reliability.

 Flow control Will automatically slow down
rate of transmission if packets
are getting dropped.

 None. Requires custom flow and
congestion control if desired.

 Memory
requirements

 OS must keep copies of all data
sent until it is acknowledged.

 Custom implementation must decide
what data to keep around and what
to discard immediately. Memory
managed at application level.

 Router
prioritization

 May be prioritized over UDP
packets.

 May be dropped before TCP packets.

 In most cases, the choice of which transport protocol to use comes down to this question: Does

every piece of data the game sends need to be received, and does it need to be processed in a

totally ordered fashion? If the answer is yes, you should consider using TCP. This is often true for

turn-based games. Every piece of input must be received by every host and processed in the

same order, so TCP is the perfect fit.

 If TCP is not the absolute perfect fit for your game, and for most games it is not, you should use

UDP with an application layer reliability system on top of it. This means either using a third-

party middleware solution or building a custom system of your own. The rest of this chapter

explores how you might go about building such a system.

 Packet Delivery Notification
 If UDP is the appropriate protocol for your game, you’ll need to implement a reliability system.

The first requirement for reliability is the ability to know whether or not a packet arrives at its

destination or not. To do this, you’ll need to build some kind of delivery notification module.

The module’s job is to help higher-level dependent modules send packets to remote hosts,

and then to notify those dependent modules about whether the packets were received

or not. By not implementing retransmission itself, it allows each dependent module to

retransmit only the data it decides should be retransmitted. This is the main source of the

ptg16606381

210 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

flexibility that UDP-based reliability provides that TCP does not. This section explores the

 DeliveryNotificationManager , which is one possible implementation of such a module,

inspired by the Starsiege: Tribes connection manager.

 The DeliveryNotificationManager needs to accomplish three things:

 1. When transmitting, it must uniquely identify and tag each packet it sends out, so that it can

associate delivery status with each packet and deliver this status to dependent modules in

a meaningful way.

 2. On the receiving end, it must examine incoming packets and send out an acknowledgment

for each packet that it decides to process.

 3. Back on the transmitting host, it must process incoming acknowledgments and notify

dependent modules about which packets were received and which were dropped.

 As an added bonus, this particular UDP reliability system will also ensure packets are never

processed out of order. That is, if an old packet arrives at a destination after newer packets, the

 DeliveryNotificationManager will pretend the packet was dropped and ignore it. This is

very useful, as it prevents stale data contained in old packets from accidentally overriding fresh

data in newer packets. It is a slight overloading of the DeliveryNotificationManager ’s

purpose, but it is common and efficient to implement the functionality at this level.

 Tagging Outgoing Packets

 The DeliveryNotificationManager has to identify each packet it transmits, so that the

receiving host has a way to specify which packet it acknowledges. Borrowing a technique

from TCP, it does this by assigning each packet a sequence number. Unlike in TCP, however,

the sequence number does not represent the number of bytes in a stream. It simply serves to

provide a unique identifier for each transmitted packet.

 To transmit a packet using the DeliveryNotificationManager the application creates an

 OutputMemoryBitStream to hold the packet, and then passes it to the DeliveryNotifica

tionManager::WriteSequenceNumber () method, shown in Listing 7.1.

 Listing 7.1 Tagging a Packet with a Sequence Number

 InFlightPacket* DeliveryNotificationManager::WriteSequenceNumber(
 OutputMemoryBitStream& inPacket)
 {
 PacketSequenceNumber sequenceNumber = mNextOutgoingSequenceNumber++;
 inPacket.Write(sequenceNumber);

 ++mDispatchedPacketCount;

 mInFlightPackets.emplace_back(sequenceNumber);
 return &mInFlightPackets.back();
 }

ptg16606381

PACKET DELIVERY NOTIFICATION 211

 The WriteSequenceNumber method writes the DeliveryNotificationManager ’s next

outgoing sequence number into the packet, and then increments the number in preparation

for the next packet. In this way, no two packets sent in close succession should have the same

sequence number, and each has a unique identifier.

 The method then constructs an InFlightPacket and adds it to the mInFlightPackets

container, which keeps track of all packets that have not yet been acknowledged. These

 InFlightPacke t objects will be needed later when processing acknowledgments and

reporting delivery status. After giving the DeliveryNotificationManager a chance to

tag the packet with a sequence number, it is up to the application to write the payload of the

packet and send it off to the destination host.

 note

 PacketSequenceNumber is a typedef so you can easily change the number of

bits in a sequence number. In this case, it is a uint16_t , but depending on the

number of packets you plan on sending, you might want to use more or fewer bits.

The goal is to use as few bits as possible while minimizing the chance of wrapping

the sequence number and then encountering a very old packet with a seemingly

relevant sequence number from long before the wrap around. If you’re pushing

the bit count as low as possible, it can be very useful to include an unwrapped

32-bit sequence count during development for debugging and verification pur-

poses. You’d then remove the extra sequence count when making release builds.

 Receiving Packets and Sending
Acknowledgments

 When the destination host receives a packet, it sends an InputMemoryBitStream containing

the packet’s data to its own DeliveryNotificationManager ’s ProcessSequenceNumber()

method, shown in Listing 7.2.

 Listing 7.2 Processing an Incoming Sequence Number

 bool DeliveryNotificationManager::ProcessSequenceNumber(
 InputMemoryBitStream& inPacket)
 {
 PacketSequenceNumber sequenceNumber;

 inPacket.Read(sequenceNumber);
 if(sequenceNumber == mNextExpectedSequenceNumber)
 {

//is this expected? add ack to the pending list and process packet
mNextExpectedSequenceNumber = sequenceNumber + 1;
AddPendingAck(sequenceNumber);

ptg16606381

212 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

return true;
 }
 //is sequence number < current expected? Then silently drop old packet.
 else if(sequenceNumber < mNextExpectedSequenceNumber)
 {

return false;
 }
 //otherwise, we missed some packets
 else if(sequenceNumber > mNextExpectedSequenceNumber)
 {

//consider all skipped packets as dropped, so
//our next expected packet comes after this one ...
mNextExpectedSequenceNumber = sequenceNumber + 1;

 //add an ack for the packet and process it
//when the sender detects break it acks, it can resend
AddPendingAck(sequenceNumber);
return true;

 }
 }

 ProcessSequenceNumber() returns a bool indicating whether the packet should be processed

by the application, or just completely ignored. This is how the DeliveryNotificationManager

prevents out of order processing. The mNextExpectedSequenceNumber member variable keeps

track of the next sequence number the destination host should receive in a packet. Because each

transmitted packet has a consecutively increasing sequence number, the receiving host can easily

predict which sequence number should be present in an incoming packet. Given that, there are

three cases that might occur when the method reads a sequence number:

■ The incoming sequence number matches the expected sequence number. In this

case, the application should acknowledge the packet, and should process it.

The DeliveryNotificationManager should increment its

 mNextExpectedSequenceNumber by 1.

■ The incoming sequence number is less than the expected sequence number.
This probably means the packet is older than packets that have already arrived. To

avoid out of order processing, the host should not process the packet. It should also

not acknowledge the packet, because the host should only acknowledge packets

that it processes. There is an edge case that you must consider here. If the current

 mNextExpectedSequenceNumber is close to the maximum number representable by a

 PacketSequenceNumber and the incoming sequence number is close to the minimum,

the sequence numbers may have wrapped around. Based on the rate at which your game

sends packets, and the number of bits used in PacketSequenceNumber , this may or may

not be possible. If it is possible, and the mNextExpectedSequenceNumber and incoming

sequence number suggest it is likely, then you should handle this the same way as you

would the following case.

ptg16606381

PACKET DELIVERY NOTIFICATION 213

■ The incoming sequence number is greater than the expected sequence number.
This is what happens when one or more packets get dropped or delayed. A different

packet eventually gets through to the destination, but its sequence number is higher

than expected. In this case, the application should still process the packet and should still

acknowledge it. Unlike in TCP, the DeliveryNotificationManager does not promise

to process every single packet sent in order. It only promises to process nothing out of

order, and to report when packets are dropped. Thus it is perfectly safe to acknowledge

and process packets that come in after previously transmitted packets were dropped.

In addition, to prevent the processing of any old packets, should they arrive, the

 DeliveryNotificationManager should set its mNextExpectedSequenceNumber to

the most recently received packet’s sequence number plus one.

 note

 The first and third cases actually perform the exact same operation. They are

called out separately in the code because they indicate different situations, but

they could be collapsed into a single case by checking if sequenceNumber ≥

mNextExpectedSequenceNumber .

 The ProcessSequenceNumber() method does not send any acknowledgments directly.

Instead, it calls AddPendingAck() to track that an acknowledgment should be sent. It does

this for efficiency. If a host receives many packets from another host, it would be inefficient

to send an acknowledgment for each incoming packet. Even TCP is allowed to acknowledge

only every other packet. In the case of a multiplayer game, the server may need to send several

MTU-sized packets to a client before the client has to send any data back to the server. In cases

like this, it is best to just accumulate all necessary acknowledgments and piggy back them on to

the next packet the client sends to the server.

 The DeliveryNotificationManager may accumulate several nonconsecutive

acknowledgments. To efficiently track and serialize them, it keeps a vector of AckRanges in its

 mPendingAcks variable. It adds to them using the AddPendingAck() code shown in Listing 7.3.

 Listing 7.3 Adding a Pending Acknowledgment

 void DeliveryNotificationManager::AddPendingAck(
 PacketSequenceNumber inSequenceNumber)
 {
 if(mPendingAcks.size() == 0 ||

!mPendingAcks.back().ExtendIfShould(inSequenceNumber))
 {

mPendingAcks.emplace_back(inSequenceNumber);
 }
 }

ptg16606381

214 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

 An AckRange itself represents a collection of consecutive sequence numbers to acknowledge.

It stores the first sequence number to acknowledge in its mStart member, and the count

of how many sequence numbers to acknowledge in its mCount member. Thus, multiple

 AckRange s are only necessary when there is a break in the sequence. The code for AckRange

is shown in Listing 7.4

 Listing 7.4 Implementing AckRange

 inli ne bool AckRange::ExtendIfShould
(PacketSequenceNumber inSequenceNumber)

 {
 if(inSequenceNumber == mStart + mCount)
 {

++mCount;
return true;

 }
 else
 {

return false;
 }
 }

 void AckRange::Write(OutputMemoryBitStream& inPacket) const
 {
 inPacket.Write(mStart);
 bool hasCount = mCount > 1;
 inPacket.Write(hasCount);
 if(hasCount)
 {

//let's assume you want to ack max of 8 bits...
 uint32_t countMinusOne = mCount - 1;
uint8_t countToAck = countMinusOne > 255 ?

255: static_cast<uint8_t>(countMinusOne);
inPacket.Write(countToAck);

 }
 }

 void AckRange::Read(InputMemoryBitStream& inPacket)
 {
 inPacket.Read(mStart);
 bool hasCount;
 inPacket.Read(hasCount);
 if(hasCount)
 {

uint8_t countMinusOne;
inPacket.Read(countMinusOne);
mCount = countMinusOne + 1;

 }

ptg16606381

PACKET DELIVERY NOTIFICATION 215

 else
 {

//default!
mCount = 1;

 }
 }

 The ExtendIfShould() method checks if the sequence number is consecutive. If so, it

increases the count and tells the caller the range was extended. If not, it returns false so the

caller knows to construct a new AckRange for the nonconsecutive sequence number.

 Write() and Read() work by first serializing the starting sequence number and then

serializing the count. Instead of serializing the count directly, these methods take into account

the fact that many games will typically only need to acknowledge a single packet at a time.

Thus the methods use entropy encoding to efficiently serialize the count, with an expected

value of 1. They also serialize the count as an 8-bit integer, assuming that more than 256

acknowledgments should never be needed. In truth, even 8 bits are high for the count, so this

could easily be fewer.

 When the receiving host is ready to send a reply packet, it writes any accumulated

acknowledgments into the outgoing packet by calling WritePendingAcks() right after it

writes its own sequence number. Listing 7.5 shows WritePendingAcks() .

 Listing 7.5 Writing Pending Acknowledgments

 void DeliveryNotificationManager::WritePendingAcks(
 OutputMemoryBitStream& inPacket)
 {
 bool hasAcks = (mPendingAcks.size() > 0);
 inPacket.Write(hasAcks);
 if(hasAcks)
 {

mPendingAcks.front().Write(inPacket);
mPendingAcks.pop_front();

 }
 }

 Because not every packet necessarily contains acknowledgments, the method first writes a

single bit to signal their presence. It then writes a single AckRange into the packet. It does this

because packet loss is the exception, not the rule, and there will usually be only one AckRange

pending. You could write all of the pending ranges, but this would require an extra indicator of

how many AckRanges are present and could potentially bloat a packet. In the end, you want

some flexibility, but not so much that it places an undue burden on your reply packet capacity.

Studying the traffic pattern of your game will help you craft a system that is flexible enough

for your edge cases but sufficiently efficient on average: For instance, if you feel confident that

ptg16606381

216 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

your game will never need to acknowledge more than one packet at a time, you can remove

the multi-acknowledgment system entirely and save a few bits per packet.

 Receiving Acknowledgments
and Delivering Status

 Once a host sends out a data packet, it must listen for and process any acknowledgments

accordingly. When the expected acknowledgments arrive, the DeliveryNotificationManager

deduces that the corresponding packets arrived correctly and notifies the appropriate

dependent modules of delivery success. When the expected acknowledgments do not arrive, the

 DeliveryNotificationManager deduces that packets were lost, and notifies the appropriate

dependent modules of failure.

 warning

 Beware that the lack of an acknowledgment does not truly indicate the loss of a

data packet. The data could have arrived successfully, but the packet containing

the acknowledgment itself might have been lost. There is no way for the originally

transmitting host to distinguish between these cases. In TCP, this is not a problem,

because a retransmitted packet uses the exact same sequence number it used

when originally sent. If a TCP module receives a duplicate packet, it knows to just

ignore it.

 This is not the case for the DeliveryNotificationManager . Because lost data

is not necessarily resent, every packet is unique and sequence numbers are never

reused. This means a client module may decide to resend some reliable data based

on the absence of an acknowledgment, and the receiving host may already have

the data. In this case, it is up to the dependent module to uniquely identify the

data itself to prevent duplication. For instance, if an ExplosionManager relies

on the DeliveryNotificationManager to reliably send explosions across the

Internet, it should uniquely number the explosions to ensure no explosion acci-

dentally explodes twice on the receiving end.

 To process acknowledgments and dispatch status notification, the host application uses the

 ProcessAcks() method, as shown in the Listing 7.6.

 Listing 7.6 Processing the Acknowledgments

 void DeliveryNotificationManager::ProcessAcks(
 InputMemoryBitStream& inPacket)
 {
 bool hasAcks;
 inPacket.Read(hasAcks);

ptg16606381

PACKET DELIVERY NOTIFICATION 217

 if(hasAcks)
 {

AckRange ackRange;
ackRange.Read(inPacket);
//for each InFlightPacket with seq# < start, handle failure...
PacketSequenceNumber nextAckdSequenceNumber =

ackRange.GetStart();
uint32_t onePastAckdSequenceNumber =

nextAckdSequenceNumber + ackRange.GetCount();
while(nextAckdSequenceNumber < onePastAckdSequenceNumber &&

!mInFlightPackets.empty())
{

const auto& nextInFlightPacket = mInFlightPackets.front();
 //if the packet seq# < ack seq#, we didn't get an ack for it,
//so it probably wasn't delivered
PacketSequenceNumber nextInFlightPacketSequenceNumber =

nextInFlightPacket.GetSequenceNumber();
if(nextInFlightPacketSequenceNumber < nextAckdSequenceNumber)
{

//copy this so we can remove it before handling-
//dependent modules shouldn't find it if seeing what's live
auto copyOfInFlightPacket = nextInFlightPacket;
mInFlightPackets.pop_front();
HandlePacketDeliveryFailure(copyOfInFlightPacket);

}
else if(nextInFlightPacketSequenceNumber==

nextAckdSequenceNumber)
{

HandlePacketDeliverySuccess(nextInFlightPacket);
//received!
mInFlightPackets.pop_front();
++nextAckdSequenceNumber;

}
 else if(nextInFlightPacketSequenceNumber>

nextAckdSequenceNumber)
{

//somehow part of this range was already removed
//(maybe from timeout) check rest of range
nextAckdSequenceNumber = nextInFlightPacketSequenceNumber;

}
}

 }
 }

 To process an AckRange , the DeliveryNotificationManager must determine which of

its InFlightPacket s lie within the range. Because acknowledgments should be received

in order, the method assumes that any packets with sequence numbers lower than the

given range were dropped, and it reports their delivery as failed. It then reports any packets

ptg16606381

218 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

within the range as successfully delivered. There can be quite a few packets in flight at

any one time, but luckily it is not necessary to examine every single InFlightPacket .

Because new InFlightPacket s are appended to the mInFlightPackets deque, all the

 InFlightPacket s are already ordered by sequence number. This means that when an

 AckRange comes in, the method can go through the mInFlightPackets in order, comparing

each sequence number to the AckRange . Until it finds its first packet in the range, it reports

all packets as dropped. Then, once it finds the first packet in the range, it reports its delivery as

successful. Finally it needs only report success for the rest of the packets in the AckRange and it

can exit without examining any other InFlightPacket s.

 The final else-if clause handles the edge case in which the first known InFlightPacket is

somewhere inside the AckRange , but not at the front. This can happen if a packet recently

acknowledged was previously reported as dropped. In this case, ProcessAcks() just jumps

to the packet’s sequence number and reports all the remaining packets in range as successfully

delivered.

 You may wonder how a packet previously reported as dropped might later be acknowledged.

This can happen if the acknowledgment took too long to arrive. Just as TCP resends packets

when an acknowledgment is not prompt, the DeliveryNotificationManager should

also be on the lookout for acknowledgments that have timed out. This is particularly useful

when traffic is sparse, and there may not be a nonconsecutive acknowledgment to indicate

a single dropped packet. To check for timed out packets, the host application should call the

 ProcessTimedOutPackets() method each frame, given in Listing 7.7.

 Listing 7.7 Timing Out Packets

 void DeliveryNotificationManager::ProcessTimedOutPackets()
 {
 uint64_t timeoutTime = Timing::sInstance.GetTimeMS() - kAckTimeout;
 while(!mInFlightPackets.empty())
 {

//packets are sorted, so all timed out packets must be at front
const auto& nextInFlightPacket = mInFlightPackets.front();

if(nextInFlightPacket.GetTimeDispatched() < timeoutTime)
{

HandlePacketDeliveryFailure(nextInFlightPacket);
mInFlightPackets.pop_front();

}
else
{

//no packets beyond could be timed out
break;

}
 }
 }

ptg16606381

PACKET DELIVERY NOTIFICATION 219

 The GetTimeDispatched() method returns a timestamp set at creation time in the

 InFlightPacket ’s constructor. Because the InFlightPacket s are sorted, the method only

has to check the front of the list until it has found a packet that has not timed out. After that

point, it is guaranteed all successive packets in flight have not timed out.

 To track and report delivered and dropped packets, the aforementioned methods call

 HandlePacketDeliveryFailure() and HandlePacketDeliverySuccess() as shown

in Listing 7.8.

 Listing 7.8 Tracking Status

 void DeliveryNotificationManager::HandlePacketDeliveryFailure(
 const InFlightPacket& inFlightPacket)
 {
 ++mDroppedPacketCount;
 inFlightPacket.HandleDeliveryFailure(this);

 }

 void DeliveryNotificationManager::HandlePacketDeliverySuccess(
 const InFlightPacket& inFlightPacket)
 {
 ++mDeliveredPacketCount;
 inFlightPacket.HandleDeliverySuccess(this);
 }

 These methods increment mDroppedPacketCount and mDeliveredPacketCount ,

accordingly. By doing so, the DeliveryNotificationManager can track packet

delivery rates, and estimate packet loss rates for the future. If loss is too high, it can

notify appropriate modules to decrease transmission rate, or the modules can notify the

user directly that something might be wrong with the host’s network connection. The

 DeliveryNotificationManager can also sum these values with the mInFlightPackets

vector’s size and assert they equal the mDispatchedPacketCount , incremented in

 WriteSequenceNumber() .

 The aforementioned methods make use of InFlightPacket ’s HandleDeliveryFailure()

and HandleDeliverySuccess() methods to notify higher-level consumer modules about

delivery status. To understand how they work, it’s worth looking at the InFlightPacket class

in Listing 7.9.

 Listing 7.9 The InFlightPacket Class

 class InFlightPacket
 {
 public:

ptg16606381

220 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

 void SetTransmissionData(int inKey,

TransmissionDataPtr inTransmissionData)
 {

mTransmissionDataMap[inKey] = inTransmissionData;
 }
 const TransmissionDataPtr GetTransmissionData(int inKey) const
 {

auto it = mTransmissionDataMap.find(inKey);
return (it != mTransmissionDataMap.end()) ? it->second: nullptr;

 }

 void HandleDeliveryFailure(
DeliveryNotificationManager* inDeliveryNotificationManager) const

 {
for(const auto& pair: mTransmissionDataMap)
{

pair.second->HandleDeliveryFailure
(inDeliveryNotificationManager);

}
 }
 void HandleDeliverySuccess(

DeliveryNotificationManager* inDeliveryNotificationManager) const
 {

for(const auto& pair: mTransmissionDataMap)
{

pair.second->HandleDeliverySuccess
(inDeliveryNotificationManager);

}
 }
 private:
 PacketSequenceNumber mSequenceNumber;
 float mTimeDispatched;
 unordered_map<int, TransmissionDataPtr> mTransmissionDataMap;
 };

 tip

 Keeping the transmission data map in an unordered_map is clear and useful

for demonstrative purposes. Iterating through an unordered_map is not very

efficient and can lead to many cache misses. In production, if you have a small

number of transmission data types, it can be better to just make a dedicated mem-

ber variable for each type, or to store them in a fixed array with a dedicated index

per type. If you need more than a few transmission data types, it might be worth it

to keep them in a sorted vector.

ptg16606381

OBJECT REPLICATION RELIABILITY 221

 Each InFlightPacket holds a container of TransmissionData pointers. TransmissionData

is an abstract class with its own HandleDeliverySucess() and HandleDeliveryFailure()

methods. Each dependent module that sends data via the DeliveryNotificationManager

can create its own subclass of TransmissionData . Then, when a module writes reliable data

into a packet’s memory stream, it creates an instance of its customized TransmissionData

subclass and uses SetTransmissionData() to add it to the InFlightPacket . When the

 DeliveryNotificationManager notifies the dependent module about a packet’s success

or failure, the module has a record of exactly what it stored in the given packet, allowing it to

figure out how best to proceed. If the module needs to resend some of the data, it can. If it needs

to send a newer version of the data, it can. If it needs to update custom variables elsewhere in

the application, it can. In this way, the DeliveryNotificationManager provides a solid

foundation on which to build a UDP-based reliability system.

 note

 Each pair of communicating hosts requires its own pair of

 DeliveryNotificationManager s. So in a client-server topology, if the server is

talking to 10 clients, it needs 10 DeliveryNotificationManager s, one for each

client. Then each client host uses its own DeliveryNotificationManager to

communicate with the server.

 Object Replication Reliability
 You can use a DeliveryNotificationManager to send data reliably by resending

any data that fails to reach its intended host. Simply extend TransmissionData with a

 ReliableTransmissionData class that contains all data sent in the packet. Then, inside

the HandleDeliveryFailed() method, create a new packet and resend all the data. This

is very close to how TCP implements reliability, however, and doesn’t take full advantage

of the DeliveryNotificationManager ’s potential. To improve upon the TCP version of

reliability, you do not have to resend the exact data that dropped. Instead, you can send only

the latest version of the data that was dropped. This section will explore how to extend the

 ReplicationManager from Chapter 5 to support reliably resending the most recent data,

inspired by the Starsiege: Tribes ghost manager.

 The ReplicationManager of Chapter 5 has a very simple interface. Dependent

modules create an output stream, prepare a packet, and then call ReplicateCreate() ,

 ReplicateUpdate(), or ReplicateDestroy() to create, update, or destroy a remote

object, accordingly. The problem with this methodology is that the ReplicationManager

neither controls what data goes in which packets, nor keeps a record of that data. This does not

lend itself well to supporting reliability.

 To send data reliably, the ReplicationManager needs to be able to resend data whenever

it learns that a packet carrying reliable data has dropped. To support this, the host application

ptg16606381

222 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

needs to poll the ReplicationManager regularly, offering it a primed packet and asking if it

has data it would like to write into the packet. This way, whenever the ReplicationManager

knows about lost reliable data, it can write whatever it needs to into the provided packet. The

host can pick the frequency at which it offers packets to the ReplicationManager based on

estimated bandwidth, packet loss rate, or any other heuristic.

 It’s worthwhile to extend this mechanism further and consider how things could work if the only

time the ReplicationManager wrote data into packets were when the client periodically

offered it an outgoing packet to fill. This would mean that instead of gameplay systems creating

a packet whenever they have changed data to replicate, they can instead just notify the

 ReplicationManager about the data, and the ReplicationManager can take care of writing

the data at the next opportunity. This nicely creates a further layer of abstraction between gameplay

systems and network code. The gameplay code no longer needs to create packets or care about

the network. Instead, it just notifies the ReplicationManager about important changes, and the

 ReplicationManager takes care of writing those changes into packets periodically.

 This also happens to create the perfect pathway for up-to-date reliability. Consider the three

basic commands: create, update, and destroy. When the gameplay system sends a replication

command for a target object to the ReplicationManager , the ReplicationManager can

use that command and object to write the appropriate state into a future packet. It can then

store the replication command, target object pointer, and written state bits as transmission

data in the corresponding InFlightPacket record. If the ReplicationManager learns

that a packet dropped, it can find the matching InFlightPacket , look up the command and

object that it used when writing the packet originally, and then write fresh data to a new packet

using the same command, object, and state bits. This is a vast improvement over TCP, because

the ReplicationManager does not use the original, potentially stale data to write the new

packet. It instead uses only the current state of the target object, which could be a 1/2 second

newer than the original packet by this point.

 To support such a system, the ReplicationManager needs to offer an interface that allows

gameplay systems to batch replication requests. For each game object, a gameplay system

can batch creation, a set of property updates, or destruction. The ReplicationManager

keeps track of the latest replication command for each object, so it can write the appropriate

replication data into a packet whenever it is offered one. It stores these ReplicationCommand s

in mNetworkReplicationCommand , a member variable mapping from an object’s network

identifier to the latest command for that object. Listing 7.10 shows the interface for batching

commands, as well as the inner workings of the ReplicationCommand itself.

 Listing 7.10 Batching Replication Commands

 void ReplicationManager::BatchCreate(
 int inNetworkId, uint32_t inInitialDirtyState)
 {
 mNetworkIdToReplicationCommand[inNetworkId] =

ptg16606381

OBJECT REPLICATION RELIABILITY 223

ReplicationCommand(inInitialDirtyState);
 }

 void ReplicationManager::BatchDestroy(int inNetworkId)
 {
 mNetworkIdToReplicationCommand[inNetworkId].SetDestroy();
 }

 void ReplicationManager::BatchStateDirty(
 int inNetworkId, uint32_t inDirtyState)
 {
 mNetworkIdToReplicationCommand[inNetworkId].

AddDirtyState(inDirtyState);
 }

 ReplicationCommand::ReplicationCommand(uint32_t inInitialDirtyState):
 mAction(RA_Create), mDirtyState(inInitialDirtyState) {}

 void ReplicationCommand::AddDirtyState(uint32_t inState)
 {
 mDirtyState |= inState;
 }

 void ReplicationCommand::SetDestroy()
 {
 mAction = RA_Destroy;
 }

 Batching a create command maps an object’s network identifier to a ReplicationCommand

containing a create action, and state bits specifying all the properties that should be replicated,

as described in Chapter 5 . Batching an update command binary ORs additional state bits as

dirty so that the ReplicationManager knows to replicate the changed data. Game systems

should batch update commands whenever they change data that needs to be replicated.

Finally, batching a destroy command finds the ReplicationCommand for the object’s network

identifier and changes its action to destroy. Note that if destruction is batched for an object, it

supersedes any previously batched instructions, since in the latest state methodology, it makes

no sense to send state updates for an object that has already been destroyed. Once commands

have been batched, the ReplicationManager fills the next packet it is offered using the

 WriteBatchedCommands() method shown in Listing 7.11.

 Listing 7.11 Writing Batched Commands

 void ReplicationManager::WriteBatchedCommands(
 OutputMemoryBitStream& inStream, InFlightPacket* inFlightPacket)
 {
 ReplicationManagerTransmissionDataPtr repTransData = nullptr;
 //run through each replication command and rep if necessary

ptg16606381

224 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

 for(auto& pair: mNetworkIdToReplicationCommand)
 {

ReplicationCommand& replicationCommand = pair.second;
if(replicationCommand.HasDirtyState())
{

int networkId = pair.first;
GameObject* gameObj =

mLinkingContext->GetGameObject(networkId);
if(gameObj)
{

ReplicationAction action =
replicationCommand.GetAction();

ReplicationHeader rh(action, networkId,
gameObj->GetClassId());

rh.Write(inStream);

uint32_t dirtyState =
replicationCommand.GetDirtyState();

if(action == RA_Create || action == RA_Update)
{

gameObj->Write(inStream, dirtyState);
}
//create transmission data if we haven't yet
if(!repTransData)
{

repTransData =
std::make_shared<ReplicationManagerTransmissionData>(

this);
inFlightPacket->SetTransmissionData

('RPLM',repTransData);
}
//now store what we put in this packet and clear state
repTransData->AddReplication(networkId, action,

dirtyState);
replicationCommand.ClearDirtyState(dirtyState);

}
}

 }
 }
 void ReplicationCommand::ClearDirtyState(uint32_t inStateToClear)
 {
 mDirtyState &= ~inStateToClear;
 if(mAction == RA_Destroy)
 {

mAction = RA_Update;
 }
 }
 bool ReplicationCommand::HasDirtyState() const

ptg16606381

OBJECT REPLICATION RELIABILITY 225

 {
 return (mAction == RA_Destroy) || (mDirtyState != 0);
 }

 WriteBatchedCommand() starts by iterating over the replication command map. If it finds a

network identifier with a batched command, defined as having either nonzero dirty state or a

destroy action, it writes the ReplicationHeader and state, just as it did in Chapter 5 . Then, if

it has not yet created a ReplicationTransmissionData instance, it creates one and adds

it to the InFlightPacket . Instead of doing this at the top of the method, it does this only

once it has determined that it has state to replicate. It then appends the network identifier,

replication action, and dirty state bits to the transmission data so that it has a complete record

of what it wrote into the packet. Finally, it clears the dirty state in the replication command, so

that it will not attempt to replicate the data again until it changes. By the end of the call, the

packet contains all the replication data that higher-level game systems have batched, and the

 InFlightPacket contains a record of the information used during replication.

 When the ReplicationManager learns of the packet’s fate from the

 DeliveryNotificationManager , it responds with one of the two methods in Listing 7.12.

 Listing 7.12 Responding to Packet Delivery Status Notification

 void ReplicationManagerTransmissionData::HandleDeliveryFailure(
 DeliveryNotificationManager* inDeliveryNotificationManager) const
 {
 for(const ReplicationTransmission& rt: mReplications)
 {

int networkId = rt.GetNetworkId();
GameObject* go;
switch(rt.GetAction())
{

case RA_Create:
{

//recreate if not destroyed
go = mReplicationManager->GetLinkingContext()

->GetGameObject(networkId);
if(go)
{

mReplicationManager->BatchCreate(networkId,
rt.GetState());

}
}
break;

case RA_Update:
go = mReplicationManager->GetLinkingContext()

->GetGameObject(networkId);
if(go)
{

ptg16606381

226 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

mReplicationManager->BatchStateDirty(networkId,
rt.GetState());

}
break;

case RA_Destroy:
mReplicationManager->BatchDestroy(networkId);
break;

}
 }
 }

 void ReplicationManagerTransmissionData::HandleDeliverySuccess
 (DeliveryNotificationManager* inDeliveryNotificationManager) const
 {
 for(const ReplicationTransmission& rt: mReplications)
 {

int networkId = rt.GetNetworkId();
switch(rt.GetAction())
{

case RA_Create:
//once ackd, can send as update instead of create
mReplicationManager->HandleCreateAckd(networkId);
break;

case RA_Destroy:
mReplicationManager->RemoveFromReplication(networkId);
break;

}
 }
 }

 HandleDeliveryFailure() implements the real magic of up-to-date reliability. If a dropped

packet contains a creation command, it rebatches the creation command. If it contains a state

update command, it marks the corresponding state as dirty so that the new state values will be

sent at the next opportunity. Finally, if it contains a destroy command, it rebatches the destroy

command. In the event of successful delivery, HandleDeliverySuccess() takes care of some

housekeeping tasks. If the packet contained a creation command, it changes the creation command

to an update command so that the object will not be replicated as a creation the next time a game

system marks its state as dirty. If the packet contained a destroy command, the method removes the

corresponding network identifier from the mNetworkIdToReplicationCommandMap because

there should be no more replication commands batched by the game.

 Optimizing from In-Flight Packets

 There is a significant optimization worth making to the ReplicationManager , again

taking a lead from the Starsiege: Tribes ghost manager. Consider the case of a car driving

through the game world for 1 second. If a server sends state reliably to a client 20 times a

ptg16606381

OBJECT REPLICATION RELIABILITY 227

second, each packet will contain a different position of the car as it travels. If the packet sent

at 0.9-second drops, it might be 200 ms later before the server’s ReplicationManager

realizes and attempts to resend new data. By that point, the car would have stopped.

Because the server was sending constant updates while the car was driving, there would

already be new packets on their way to the client, containing updated positions of the

car. It would be wasteful for the server to resend the car’s current position when a packet

containing that very data was already in flight to the client. If there were some way for the

 ReplicationManager to know about the in-flight data, it could avoid sending redundant

state. Luckily, there is! When the ReplicationManager first learns of the dropped data,

it can search through the DeliveryNotificationManager ’s list of InFlightPackets

and check the ReplicationTransmissionData stored in each one. If it sees state data

in flight for the given object and property, then it knows it does not need to resend that

data: It’s already on the way! Listing 7.13 contains an updated RA_Update case for the

 HandleDeliveryFailure() method that does just this.

 Listing 7.13 Avoiding Redundant Retransmission

 void ReplicationManagerTransmissionData::HandleDeliveryFailure(
 DeliveryNotificationManager* inDeliveryNotificationManager) const
 {
 ...
 case RA_Update:

go = mReplicationManager->GetLinkingContext()
->GetGameObject(networkId);

if(go)
{

//look in all in flight packets,
//remove written state from dirty state
uint32_t state = rt.GetState();
for(const auto& inFlightPacket:

inDeliveryNotificationManager->GetInFlightPackets())
{

ReplicationManagerTransmissionDataPtr rmtdp =
 std::static_pointer_cast
 <ReplicationManagerTransmissionData>(

inFlightPacket.GetTransmissionData('RPLM'));
if(rmtdp)
{

for(const ReplicationTransmission& otherRT:
rmtdp->mReplications)

{
if(otherRT.GetNetworkId() == networkId)
{

state &= ~otherRT.GetState();
}

}
}

ptg16606381

228 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

}
//if there's still any dirty state, rebatch it
if(state)
{

mReplicationManager->BatchStateDirty(networkId, state);
}

}
break;

 ...
 }

 The update case first captures the state that was dirty in the original replication. Then, it iterates

through each of the InFlightPacket s stored by the DeliveryNotificationManager . In

each packet, it tries to find the ReplicationManager ’s transmission data entry. If it finds one,

it searches through the contained ReplicationTransmission s. For each replication, if the

network identifier matches the identifier in the original dropped replication, it unsets any bits

in the original state that are set in the found state. This way, the ReplicationManager avoids

resending any state already in flight. If no bits are still set in the state by the time the method

finishes checking all packets, it doesn’t need to rebatch any state at all.

 The aforementioned “optimization” can require quite a bit of processing each time a full

packet drops. However, given the typically low frequency of dropped packets, and the fact

that bandwidth is often more dear than processing power, it can still be beneficial. As always,

consider the tradeoffs in the specific context of your game.

 Simulating Real-World Conditions
 Given the hazards that await your game in the real world, it is important to create a test

environment that can properly simulate latency, jitter, and packet loss. You can engineer a testing

module to sit between a socket and the rest of your game and simulate real-world conditions. To

simulate loss, decide the probability of a packet dropping that you’d like to simulate. Then, each

time a packet comes in, use a random number to decide whether to drop the packet, or pass it on

to the application. To simulate latency and jitter, decide the average latency and jitter distribution

for the test. When a packet arrives, calculate the timestamp at which it would have arrived in the

real world by adding its latency and jitter to the time at which it actually arrived. Then, instead of

sending the packet to your game to be processed right away, stamp it with the simulated arrival

time and insert it into a sorted list of packets. Finally, each frame of your game, examine the sorted

list and only process those packets whose simulated arrival times are lower than the current time.

Listing 7.14 gives an example of how to do so.

 Listing 7.14 Simulating Loss, Latency, and Jitter

 void RLSimulator::ReadIncomingPacketsIntoQueue()
 {
 char packetMem[1500];

ptg16606381

SIMULATING REAL-WORLD CONDITIONS 229

 int packetSize = sizeof(packetMem);
 InputMemoryBitStream inputStream(packetMem, packetSize * 8);
 SocketAddress fromAddress;

 while(receivedPackedCount < kMaxPacketsPerFrameCount)
 {

int cnt = mSocket->ReceiveFrom(packetMem, packetSize, fromAddress);
if(cnt == 0)
{

break;
}
else if(cnt < 0)
{

//handle error
}
else
{

//now, should we process the packet?
if(RoboMath::GetRandomFloat() >= mDropPacketChance)
{

//we made it, queue packet for later processing
float simulatedReceivedTime =

Timing::sInstance.GetTimef() +
mSimulatedLatency +
(RoboMath::GetRandomFloat() - 0.5f) *
mDoubleSimulatedMaxJitter;

//keep list sorted by simulated receive time
auto it = mPacketList.end();
while(it != mPacketList.begin())
{

--it;
if(it->GetReceivedTime() < simulatedReceivedTime)
{

//time comes after this element, so inc and break
++it;
break;

}
}
mPacketList.emplace(it, simulatedReceivedTime,

inputStream, fromAddress);
}

}
 }
 }

 void RLSimulator::ProcessQueuedPackets()
 {
 float currentTime = Timing::sInstance.GetTimef();
 //look at the front packet...
 while(!mPacketList.empty())

ptg16606381

230 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

 {
ReceivedPacket& packet = mPacketList.front();
//is it time to process this packet?
if(currentTime > packet.GetReceivedTime())
{

ProcessPacket(packet.GetInputStream(),
packet.GetFromAddress());

mPacketList.pop_front();
}
else
{

break;
}

 }
 }

 tip

 For an even more accurate simulation, consider incorporating the fact that packets

are usually dropped or delayed in groups of sequential packets. When a random

check indicates packets should be dropped, you can use another random number

to determine how many packets in a row should be affected.

 Summary
 The real world is a scary place for multiplayer games. Players want immediate feedback from

their inputs, and the forces of nature act to prevent that. Even without a network component,

video games have to deal with many sources of latency, including input sampling latency,

rendering latency, and display-based latency. With physical networking added to the mix,

multiplayer games must also deal with latency from propagation delay, transmission delay,

processing delay, and queuing delay. As a game developer, there are actions you can take to

reduce these delays, but they may be very expensive and out of scope for your game.

 Fluctuating network conditions lead to packets arriving late, out of order, or not at all. To

build an enjoyable game experience, you need some level of reliable transmission to mitigate

these issues. One way to guarantee reliable transmission is to use the TCP transport protocol.

Although TCP is a well-tested, turn-key reliability solution, it has a few disadvantages. It works

for games that need absolutely all their data transported reliably, but is not suitable for typical

games that care more about up-to-date data than perfectly reliable data. For these games, UDP

is the best choice because of the flexibility it offers.

ptg16606381

REVIEW QUESTIONS 231

 When using UDP you have the ability and requirement to build your own custom reliability

layer. The foundation of this is usually a notification system that alerts your game when packets

arrive successfully and when they drop. By keeping a record of the data in each packet, the

game can then decide how to act when notified about a packet’s fate.

 You can build a variety of reliability modules on top of a delivery notification system. A very

common module provides for redelivery of up-to-date object state in the event of packet loss,

similar to the Starsiege: Tribes ghost manager. It does this by tracking the state sent in each

packet, and then resending the latest version of any appropriate state not already in flight

when notified of a lost packet.

 It is important to test your reliability system in a controlled environment before exposing it

to the harsh conditions of the real world. Using random-number generators and a buffer of

incoming packets, you can build a system that simulates packet loss, latency, and jitter. You

can then see how both your reliability system and your entire game perform under various

simulated network conditions.

 Once you have dealt with the low-level problems of the real world, you can begin to think

about addressing latency on a higher level. Chapter 8 , “Improved Latency Handling,” addresses

the challenge of giving networked players as close to a lag-free experience as possible.

 Review Questions
1. What are five processes which contribute to non-network latency?

2. What are the four delays which contribute to network latency?

3. Give one manner to reduce each network delay.

4. For what does RTT stand and what does it mean?

5. What is jitter? What are some causes of jitter?

6. Extend the DeliveryNotificationManager::ProcessSequenceNumber() to

function properly in the case of sequence numbers wrapping back to 0.

7. Expand the DeliveryNotificationManager so that all packets received on the same

frame are buffered and then sorted before the DeliveryNotificationManager

decides which packets are stale and should be dropped.

8. Explain how a ReplicationManager can use the DeliveryNotificationManager

to provide improved reliability over TCP, and send up-to-date data to recover from

dropped packets.

9. Use the DeliveryNotificationManager and ReplicationManager to implement

a two-player tag game. Simulate real-life conditions to see how tolerant your logic is of

packet loss, latency, and jitter.

ptg16606381

232 CHAPTER 7 LATENCY, JITTER, AND RELIABILITY

 Additional Readings
 Almes, G., S. Kalidindi, and M. Zekauskas. (1999, September). A One-Way Delay Metric for IPPM .

Retrieved from https://tools.ietf.org/html/rfc2679 . Accessed September 12, 2015.

 Carmack, John (2012, April). Tweet . Retrieved from https://twitter.com/id_aa_carmack/

status/193480622533120001 . Accessed September 12, 2015.

 Carmack, John (2012, May). Transatlantic ping faster than sending a pixel to the screen? Retrieved

from http://superuser.com/questions/419070/transatlantic-ping-faster-than-sending-a-pixel-to-

the-screen/419167#419167 . Accessed September 12, 2015.

 Frohnmayer, Mark and Tim Gift (1999). The TRIBES Engine Networking Model . Retrieved from

 http://gamedevs.org/uploads/tribes-networking-model.pdf . Accessed September 12, 2015.

 Hauser, Charlie (2015, January). NA Server Roadmap Update: Optimizing the Internet for
League and You . Retrieved from http://boards.na.leagueoflegends.com/en/c/help-support/

AMupzBHw-na-server-roadmap-update-optimizing-the-internet-for-league-and-you . Accessed

September 12, 2015.

 Paxson, V., G. Almes, J. Mahdavi, and M. Mathis. (1998, May). Framework for IP Performance
Metrics . Retrieved from https://tools.ietf.org/html/rfc2330 . Accessed September 12, 2015.

 Savage, Phil (2015, January). Riot Plans to Optimise the Internet for League of Legends Players .

Retrieved from http://www.pcgamer.com/riot-plans-to-optimise-the-internet-for-league-of-

legends-players/ . Accessed September 12, 2015.

 Steed, Anthony and Manuel Fradinho Oliveira. (2010). Networked Graphics . Morgan Kaufman.

https://tools.ietf.org/html/rfc2679
https://twitter.com/id_aa_carmack/status/193480622533120001
http://superuser.com/questions/419070/transatlantic-ping-faster-than-sending-a-pixel-to-the-screen/419167#419167
http://superuser.com/questions/419070/transatlantic-ping-faster-than-sending-a-pixel-to-the-screen/419167#419167
http://gamedevs.org/uploads/tribes-networking-model.pdf
http://boards.na.leagueoflegends.com/en/c/help-supportAMupzBHw-na-server-roadmap-update-optimizing-the-internet-for-league-and-you
https://tools.ietf.org/html/rfc2330
http://www.pcgamer.com/riot-plans-to-optimise-the-internet-for-league-of-legends-players/
http://www.pcgamer.com/riot-plans-to-optimise-the-internet-for-league-of-legends-players/
https://twitter.com/id_aa_carmack/status/193480622533120001
http://boards.na.leagueoflegends.com/en/c/help-supportAMupzBHw-na-server-roadmap-update-optimizing-the-internet-for-league-and-you

ptg16606381

 C H A P T E R 8

 IMPROVED LATENCY

HANDLING

 As a multiplayer game programmer, latency is your

enemy. Your job is to make your players feel like

they're playing on a server across the street, when

it may really be across the country. This chapter

explores some of the ways to make that happen.

ptg16606381

234 CHAPTER 8 IMPROVED LATENCY HANDLING

 The Dumb Terminal Client
 On the topic of client-server network topology, Tim Sweeney famously once wrote, “The

server is the man!” He was referring to the fact that in Unreal’s networking system, the server

itself is the only host that necessarily has a true and correct game state. This is a traditional

requirement of any cheat-resistant client-server setup: The server is the only host running

a simulation that matters. That means there is always some delay between the time when

a player takes an action and the time when the player can observe the true game state that

results from that action. Figure 8.1 illustrates this by showing the round trip of a packet.

0 ms

50 ms

100 ms

Receive Packet
w/Avatar’s Z = 1

Receive Jump
Input, Begin

jump

Send state
packet w/

Avatar’s Z = 1

Dispatch Packet
w/Jump Input

Network Travel Network Travel

Client A

Server

 Figure 8.1 Packet round trip

 In this example, the round trip time (RTT) between Client A and the server is 100 ms. At time

0, Player A’s avatar on Client A is at rest, with a Z position of 0. Player A then pushes the jump

button. Assuming roughly symmetric latency, it takes about 50 ms, or 1/2 RTT, for the packet

carrying Player A’s input to reach the server. When it receives the input, the server begins the

player’s jump, and sets her avatar’s Z position to 1. It sends out new state, which reaches Client

A another 50 ms, or 1/2 RTT, later. Client A updates Player A’s avatar’s Z position based on

the state sent from the server and displays the results on screen. So finally, a full 100 ms after

pushing the jump button, Player A gets to see the effect of the jump action.

 From this demonstration, you can extract a useful conclusion: The true simulation running

on the server is always 1/2 RTT ahead of the true simulation a remote player perceives. Put

another way, if a player observes only the true simulation state replicated to the client, the

player’s perception of the state of the world is always at least 1/2 RTT older than the current true

world state on the server. Depending on network traffic, physical distance and intermediate

hardware, this can be as high as 100 ms or more.

 Despite the noticeable lag between input and response, there were early multiplayer games

that shipped with just this implementation. The original Quake was one game that endured

despite its input latency. In Quake , and many of the other client-server games of the time,

clients sent input to the server, and then the server ran the simulation and sent results back

ptg16606381

THE DUMB TERMINAL CLIENT 235

to the client for display. Clients in these games were referred to as dumb terminals because

they didn’t need to understand anything about the simulation; their only purpose was to

transmit input, receive the resulting state, and display it to the user. Because they showed only

the state the server dictated, they never showed the user incorrect state. Although it might

be delayed, whatever state a dumb terminal showed to a user was definitely a correct state at

some recent point in time. Because the state throughout the system was always consistent and

never incorrect, this method of networking can be classified as a conservative algorithm . At

the expense of subjecting the user to noticeable latency, the conservative algorithm is at least

never incorrect.

 Besides just a feeling of latency, there is another problem with a pure dumb terminal. Figure 8.2

continues the example of Player A’s jump.

0 ms

0 ms

Network Travel

Network Travel

Network Travel

17 ms 33 ms 50 ms 67 ms 83 ms 100 ms 117 ms 133 ms 150 ms 167 ms 183 ms

50 ms

Avatar
Z = 1

Avatar
Z = 2

Avatar
Z = 3

Avatar
Z = 4

Avatar
Z = 5

Avatar
Z = 6

Avatar
Z = 7

Avatar
Z = 8

Avatar
Z = 9

Avatar
Z = 10

Avatar
Z = 9

Avatar
Z = 8

Avatar
Z = 1

Avatar
Z = 1

Avatar
Z = 1

Avatar
Z = 1

Avatar
Z = 5

Avatar
Z = 5

Avatar
Z = 5

Avatar
Z = 5

Avatar
Z = 9

117 ms 183 ms

 Figure 8.2 Jumping with 15 packets per second

 Due to a high-powered GPU, Client A can run at 60 frames per second. The server can also run

at 60 frames per second. However, due to bandwidth constraints on the connection between

the server and Client A, the server can only send state updates 15 times per second. Assuming

the player travels upward at 60 units per second at the start of her jump, the server smoothly

increases her Z position by 1 unit each frame. However, it only sends state to the client every four

frames. When Client A receives the state, it updates Player A’s avatar’s Z location, but then must

render her at that Z location for four frames until new state from the server arrives. This means

Player A sees the same picture on screen four frames in a row. Even though she spent good

ptg16606381

236 CHAPTER 8 IMPROVED LATENCY HANDLING

money on a GPU that can render at 60 frames per second, she only gets the experience of playing

at 15 frames per second due to network limitations. This would probably make her unhappy.

 There is a third problem. Besides just causing a general feeling of unresponsiveness, this type of

latency in a first-person shooter makes it difficult to aim at other players. Without an up-to-date

representation of where players are, it can become an unpleasant challenge to figure out where

to aim. It can be frustrating for players to think they are pulling off headshots, only to miss

because their enemies were actually 100 ms ahead of where they were rendered. Too many

experiences like that can cause players to switch to another game.

 When building a client-server game, you cannot escape the issue of latency. However, you can

reduce its impact on the player experience, and the following sections explore some common

methods that multiplayer games use to handle latency.

 Client Side Interpolation
 The jumpiness brought on by infrequent state updates from the server can make players

feel like their game is running slower than it actually is. One way to alleviate this is through

 client side interpolation . When using client side interpolation, the client game does not

automatically teleport objects to their new positions sent by the server. Instead whenever the

client receives new state for an object, it smoothly interpolates to that state over time using

what’s known as a local perception filter . Figure 8.3 illustrates the timing.

0 ms

0 ms 17 ms 33 ms 50 ms 67 ms 83 ms 100 ms 117 ms 133 ms 150 ms 167 ms 183 ms

Client A

Server

Avatar
Z = 1

Avatar
Z = 2

Avatar
Z = 3

Avatar
Z = 4

Avatar
Z = 5

Avatar
Z = 6

Avatar
Z = 7

Avatar
Z = 8

Avatar
Z = 9

Avatar
Z = 10

Avatar
Z = 9

Avatar
Z = 8

Know
Z = 1,
Show
Z = 1

Know
Z = 1,
Show
Z = 1

Know
Z = 1,
Show
Z = 1

Know
Z = 1,
Show
Z = 1

Know
Z = 5,
Show
Z = 2

Know
Z = 5,
Show
Z = 3

Know
Z = 5,
Show
Z = 4

Know
Z = 5,
Show
Z = 5

Know
Z = 9,
Show
Z = 6

50 ms

Interpolation Period

Packet Period

117 ms 183 ms

Network Travel

Network Travel

Network Travel

 Figure 8.3 Timing of client side interpolation

ptg16606381

CLIENT SIDE INTERPOLATION 237

 Let IP represent the interpolation period in milliseconds, or how long the client takes to

interpolate from old state to new state. Let PP represent the packet period in milliseconds,

or how long the server waits between sending packets. The client finishes interpolating to a

packet’s state IP milliseconds after the packet arrives. Thus if IP is less than PP, the client will

stop interpolating before a new packet has arrived, and the player may still experience a stutter.

To make sure that the client state is changing smoothly each frame and the interpolation never

stops, IP should be no less than PP. That way, whenever the client finishes interpolating to a

given state, it will have already received the next state and can begin the process again.

 Remember that a dumb terminal with no interpolation is always 1/2 RTT behind the server. If

state arrives but the client does not display it right away, then the player’s view of the world

lags even further behind. Games using client side interpolation display state to players that is

approximately 1/2 RTT + IP milliseconds behind the true state on the server. Thus, to minimize

latency, IP should be as small as possible. This desire, combined with the fact IP must be greater

than or equal to PP to prevent stutter, means it should be exactly equal to the PP.

 The server can either notify the client how frequently it intends to send packets, or the client

can compute the PP empirically by noting how rapidly packets arrive. Note that the server

should set the packet period based on bandwidth, not latency. The server can send packets

as frequently as it believes the network between the client and server can transmit them.

This means that the latency perceived by players of games that use this type of client side

interpolation is a factor of not only network latency, but also of network bandwidth.

 Continuing the previous example, if the server sends 15 packets per second, the packet period

is 66.7 ms. This means adding 66.7 ms of latency to 1/2 RTT that is already 50 ms. However, the

game will look much smoother with interpolation than without, and it can make the experience

more pleasant for the player such that latency is less of a concern.

 Games that allow the player to manipulate the camera have a potential advantage here that can

help reduce the feeling of extra latency. If the camera pose is not critical to the simulation, the

game can handle it all client side. Walking around or shooting should require a trip to the server

and back because they affect the simulation directly. Just aiming a camera might not affect the

simulation in any manner, and if so, the client can update the renderer’s view transform without

waiting for a response from the server. Locally handling camera interaction gives the player

instant feedback when she moves the camera. This combined with the smooth interpolation

can help alleviate a lot of the unpleasant feelings associated with increased latency.

 Client side interpolation still is considered a conservative algorithm: Although it may

sometimes represent a state that the server did not replicate exactly, it only represents

states that are between two states that the server did simulate. The client smoothens out the

transition from state to state, but never guesses at what the server is doing, and therefore

never ends up at a wildly incorrect state. This is not true about all methodologies, as the next

section shows.

ptg16606381

238 CHAPTER 8 IMPROVED LATENCY HANDLING

 Client Side Prediction
 Client side interpolation can smooth out your players’ gameplay experiences, but it still won’t

bring them closer to what’s actually happening on the server. Even with a tiny interpolation

period, state is still at least 1/2 RTT old by the time the player sees it. To show game state

that is any more current, your game needs to switch from interpolation to extrapolation.

Through extrapolation, your client can take slightly old state received by the client and bring it

approximately up to date before displaying it to the player. Techniques that perform this sort of

extrapolation are often referred to as client side prediction .

 To extrapolate the current state, the client must be able to run the same simulation code that

the server runs. When the client receives a state update, it knows the update is 1/2 RTT ms

old. To make the state more current, the client simply runs the simulation for an extra 1/2 RTT.

Then, when the client displays the result to the player, it is a much closer approximation of

the true game state currently simulating on the server. To maintain this approximation, the

client continues running the simulation each frame and displaying the results to the player.

Eventually, the client receives the next state packet from the server and internally simulates

it for 1/2 RTT ms, at which point it ideally matches the exact state that the client has already

calculated based on the previous received state!

 To perform extrapolation by 1/2 RTT, the client must first be able to approximate the RTT.

Because the clocks on the server and client are not necessarily in sync, the naïve approach of

having the server timestamp a packet and then having the client check the age of the stamp

will not work. Instead, the client must calculate the entire RTT and cut it in half. Figure 8.4

illustrates how to do so.

0 ms

50 ms

Client A

Server

Network Travel
Network Travel

Packet
Timestamped:

0 ms

Receive
Packet

Timestamped:
0 ms

Send State
Packet

Timestamped:
0 ms

Receive Packet
Timestamped:

0 ms

RTT =
100 ms – 0 ms

100 ms

 Figure 8.4 RTT calculation

 The client sends a packet to the server containing a timestamp based on the client’s own

local clock. Upon receiving this packet, the server copies that timestamp into a new packet

and sends it back to the client. When the client receives this new packet, it subtracts the old

ptg16606381

CLIENT SIDE PREDICTION 239

timestamp, based on its clock, from the current time on its clock. This yields the exact amount

of time between when the client first sent the packet and when it received the response—the

definition of RTT. With this information, the client knows approximately how old the rest of the

data in the packet is, and can use that information to extrapolate the contained state.

 warning

 Remember that 1/2 RTT is only an approximation of how old the data is. Traffic

does not necessarily flow with the same speed in both directions, and thus the

actual travel time from server to client may be more or less than 1/2 RTT. Regardless,

1/2 RTT is a good enough approximation for most real-time game purposes.

 In Robo Cat Action , discussed in Chapter 6 , the client already sends timestamped moves to the

server, so the server just needs to send the timestamp from the most recent move back to the

client when it sends state. Listing 8.1 shows the changes to the NetworkManagerServer

which handle this.

 Listing 8.1 Returning Client Timestamp to Client

 void NetworkManagerServer::HandleInputPacket(
 ClientProxyPtr inClientProxy,
 InputMemoryBitStream& inInputStream)
 {
 uint32_t moveCount = 0;
 Move move;
 inInputStream.Read(moveCount, 2);
 for(; moveCount > 0; –moveCount)
 {
 if(move.Read(inInputStream))
 {

if(inClientProxy->GetUnprocessedMoveList().AddMoveIfNew(move))
{

inClientProxy->SetIsLastMoveTimestampDirty(true);
}

 }
 }
 }

 bool MoveList::AddMoveIfNew(const Move& inMove)
 {
 float timeStamp = inMove.GetTimestamp();
 if(timeStamp > mLastMoveTimestamp)
 {
 float deltaTime = mLastMoveTimestamp >= 0.f?

timeStamp - mLastMoveTimestamp: 0.f;
 mLastMoveTimestamp = timeStamp;

ptg16606381

240 CHAPTER 8 IMPROVED LATENCY HANDLING

 mMoves.emplace_back(inMove.GetInputState(), timeStamp, deltaTime);
 return true;
 }
 return false;
 }

 void NetworkManagerServer::WriteLastMoveTimestampIfDirty(
 OutputMemoryBitStream& inOutputStream,
 ClientProxyPtr inClientProxy)
 {
 bool isTimestampDirty = inClientProxy->IsLastMoveTimestampDirty();
 inOutputStream.Write(isTimestampDirty);
 if(isTimestampDirty)
 {
 inOutputStream.Write(

inClientProxy->GetUnprocessedMoveList().GetLastMoveTimestamp());
 inClientProxy->SetIsLastMoveTimestampDirty(false);
 }
 }

 For each incoming input packet, the server calls HandleInputPacket , which calls the move

lists’s AddMoveIfNew on each move in the packet. AddMoveIfNew checks each move’s

timestamp to see if it is newer than the most recently received move. If so, it adds the move

to the move list and updates the list’s most recent timestamp. If AddMoveIfNew added

any moves, HandleInputPacket marks the most recent timestamp as dirty so that the

 NetworkManager will know the client should be sent this timestamp. When it is finally time for

the NetworkManager to send a packet to the client, it checks to see if the timestamp for the

client is dirty. If it is, it writes the cached timestamp from the move list into the packet. When

the client receives this timestamp on the other end, it subtracts the timestamp from its current

time, giving it an exact measure of how much time passed between when it sent its input to the

server and when it received a corresponding response.

 Dead Reckoning

 Most aspects of a game simulation are deterministic, so the client can simulate them simply

by executing a copy of the server’s simulation code. Bullets fly through the air in the same way

on both the server and the client. Balls bounce off walls and floors and obey the same laws

of gravity. If the client has a copy of the AI code, it can even simulate AI-driven game objects

to keep them in sync with the server. However, there is one class of objects that is completely

nondeterministic and impossible to simulate perfectly: human players. There is no way the

client can know what remote players are thinking, what actions they will initiate, or where they

will move. This puts a kink in the extrapolation plan. In this scenario, the best solution is for the

client to make an educated guess, and then correct this guess as necessary when an update

arrives from the server.

ptg16606381

CLIENT SIDE PREDICTION 241

 In a networked game, dead reckoning is the process of predicting an entity’s behavior based

on the assumption that it will keep doing whatever it’s currently doing. If this is a running

player, it means assuming the player will keep running in the same direction. If it’s a banking

plane, it means assuming it will keep banking.

 When the simulated object is controlled by a player, dead reckoning requires running the

same simulation that the server is running, but in the absence of changing player input. This

means that in addition to replicating the pose of player-controlled objects, the server must

replicate any variables used by the simulation to calculate future poses. This includes velocity,

acceleration, jump state, or more, depending on the specifics of your game.

 As long as remote players continue doing exactly what they're doing, dead reckoning allows

clients’ games to accurately predict the current true world state on the server. However, when

remote players take unexpected actions, the client simulation diverges from the true state,

and must be corrected. Given that dead reckoning makes assumptions about behavior on the

server before having all the facts, dead reckoning is not considered a conservative algorithm.

It is instead known as an optimistic algorithm . It hopes for the best, guesses right most of the

time, but sometimes is completely wrong and must adjust. Figure 8.5 illustrates this.

Server Simulation
of Avatar B

Client Prediction
of Avatar B

50 ms
Pos: (50, 0)
Vel: (1, 0)

0 ms
Pos: (0, 0)
Vel: (1, 0)

117 ms
Pos: (117, 0)
Vel: (1, 0)

67 ms
Pos: (67, 0)
Vel: (1, 0)

117 ms
Pos: (134, 0)
Vel: (0, 1)

184 ms
Pos: (134, 50)
Vel: (0, 1)

184 ms
Pos: (134, 50)
Vel: (0, 1)

 Figure 8.5 Dead reckoning misprediction

 Assume an RTT of 100 ms and a frame rate of 60 frames per second. At time 50 ms, Client A

receives information that Player B is at position (0, 0), running in the positive X direction at 1

unit per millisecond. Because this state is behind by 1/2 RTT, it simulates Player B’s continued

running at a constant speed for 50 ms before displaying Player B’s position as (50, 0). Then,

while waiting four frames for another state packet, it continues to simulate Player B’s run each

frame. By the fourth frame, at time 117 ms, it has predicted that Player B should be at (117, 0).

It then receives a packet from the server replicating Player B’s velocity as (1, 0) and pose as

(67, 0). The client again simulates ahead for 1/2 RTT and finds that the position matches what it

expected.

ptg16606381

242 CHAPTER 8 IMPROVED LATENCY HANDLING

 All is well. It continues the simulation for another four frames at which point it predicts Player

B to be at (184, 0). However, at that point, it receives new state from the server dictating that

Player B’s position is (134, 0) but that his velocity has changed to (0, 1). Player B most likely

stopped running forward and started strafing. Simulating ahead by 1/2 RTT yields a position

of (134, 50), not at all what dead reckoning on the client previously predicted. Player B took an

unexpected, unpredictable action, and as such, Client A’s local simulation diverged from the

true state of the world.

 When a client detects that its local simulation has grown inaccurate, there are three ways it can

remedy the situation:

■ Instant state update. Simply update to the new state immediately. The player may notice

the object jumping around, but that might be preferable to having inaccurate data.

Remember that even after the immediate update, the state from the server is still 1/2 RTT

old, so the client should use dead reckoning and the latest state to simulate it another

1/2 RTT.

■ Interpolation. Taking a page from the client side interpolation method, your game can

smoothly interpolate to the new state over a set number of frames. This could mean

calculating and storing a delta to each incorrect state variable (position, rotation, etc.)

that should be applied in each frame. Alternatively, you could just move the object part

way to the corrected position and wait for future state from the server to continue the

correction. One popular method is to use cubic spline interpolation to create a path that

matches both position and velocity to transition smoothly from the predicted state to the

corrected state. There is more in-depth information on this technique in the “Additional

Readings” section.

■ Second-order state adjustment. Even interpolation may be jarring if it suddenly ramps up

the velocity of a near-stationary object. To be more subtle, your game can adjust second-

order parameters like acceleration to very gently ease the simulation back in sync. This can

be mathematically complex, but can provide the least noticeable corrections.

 Typically, games will use a combination of these methods, based on the magnitude of the

divergence and on the specifics of the game. A fast-paced shooter will usually interpolate for a

small error and teleport for a large. A slower-paced game like a flight simulator or giant robot

mech title might use second-order state adjustment for all but the largest errors.

 Dead reckoning works well for remote players, because the local player doesn’t actually know

exactly what remote players are doing. When Player A watches Player B’s avatar run across the

screen, the simulation diverges every time Player B changes direction, but that’s very hard for

Player A to determine; without being in the same room as Player B, Player A doesn’t actually

know when Player B is changing input. For the most part, she sees the simulation as consistent,

even though the client application is always guessing at least 1/2 RTT ahead of whatever the

server has told it.

ptg16606381

CLIENT SIDE PREDICTION 243

 Client Move Prediction and Replay

 Dead reckoning cannot hide latency for a local player. Consider the case of Player A, on Client

A, starting to run forward. Dead reckoning uses state sent by the server to simulate, so from the

time she pushes forward, it takes 1/2 RTT for the input to get to server, at which point the server

adjusts her velocity. Then it takes 1/2 RTT for the velocity to get back to Client A, at which point

the game can use dead reckoning. There’s still a lag of RTT between when a player presses a

button and when that player sees results.

 There is a better alternative. Player A enters all her input directly into Client A, so the game on

Client A can just use that input to simulate her avatar. As soon as Player A pushes a button to

run forward, the client can start simulating her run. When the input packet reaches the server,

it can begin the simulation as well, updating Player A’s state accordingly. Not everything is so

simple though.

 A problem arises when the server sends a packet back to Client A containing Player A’s

replication state. Remember that when using client side prediction, all incoming state should

be simulated an additional 1/2 RTT to catch up to the true state of the world. When simulating

remote players, the client can just use dead reckoning and update assuming no change in

input. Typically the updated incoming state will match the exact state the client has already

predicted—if it doesn’t, the client can smoothly interpolate the remote player into place.

This won’t work for local players. Local players know exactly where they are and will notice

interpolation. They should not experience drifting or smoothing whenever they change their

input. Ideally, moving around should feel to a local player like she is playing a single player, non-

networked game.

 One possible solution to this problem is to completely ignore the server’s state for the local

player. Client A can derive Player A’s state solely from its local simulation, and Player A will have

a smooth movement experience, with no latency. Unfortunately, this can cause Player A’s state

to diverge from the server’s true state. If Player B bumps into Player A, there is no way for Client

A to accurately predict the server’s resolution of the collision. Only the server knows Player

B’s true position. Client A has a dead reckoned approximation of Player B’s position, so cannot

resolve the collision in exactly the same way the server would. Player A might end up in a pit of

fire on the server, yet free and clear on the client, which can lead to much confusion. Because

Client A ignores all incoming Player A state, there would be no way for the client and server to

ever sync up again.

 Luckily, there is a better solution. When Client A receives Player A’s state from the server,

Client A can use Player A’s inputs to resimulate any state changes Player A instigated since the

server calculated the incoming state. Instead of simulating the 1/2 RTT using dead reckoning,

the client can simulate the 1/2 RTT using the exact input Player A used when the client side

simulation originally ran. By introducing the concept of a move , input state tied to a timestamp,

the client can keep track of what Player A was doing at all times. Whenever incoming state

ptg16606381

244 CHAPTER 8 IMPROVED LATENCY HANDLING

arrives for a local player, the client can figure out which moves the server did not yet receive

when calculating that state, and then apply those moves locally. Unless there was an encounter

with an unexpected, remote player initiated event, this should end up with the same state the

client had already locally predicted.

 To extend Robo Cat Action with support for move replay, the first step is for the client to hold

on to moves in the move list until the server has incorporated them into its simulation of state.

Listing 8.2 shows the necessary changes to do so.

 Listing 8.2 Retaining Moves

 void NetworkManagerClient::SendInputPacket()
 {
 const MoveList& moveList = InputManager::sInstance->GetMoveList();
 if(moveList.HasMoves())
 {

 OutputMemoryBitStream inputPacket;
 inputPacket.Write(kInputCC);
 mDeliveryNotificationManager.WriteState(inputPacket);
 //write the 3 latest moves for added reliability!
 int moveCount = moveList.GetMoveCount();
 int firstMoveIndex = moveCount - 3;
 if(firstMoveIndex < 3)
 {

firstMoveIndex = 0;
 }
 auto move = moveList.begin() + firstMoveIndex;
 inputPacket.Write(moveCount - firstMoveIndex, 2);
 for(; firstMoveIndex < moveCount; ++firstMoveIndex, ++move)
 {

move->Write(inputPacket);
 }
 SendPacket(inputPacket, mServerAddress);
 }
 }
 void
NetworkManagerClient::ReadLastMoveProcessedOnServerTimestamp(
 InputMemoryBitStream& inInputStream)
 {
 bool isTimestampDirty;
 inInputStream.Read(isTimestampDirty);
 if(isTimestampDirty)
 {
 inPacketBuffer.Read(mLastMoveProcessedByServerTimestamp);
 mLastRoundTripTime = Timing::sInstance.GetFrameStartTime()

- mLastMoveProcessedByServerTimestamp;

ptg16606381

CLIENT SIDE PREDICTION 245

 InputManager::sInstance->GetMoveList().
RemovedProcessedMoves(mLastMoveProcessedByServerTimestamp);

 }
 }

 void MoveList::RemovedProcessedMoves(
 float inLastMoveProcessedOnServerTimestamp)
 {
 while(!mMoves.empty() &&

mMoves.front().GetTimestamp() <=
inLastMoveProcessedOnServerTimestamp)

 {
 mMoves.pop_front();
 }
 }

 Notice how SendInputPacket no longer clears the move list as soon as it sends the packet.

Instead, it holds on to the moves so it can use them for move replay after receiving server state.

As an added bonus, because moves now persist for more than a packet, the client sends the

three most recent moves in the list. That way, if any input packets are dropped on the way to

the server, the moves will have two more chances to make it through. This doesn’t guarantee

reliability but it significantly increases the chances.

 When the client receives a state packet, it uses ReadLastMoveProcessedOnServerTimestamp

to process any move timestamp the server might have returned. If it finds one, it subtracts the

timestamp from the current time to measure RTT, which is useful for dead reckoning. It then calls

 RemovedProcessedMoves to remove any moves marked as at or before that timestamp. That

means that after ReadLastMoveProcessedOnServerTimestamp completes, the client’s local

move list contains only moves which the server has not yet seen, and thus should be applied to

any incoming state from the server. Listing 8.3 details the additions to the RoboCat::Read ()

method.

 Listing 8.3 Replaying Moves

 void RoboCatClient::Read(InputMemoryBitStream& inInputStream)
 {
 float oldRotation = GetRotation();
 Vector3 oldLocation = GetLocation();
 Vector3 oldVelocity = GetVelocity();

 //... Read State Code Omitted ...
 bool isLocalPlayer =
 (GetPlayerId() == NetworkManagerClient::sInstance->GetPlayerId());
 if(isLocalPlayer)
 {

ptg16606381

246 CHAPTER 8 IMPROVED LATENCY HANDLING

 DoClientSidePredictionAfterReplicationForLocalCat(readState);
 }
 else
 {
 DoClientSidePredictionAfterReplicationForRemoteCat(readState);
 }
 //if this is not a create packet, smooth out any jumps
 if(!IsCreatePacket(readState))
 {
 InterpolateClientSidePrediction(

oldRotation, oldLocation, oldVelocity, !isLocalPlayer);
 }
 }

 void RoboCatClient::DoClientSidePredictionAfterReplicationForLocalCat(
 uint32_t inReadState)
 {
 //replay moves only if we received new pose
 if((inReadState & ECRS_Pose) != 0)
 {
 const MoveList& moveList = InputManager::sInstance->GetMoveList();

 for(const Move& move : moveList)
 {

float deltaTime = move.GetDeltaTime();
ProcessInput(deltaTime, move.GetInputState());

SimulateMovement(deltaTime);
 }
 }
 }

 void RoboCatClient::DoClientSidePredictionAfterReplicationForRemoteCat(
 uint32_t inReadState)
 {
 if((inReadState & ECRS_Pose) != 0)
 {
 //simulate movement for an additional RTT
 float rtt = NetworkManagerClient::sInstance->GetRoundTripTime();

 //split into framelength sized chunks so we don’t run through walls
 //and do crazy things...
 float deltaTime = 1.f / 30.f;
 while(true)
 {

if(rtt < deltaTime)
{

SimulateMovement(rtt);
break;

}

ptg16606381

CLIENT SIDE PREDICTION 247

else
{

SimulateMovement(deltaTime);
rtt -= deltaTime;

}
 }
 }
 }

 The Read method begins by storing the current state of the object, so that the method can know

later if any adjustments requiring smoothing occurred. It then updates state by reading it in from

the packet as described in earlier chapters. After the update, it applies client side prediction to

advance the replicated state by 1/2 RTT. If the replicated object is controlled by a local player,

it calls DoClientSidePredictionAfterReplicationForLocalCat to run move replay.

Otherwise, it calls DoClientSidePredictionAfterReplicationForRemoteCat to run

dead reckoning.

 DoClientSidePredictionAfterReplicationForLocalCat first checks to make sure

that a pose was replicated. If not, there is no need to advance the simulation. If there was a pose,

the method iterates through all remaining moves in the move list and applies them to the local

 RoboCat . This simulates all player actions that the server has not factored into its simulation yet.

If nothing unexpected happened on the server, this function should leave the local cat’s state

exactly how it was before the Read method processed the packet in the first place.

 If the cat being replicated is remote, the

 DoClientSidePredictionAfterReplicationForRemoteCat method advances the

simulation using the latest known state for the cat. This consists of calling SimulateMovement

for the appropriate amount of time without any associated ProcessInput calls. Again, if

nothing unexpected happened on the server, this should also result in state that matches

the state before the Read method began. However, unlike for local cats, it is very likely that

something unexpected happened; remote players are always performing actions such as

changing direction, speeding up or slowing down, and so on.

 After performing client side prediction, the Read() method finally calls

 InterpolateClientSidePrediction() to handle any state that may have changed. By

passing in old state, the interpolation method can decide how much, if at all, it should smooth

out the change from old state to new state.

 Hiding Latency through Tricks and Optimism

 Delayed movement is not the only indication of latency to a player. When a player presses the

button to shoot a gun, she expects her gun to fire immediately. When she tries to cast an attack

spell, she expects her avatar to throw a big ball of fire. Move replay does not handle a situation

ptg16606381

248 CHAPTER 8 IMPROVED LATENCY HANDLING

like this, so something else is necessary. It’s usually too complicated for the client to create

projectiles in a way that the server can take over replicating their state once it creates them

itself—there is a simpler solution.

 Almost all video game actions have tells, or visual cues that indicate something is happening.

Muzzle flashes precede plasma blasts, and mages wave their hands and mumble before

spraying fire. These tells usually last at least as long as a round trip to the server and back. This

means that, optimistically, the client application can give a local player instant feedback to

any input by playing the appropriate animation and effects locally, while waiting for the true

simulation to be updated on the server. This doesn’t mean that the client spawns projectiles,

but it does start playing the spell casting animation and sound. If all is well, during the spell

casting, the server receives the input packet, spawns the fire ball, and replicates it to the client,

in time to show up as a result of the spell casting. Dead reckoning code advances the projectile

forward by 1/2 RTT and it looks to the player as if she threw a fireball with no latency. If there is

a problem, for instance, if the server knows that the player was recently silenced but hasn’t yet

replicated that to the player, the optimism proves unwarranted and the spell casting animation

fires without a projectile appearing. This is a rare case though, and well worth the benefit

typically provided.

 Server Side Rewind
 Using these various client side prediction techniques, your game can provide a fairly responsive

experience to players, even in the presence of moderate latency. However, there is still one

common type of game action which client side prediction does not handle perfectly: the

long range, instant-hit weapon. When a player equips a sniper rifle, perfectly positions the

reticle over another player, and pulls the trigger, she expects a perfect hit. However, due to the

inaccuracies of dead reckoning, it is possible that a perfectly lined up shot on the client is not

a perfectly lined up shot on the server. This can be a problem for games that rely on realistic,

instant-hit weapons.

 There is a solution to this, made popular by Valve’s Source Engine, and responsible for the

accuracy players feel when firing weapons in games like Counter-Strike . At its core, it works by

rewinding state on the server to exactly the state the player perceived when lining up a shot

and firing. That way, if the player perceived that she aimed perfectly, her shot will hit 100% of

the time.

 To accomplish this feat, the game must make a few adjustments to the client side prediction

methods discussed earlier:

■ Use client side interpolation without dead reckoning for remote players. The server

needs to have accurate knowledge of exactly what client players see at any time. Because

dead reckoning relies on the client advancing the simulation based on its assumptions, it

ptg16606381

SUMMARY 249

would cause extra complexity for the server, and thus should be turned off. To prevent any

jerkiness or stuttering between packets, the client instead uses client side interpolation as

described earlier in this chapter. The interpolation period should be exactly equal to the

packet period, which is tightly controlled by the server. Client side interpolation introduces

additional latency, but it turns out this is not significantly noticed by the player because of

move replay and the server side rewind algorithm.

■ Use local client move prediction and move replay. Although client side prediction is

disabled for remote players, it must remain on for the local player. Without local move

prediction and move replay, the local player would instantly notice both the latency from

network traffic and the increased latency from the client side interpolation. However, by

simulating player moves immediately, the local player never feels lagged, regardless of how

much latency there is.

■ Record the client’s view in each move packet sent to the server. The client should stamp

every input packet sent with the IDs of the frames between which the client is currently

interpolating, and the percentage of the interpolation that is complete. This gives the

server an exact indication of the client’s perception of the world at the time.

■ On the server, store the poses of every relevant object for the last several frames.
When a client input packet comes in containing a shot, look up the two stored frames

between which the client was interpolating at the time of the shot. Use the interpolation

percentage in the packet to rewind all relevant objects to exactly where they were when

the client pulled the trigger. Then perform a ray cast from the client’s position to determine

if the shot landed.

 Server side rewind guarantees that if the client player lined up a shot correctly, it will land

on the server. This gives a very satisfying feeling to the shooting player. However, it does not

come without drawbacks. Because it rewinds server time by an amount based on the latency

between server and client, it can end up causing some unexpected and frustrating experiences

for the victims of the shots. Player A may think she has safely ducked around a corner, taking

refuge from Player B. However, if Player B is on a particularly laggy network connection, he

might have a view of the world that is 300 ms behind that of Player A. Thus on his computer,

Player A may not have ducked behind the corner yet. If he lines up the shot and fires, the server

will credit a hit to him and alert Player A that she was shot, even though she believed she was

safely around a corner. As for all things in game development, it is a tradeoff. Only use these

techniques if it is appropriate based on the specifics of your game.

 Summary
 Although stuttering and lag can ruin a multiplayer game experience, there are several

strategies which help mitigate the problems. These days, it is practically required that a

multiplayer game make use of one or more of these techniques.

ptg16606381

250 CHAPTER 8 IMPROVED LATENCY HANDLING

 Client side interpolation with a local perception filter smoothens out incoming state updates

by interpolating to them instead of immediately presenting them to the client. An interpolation

period equal to the period between state updates will provide the player with a consistently

updating state, but will increase the player’s perception of latency. It will never show the user

an incorrect state.

 Client side prediction uses extrapolation instead of interpolation to mask latency and keeps

the client’s game state in sync with the server’s true game state. State updates are at least 1/2

RTT old by the time they reach the client, so the client can approximate the true game state by

extrapolating the simulation for a duration of 1/2 RTT past the incoming state.

 Through dead reckoning, a client uses the last known state of an object to extrapolate future

state. It optimistically assumes remote players have not changed their input. Inputs change

often, though, so the server does frequently send state to the client that differs from its

approximation. When this happens, the client has many ways to factor this changed state into

its own simulation, and update what it shows to the player.

 Through move prediction and replay, a client can instantly simulate the results of local player

input. When receiving local player state from the server, the client advances the state 1/2 RTT

by replaying any move the player has made that the server has not yet processed. In most

cases, this brings the replicated state into sync with the simulated client state. In the case of

unexpected, server side events, like collisions with other players, the client can smooth the

replicated, corrected state back into its local simulation.

 For the ultimate in lag compensation when dealing with instant-hit weapons, games can

employ server side rewind. The server buffers object positions for several frames and actually

rewinds state to match the client’s view when processing instant-hit weapon fire. This gives an

increased feeling of precision to the shooter, but can result in targeted players taking damage

even after they perceive they have safely taken cover.

 Review Questions
1. What is meant by the term dumb client? What is the main benefit of a game which uses

dumb clients?

2. What is the main advantage of client side interpolation? What is the main drawback?

3. On a dumb client, the state presented to the user is at least how much older than the true

state running on the server?

4. What is the difference between a conservative algorithm and an optimistic algorithm?

Give an example of each.

5. When is dead reckoning useful? How does it predict the positions of objects?

6. Give three ways to correct predicted state when it turns out to be incorrect.

ptg16606381

ADDITIONAL READINGS 251

7. Explain a system which allows a local player to experience no lag at all regarding their own

movement.

8. What problem does server side rewind solve? What is its main advantage? What is its main

disadvantage?

9. Expand Robo Cat Action with an optional instant-hit yarn ball and implement server side

rewind hit detection.

 Additional Readings
 Aldridge, David. (2011, March). Shot You First: Networking the Gameplay of HALO: REACH .

Retrieved from http://www.gdcvault.com/play/1014345/I-Shot-You-First-Networking . Accessed

September 12, 2015.

 Bernier, Yahn W. (2001) Latency Compensating Methods in Client/Server In-game Protocol
Design and Optimization . Retrieved from https://developer.valvesoftware.com/wiki/Latency_

Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization .

Accessed September 12, 2015.

 Caldwell, Nick. (2000, February) Defeating Lag with Cubic Splines . Retrieved from http://www

.gamedev.net/page/resources/_/technical/multiplayer-and-network-programming/defeating-

lag-with-cubic-splines-r914 . Accessed September 12, 2015.

 Carmack, J. (1996, August). Here is the New Plan . Retrieved from http://fabiensanglard.net/

quakeSource/johnc-log.aug.htm . Accessed September 12, 2015.

 Sweeney, Tim. Unreal Networking Architecture. Retrieved from https://udn.epicgames.com/

Three/NetworkingOverview.html . Accessed September 12, 2015.

http://www.gdcvault.com/play/1014345/I-Shot-You-First-Networking
https://developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
http://fabiensanglard.net/quakeSource/johnc-log.aug.htm
https://udn.epicgames.com/Three/NetworkingOverview.html
Compensating_Methods_in_Client/Server_In-game_Protocol_Design_and_Optimization
http://www.gamedev.net/page/resources/_/technical/multiplayer-and-network-programming/defeating-lag-with-cubic-splines-r914
http://www.gamedev.net/page/resources/_/technical/multiplayer-and-network-programming/defeating-lag-with-cubic-splines-r914
http://www.gamedev.net/page/resources/_/technical/multiplayer-and-network-programming/defeating-lag-with-cubic-splines-r914
http://fabiensanglard.net/quakeSource/johnc-log.aug.htm
https://udn.epicgames.com/Three/NetworkingOverview.html

ptg16606381

This page intentionally left blank

ptg16606381

 C H A P T E R 9

 SCALABILITY

 Scaling up a networked game introduces a host

of new challenges that don’t exist for a game of

a smaller scale. This chapter takes a look at some

of the issues that crop up as the scale of a game

increases, and some solutions to these issues.

ptg16606381

254 CHAPTER 9 SCALABILITY

 Object Scope and Relevancy
 Recall that the discussion of the Tribes model in Chapter 1 mentioned the concept of the scope

or relevancy of an object. In this context, an object is considered in scope or relevant for a

particular client when that client should be informed about updates to the object in question. For

a smaller game, it may be viable to have all objects always be in scope or relevant to all clients in

the game. This naturally means that all updates to objects on the server will be replicated to all

clients. However, such an approach is not realistic for a larger game, both in terms of bandwidth

and in terms of processing time for the client. In a game with 64 players, it may not be important

to know about a player several kilometers away. In this case, sending information about this far

away player would be a waste of resources. It therefore makes sense that if the server deems that

Client A is too far away from object J, there is no need to send any updates to Client regarding the

object. An additional benefit of reducing the replication data sent to each client is that it reduces

the potential for cheating, a topic that is discussed in detail in Chapter 10 , “Security.”

 However, object relevancy is rarely a binary proposition. For example, suppose object J is

actually the avatar representing another player in the game. Suppose the game in question has

a scoreboard that displays the health of every player in the game, regardless of the distance.

In this scenario, the health of every player object is always relevant, even if other information

regarding the player object is not. Thus it makes sense that the server will always send the

health of other players, even if the rest of their object data may not be relevant. Furthermore,

different objects could have different update frequencies based on their priority, which

adds further complexity. In the interest of simplification, this section will consider relevancy

of objects on a binary basis. But one should remain cognizant of the fact that relevancy in a

commercial game rarely will be entirely binary in nature for every object in the game.

 Returning to the example of the game with 64 players, the idea of deeming objects far away

as out of scope is considered a spatial approach. Although simple distance checking is a very

quick way to determine relevancy, typically it is not robust enough to be the sole mechanism of

relevancy. To understand why this is the case, consider the example of a player in a first-person

shooter. Suppose that the initial design of the game supports two different weapons: a pistol

and an assault rifle. The network programmer thus decides to scope objects based on their

distance—anything further than the assault rifle’s range is deemed out of scope. In testing, the

amount of bandwidth consumption is right at an acceptable limit. However, if the designers

later decide to add a sniper rifle with a scope, with twice the range of the assault rifle, the

number of relevant objects will increase greatly.

 There are other issues related to only using distance to eliminating objects. A player in the

middle of a level is more likely to be in range of objects than a player on the outskirts of the

level. Furthermore, considering only distances assigns equal weight to objects in front of and

behind a player, which is counterintuitive. Although a distance-based approach to object scope

is simple, all objects around the player are deemed relevant, even those that may be behind a

wall. These issues are shown in Figure 9.1 .

ptg16606381

OBJECT SCOPE AND RELEVANCY 255

 The remainder of this section focuses on approaches more complex than simple distance

checking. Many of these techniques are also commonly used in visibility culling , a category

of rendering optimizations that try, as early as possible in the rendering process, to eliminate

objects that are not visible. However, given the nature of latency in a networked game, some

modifications are typically necessary to make a visibility culling approach suitable for object

relevancy.

 Static Zones

 One approach to reducing the number of objects that are relevant is to break the world up into

 static zones . Only objects in the same static zone as the player are considered relevant. This

kind of approach is often used in shared world games such as MMORPGs. For example, a town

where players can meet with each other to trade goods might be one zone, whereas a forest

where the players can fight monsters might be another zone. In this case, it makes no sense for

players in the forest to be sent replication information about the players trading in town.

 There are a couple of different ways to handle transitions over zone boundaries. One approach

is to invoke a loading screen when traveling between zones. This provides enough time for the

client to receive replication information regarding all of the objects in the new zone. For a more

seamless transition, it may be more desirable to have objects fade in and out as their relevancy

changes upon a zone transition. Assuming that the terrain for a zone never changes, the terrain

could simply be stored on the client so that the zone behind a player doesn’t completely

x

 Figure 9.1 The player, designated by the X, in relation to relevant objects

ptg16606381

256 CHAPTER 9 SCALABILITY

disappear upon crossing a zone boundary. However, keep in mind that storing terrain on the

client may present some security issues. One solution would be to encrypt the data, a topic

covered in Chapter 10 , “Security.”

 One drawback of static zones is they are designed around the premise that players will

be roughly evenly distributed between the zones in the game. This can be very tough

to guarantee in most MMORPGs. Meeting places such as towns will always have a higher

concentration of players than an out-of-the-way zone for high-level characters. This problem

can be exasperated by in-game events that encourage a large number of players to gather at

one specific location—such as in order to fight an especially tough enemy creature. With a

high concentration of players in one zone, the experience may be degraded for all the players

in the zone.

 Solutions to an overcrowded zone may vary by the game. In the MMORPG Asheron's Call , if a

player attempts to enter a zone with too many players, they are teleported to a neighboring

zone. Although perhaps not ideal, this approach is superior to the game crashing due to too

many players in one zone. Other games may actually split the zone into multiple instances, a

topic discussed later in this chapter.

 While viable for shared world games, static zones typically are not used for action games for

two main reasons. First, most action games feature combat in a much smaller area than might

be seen in an MMO game, though there are some notable exceptions, such as PlanetSide .

Second, and perhaps more importantly, the pace of most action games means that the delay

caused by traversing a zone boundary may be considered unacceptable.

 Using the View Frustum

 Recall that for a 3D game, the view frustum is a trapezoidal prism representing the area of

the world that is projected into a 2D image for display. The view frustum is described in terms

of an angle representing the horizontal field of view, an aspect ratio, and the distances to the

near and far planes. When the projection transform is applied, objects fully enclosed by or

intersecting the frustum are visible, whereas all other objects are not.

 The view frustum is commonly used in visibility culling. Specifically, if an object is outside the

frustum, it is not visible, so no time should be spent sending the object’s triangles to the vertex

shader. One way to implement frustum culling is to represent the view frustum as the six planes

comprising the sides of the frustum. Then a simplified representation of an object, such as a

sphere, can be tested against the frustum planes to determine whether or not the object in

question is inside or outside the frustum. A detailed discussion of the math behind frustum

culling is found in (Ericson 2004).

 While visibility culling based on the view frustum makes a great deal of sense, using only the

frustum for object scoping in a network game presents some issues when taking into account

ptg16606381

OBJECT SCOPE AND RELEVANCY 257

latency. For example, if only the frustum is used, objects immediately behind the player would

be considered out of scope. This may be problematic if the player quickly turns 180 degrees.

It will take some time for a quick turn to be propagated to the server, and for the server to

correspondingly send replication updates for objects that would suddenly scope in. One could

imagine this would create some unacceptable latency, especially if the object behind the player

happens to be an enemy player character. Furthermore, walls are still ignored in this approach.

This issue is shown in Figure 9.2 .

x

 Figure 9.2 An out-of-scope object directly behind the player, X

 One solution is to use both the view frustum and a distance-based system. Specifically, a

distance closer than the far plane could be combined with the frustum. Then any objects

that are either within the distance or within the frustum would be considered in scope, and

everything else would be out of scope. This means that on a quick turn, far away objects would

still go in and out of scope and walls would be ignored, but the scoping of closer objects would

not change. An illustration of this approach is shown in Figure 9.3 .

ptg16606381

258 CHAPTER 9 SCALABILITY

 Other Visibility Techniques

 Consider a networked racing game that features a track winding through a city. As would be

apparent to anyone who has rode in a car, the amount of road that is visible can vary greatly.

On a straight road with flat elevation, it is possible to see far into the distance. However, if the

car is turning, the visibility is greatly reduced. Similarly, traveling uphill has lower visibility than

traveling downhill. This idea of road visibility can be directly translated into the networked

racing game. Specifically, if the server knows the position of a player’s car, it can know how

far ahead on the track the player can see. This area will likely be much smaller than the area

intersecting the view frustum, which will ideally lead to a reduction in the number of objects

in scope.

 This leads to the concept of a potentially visible set (PVS). Using a PVS answers the following

question: From each location in the world, what is the set of regions that are potentially visible?

While this may seem similar to the static zone approach, the region sizes in PVS are typically

much smaller than separate zones. A static zone might be a town of several buildings, while

a PVS region would be an individual room inside of a building. Furthermore, in a static zone

x

 Figure 9.3 Combining a view frustum with a smaller radius to determine relevancy of objects

ptg16606381

OBJECT SCOPE AND RELEVANCY 259

approach, only objects within the same static zone are considered relevant. This is in contrast to

PVS, where neighboring regions that are deemed potentially visible will contain relevant objects.

 In a typical implementation of PVS, the world can be divided into a set of convex polygons (or

if necessary, a 3D convex hull). An offline process then computes, for each convex polygon, the

set of the other convex polygons that are potentially visible. At runtime, the server determines

which convex polygon a player is located in. From this convex polygon, the pregenerated sets

can be used to determine the set of all objects that are potentially visible. These objects can

then be flagged as relevant to the player in question.

 Figure 9.4 illustrates what the PVS for the hypothetical racing game might look like. Given

the player’s location marked by an X , the shaded region represents the area that is potentially

visible. In an actual implementation, it would be advisable to add a bit of slack in both

directions. This way, objects a little bit beyond the potentially visible area would also be marked

as in scope. Especially in a racing game where the cars are moving quickly, making sure to

account for the latency in the server updating the scoped objects is important.

x

 Figure 9.4 A sample PVS in a racing game

 The PVS system also works well for a corridor-based first-person shooter, in the vein of Doom or

 Quake . For this type of game, it may also be desirable to use a related technique called portals .

In a portal culling system, each room is a region and each door or window is considered a

portal. The frustums created by the portals can be combined with the view frustum to greatly

reduce the number of relevant objects. This system requires a greater amount of runtime

processing than a PVS, but if your game is already using portals to reduce overdraw on the

client, it may not be too difficult to extend the code to work for server-side object scoping.

 In a similar vein, some games may merit consideration of hierarchical culling approaches such

as BSP, quadtree, or octree. Each of these hierarchical culling techniques partition the objects

ptg16606381

260 CHAPTER 9 SCALABILITY

in the world using tree data structure. An in-depth discussion of these techniques can be found

in (Ericson 2004). Keep in mind that using any of these more advanced techniques for object

scoping will significantly increase the amount of time it takes. This is especially true given that

the scoping process must be run separately for each client connected to the server. Unless you

find your game really struggling to keep up with the volume of object replication, it probably is

extreme to use these hierarchical culling systems for object scoping. A well-implemented PVS

system should be more than sufficient for most action-oriented games, and many games may

not even require the level of detail a PVS system provides.

 Relevancy When Not Visible

 It is important to note that visibility may not, in all instances, directly correlate with the

relevancy of a particular object. Take the example of an FPS where players can throw a grenade.

If a grenade explodes in a nearby room, it is important that the grenade be replicated to all

clients nearby, even if it is not visible. This is because the client expects to hear the sound of a

grenade explosion, even if the grenade is not visible at the moment of explosion.

 One approach to solving this issue is to treat grenades differently from other objects. For

example, they could be replicated by radius rather than by visibility. Another option is to

replicate the explosion effect via RPC to the clients to whom the grenade itself is not relevant.

This second approach may reduce the amount of data sent to the clients that need to know

about the explosion sound (and potentially the particle effect), but don’t need to replicate the

actual grenade. This may mean that the grenade explosion information will be replicated to

clients that can’t actually hear it, but as long as this is a special case and not abused for a large

amount of objects, it should not significantly increase bandwidth usage.

 If the game is very much audio-based, it may even be possible to compute sound occlusion

information on the server in order to determine relevancy. However, realistically such

computation is generally done on the client side—it’s unlikely a commercial game would

actually need to compute audio relevancy with such a degree of accuracy on the server. A radial

or RPC-based approach should be fine for most games.

 Server Partitioning
 Server partitioning or sharding is the concept of running multiple server processes

simultaneously. Most action games inherently use this approach because each active game has

a cap on the number of active players—often within the range of 8 to 16 players. The number of

players supported per game is largely a game design decision, but there is also an undeniable

technical benefit to such a system. The idea is that by having separate servers, the load on any

one particular server should not be overwhelming.

 Examples of games that use server partitioning include Call of Duty , League of Legends , and

 Battlefield . Since each server runs a separate game, there is no gameplay interaction between

ptg16606381

SERVER PARTITIONING 261

the players of two separate games. However, many of these games still have statistics,

experience, levels, or other information that is written to a shared database. This means that

each server process will have access to some backend database, which can be considered part

of the gamer services, a concept covered in more detail in Chapter 12 , “Gamer Services.”

 In a server partitioning approach, it is a common occurrence that one machine is actually

capable of running several server processes simultaneously. In many big-budget games, the

developer provisions machines in a data center for the purpose of running several server

processes. For these games, part of the game’s architecture needs to handle distribution

of processes to each machine. One approach is to have a master process that decides when

server processes should be created, and on which machine. When a game ends, the server

process can write any persistent data before exiting. Then when players decide to start a new

match, the master process can determine which machine is under the least load, and have a new

server process be created on that machine. It is also possible for developers to use cloud hosting

for their servers, a configuration discussed in Chapter 13 , “Cloud Hosting Dedicated Servers.”

 Server partitioning is also used as an extension to the static zone approach used in MMOs.

Specifically, each static zone, or a collection of static zones, can be run as a separate server

process. For example, the popular MMORPG World of Warcraft features multiple continents.

Each continent runs on a separate server process. When a player transitions from one content to

another, the client displays a loading screen while their character state is transferred to the server

process for the new continent. Every continent is composed of several different static zones.

Unlike changing continents, crossing the boundary between two zones is seamless, because all of

the zones on the continent are still running on the same server process. Figure 9.5 illustrates what

Europa
(Server One)

Io
(Server Two)

 Figure 9.5 Use of server partitioning for separate continents, but not zones, in a hypothetical MMORPG

ptg16606381

262 CHAPTER 9 SCALABILITY

this type of configuration might look like for a hypothetical MMORPG. Each hexagon represents a

static zone, and the dotted lines represent travel points between the two continents.

 As with static zones, server partitioning only works well if the players are roughly evenly

distributed between each server. If there are too many players on one server, the server can still

encounter performance issues. This is not an issue in a game with a fixed player cap, but it can

certainly be an issue in an MMO. Depending on the game, there are many different potential

solutions to this problem. Some games simply have a server cap and force players to wait in a

queue if a server becomes too full. In the case of Eve Online , the server slows down the game’s

time step. This slow-motion mode, called time dilation , allows the server to keep all players

connected in a situation that it otherwise would not be able to maintain.

 Instancing
 In instancing , one shared game supports several separate instances at once. This term is

usually applied to shared world games where all the characters reside on the same server, but

may not be playing in the same instance at the same time. For example, many MMORPGs use

instancing for dungeon content designed for a fixed number of players. This way, groups of

players can experience highly scripted content, free from the interference of other players. In

most games that implement this sort of instancing, there is a portal or similar construct that

transitions the players from a shared zone into an instance.

 Sometimes instancing is also used as a solution for overcrowded zones. For example, Star Wars:
The Old Republic sets a cap on the number of players that can be in one particular zone. If the

player count becomes too high, a second instance of the zone will be forked from the original

instance. This does introduce some complexity for players. If two players try to meet in one

zone, they might actually end up in two different instances of the zone. In the case of The Old
Republic , the solution is to allow a player to teleport into a group member’s instance, in the

event it is different.

 From a design perspective, instancing allows for content more in line with single-player or

smaller multiplayer games, all while still having characters tied to a shared world. Some games

even use instancing as a way to allow for a zone to evolve throughout the course of a quest line.

However, the counterargument is that instancing makes the world feel less shared than it might

otherwise.

 From a performance standpoint, as long as the cost of spinning up an instance is properly

managed, instancing can be beneficial. Instancing can guarantee that no more than X players

are ever relevant at one point in time, especially if the zones can spawn separate instances. It is

even possible to combine instancing with server partitioning in order to further decrease the

load on specific server processes. Because entering an instance will almost always involve a

loading screen for the client, there is no reason the client could not be transferred to a separate

server, much how the continents in World of Warcraft run on separate server processes.

ptg16606381

SUMMARY 263

 Prioritization and Frequency
 For some games, the performance of the server is not the main bottleneck. Instead, the issue is

the amount of data transmitted over the network to the clients. This may especially be an issue

for mobile games that need to support a plethora of network conditions. Chapter 5 discussed

some ways to solve this problem, such as using partial object replication. However, if testing

determines that the amount of bandwidth the game is using is still too high, then there are

some additional techniques to consider.

 One approach is to assign a priority to different objects. Objects with a higher priority can be

replicated first, and lower-priority objects are only replicated if there are no higher-priority

objects left to replicate. This can be thought of as a way to ration bandwidth—there is only a

limited amount of bandwidth available, so it may as well be used for the most important objects.

 When using prioritization, it generally is important to still allow lower-priority objects through

on occasion. Otherwise, lower-priority objects will never be updated on clients. This can be

accomplished by allowing different objects to have different replication frequencies. For

example, important objects might be updated a couple of times per second, but less important

objects might only be updated every couple of seconds. The frequency could also be combined

with base priority to compute some sort of dynamic priority—in essence, increasing the priority

of a lower-priority object if it has been too long since the previous update.

 This same sort of prioritization can also be applied to remote procedure calls. If certain RPCs

are ultimately irrelevant to the game state, they can be dropped from transmission if there

is not enough bandwidth to send them. This is similar to how packets can be sent reliably or

unreliably, as discussed in Chapter 2 .

 Summary
 Reducing the volume of data sent to any one client is important as a networked game scales up

in size. One way to achieve this is to reduce the total number of objects in scope to a particular

client. A simple approach is to deem objects too far away from a client as out of scope, though

this one-size-fits-all approach may not work well in all scenarios. Another approach, especially

popular in shared world games, is to partition the world into static zones. This way, only players

in the same zone are relevant to each other.

 It is also possible to leverage visibility culling techniques to reduce the number of relevant

objects. While relying solely on the view frustum is not recommended, combining it with a

smaller radius can work well. Other games that have clear sectioning of levels, such as corridor-

based shooters or racing games might use PVS. With PVS, it is possible to determine which

regions are visible from any location in the level. Still other visibility techniques such as portals

may see some use on a case-by-case basis. Finally, there are instances where visibility should

not be the only criteria for relevancy, such as when a grenade explodes.

ptg16606381

264 CHAPTER 9 SCALABILITY

 Server partitioning can be used to reduce the load on any one server. This can be done both

for action games with fixed player caps, and for large shared world games where zones can be

placed on separate server processes. Similarly, instancing is a method that forks a shared world

into areas that are more manageable from a performance or design standpoint.

 There are other techniques, not related to object relevancy, that can be used to limit bandwidth

usage of a networked game. One is to assign priority to different objects or RPCs so that the

most important information is prioritized first. Another approach is to reduce the frequency

that replication updates are sent for all but the most important objects.

 Review Questions
1. What are the drawbacks of using only distances to determine object relevancy?

2. What is a static zone, and what are its potential benefits?

3. How can the view frustum be represented for the purposes of culling? What happens if

only the frustum is used to determine object relevancy?

4. What is a potentially visible set, and how does this approach differ from static zones?

5. If a shared world game suffers from zone overcrowding, what are some potential solutions

to this problem?

6. What are some approaches, other than reducing the number of relevant objects, to reduce

the bandwidth requirements of a networked game?

 Additional Readings
 Ericson, Christer. Real-Time Collision Detection . San Francisco: Morgan Kaufmann, 2004.

 Fannar, Hallidor. “The Server Technology of EVE Online: How to Cope With 300,000 Players on

One Server.” Presented at the Game Developer’s Conference, Austin, TX, 2008.

ptg16606381

 C H A P T E R 10

 SECURITY

 Since the first networked games, players have

devised ways to gain an unfair advantage. As

networked games have become increasingly

popular, combating security vulnerabilities has

become an important part of providing a safe and

fun environment for all players. This chapter takes

a look at some of the most common vulnerabilities

and the preventative measures that can be taken

against them.

ptg16606381

266 CHAPTER 10 SECURITY

 Packet Sniffing
 In normal network operation, packets are routed through several different computers on their

path from the source to destination IP address. At the very least, the routers along the way need to

read the header information in the packets in order to determine where to send the packet. And

as covered in Chapter 2 , sometimes the header addresses may be rewritten for network address

translation. However, given the open nature of the data that is transmitted, there is nothing that

prevents any of the machines on the route from inspecting all of the data in a particular packet.

 Sometimes inspecting the payload contained in a packet might be done in the name of normal

network operation. For example, some consumer routers employ deep packet inspection in

order to implement quality of service— a system that prioritizes some packets over others.

Quality of service needs to read the packets to determine what it contains. This way, if a packet

can be determined to contain peer-to-peer file sharing data, it may be given a lower priority

than a packet containing data for a voice-over IP (VoIP) call.

 But there also is a form of inspecting these packets that is not necessarily as benign. Packet
sniffing is a term generally used for the reading of packet data for a purpose other than normal

network operation. This can be done for many different purposes including attempting to steal

login information or cheating in networked games. The remainder of this section focuses on

the specific ways various types of packet sniffing can be combatted in networked games.

 Man-in-the-Middle Attack

 In a man-in-the-middle attack , a computer somewhere on the route from source to

destination is sniffing packets, without the knowledge of the source and destination

computers. This is shown in Figure 10.1 . Practically speaking, there are a few different ways

this can occur. Any computer using an unsecured or public Wi-Fi network could have all of its

packet information read by another machine on that network. (This is why it is generally a good

idea to use an encrypted VPN when on a Wi-Fi network at the local coffee shop). If on a wired

Clive

BobAlice

Figure 10.1 A man-in-the-middle attack, with a message between Alice and Bob being read by Clive

ptg16606381

PACKET SNIFFING 267

network, it could be that a gateway machine is sniffing packets—either because of some sort

of malware, or due to a nosy system administrator. And if, for some reason, government agents

are targeting your game, it is also possible that software installed at an ISP is attempting to gain

access to the data.

 Technically, a player could intentionally set up a man-in-the-middle for the purposes of sniffing

the game. This may be a concern on a closed platform such as a console, but at least on PC or

Mac, you should assume that the player always has access to all of the data transmitted over the

network, anyway. So for the rest of this discussion of man-in-the-middle, we will assume that

the “man” is a third party unknown to both the source and destination computer.

 The general approach to combatting the man-in-the-middle is to encrypt all transmitted data.

In the case of a networked game, prior to implementing any sort of encryption system, one

should consider whether the game in question contains any sensitive data that needs to be

encrypted. If your game contains any microtransactions where a player can purchase in-game

items, it absolutely needs to encrypt any data related to purchases. If you are storing or even

just processing credit card information, the Payment Card Industry Data Security Standard

(PCI DSS) may be a legal requirement. However, even if there are no in-game purchases, any

game where a player logs in to an account that saves progress, such as a MOBA or MMO, should

encrypt data related to the login process. In both of these cases, there is a monetary incentive

for a third party to steal information—whether credit card or login. So it is imperative that your

game protects player’s valuable data from a man-in-the-middle.

 On the other hand, if the only data your game transmits over the network is replication data (or

the like), it doesn’t really matter if the man-in-the-middle intercepts this data. Thus, you could

leave the data unencrypted and it wouldn’t be a big issue. That being said, there may still be

some value in encrypting the data to prevent host packet sniffing, which is discussed shortly.

 If you come to the conclusion that your game does send sensitive data that needs to be

protected from outside parties, then using a proven encryption system is the recommended

course of action. Specifically, you will want to use public key cryptography , a type of

cryptography well suited for transmitting secure information. Suppose that Alice and Bob

want to transmit encrypted messages to each other. First, before they begin talking to each

other, Alice and Bob both generate different private and public keys. The private keys remain

private to whoever generated the key—they should never be shared with anyone else. When

Alice and Bob first handshake with each other, they will exchange their public keys. Then

when Alice sends a message to Bob, she will encrypt the message using Bob’s public key. This

message can then only be decrypted using Bob’s private key. In essence, this means that Alice

can send messages to Bob that only he can read, and Bob can send messages to Alice that only

she can read. This is the essence of public key cryptography, and is illustrated in Figure 10.2 .

 In the case of a networked game where there’s a login server, the client would have access to

the server’s public key. When the client wishes to log in to the server, their login and password

ptg16606381

268 CHAPTER 10 SECURITY

are encrypted using the server’s public key. This login packet can then only be decrypted by the

server’s private key, which hopefully only the server knows!

 Arguably the most popular public key cryptography system in use today is the RSA system

designed in 1977 by Rivest, Shamir, and Adelman. In RSA, the public key is based on a very large

number that is a semiprime , meaning it is the product of two prime numbers. The private key

is then based on the prime number factorization of the semiprime. The system works because

no known polynomial-time algorithm exists for integer factorization, and brute-forcing the

factorization of a 1024- or 2048-bit number that is the product of two large prime numbers, at

this time, is likely impossible even on the most powerful supercomputer in the world.

 BREAKING RSA

 There are a few scenarios where RSA could be broken, and any of these would be

disastrous in the near-term. The first scenario would be the creation of a sufficiently

powerful quantum computer. Shor’s algorithm is a quantum computer algorithm that

can factor integers in quantum polynomial time. However, at time of writing, the most

powerful quantum computer in the world can only handle factorization of 21 into 7 and

3, so it may be a few years before a quantum computer factors a 1024-bit number. The

other scenario is that a polynomial-time algorithm for integer factorization for standard

computers is devised.

 The reason why this would be disastrous is because a great deal of secure

communication on the Internet relies on RSA or related algorithms. If RSA is broken,

this means that many keys used for HTTPS, SSH, and similar protocols would no longer

be secure. Most cryptographers are resigned to the fact that RSA will eventually be

broken, which is why there is active cryptography research today on systems that even a

quantum computer would not be able to solve in polynomial time.

Encrypt

Alice

Hi, Bob!

EADCFFB0
08372145

DecryptHi, Bob!

Bob

Bob’s Public
Key

Bob’s Private
Key

 Figure 10.2 Alice and Bob communicate via public key cryptography

ptg16606381

PACKET SNIFFING 269

 Since RSA is such a well-established cryptography system, it would be a waste of resources to

attempt to implement it on your own. Instead, use a trusted open-source implementation of

RSA such as the implementation provided in OpenSSL. Because OpenSSL is released under a

free software license, even commercial projects should have no issue with using it.

 Packet Sniffing on a Host Machine

 While only games that transmit sensitive data need to worry about a man-in-the-middle

attack, every networked game is susceptible to a host machine intentionally sniffing packets.

In this case, encrypting the data is a deterrent but is not a foolproof measure. The reason for

this is a game executable on any platform can always be hacked, so encrypting the game data

won’t prevent someone from learning how to decrypt the data. Somewhere, there must be

code within the executable that knows how to decrypt the data the executable is to receive.

Once the decryption scheme is determined, the packet data can be read as if it weren’t

encrypted.

 That being said, reverse engineering the decryption code and finding the private key stored

in the client does take some time. So one way to make it more difficult for potential cheaters

is to still encrypt the data, but change the encryption keys and memory offsets to those keys

on a regular basis. This will then require someone to repeat the reverse engineering process

every time your game is updated. Similarly, if your game changes the format and ordering of

packets on a regular basis, this renders cheats that rely on a specific-packet format obsolete.

Once again, this makes players spend time to learn the new format and get the cheats to work

again. So, changing the encryption or packet format regularly will make developing cheats for

your game more annoying. Hopefully, this means most players give up in developing cheats.

But either way, you still have to accept the fact that you will never be able to prevent dedicated

individuals from sniffing all of the packets on a host machine.

 It’s worthwhile to consider what exactly a player packet sniffing on the host machine seeks to

accomplish. The player on the host machine is generally trying to utilize an information cheat ,

meaning he or she is trying to glean information that he or she should not know. A common

refrain to prevent cheating in this case is to limit the amount of information transmitted to each

host. In a client-server game, it is very much possible for the server to limit the data it sends to

each client. For example, suppose a networked game supports players moving undetected in

stealth mode. If the server still sends replication updates on a character in stealth, then a player

could absolutely glean the position of these stealth players from the packets. On the other

hand, if replication updates for position pause while a character is in stealth, there will be no

way for the client to know the current position of the character.

 In general, you should assume any data sent to each host can be examined by a player trying

to cheat. Thus if the game ensures that only the critical information relevant to each host is

transmitted, then it will minimize the potential for cheating. This will be much easier to enforce

in a client-server topology than on a peer-to-peer topology, since peer-to-peer can only work if

ptg16606381

270 CHAPTER 10 SECURITY

all data relevant to the game is sent to every peer. Thus a peer-to-peer game needs to use other

approaches to combat cheating.

 Input Validation
 In contrast to the packet sniffing techniques just covered, input validation strives to ensure

that no player performs an action that is invalid. This method of cheat prevention can work

equally as well for both client-server games and peer-to-peer games. The implementation of

input validation boils down to the simple premise that the game should never blindly execute

an action from a packet sent over the network. Instead, the action should first be validated to

ensure that it is valid at the point in time in question.

 For example, suppose that a packet is sent over the network requesting that Player A fire their

gun. The receiving machine should never assume that it is valid for Player A to fire. It should first

be confirmed that Player A has a weapon, the weapon has bullets, and the weapon is not on a

cool down. If any of these conditions are not met, the fire request should be rejected.

 It should further be confirmed that when receiving an action for Player A, it is being sent

from the client who is responsible for Player A. Recall that the code for both versions of Robo
Cat in Chapter 6 performed this validation. In the case of the client-server action game, each

host address was associated with a client proxy. This way, when moves are received over the

network, the server only allows those moves to be applied to that host’s corresponding proxy.

For the peer-to-peer RTS game, each command is issued by a specific player. When command

packets are received over the network, they are associated with that specific peer. When it is

time to execute the commands, the peers will reject any commands for units not owned by the

peer issuing the commands.

 If invalid actions are detected, it may be tempting to boot the offending player. However, you

should consider the possibility that the invalid input was accidental, perhaps due to latency

or packet loss. For example, suppose that players can cast spells in a particular game. In said

game, let’s suppose that it is also possible for players to “silence” other players, meaning they

cannot cast spells for the duration of the silence. Now suppose that Player A is silenced, which

means the server will send an update packet to Player A. It is possible that in the interval prior

to receiving the silence packet, Player A transmits a spell cast action. Thus Player A would be

transmitting an invalid action, but not due to any nefarious reason. Because of this, it would be

a mistake to boot Player A. In general, a more conservative approach of simply rejecting the

invalid input will be the proper course of action.

 While input validation works well for the server validating a client and a peer validating

another peer, it is not particularly easy for the client to validate commands from the server. This

wouldn’t be an issue for games that run on developer-hosted servers, but it could be an issue

for servers that are hosted by players.

ptg16606381

SOFTWARE CHEAT DETECTION 271

 In an authoritative server model, only the server has a complete picture of the game state. So

if the server tells a client that the client should take damage, the client will have a difficult time

validating whether or not this damage is legitimate. This is doubly the case because in a typical

configuration, the client has no way to directly communicate with the other clients. Thus, Client

A has no way of verifying whether a command actually came from Client B—it has to trust that

the server is sending it valid information.

 The simplest and only foolproof solution to the problem of bad data from the server is to not

allow players to host games. With the advent of cloud hosting, it is viable for even lower budget

games to host servers in the cloud. Though there still is a cost, it is substantially less than it

would be to run physical servers in a data center. Chapter 13 covers an approach to using cloud

hosting for dedicated servers.

 However, if your game either does not have the budget for this, or you simply want to give

players the option to run their own servers, the solutions become more complex. One approach

that has limited success is to maintain peer-to-peer connections between clients. This will

increase the complexity of the code base and the runtime bandwidth requirements, but it

would allow for some validation of the server’s information.

 To see how this would work, consider a hypothetical multiplayer dodge ball game. In the

standard client-server model, if Client B throws a dodge ball at Client A, this information is first

sent from Client B to the server, and then from the server to Client A. To add an additional layer

of validation, when Client B throws the dodge ball, it could also send a packet to all of the other

clients, notifying the other clients that it is throwing a dodge ball. Then when Client A receives

a packet from the server regarding the ball throw, it can validate against the packet it should

have received from Client B.

 Unfortunately, there is no guarantee such a peer-to-peer validation system for the server will

always work. For one, just because each client is able to reach the server does not necessarily

mean that each client will be able to reach each other client. This is especially the case when

dealing with NAT traversals, firewalls, and so on. Second, even if all clients are reachable to each

other, there is no guarantee that the peer-to-peer packets will arrive faster than the packets

from the server. So if Client A has to make a decision on whether or not the server’s information

is correct, it may be possible that the packet from Client B has yet to arrive. This means that

either Client A has to wait for Client B’s packet, which will delay the updating of the game, or

return to square one and accept the server at its word.

 Software Cheat Detection
 The approaches used to combat both man-in-the-middle attacks and invalid input are both

relatively defensive in nature. In the case of man-in-the-middle attacks, the data is encrypted

so that it cannot be read. In the case of invalid input, validation code is added to disallow bad

ptg16606381

272 CHAPTER 10 SECURITY

commands. However, there is a much more aggressive approach to combatting players who

attempt to cheat.

 In software cheat detection , software that runs either as part of or external to the game

process actively monitors the integrity of the game. Most methods of cheating involve

running cheat software on the same machine as the game. Some cheats hook into the game

process, other cheats overwrite memory in the game process, still other cheats are third-party

applications used for automation, and some cheats even modify data files used by the game.

All these different types of cheats can be detected using software cheat detection, which

makes it a very powerful method to combat cheaters.

 Furthermore, software cheat detection can detect cheats that would otherwise be

undetectable. Take the example of a real-time strategy game that’s using lockstep peer-to-

peer. Most real-time strategy games implement fog of war, which allows each player to only

see areas of the map that are near that player’s units. However, recall from Chapter 6 that in

the lockstep peer-to-peer model, each peer is simulating the entire game state. Thus each

peer has, in memory, a complete picture of where all of the units in the game are located. This

means that the fog of war is implemented entirely in the local executable, and so the fog of

war can be removed by writing a cheat program. This type of cheat is commonly referred to as

 map hacking , and while it is popular in real-time strategy games, any game that uses fog of

war can be susceptible to map hacks. What makes this difficult to detect is there likely is very

little other peers can do to detect the map hack—the other peers would just see data being

transmitted as normal. However, software cheat detection can successfully detect if a map

hack is being used.

 Another popular cheat is a bot that either plays the game in lieu of a player, or assists the player

in some way. For example, bots have been used for years in MMOs by players wanting to level

up or gain money even while they are sleeping or otherwise away from their computer. In FPS

games, some players use aim bots in order to help give them perfect accuracy with every shot.

Both of these types of bots can compromise the integrity of the game in major ways, and both

can only be detected by software cheat detection.

 Ultimately, any multiplayer game that wants to foster a strong community will need to

consider using software cheat detection. There are several different software cheat solutions

in use today. Some are proprietary and only used by specific game companies, while others

are available for use either for free or with a license. The remainder of this section discusses

two software cheat detection solutions: Valve Anti-Cheat and Warden. For obvious reasons,

the amount of public information available for software cheat detection platforms is fairly

limited, so it will be presented in broad strokes. In the event you decide to implement your own

software cheat detection, be forewarned that it requires a great deal of understanding of low-

level software and reverse engineering. It’s also worth noting that even the best software cheat

detection platforms can be circumvented. So it is imperative to continuously update the cheat

detection in order to stay ahead of those writing cheat programs.

ptg16606381

SOFTWARE CHEAT DETECTION 273

 Valve Anti-Cheat

 Valve Anti-Cheat (VAC) is a software cheat detection platform that is available to games that

utilize the Steamworks SDK. Chapter 12 , “Gamer Services” contains an in-depth discussion of

the Steamworks SDK as a whole. For now, we will focus the discussion on VAC. At a high level,

Valve Anti-Cheat maintains a list of banned users for each game. When a banned user tries to

connect to a server that uses VAC, the user is denied access to join the server. Some games

will even ban across multiple games—for example, if a player is banned from one game using

Valve’s Source engine, they are likely banned from all games using the Source engine. This

provides an extra amount of deterrence to the system.

 At a high level, VAC detects cheaters at runtime by scanning for known cheat programs. There

are likely several methods used by VAC to detect a cheat program, but at least one of these

methods is to scan the memory of the game process. If a user is detected using a cheat, they

typically are not banned immediately. The reason for this is an immediate ban would make it

apparent that the cheat is no longer safe to use. Instead, VAC simply creates a list of users to

ban at some point in the future. This allows the system to catch as many players as possible

who are using the cheat and then ban all of them at once. Players use the term ban wave

for this practice of delayed bans, and it is commonly used by many software cheat detection

platforms.

 There is also a related functionality, called pure servers , implemented in Valve’s Source engine

(and thus, can only be used in Source engine games). A pure server validates the content of

users upon connection. The server has expected checksums of all of the files that should exist

on the client. Upon joining the game, the client must send its file checksums to the server, and

if there is a mismatch, the client is booted. This process also happens when a map transition

occurs in which the level changes. To account for the fact that some games allow customization

to, for example, change the looks of characters, it is also possible to whitelist some files and

paths so they are not checked for consistency. Although this system is specifically in Source

engine, it would be possible to implement a similar system in your own game.

 Warden

 Warden is the software cheat detection program created and used by Blizzard Entertainment

for all of their games. The functionality of Warden is a bit less transparent than VAC. However,

much like VAC, while the game is running Warden scans the computer’s memory (among other

locations) for known cheat programs. If a cheat is detected, that information is sent back to the

Warden server, and the user will be banned at some point in a future ban wave.

 One especially powerful aspect of Warden is that updates to its functionality can occur while

the game is running. This provides an important tactical advantage—typically cheat users are

knowledgeable enough to not use a cheat immediately after a new game patch is released.

This is both because the cheat may not even work anymore, and even if it does, it will almost

ptg16606381

274 CHAPTER 10 SECURITY

certainly be detected. However, when Warden updates dynamically, it is possible to catch

users that did not realize that Warden has been updated. That being said, some cheat program

authors claim that their software is able to detect when Warden is updating, and in this event

actually unload the cheat program before Warden finishes its update.

 Securing the Server
 Another important aspect of security for networked games is protecting the server against

attack. This is particularly important for shared world games with central servers, but any game

server can be susceptible to attack. So you should plan for certain types of attacks, and make

sure you have contingencies in place in the event these attacks occur.

 Distributed Denial-of-Service Attack

 The goal of a distributed denial-of-service attack (DDoS) is to overwhelm the server with

requests that it cannot successfully fulfill, ultimately causing the server to be unreachable or

otherwise unusable for legitimate users. The reason this works is because too much incoming

data will either saturate the server’s network connection, or use up so much processing power

that the server cannot keep up with actual requests. Pretty much every major networked game

or online gamer service has been affected by a DDoS at one time or another.

 If you are using your own hardware for game servers, it can be difficult and stressful to mitigate

against DDoS attacks. It involves working closely with your ISP, as well as potentially upgrading

the hardware and distributing the traffic across different servers. On the other hand, if you

use a cloud hosting solution for your servers, as covered in Chapter 13 , some of the work to

prevent the DDoS attacks is done by the cloud provider. The major cloud hosting platforms all

have some level of DDoS prevention built in, and there also are specialized cloud-based DDoS

mitigation services that can be purchased. That being said, you should never assume that the

cloud hosting provider will completely prevent the potential for DDoS—it is prudent to still

invest time in planning for and testing different mitigation strategies.

 Bad Data

 You should also consider that a malicious user may attempt to send malformed or improper

packets to the server. This can be done for a number of reasons, but the simplest reason is the

user is attempting to crash the server. However, a more insidious user may be trying to cause

the server to execute malicious code through a packet buffer overflow or similar attack.

 One of the best ways to secure your game against bad data is to utilize a type of automated

testing called fuzz testing . In general, fuzz testing is used to discover errors in code that

normal unit or quality assurance testing is not likely to discover. For a networked game, you

would use fuzz testing to send large amounts of unstructured data to the server. The goal is to

ptg16606381

SECURING THE SERVER 275

see whether or not sending this data to the server will crash it, and fix any bugs discovered by

the process.

 In order to find the most bugs, it’s recommended to use both fully randomized data as well as

more structured data—such as packets that contain expected signatures even if the rest of the

payload is random and unstructured. With many iterations of fuzz testing and fixing the bugs

caught by fuzz testing, you can try to minimize the possibility of your game being vulnerable to

bad data.

 Timing Attacks

 Any code that compares an expected byte signature or hash versus the received signature is

potentially susceptible to a timing attack . In this type of attack, information can be learned

about the implementation of a particular hashing algorithm or cryptography system based on

the amount of time data takes invalid data to be rejected.

 Suppose you are comparing two arrays of eight 32-bit integers to determine whether or not

they are equal to each other. One array, a , represents the expected certificate. The other array,

 b , represents the user’s provided certificate. Your first thought might be to write a function as

follows:

 bool Compare(int a[8], int b[8])
 {
 for (int i = 0; i < 8; ++i)
 {

if (a[i] != b[i])
{

return false;
}

 }
 return true;
 }

 The return false statement seems like an innocuous performance optimization—if a

particular index is a mismatch, there’s no reason to continue to compare the remainder of

the arrays. However, this code is vulnerable to a timing attack because of this early return. For

incorrect values of b[0] , the Compare function will return faster than for correct values of

 b[0] . So if a user tried every possible value of b[0] , they could actually determine which value

is correct by testing which value causes Compare to take longer to return. This process could

be repeated for every index, and eventually the user would be able to determine the entire

certificate.

 The solution to this is to rewrite Compare such that it always takes the exact same amount of

time to execute, regardless of whether b[0] or b[7] is a mismatch. One can take advantage of

the fact that a bitwise exclusive-or (XOR) yields zero if two values are equivalent. Thus, you can

ptg16606381

276 CHAPTER 10 SECURITY

perform a bitwise XOR between every index of a and b , and bitwise OR those results together,

as in the following rewritten Compare function:

 bool Compare(int a[8], int b[8])
 {
 int retVal = 0;
 for (int i = 0; i < 8; ++i)
 {

retVal |= a[i] ^ b[i];
 }
 return retVal == 0;
 }

 Intrusions

 One big concern for server security is a malicious user attempting to break into the server,

particularly for shared world games. The goal might be to steal user data, credit card numbers,

and passwords. Or even worse, the attacker might try to wipe the entire database for the game,

effectively erasing the game from existence. Out of all the server security concerns, intrusions

have the most possible nightmare outcomes, and should be taken very seriously.

 There are several preventative measures that can be taken to limit potential for intrusion. The

biggest step you can take is to make sure all of the software on your servers is kept up-to-date.

This includes everything from the operating system, the databases, any software used for

automation, web apps, and so on. The reason for this is that old versions may contain critical

vulnerabilities that are fixed in newer versions. Staying on top of updates will help limit the

options that an attacker will have to infiltrate your game’s server. Similarly, limiting the number

of services the server machine will reduce the number of potential infiltration points.

 The same goes for machines used by developers on your project. A common route for many

intrusions is to first break into a personal machine that has access to the central server, and then

use this personal machine to springboard into the server system. This is referred to as a spear
phishing attack . So at a minimum, the operating systems as well as any software that accesses

the Internet or network, such as web browsers, should always be updated on all of your

developer’s machines. Another route to combating the springboard to the server is by greatly

limiting how accessible your critical server and data machines are to personal machines. It may

be worthwhile to enforce two-factor authentication on your servers, so that simply knowing

someone’s password is not enough to gain access.

 But despite your best efforts to prevent intrusions, you should still make the assumption that

your server is vulnerable to a skilled hacker. Thus you want to ensure that any sensitive data you

store on your server is as secure as possible. This way, in the event of a breach you can still limit

the amount of damage done to your game and the players of your game. For example, user

passwords should never be stored as plain text, because someone with access to the database

ptg16606381

SUMMARY 277

would then instantly have access to all your user’s passwords, which can be particularly bad

given how often users reuse passwords across several accounts. The passwords should instead

be hashed using an appropriate password-hashing algorithm, such as the Blowfish-derived

algorithm bcrypt. Do not use a simpler hashing algorithm such as SHA-256, MD5, or DES to

secure your passwords, because these older systems can all be easily broken on modern

machines. Similar to encrypting passwords, you should also ensure billing information such

as credit cards is stored in a cryptographically secure manner consistent with industry best

practices.

 As evidenced by the widely publicized intelligence leaks in recent years, often the biggest

threat to your server’s security may not be an external user. Instead, the greatest threat to your

security systems might be a rogue or disgruntled employee. Such an employee may attempt

to access or disseminate data that they should not. To combat this, having a comprehensive

logging and auditing system is important. This can act both a deterrent, and in the event that

something does happen, can provide evidence of criminal wrongdoing.

 Finally, you should make certain that any important data is backed up regularly to off-site and

physical backups. This way, even in the worst case where your entire database is wiped by a

malicious attacker or some other calamity, you still have recourse and can restore to a recent

version of the data. Having to restore from a backup is never ideal, but it is still much better

than the alternative of permanently losing all of your game’s data.

 Summary
 Most multiplayer game engineers need to be concerned with security on some level. The first

thing to consider is the security of data transmissions. Since packets can be intercepted by a

man-in-the-middle attack, it is important that sensitive information such as passwords and

billing information is encrypted. The recommended approach is to use some form of public

key cryptography such as RSA to encrypt the data. For data only relevant to the game state, it is

useful to minimize the amount of data that is sent. This is particularly helpful to reduce cheating

in client-server games, because it gives clients less information to work with.

 Input validation is also important to ensure that no user is performing an action when it is not

allowed. Bad input may not always be tied to cheating—it is possible in a client-server game

that a client simply has not received the latest updates when it sends out the command. That

being said, it is important that all commands that are sent over the network are verified. This

can work both for the server validating a client’s input and for a peer validating another peer’s

input. For the case of validating data from the server, the foolproof choice is to disallow players

from hosting their own servers.

 Although it is a more aggressive approach, software cheat detection can be the best tool to

eliminate cheating in a game. A typical cheat detection software will actively scan the memory

ptg16606381

278 CHAPTER 10 SECURITY

of a computer running the game in order to determine if any known cheat programs are also

running. If a cheat program is detected, the user in question is banned from the game, usually

during a future ban wave.

 Finally, it is important to protect your servers from a variety of attacks. Distributed denial-of-

service attacks seek to overwhelm servers, and can be combatted in part by using cloud hosted

servers. Bulletproofing your server code against bad packets can be accomplished by utilizing

fuzz testing. Finally, it is important to take measures such as keeping your server software

up-to-date and encrypting sensitive data stored on the server in order to mitigate the risk and

damage from a server intrusion.

 Review Questions
1. Describe two different ways a man-in-the-middle attack might be executed.

2. What is public key cryptography? How can this be useful to minimize the risk of a man-in-

the-middle attack?

3. Give an example of when input validation may result in a false positive, meaning that the

input validation thinks the user was trying to cheat even if they were not.

4. How might a game that allows players to host their own servers validate data sent from

the server?

5. Why is map hacking in a lockstep peer-to-peer game undetectable without usage of

software cheat detection?

6. Briefly describe how the Valve Anti-Cheat system works to combat players who are

cheating.

7. Describe two different ways to secure a server from potential intrusions.

 Additional Reading s
 Brumley, David, and Dan Boneh. “Remote timing attacks are practical.” Computer Networks 48,

no. 5 (2005): 701-716.

 Rivest, Ronald L., Adi Shamir, and Len Adleman. “A method for obtaining digital signatures and

public-key cryptosystems.” Communications of the ACM 21, no. 2 (1978): 120-126.

Valve Software. “Valve Anti-Cheat System.” Steam Support. https://support.steampowered.com

/kb_article.php?ref=7849-Radz-6869 . Accessed September 14, 2015.

https://support.steampowered.com/kb_article.php?ref=7849-Radz-6869
https://support.steampowered.com/kb_article.php?ref=7849-Radz-6869

ptg16606381

 C H A P T E R 11

 REAL-WORLD ENGINES

While larger game studios still largely develop

their own internal game engines, for smaller studios

it is increasingly common to utilize an off-the-shelf

engine. For most genres of networked games, it can

be much more time- and cost-effective for a smaller

studio to utilize an existing engine. In this case, the

code the network engineer will write is at a much

higher-level than the majority of this book.

 This chapter takes a look at two very popular

engines used in many games today, Unreal 4 and

Unity , and investigates how networked multiplayer

functionality can be implemented in both of these

engines.

ptg16606381

280 CHAPTER 11 REAL-WORLD ENGINES

 Unreal Engine 4
 The Unreal Engine has existed in one form or another since the 1998 release of the video game

 Unreal . However, over the years the engine has changed in many different ways. This section

specifically discusses Unreal Engine 4, which was released in 2014. For the remainder of this

chapter, “Unreal” will be used in reference to the engine, not the video game that shares its

name. A developer using Unreal generally does not have to worry about lower-level networking

details. Instead, the developer is concerned with higher-level gameplay code and making sure

that it works correctly in a networked environment. This is analogous to the game simulation

layer of the Tribes networking model.

 Because of this, the majority of this section looks at the higher-level aspects of adding

networking to an Unreal Engine game. However, in the interest of completeness, it’s worthwhile

to look at the lower-level details and how they correspond to many of the topics covered in

 Chapters 1 to 10 . A reader more interested in the lower-level aspects of networking in Unreal

Engine can also create a developer account for free at www.unrealengine.com in order to gain

full access to the source code.

 Sockets and Basic Networking

 In order to provide support for a large number of platforms, it is necessary for Unreal to abstract

the implementation details of the underlying socket implementation. An interface class called

 ISocketSubsystem has implementations for the different platforms that Unreal supports.

This is in some ways analogous to the Berkeley Sockets code presented in Chapter 3 . Recall that

there are slight differences between the socket API on Windows versus Mac or Linux, so the

socket subsystem in Unreal needs to take this into account.

 The socket subsystem is responsible for creating sockets as well as addresses. The Create

function of the socket subsystem returns a pointer to the created FSocket class, which can

then have data sent and received using standard functions with names such as Send , Recv ,

and so on. Unlike the code implemented in Chapter 3 , TCP and UDP socket functionality is not

provided in separate classes.

 Similarly, there is a UNetDriver class that is responsible for receiving, filtering, processing, and

sending packets. This can be thought as similar to the NetworkManager class implemented

in Chapter 6 , though it is a bit lower level. As is the case with the socket subsystem, there are

different implementations based on the underlying transport whether it is IP or a gamer service

transport such as that used by Steam which is covered in Chapter 12 , “Gamer Services.”

 There is quite a bit of other lower-level code related to transmitting messages. There is a large

set of classes related to transport-agnostic messaging. The details of this are fairly complex, so

if you are interested, you should consult the Unreal documentation on this particular feature at

 https://docs.unrealengine.com/latest/INT/API/Runtime/Messaging/index.html .

http://www.unrealengine.com
https://docs.unrealengine.com/latest/INT/API/Runtime/Messaging/index.html

ptg16606381

UNREAL ENGINE 4 281

 Game Objects and Topology

 Unreal uses some fairly specific terms to reference the key gameplay classes in the engine, so

before diving in deeper it’s worthwhile to discuss this terminology. An Actor is more or less the

base game object class. Every object that exists in the game world, whether static or dynamic,

visible or not, is a subclass of Actor . One important subclass of Actor is Pawn , which is an

 Actor that can be controlled by something. Specifically, this means that Pawn has a member

pointing to an instance of a Controller class. Controller also is a subclass of Actor ,

which is due to the fact that a Controller is still a game object that needs to be updated.

A Controller could be a PlayerController or an AIController , among other things,

depending on what is controlling the Pawn in question. A very small subset of the Unreal class

hierarchy is illustrated in Figure 11.1 .

Actor

ControllerPawn

Player
Controller

AIController

 Figure 11.1 Highlights of the Unreal class hierarchy

 To solidify how all these classes work together, consider a simple example of a single-player

dodgeball game. Suppose a player presses the spacebar to throw a dodgeball. The spacebar

input event might be passed to a PlayerController . The PlayerController will then

notify the PlayerPawn that it should throw a dodgeball. This will cause the PlayerPawn to

spawn a DodgeBall , which is a subclass of Actor . Although there is more happening behind

the scenes in the engine, this should provide a basic understanding of how these key classes

interact with each other.

 For networked games, Unreal only supports the client-server model. There are two different

modes the server can run in: dedicated server and listen server. In a dedicated server , the

ptg16606381

282 CHAPTER 11 REAL-WORLD ENGINES

server runs as a process separate from any and all clients. Usually, a dedicated server is run on a

separate machine entirely, though that is not a requirement. In the listen server mode, one of

the game instances is both the server and one of the clients. There are some subtle differences

between games running in dedicated server mode as opposed to listen server, but that is

beyond the scope of this section.

 Actor Replication

 Given that Unreal uses a client-server model, it follows that there needs to be a way for the

server to transmit updates on actors to all of the clients. This is appropriately referred to as

 actor replication . Unreal does a few different things to try to reduce the number of actors

that need to be replicated at any one time. As with the Tribes model, Unreal tries to determine

the set of actors that are relevant to any one client. Furthermore, if there is an actor that will

only ever be relevant to one particular client, it is possible to spawn the actor on that client,

rather than on the server. An example where this second approach might be utilized is for an

actor that is a wrapper for a temporary particle effect. It is also possible to further tweak the

relevancy of an actor with a few different flags. For example, bAlwaysRelevant will greatly

increase the likelihood an actor will be relevant (though contrary to name of the variable, it

does not actually guarantee the actor will always be relevant).

 Relevancy leads to the next important concept of roles . In a networked multiplayer game,

there will be several separate instances of the game running at once. Each of these instances

can query the role for each actor in order to determine who has the authority over the actor.

It’s important to understand that the role for a particular actor can be different depending

on the game instance which is querying the role. If we return to the dodgeball example, in a

networked multiplayer version of dodgeball, the ball would be spawned on the server. Thus,

if the server asked about the role of the dodgeball, it would see that it has role “authority”

meaning the server is the final authority for the dodgeball actor. However, every other client

would see a role of “simulated proxy,” meaning that they are simply simulating the ball and are

not the authority of the ball’s behavior. The three roles are as follows:

 ■ Authority. The game instance is the authority for the actor.

 ■ Simulated proxy. When on a client, this means that the server is the authority for the actor.

A simulated proxy means that the client may simulate some aspects of the actor, such as

movement.

■ Autonomous proxy. An autonomous proxy is very similar to a simulated proxy, though

it implies that it is a proxy that is receiving input events directly from the current game

instance, so the player’s input should be taken into account when the proxy is simulated.

 This does not mean that in a multiplayer game the server is always the authority for every actor.

In the case of the local particle effect actor, it may make sense for the client to spawn the actor,

in which case the client would see role “authority” and the server would not even know the

particle effect actor existed.

ptg16606381

UNREAL ENGINE 4 283

 However, every actor that the server has role “authority” on will be replicated to all clients, when

relevant. Inside of these actors, it is possible to specify which properties should or should not

replicate. In this way, bandwidth can be conserved by only replicating properties that are critical to

properly simulating the actor. Actor replication in Unreal is only ever from the server to the client—

there is no way for the client to create an actor and then replicate it to the server (or other clients).

 It is also possible for more advanced replication configuration beyond just copying properties.

For example, it is possible to only replicate a property based on particular conditions. It is also

possible to have a custom function be executed on the client whenever a particular property

is replicated from the server. As gameplay code in Unreal Engine 4 is written in C++, the engine

uses a complex set of macros to track all of the different replication properties. So when adding

a variable in a class’ header file, you can also tag the variable with appropriate replication

information via the macros. Unreal also has a fairly powerful flowchart-based scripting system

called Blueprint— surprisingly, much of the multiplayer functionality is also accessible via this

scripting system.

 Conveniently, Unreal already implements client prediction for actor movement. Specifically,

if the bReplicateMovement flag is set on an actor, it will replicate and predict movement

of simulated proxies based on replicated velocity information. If necessary, it is also possible

to override the method by which client prediction is implemented for character movement.

However, the default implementation is a good starting point for most games.

 Remote Procedure Calls

 As in discussed in Chapter 5 , “Object Replication,” remote procedure calls are instrumental in

making replication work. So it should not be a surprise that Unreal has a fairly powerful system

for remote procedure calls. There are three types of RPCs in Unreal: server, client, and multicast.

 A server function is a function that is called on a client, and executed on the server, with

one big caveat: The server does not let any client call a server RPC on any actor in the world.

This would too easily lead to potential cheating, among other issues. Instead, only the

client that is the owner of the actor can successfully execute a server RPC on the actor. Note

that the owner is not the same thing as the game instance that is role authority. Rather,

the owner is the PlayerController that is associated with the actor in question. For

example, if PlayerController A controls PlayerPawn A, then the client that is driving

 PlayerController A is considered the owner of PlayerPawn A. If we return to the

dodgeball game example, this means that only Client A can call the ThrowDodgeBall server

RPC on PlayerPawn A—any calls to ThrowDodgeBall that Client A might try to invoke on

any other PlayerPawn would be ignored.

 A client function is the inverse of a server function. When the server calls a client function, the

procedure call is sent to the client who is the owner of the actor in question. For example, when

the server determines in the dodgeball game that player C is eliminated, it might invoke a client

ptg16606381

284 CHAPTER 11 REAL-WORLD ENGINES

function on player C so that the owning client of player C can display the “Eliminated!” message

on screen.

 As the name implies, a multicast function will be sent to multiple game instances. In particular,

a multicast function is a function that is called on the server, but executed on the server and all

of the clients. Multicast functions are used to notify every client about a particular event—for

example, a multicast function might be used when the server wants every client to locally

spawn a particle effect actor.

 Combined, these three different types of RPCs allow for a great deal of flexibility. It’s also

notable that Unreal provides a choice on whether or not an RPC is reliable. This means that low-

priority events could have their RPCs marked as unreliable, which could improve performance

when packet loss occurs.

 Unity
 The Unity game engine was first released in 2005. In the last few years, it has become a very

popular game engine used by many developers. As with Unreal, the engine provides some

synchronization and RPC functionality built-in, though there are some distinct differences from

the approach used by Unreal. Unity 5.1 introduced a new networking library called UNET, and

as such this section focuses on this newer library. In UNET, there are two different APIs: a higher-

level API that can handle most networked game usage cases, as well as a lower-level transport

API that can be used for custom communication over the Internet, as required. The majority of

this section will focus on the higher-level API.

 While the core Unity game engine is largely written in C++, Unity developers are not provided

access to this C++ code. Developers using Unity will typically write the bulk of their code in C#,

though it is also possible to use a version of JavaScript, as well. Most serious Unity developers

will go with the C# option. Programming gameplay logic in C# instead of C++ presents both

advantages and disadvantages, though this is irrelevant to the task at hand.

 Transport Layer API

 The transport layer API provided by UNET is a wrapper for platform-specific sockets. As one

might expect, there are functions for creating connections with other hosts, and this can be used

to send and receive data. One of the decisions that can be made when creating a connection is

the reliability of the connection. Rather than specifically requesting a UDP or TCP connection,

you can instead specify how you wish to use the connection. You can create a communication

channel and request one of many values from the QosType enum. Possible values include:

■ Unreliable . Send messages without any guarantees.

■ UnreliableSequenced . Messages are not guaranteed to arrive, but out-of-order

messages are dropped. This is useful for voice communication.

ptg16606381

UNITY 285

■ Reliable . The message is guaranteed to arrive as long as the connection is not disconnected.

■ ReliableFragmented . A reliable message that can be fragmented into several

packets. This is useful when wanting to transmit large files over the network, as it can be

reassembled on the receiving end.

 Connections can be established via the NetworkTransport.Connect function call. This will

return a connection ID, which can then be used as a parameter for other NetworkTransport

functions such as Send , Receive , and Disconnect . On a Receive call, the returned

value is a NetworkEventType , which can either encapsulate the data or an event such as a

disconnection.

 Game Objects and Topology

 One big difference from Unreal is the way that game objects are set up in Unity. While Unreal

has a relatively monolithic hierarchy when it comes to the game objects and actors, Unity takes

a more modular approach. The GameObject class in Unity is largely a container for Component

classes. All behaviors are delegated to the components that are contained in the GameObject

in question. This can allow for a much better delineation between different aspects of a game

object’s behavior, though it can sometimes make programming systems more difficult when

there are dependencies between multiple components. Normally, a GameObject has one

or more components that inherit from MonoBehaviour that drive any custom functionality

for that GameObject . So for example, rather than having a PlayerCat class that directly

inherits from GameObject , you would have a PlayerCat component that inherits from

 MonoBehaviour . Then the PlayerCat component could be attached to any game objects

that should behave like a PlayerCat .

 In the higher-level networking API, Unity uses a NetworkManager class to encapsulate the

state of a networked game. The NetworkManager can run in three different modes: as a

standalone client, a standalone (dedicated) server, or a combined “host” that is both a client

and a server. This means that Unity essentially supports the same dedicated server or listen

server modes that are supported by Unreal.

 Spawning Objects and Replication

 Because Unity uses a client-server topology, it means that spawning objects in a networked

Unity game is very different from spawning them in a single-player game. Specifically, when

a game object is spawned on the server via the NetworkServer.Spawn function, it means

that this game object will be tracked by the server with a generated network instance ID.

Furthermore, a game object spawned in this manner should be replicated and spawned to all

of the clients as well. In order for the correct game object to be spawned on the client, you are

required to register the correct prefab for the game object. A prefab in Unity can be thought

of as a collection of components, data, and scripts that the game object uses—this can include

things like the 3D model, sound effects, and behavior scripts used by the game object. By

ptg16606381

286 CHAPTER 11 REAL-WORLD ENGINES

registering the prefab on the client, it ensures that all of the object’s data is ready for use in the

event that the server notifies the client to spawn an instance of that game object.

 Once an object is spawned on the server, the properties in its behavior can be replicated to

the client via a few different methods. In order for this to work, however, the behavior must

inherit from NetworkBehaviour instead of the usual MonoBehaviour . Once this is done,

the simplest way to replicate variables is to flag each variable you wish to replicate with

the [SyncVar] attribute. This will work on built-in types as well as Unity types such as

 Vector3 . Any variables that are marked as SyncVar s will automatically have value changes

replicated to the clients. There is no need for you to mark the value as dirty. However, keep

in mind that while SyncVar can also be used for a user-defined struct, the entire contents of

the struct will be copied as one set of data. So if you have a struct with 10 members, but only

one member changes, it would transmit all 10 members over the network, which may waste

bandwidth.

 In the event you require more fine-grained control over how variables replicate, you can

override the OnSerialize and OnDeserialize member functions to manually read and

write the variables you wish to synchronize. This can allow for customized functionality, but it

cannot be combined with SyncVar— so you have to choose one or the other.

 Remote Procedure Calls

 Unity also has support for remote procedure calls, though the terminology is slightly different

than the terms used in this book. In Unity, a command is an action sent from a client to the

server, and only works for objects controlled by that player. In contrast, a client RPC function

is an action sent from the server to a client. As with SyncVar , these types of RPC functions are

only supported in subclasses of NetworkBehaviour .

 The system for flagging functions as either type of remote procedure call is fairly similar to

synchronizing variables. To flag a function as a command, it should have the [Command]

attribute and additionally the function should begin with a prefix Cmd , such as CmdFireWeapon .

Similarly, a function can be flagged with the [ClientRpc] attribute and should begin with

 Rpc in the event that it’s a client RPC. In either case, the function can be called like a standard

function call in C# and it will automatically create the network data and execute it remotely.

 Matchmaking

 The UNET library also provides some matchmaking functionality that is typically associated

with a gamer service, a topic covered in much greater detail in Chapter 12 , “Gamer Services.”

This is in contrast to Unreal, which instead provides wrappers for established gamer services

based on the platform in question. The matchmaker in Unity can be used to request and list

the current game sessions. Once a suitable session is found, it is then possible to join the

ptg16606381

SUMMARY 287

game. This functionality can be added to a MonoBehaviour subclass via the NetworkMatch

class. This will then trigger callbacks such as OnMatchCreate , OnMatchList , and

 OnMatchJoined .

 Summary
 For smaller game development studios, using an off-the-shelf game engine can be a reasonable

decision. In such a case, the responsibility of the network engineer is at a higher level than

the majority of this book. Rather than worrying about how to implement sockets or basic

data serialization, the engineer must know how to allow for game functionality to run on a

networked game in their engine of choice.

 The Unreal Engine has existed for nearly 20 years. The fourth version of the engine, released

in 2014, provides full source code in C++. Although there are platform-specific wrappers for

functionality such as sockets and addresses, the expectation is generally that the developer will

not directly utilize these classes.

 Unreal’s networking model supports a client-server topology, which can either use a dedicated

server or a listen server. The Unreal version of a game object, Actor , has a hierarchy that

includes many different subclasses. An important aspect of this functionality is the idea of

a network role. Authority means the game instance is the authority over an object, whereas

simulated and autonomous proxies are used when a client simply is mirroring an object

from the server. The Actor class also has built-in support for replication of objects. Some

functionality, such as movement, can be replicated by setting a Boolean, while custom

parameters can also be marked to replicate. Furthermore, there is support for a variety of

remote procedure calls.

 Unity has existed since 2005, and over the last few years has become a popular game engine.

Developers using Unity generally will write all of their gameplay code in C#. In Unity 5.1, a

new network library called UNET was introduced, which provides a great deal of high-level

networking functionality, though there is also a low-level transport layer that is available.

 The transport layer abstracts the creation of sockets and instead allows the developer to

transmit data in several modes including reliable and unreliable, but most games implemented

in Unity will likely not directly access this. Instead, most developers will use the higher-level

API which, as with Unreal, supports both dedicated server and a listen server. All behaviors

that need networking support should inherit from the NetworkBehaviour class. This adds

functionality for replication, which can be handled either via the [SyncVar] attribute or

custom serialization functions. A similar approach is also utilized for remote procedure calls,

both from the server to the client, and the client to the server. Finally, Unity provides some

built-in matchmaking functionality that can be used as a lighter-weight option to using a full

gamer service.

ptg16606381

288 CHAPTER 11 REAL-WORLD ENGINES

 Review Questions
1. Both Unreal and Unity only provide built-in support for a client-server topology, and not a

peer-to-peer topology. Why do you think this is the case?

2. In Unreal, what are the different roles that actors can have in a networked game, and what

is their importance?

3. Describe the different usage cases for remote procedure calls in Unreal.

4. Describe how the game object and component model function in Unity. What might be

the advantages and disadvantages of such a system?

5. How does Unity implement variable synchronization and remote procedure calls?

 Additional Readings
 Epic Games. “Networking & Multiplayer.” Unreal Engine. https://docs.unrealengine.com/latest

/INT/Gameplay/Networking/ . Accessed September 14, 2015.

 Unity Technologies. “Multiplayer and Networking.” Unity Manual . http://docs.unity3d.com

/Manual/UNet.html . Accessed September 14, 2015.

https://docs.unrealengine.com/latest/INT/Gameplay/Networking/
http://docs.unity3d.com/Manual/UNet.html
https://docs.unrealengine.com/latest/INT/Gameplay/Networking/
http://docs.unity3d.com/Manual/UNet.html

ptg16606381

 C H A P T E R 12

 GAMER SERVICES

 Most players today have profiles on services such

as Steam, Xbox Live, or PlayStation Network. These

services provide many features, to both the players

and the games, including matchmaking, stats,

achievements, leaderboards, cloud-based saves,

and more. Because the use of these aptly named

gamer services has become so prevalent, players

expect that every game, even single-player ones,

be integrated with one of these services in some

meaningful way. This chapter takes a look at how

such services can be integrated into your game.

ptg16606381

290 CHAPTER 12 GAMER SERVICES

 Choosing a Gamer Service
 With so many options, it is worthwhile to consider which gamer service you want to

integrate into your game. In some cases, the choice is made for you based on the platform

the game is released on. For example, all Xbox One games must be integrated with the Xbox

Live gamer service—it’s simply not possible to integrate an Xbox One game with PlayStation

Network. For PC, Mac, and Linux, however, there are several potential options. Without a

doubt, the most popular service on these platforms today is Valve Software’s service, Steam.

In existence for over 10 years, the Steam platform has a large install base with thousands of

available games. Given that RoboCat RTS is a PC/Mac game, it made sense to integrate Steam

into it.

 There are a few prerequisites in order to integrate Steam into your game. First, you must agree

to the terms of the Steamworks SDK Access Agreement. This agreement is available online at

 https://partner.steamgames.com/documentation/sdk_access_agreement . Next, you must

register as a Steamworks partner, which involves signing further nondisclosure agreements as

well as providing relevant information. Finally, you must get an app ID for your game. An app ID

is only provided once you sign up to become a Steamworks partner and your game is greenlit

to be offered on Steam.

 However, when you complete the first step, agreeing to the Steamworks SDK Access

Agreement, you are given access to the SDK files, documentation, and a sample game project

(called SpaceWar!) that has its own app ID. For demonstration purposes, the code samples

provided in this chapter utilize the app ID for SpaceWar . This is more than sufficient to

understand how to integrate Steamworks into your game once you do complete all of the other

steps and receive your own unique app ID.

 Basic Setup
 Before writing any code specific to a gamer service, consider how you want to integrate the

code into your game. A quick option would be to directly add calls to the gamer service code

wherever it is needed. So in our case, we would directly call the Steamworks SDK functions

in all the files that need to use the gamer service. However, this is discouraged for a couple

of reasons. First, this means that every developer on your team may need to have some

level of familiarity with Steamworks, because the code using it will be spread throughout

your codebase. Second, and more importantly, this makes it far more difficult to integrate

a different gamer service into your game. This is particularly a concern for cross-platform

games, because, as discussed, different platforms have different restrictions on which gamer

service can be used. So even if we know that RoboCat RTS is only on PC and Mac for now, if we

ever wanted to port it to PlayStation 4, we’d want to make the transition from Steamworks to

PlayStation Network as seamless as possible. Having Steamworks code everywhere is counter

to this goal.

https://partner.steamgames.com/documentation/sdk_access_agreement

ptg16606381

BASIC SETUP 291

 This leads to a major design decision for the implementation of gamer services in

this chapter. The code in the GamerServices.h header makes no references to any

Steamworks functions or objects, and thus does not need to include the steam_api.h

header. One of the mechanisms used to accomplish this is the pointer to implementation

construct, a C++ idiom used to hide the implementation details of a class. When using

pointer to implementation, you have a class that contains both a forward declaration of

an implementation class and a pointer to this implementation class. In this manner, the

implementation details of the class are separated from its declaration. The basic components

of pointer to implementation that are used in the GamerServices class is shown in Listing

12.1. Notice that the class uses a unique_ptr rather than a raw pointer, as this is the

recommended approach in modern C++.

 Listing 12.1 Pointer to Implementation in GamerServices.h

 class GamerServices
 {
 public:
 //lots of other stuff omitted
 //...

 //forward declaration
 struct Impl;
 private:
 //pointer to implementation
 std::unique_ptr<Impl> mImpl;
 };

 It’s important to note that the implementation class itself is never fully declared in the header.

Instead, the details of the implementation class are declared in the object file—in this case

 GamerServicesSteam.cpp , and this is also where the mImpl pointer is initialized. This

means that the only place any Steamworks API calls are made is in this single C++ file. In this

way, if at any point we wanted to integrate Xbox Live, it would be possible to create another

implementation of the GamerServices class in GamerServicesXbox.cpp . We would then

add this new file to our project instead of the Steam implementation, and in theory no other

code should have to change.

 Although pointer to implementation is a powerful way to abstract away platform-specific

details, there is a performance concern that bears mentioning, particularly for games. When

using a pointer to implementation, it means that the vast majority of member function calls

for the object will require an additional pointer dereference. Pointer dereferences have a cost

associated with them. For a class that will have a very high number of member function calls,

such as the render device, the performance decrease would be noticeable. However, in the case

of the GamerServices object, we should not be making a particularly high number of calls

per frame. So in this case, trading performance for flexibility is acceptable.

ptg16606381

292 CHAPTER 12 GAMER SERVICES

 It should also be noted that the available functionality in the GamerServices object is a

small subset of the overall Steamworks functionality. This is because it only includes wrappers

for the functionality that was desired for RoboCat RTS— it would certainly be possible to add

more to it. However, if you are adding significantly more features, it probably would be a good

idea to separate the gamer services code into multiple files. For example, rather than having

the handful of peer-to-peer networking functions directly in GamerServices , it might make

sense to create a GamerServiceSocket class that has functionality similar to TCPSocket or

 UDPSocket .

 Initialization, Running, and Shutdown

 Steamworks is initialized by calling SteamAPI_Init . This function takes no parameters

and returns a Boolean based on the success of the initialization. The code for this is in

 GamerServices::StaticInit . It’s noteworthy that the gamer services are initialized in

 Engine::StaticInit before the renderer is initialized. This is because one of the features

Steam provides is an overlay. The overlay allows for the player to perform actions such as

chat with friends or use a web browser without leaving their current game. The way this

overlay works is by hooking into OpenGL functionality. This means that in order for the

overlay rendering to work correctly, SteamAPI_Init must be called before any rendering

initialization. If SteamAPI_Init succeeds, it will populate a series of global interface pointers.

These pointers can then be accessed via global functions such as SteamUser , SteamUtils ,

and SteamFriends .

 Normally, a game on Steam is launched through the Steam client. This is how Steamworks

knows the app ID of the game being run. However, during development you won’t be

launching your game through the Steam client—typically you will be launching through the

debugger or as a standalone executable. In order to let Steamworks know the app ID during

development, a steam_appid.txt file that contains the app ID is placed in the same directory

as the executable. However, even though this removes the requirement of launching the game

via the Steam client, an instance of the Steam client with a logged-in user must still be running.

If you do not have the Steam client, you can get it from the Steam website at http://store

.steampowered.com/about/ .

 Furthermore, in order to test multiple users playing against each other on Steam, you must

create multiple test accounts. Testing locally is a bit more complicated than the Chapter 6

version of the game because it is not possible to run multiple instances of Steam on the same

computer. So in order to test the multiplayer functionality for this chapter’s code, you will need

to either use multiple computers or set up a virtual machine.

 Since Steamworks often must communicate with a remote server, many of its function calls

are asynchronous. In order to notify the application when the asynchronous call has finished,

Steamworks utilizes callbacks. In order to ensure that the callbacks are triggered, the game

must call SteamAPI_RunCallbacks on a regular basis. It is recommended this function is

http://store.steampowered.com/about/
http://store.steampowered.com/about/

ptg16606381

BASIC SETUP 293

called once per frame, and so this is what is done in GamerServices::Update , which is called

once per frame in Engine::DoFrame .

 Similar to initialization, shutdown of Steamworks is very straightforward via the SteamAPI_

Shutdown function. This is called in the destructor of GamerServices .

 For client-server games, it is further necessary to initialize/shutdown game server code via

 SteamGameServer_Init and SteamGameServer_Shutdown . This requires also including

 steam_gameserver.h . Dedicated servers can be run in an anonymous mode that does

not require a user to be logged in. However, since RoboCat RTS only uses peer-to-peer

communication, the code for this chapter does not use any of the game server functionality.

 User IDs and Names

 In the earlier version of RoboCat RTS discussed in Chapter 6 , player IDs were stored as unsigned

32-bit integers. You may recall that in this older version of the game, the player IDs were

assigned by the master peer. When using a gamer service, each player would already have

a unique player ID assigned by the service, so it makes little sense to try to assign unique

IDs on your own. In the case of Steamworks, unique IDs are encapsulated by the CSteamID

class. However, it would defeat the purpose of the modularization of the GamerServices

class if CSteamID s were used everywhere. Luckily, CSteamID s can be converted to and from

unsigned 64-bit integers.

 So it follows that changing the player IDs to correspond to the Steam ID first required changing

all player ID variables to be of type uint64_t . Furthermore, rather than having the player

IDs be assigned by the master peer, the NetworkManager now initializes each player’s ID by

querying the GamerServices object, specifically by calling the GetLocalPlayerId function

in Listing 12.2.

 Listing 12.2 Basic User ID and Name Functionality

 uint64_t GamerServices::GetLocalPlayerId()
 {
 CSteamID myID = SteamUser()->GetSteamID();
 return myID.ConvertToUint64();
 }

 string GamerServices::GetLocalPlayerName()
 {
 return string(SteamFriends()->GetPersonaName());
 }
 string GamerServices::GetRemotePlayerName(uint64_t inPlayerId)
 {
 return string(SteamFriends()->GetFriendPersonaName(inPlayerId));
 }

ptg16606381

294 CHAPTER 12 GAMER SERVICES

 Similar thin wrappers for getting the name of both the local player and another player are also

in Listing 12.2. Instead of having the players specify their name, as in the old version of RoboCat ,
it makes more sense to use the name associated with the player on Steam.

 It’s worth mentioning that although using 64-bit integers for the player ID works for

Steamworks, there’s no guarantee that it would work for all gamer services. For example,

another gamer service might use a 128-bit UUID to identify all the players. In this case, it

would be necessary to add a further layer of abstraction. For example, you could create

a GamerServiceID class that is a wrapper for the underlying representation used for

identification by the gamer service.

 Lobbies and Matchmaking
 The earlier version of RoboCat RTS had a nontrivial amount of code associated with all the

players meeting up in a pregame lobby. Each new peer had to first say hello to the master peer,

then wait to be welcomed, before finally introducing themselves to all the other peers in the

game. For this chapter, all the code related to this welcoming process was removed. The reason

is that Steam, along with most major gamer services, provides its own lobby feature. Thus, it

makes sense to leverage the Steam functionality, especially given that it has far more features

than the functionality previously implemented in RoboCat .

 The basic flow of preparing to play a multiplayer game via Steamworks is roughly as follows:

1. The game searches for a lobby based on application-customizable parameters. These

parameters can include game modes or even skill level (if performing skill-based

matchmaking).

2. If one or more suitable lobbies are found, the game either selects one automatically or the

player is allowed to pick from a list. If no lobby is found, the game can choose to create

one for the player. In any event, once a lobby is either found or created, the player joins the

lobby.

3. While in the lobby, it’s possible to further configure the parameters of the upcoming game

such as characters, map, and so on. During this period, other players will hopefully join the

same lobby. It’s also possible to send chat messages to each other while in the same lobby.

4. Once the game is ready to start, the players join their game and leave the lobby.

Normally, this involves connecting to a game server (either a dedicated server or a player-

hosted one). In the case of RoboCat RTS , there is no server, so the players instead start

communicating peer-to-peer with each other before leaving the lobby.

 Since RoboCat has no menus or mode selection, the game begins a lobby search almost

immediately after Steamworks is initialized. The lobby search is encapsulated by the

 LobbySearchAsync function shown in Listing 12.3. The only filter used is for the game name,

which ensures that only lobbies for RoboCat are found. But any additional filters could be

ptg16606381

LOBBIES AND MATCHMAKING 295

applied by calling the appropriate filter functions prior to the call to RequestLobbyList . Note

that the code only asks for one result, because the game will simply auto-join the first lobby it

finds.

 Listing 12.3 Searching for a Lobby

 const char* kGameName = "robocatrts";

 void GamerServices::LobbySearchAsync()
 {
 //make sure it's Robo Cat RTS!
 SteamMatchmaking()->AddRequestLobbyListStringFilter("game",

kGameName, k_ELobbyComparisonEqual);

 //only need one result
 SteamMatchmaking()->AddRequestLobbyListResultCountFilter(1);

 SteamAPICall_t call = SteamMatchmaking()->RequestLobbyList();
 mImpl->mLobbyMatchListResult.Set(call, mImpl.get(),

&Impl::OnLobbyMatchListCallback);
 }

 The use of the SteamAPICall_t struct in LobbySearchAsync requires a bit more

explanation. In the Steamworks SDK, all asynchronous calls return a SteamAPICall_t struct,

which essentially is a handle to the asynchronous call. Once given this handle, you must let

Steamworks know what callback function to invoke when the asynchronous call completes.

This association between an asynchronous handle and a callback is encapsulated by an

instance of CCallResult . In this case, the instance is the mLobbyMatchListResult member

of the implementation class. This member and the OnLobbyMatchListCallback functions

are defined as follows inside GamerServices::Impl :

 //Call result when we get a list of lobbies
 CCallResult<Impl, LobbyMatchList_t> mLobbyMatchListResult;
 void OnLobbyMatchListCallback(LobbyMatchList_t* inCallback, bool inIOFailure);

 In this particular instance, the implementation of OnLobbyMatchListCallback has a

couple of cases to consider, as shown in Listing 12.4. Note that we check for the IOfailure

bool. All callbacks have this bool, and it should be assumed that if the value is true, there is an

error and the callback should not proceed. However, if a lobby is successfully found, the code

requests to enter that lobby. Otherwise, it will create a new lobby. Both of these cases involve

an additional asynchronous function call as well, so there are two more callbacks to look at:

 OnLobbyEnteredCallback and OnLobbyCreateCallback . To see the implementation

of these callbacks, consult the sample code. One important thing to note in these functions

is that once the player enters a lobby, the NetworkManager is notified via an EnterLobby

function.

ptg16606381

296 CHAPTER 12 GAMER SERVICES

 Listing 12.4 Callback When Lobby Search Completes

 void GamerServices::Impl::OnLobbyMatchListCallback(LobbyMatchList_t* inCallback,
bool inIOFailure)

 {
 if(inIOFailure) {return;}

 //if we find a lobby, enter, otherwise create one
 if(inCallback->m_nLobbiesMatching > 0)
 {

mLobbyId = SteamMatchmaking()->GetLobbyByIndex(0);
SteamAPICall_t call = SteamMatchmaking()->JoinLobby(mLobbyId);
mLobbyEnteredResult.Set(call, this, &Impl::OnLobbyEnteredCallback);

 }
 else
 {

SteamAPICall_t call = SteamMatchmaking()->CreateLobby(k_ELobbyTypePublic,
 4);

 mLobbyCreateResult.Set(call, this, &Impl::OnLobbyCreateCallback);
 }
 }

 The NetworkManager::EnterLobby function ends up not being particularly noteworthy,

except that it does call another function in NetworkManager called UpdateLobbyPlayers .

This UpdateLobbyPlayers function is called both when the player first enters the lobby,

and whenever another player enters or leaves the lobby. This way, the NetworkManager can

always be sure that it has an up-to-date list of all the players who are currently in the lobby. This

is important, because with the removal of the introduction packets, it is the only way that peers

can know when the players in the lobby change.

 The way to ensure that UpdateLobbyPlayers is always called when the players in the lobby

change is to use a general callback function. The difference between callbacks and call results

is that call results are associated with a specific asynchronous call, whereas general callbacks

are not. Thus, general callbacks can be seen as a way to register for notifications regarding a

specific event. Conveniently, a callback is posted every time a user leaves or enters a lobby. For

these general callbacks, you use a STEAM_CALLBACK macro inside the class that will respond to

the callback. In this case, it’s the implementation class, and the macro looks like this:

 //Callback when a user leaves/enters lobby
 STEAM_CALLBACK(Impl, OnLobbyChatUpdate, LobbyChatUpdate_t,

 mChatDataUpdateCallback);

 This macro simplifies declaring the name of the callback function and the member variable that

encapsulates the callback. This member variable needs to be instantiated in the initializer list of

 GameServices::Impl like so:

 mChatDataUpdateCallback(this, &Impl::OnLobbyChatUpdate),

ptg16606381

LOBBIES AND MATCHMAKING 297

 The implementation for OnLobbyChatUpdate then simply calls UpdateLobbyPlayers

on the NetworkManager . Thus, every time a player enters or leaves the lobby, you can

guarantee that UpdateLobbyPlayers gets called. Since UpdateLobbyPlayers also

needs some way to grab a map containing the ID and name of every player in the game, the

 GamerServices class provides a GetLobbyPlayerMap function, shown in Listing 12.5.

 Listing 12.5 Generating a Map of All the Players in a Lobby

 void GamerServices::GetLobbyPlayerMap(uint64_t inLobbyId,
map< uint64_t, string >& outPlayerMap)

 {
 CSteamID myId = GetLocalPlayerId();
 outPlayerMap.clear();
 int count = GetLobbyNumPlayers(inLobbyId);
 for(int i = 0; i < count; ++i)
 {

CSteamID playerId = SteamMatchmaking()->
GetLobbyMemberByIndex(inLobbyId, i);

if(playerId == myId)
{

outPlayerMap.emplace(playerId.ConvertToUint64(),
GetLocalPlayerName());

}
else
{

outPlayerMap.emplace(playerId.ConvertToUint64(),
GetRemotePlayerName(playerId.ConvertToUint64()));

}
 }
 }

 If you want to support player chat messages in the lobby, Steamworks provides a

 SetLobbyChatMsg function to transmit messages. Then there is a LobbyChatMsg_t callback

that can be registered in order to be notified when new messages appear. Since RoboCat

does not have any interface for chatting, the GamerServices class does not provide this

functionality. However, it would not be too time consuming to add wrapper functions for

chatting if you desire to support it.

 Once the game is ready to start, for a client-server game you would use Steamworks function

 SetLobbyGameServer to associate a specific server with the lobby. This server can be

associated either via IP address (for dedicated servers) or it can be associated with a Steam

ID (for player-hosted servers). This then triggers a LobbyGameCreated_t callback to all the

players that can be used to let them know it is time to connect to a server.

 However, since RoboCat RTS is a peer-to-peer game, it does not utilize this server functionality.

Instead, once the game is ready to start, there are three steps taken. First, the lobby is set to

ptg16606381

298 CHAPTER 12 GAMER SERVICES

be no longer joinable, so no further players can join. Second, the peers begin communication

with each other to synchronize the game start. Finally, once the game enters the playing state,

everyone leaves. Once all players leave a Steam lobby, the lobby is automatically destroyed.

The functions for setting the lobby to be unjoinable and leaving the lobby are declared

in GamerServices as SetLobbyReady and LeaveLobby . These functions are very thin

wrappers that each calls a single Steamworks function.

 Networking
 Many gamer services also provide a wrapper for networked communication between two users

on the service. In the case of Steamworks, it provides a handful of functions to send packets to

other players. The GamerServices class wraps some of these functions, as shown in Listing 12.6.

 Listing 12.6 Peer-to-Peer Networking via Steamworks

 bool GamerServices::SendP2PReliable(const OutputMemoryBitStream&
inOutputStream, uint64_t inToPlayer)

 {
 return SteamNetworking()->SendP2PPacket(inToPlayer,

inOutputStream.GetBufferPtr(),
inOutputStream.GetByteLength(),
k_EP2PSendReliable);

 }

 bool GamerServices::IsP2PPacketAvailable(uint32_t& outPacketSize)
 {
 return SteamNetworking()->IsP2PPacketAvailable(&outPacketSize);
 }

 uint32_t GamerServices::ReadP2PPacket(void* inToReceive, uint32_t inMaxLength,
uint64_t& outFromPlayer)

 {
 uint32_t packetSize;
 CSteamID fromId;
 SteamNetworking()->ReadP2PPacket(inToReceive, inMaxLength,

&packetSize, &fromId);
 outFromPlayer = fromId.ConvertToUint64();
 return packetSize;
 }

 You may notice that none of these networking functions refers to an IP or socket address. This

is intentional, because Steamworks only allows you to send packets to a particular user via

their Steam ID, not via IP address. The reason for this is twofold. First, it provides some amount

of protection to each user because their IP address is never revealed to any other user on the

ptg16606381

NETWORKING 299

service. Second, and perhaps more importantly, this allows Steam to completely handle the

network address translation. Recall that in Chapter 6 , one of the concerns of directly referencing

a socket address was that the address may not be on the same network. However, by using

the Steamworks networking calls, this issue is entirely handle by Steam. We request to send a

packet to a particular user and Steam will attempt to send the data to this user via NAT punch-

through, if possible. In the event that the NAT cannot be traversed, Steam will use a relay server

as a fallback. This guarantees that if the destination user is connected to Steam, there will be

some route for the packet to reach them.

 As an added bonus, Steamworks also provides a couple of different modes of transmission.

In the case of RoboCat RTS , all the communication for the turn information is critical, so all

packets are sent reliably as noted by the k_EP2PSendReliable parameter. This mode allows

and sends of up to 1 MB at a time, with automatic packet fragmentation and reassembly

at the destination. However, it is also possible to request UDP-like communication via k_

EP2PSendUnreliable . There are also modes to transmit unreliably assuming a connection is

already established, and reliably that buffers via the Nagle algorithm.

 The first time a packet is sent to a particular user via SendP2PPacket , it may take several

seconds to be received. This is because the Steam service will take some time to negotiate the

route between the source and the destination. Furthermore, when the destination receives a

packet from a new user, the destination must accept the session request from the source. This

is to disallow unwanted packets from a particular user. In order to accept a session request, a

callback is fired every time a session request is received. Similarly, there’s another callback that’s

fired when a session connection fails. The code RoboCat uses to handle both of these callbacks

is shown in Listing 12.7.

 Listing 12.7 Peer-to-Peer Session Callbacks

 void GamerServices::Impl::OnP2PSessionRequest(P2PSessionRequest_t* inCallback)
 {
 CSteamID playerId = inCallback->m_steamIDRemote;
 if(NetworkManager::sInstance->IsPlayerInGame(playerId.ConvertToUint64()))
 {

SteamNetworking()->AcceptP2PSessionWithUser(playerId);
 }
 }

 void GamerServices::Impl::OnP2PSessionFail(P2PSessionConnectFail_t* inCallback)
 {
 //we've lost this player, so let the network manager know
 NetworkManager::sInstance->HandleConnectionReset(

inCallback->m_steamIDRemote.ConvertToUint64());
 }

ptg16606381

300 CHAPTER 12 GAMER SERVICES

 To account for the fact that the first packet sent to a peer takes some amount of time, the

startup procedure for RoboCat was adjusted slightly. When the lobby owner/master peer is

ready to start the game, they press the return key as before. However, rather than immediately

starting the game countdown, the NetworkManager enters a new “ready” state. This ready

state transmits a packet to all the other peers in the game. In turn, when a peer receives a

ready packet, it transmits its own ready packet to all the other peers. This allows all the peers to

establish sessions with each other before the game starts.

 Once the master peer receives a ready packet from every peer in the game, it then enters the

“starting” state and issues a start packet to all the peers, as before. The key observation is that

without a ready state, there would not be any sessions established between the peers before

the game starts. This would mean that the turn 0 packets would take several seconds to arrive,

meaning that every player would end up in a delay state at the start of the game.

 As for where this new networking code is used, the packet handling code in the

 NetworkManager was rewritten for this version of RoboCat . Rather than using the

 UDPSocket class as before, all packet handling is now done via the functions provided by the

 GamerServices class.

 Player Statistics
 A popular feature of gamer services is the ability to track various statistics. This way, it is

possible to browse your or your friend’s profile to see what they have accomplished in various

games. To support statistics like this, there typically is some way to query the server for the

player’s statistics as well as a way to update and write new values to the server. Although it is

conceivably possible to always read and write directly from the server, generally it is a good

idea to cache the values locally in memory. This is the approach taken by the stats functionality

implemented in the GamerServices class.

 For a Steamworks game, the name and type of stats are defined for a particular app ID on

the Steamworks partner site. Since the code for this chapter is using the SpaceWar app ID,

this means that it is limited to using the stats that were defined for SpaceWar . However, the

functionality provided would still work for any game’s set of stats, you would just have to

change the stat definitions to match.

 Steam supports three different types of stats. Integer and float stats are, unsurprisingly, integer

and floating point values. The third type of stat is called an “average rate” stat. The way this

stat works is it provides a sliding window average, with a configurable window size. When you

retrieve an average rate stat from the server, you still only receive a single floating point value.

However, when you update an average rate stat, you provide a value as well as a duration

during which the value was achieved. Steam will then automatically compute for you a new

sliding average. This way, it is possible for a stat such a “gold per hour” to still change noticeably

as a player’s performance improves in the game, even when the player has logged many hours.

ptg16606381

PLAYER STATISTICS 301

 When defining the stats for a game on the Steamworks site, one of the properties assigned is the

“API Name,” which is a string value. Then, all the SDK functions associated with getting and setting

a particular stat require you to pass in the string corresponding to the stat. A simple approach

would be to have the GamerServices functions related to stats simply taking in a string as a

parameter. However, the problem with this is that it requires you to remember the exact API names

for each stat, and there is always the potential for a typo. Furthermore, since there is a local cache

of the stats, each query into the local cache would likely require some sort of hashing. Both these

issues can be solved by instead using an enum to define all the possible stats.

 One approach would be to define this enum and then separately define an array that contains

the API names for each corresponding value in the enum. But the problem with this approach

is that if the stats change, it means you now need to remember to update both the enum and

the array of strings. There might even be a third place to edit if your game also uses a scripting

language, because somewhere in the scripts there would be a redefinition of the same enums.

Remembering to keep all three of these in sync is both error-prone and annoying.

 Luckily, there is an interesting technique that can be employed, thanks to the C++ preprocessor.

This technique, called an X macro , allows the stats to be defined in a single location. These

definitions are then automatically reused wherever needed, which guarantees synchronization.

This completely eliminates any potential for error when changing the stats supported by the game.

 The first step to implementing an X macro is to create a definition file that defines each

element as well as any additional properties of the element that are important. In this case, the

definitions are placed in a separate Stats.def file. There are two pieces of data we care about

for each stat: its name and the type associated with the stat. Thus, the definitions of the stats

look something like this:

 STAT(NumGames,INT)
 STAT(FeetTraveled,FLOAT)
 STAT(AverageSpeed,AVGRATE)

 Next, in GamerServices.h , there are two definitions of enums related to stats. One of the

enums, StatType , is nothing special. It just defines the three INT , FLOAT , and AVGRATE types

of stats that are supported. The other enum, Stat , is much more complex because it uses the X

macro technique. Thus, it is shown in Listing 12.8.

 Listing 12.8 Declaring the Stat Enum via X Macro

 enum Stat
 {
 #define STAT(a,b) Stat_##a,
 #include "Stats.def"
 #undef STAT
 MAX_STAT
 };

ptg16606381

302 CHAPTER 12 GAMER SERVICES

 The code first defines a macro called STAT that takes two parameters. Notice that this

corresponds to the number of parameters each entry in Stats.def contains. In this case, the

macro completely ignores the second parameter. This is because the type of the stat does not

matter for this particular enum. It then uses the ## operator to concatenate the characters

of the first parameter with the prefix of Stat_ . Next, we include Stats.def which will, in

essence, copy and paste the contents of Stats.def into the enum’s declaration. Since STAT is

now defined as a macro, it will be replaced by the evaluation of the macro. So for example, the

first element of the enum will be defined as Stat_NumGames , because that is what the macro

 STAT(NumGames,INT) evaluates to.

 Finally, the STAT macro is undefined, and the last element of the enum is defined as MAX_STAT .

So the X macro trick not only defines every member of the enum to correspond to a stat

definition in Stats.def , it also yields the total number of stats that have been defined.

 What makes the X macro so powerful is that the same idiom can be reused anywhere the list

of stats is needed. This way, whenever Stats.def is modified, a simple recompile of the code

will perform macro magic and update all the code that depends on it. Furthermore, because

 Stats.def is a fairly simple file, it could also easily be parsed by a scripting language, should

your game use one.

 An X macro is used once more when it is time to declare the array of the stats in the

implementation file. First, there is a StatData structure that represents the locally cached

values associated with each stat. To simplify things, each StatData has elements for an

integer, float, or average rate statistic. This is shown in Listing 12.9.

 Listing 12.9 StatData Structure

 struct StatData
 {
 const char* Name;
 GamerServices::StatType Type;

 int IntStat = 0;
 float FloatStat = 0.0f;
 struct
 {

float SessionValue = 0.0f;
float SessionLength = 0.0f;

 } AvgRateStat;

 StatData(const char* inName, GamerServices::StatType inType):
Name(inName),
Type(inType)

 { }
 };

ptg16606381

PLAYER STATISTICS 303

 Next, the GamerServices::Impl class has a member array declared as follows:

 std::array<StatData, MAX_STAT> mStatArray;

 Notice how the definition of the array takes in MAX_STAT , an automatically updated value, as

the number of elements it should contain.

 Finally, the X macro comes into play during the initializer list of GamerServices::Impl . It is

used to construct each StatData element of mStatArray , as shown in Listing 12.10.

 Listing 12.10 Initializing mStatArray via X Macro

 mStatArray({
 #define STAT(a,b) StatData(#a, StatType::##b),
 #include "Stats.def"
 #undef STAT
 }),

 For this second X macro, both elements of the STAT macro are used. The first element is

converted into a string literal via the # operator, and the second element corresponds to an

element of the StatType enum. So for example, the STAT(NumGames,INT) definition would

conveniently evaluate to the following StatData instantiation:

 StatData("NumGames", StatType::INT),

 The X macro technique is also used for the definitions of the achievements and the

leaderboards, since both of those are also instances where multiple values need to stay

synchronized in multiple places. That being said, even though this is a powerful technique,

it should not be overused as it does not result in particularly readable code. However, it is

certainly a useful tool to have in your tool belt for situations like this where it is helpful.

 With the X macro implemented, the rest of the stats code falls into place relatively easily.

 GamerServices has a protected function called RetrieveStatsAsync that is called when

the GamerServices object initializes. When the stats are received, Steamworks issues a

callback. Both of these are in Listing 12.11. Notice how the code for OnStatsReceived does

not hardcode the stats in anyway—it uses the information stored in the mStatsArray , which

was auto-generated by the X macro. Also, for debugging purposes, the code logs out the values

of the stats when they are first loaded.

 Listing 12.11 Retrieving Stats from the Steam Server

 void GamerServices::RetrieveStatsAsync()
 {
 SteamUserStats()->RequestCurrentStats();
 }

ptg16606381

304 CHAPTER 12 GAMER SERVICES

 void GamerServices::Impl::OnStatsReceived(UserStatsReceived_t* inCallback)
 {
 LOG("Stats loaded from server...");
 mAreStatsReady = true;
 if(inCallback->m_nGameID == mGameId && inCallback->m_eResult == k_EResultOK)
 {

//load stats
for(int i = 0; i < MAX_STAT; ++i)
{

StatData& stat = mStatArray[i];
if(stat.Type == StatType::INT)
{

SteamUserStats()->GetStat(stat.Name, &stat.IntStat);
LOG("Stat %s = %d", stat.Name, stat.IntStat);

}
else
{

//when we get average rate, we still only get one float
SteamUserStats()->GetStat(stat.Name, &stat.FloatStat);
LOG("Stat %s = %f", stat.Name, stat.FloatStat);

}
}

//load achievements
//...

 }
 }

 The GamerServices class also provides functions to get and update stat values. When a

get function is called, the value is immediately returned from the locally cached copy. When

a function to update the stat value is called, it will update the locally cached copy and also

issue an update request to the server. This ensures that the server and the local cache stay

synchronized. The code for GetStatInt and AddToStat for integers is shown in Listing 12.12.

The code for float and average rate stats is rather similar, though as previously mentioned, the

average rate stat updates with two values.

 Listing 12.12 GetStatInt and AddToStat Functions

 int GamerServices::GetStatInt(Stat inStat)
 {
 if(!mImpl->mAreStatsReady)
 {

LOG("Stats ERROR: Stats not ready yet");
return -1;

 }

 StatData& stat = mImpl->mStatArray[inStat];

ptg16606381

PLAYER ACHIEVEMENTS 305

 if(stat.Type != StatType::INT)
 {

LOG("Stats ERROR: %s is not an integer stat", stat.Name);
return -1;

 }
 return stat.IntStat;
 }

 void GamerServices::AddToStat(Stat inStat, int inInc)
 {
 //Check if stats are ready
 //...
 StatData& stat = mImpl->mStatArray[inStat];
 //Check if is integer stat
 //...
 stat.IntStat += inInc;
 SteamUserStats()->SetStat(stat.Name, stat.IntStat);
 }

 RoboCat RTS currently uses the stats to track the number of enemy cats destroyed, as well as the

number of friendly cats lost. The code that updates the stats is in RoboCat.cpp . This sort of

approach where the stat updating code is called wherever necessary is fairly common in games

that track stats.

 Player Achievements
 Another popular feature of gamer services is achievements. These are awarded to players after

accomplishing certain feats during the course of a game. Some examples of achievements

include one-time events such as defeating a particular boss or winning the game on a

certain difficulty. Other achievements are given as a stat accrues over time—for example, an

achievement for winning 100 matches. Some dedicated players enjoy achievements so much

that they try to unlock everyone.

 In Steam, achievements are treated in a similar manner as stats. The set of achievements for a

particular game is defined on the Steamworks site, and so as with the stats, RoboCat is limited

to the set of achievements associated with SpaceWar . As with stats, the code for achievements

uses X macros. The achievements are defined in Achieve.def , and a corresponding

 Achievement enum is derived from this. There also is an AchieveData struct and an array of

said structs called mAchieveArray .

 The RequestCurrentStats function also grabs the current achievement information from Steam.

This means that when the OnStatsReceived callback is triggered, the achievement data can also

be locally cached. These achievements are copied with a small loop that calls GetAchievement to

get the Boolean value signifying whether or not the achievement is unlocked:

ptg16606381

306 CHAPTER 12 GAMER SERVICES

 for(int i = 0; i < MAX_ACHIEVEMENT; ++i)
 {
 AchieveData& ach = mAchieveArray[i];
 SteamUserStats()->GetAchievement(ach.Name, &ach.Unlocked);
 LOG("Achievement %s = %d", ach.Name, ach.Unlocked);
 }

 Next, there are some fairly simple wrappers for determining whether an achievement is

unlocked and actually unlocking an achievement. As was the case with the stats, checking

for an unlocked achievement uses the local cache, whereas the function that unlocks the

achievement both updates the cache and immediately writes it to the server. This code is

shown in Listing 12.13.

 Listing 12.13 Checking for and Unlocking Achievements

 bool GamerServices::IsAchievementUnlocked(Achievement inAch)
 {
 //Check if stats are ready
 //...
 return mImpl->mAchieveArray[inAch].Unlocked;
 }

 void GamerServices::UnlockAchievement(Achievement inAch)
 {
 //Check if stats are ready
 //...
 AchieveData& ach = mImpl->mAchieveArray[inAch];
 //ignore if already unlocked
 if(ach.Unlocked) {return;}

 SteamUserStats()->SetAchievement(ach.Name);
 ach.Unlocked = true;
 LOG("Unlocking achievement %s", ach.Name);
 }

 As for when achievements should be unlocked, generally it’s a good idea to unlock the

achievement soon after it is earned. Otherwise, a player may get confused when they meet the

conditions to unlock an achievement, but it doesn’t unlock. That being said, for a multiplayer

game it may be a good idea to queue up the achievements to be unlocked at the end of

the match. This way, the player doesn’t potentially get distracted by a UI notification for the

achievement.

 Since the tracked achievements in RoboCat RTS are based on achieving a certain number of kills

in game, code to track achievement progress was added in the TryAdvanceTurn function in

 NetworkManager . This way, at the end of each turn the game will check whether or not the

player has unlocked an achievement.

ptg16606381

LEADERBOARDS 307

 Leaderboards
 Leaderboards are a way to provide rankings for certain aspects of a game, for example, a score

or time to complete a particular level. Generally, leaderboard rankings can be browsed both

in terms of a global rank as well as ranks relative to your friends on the gamer service. For

leaderboards on Steam, they can either be created via the Steamworks website, or they can be

created programmatically via an SDK call.

 As with stats and achievements, the GamerServices implementation uses an X macro to

define the enum of leaderboards. In this case, the leaderboards are defined in Leaderboards

.def . Each entry in this file contains the name of the leaderboard, how the leaderboard should

be sorted, and how the leaderboard values should be displayed when viewed on Steam.

 The code for retrieving the leaderboards is a bit different than the code for stats or

achievements. First, it is only possible to find one leaderboard at a time. When the leaderboard

is found, it triggers a call result. So if you want your game to find all the leaderboards in

sequence, the call result’s code should request a find for the next leaderboard, and repeat this

process until all leaderboards are found. This is shown in Listing 12.14.

 Listing 12.14 Finding All the Leaderboards

 void GamerServices::RetrieveLeaderboardsAsync()
 {
 FindLeaderboardAsync(static_cast<Leaderboard>(0));
 }

 void GamerServices::FindLeaderboardAsync(Leaderboard inLead)
 {
 mImpl->mCurrentLeaderFind = inLead;
 LeaderboardData& lead = mImpl->mLeaderArray[inLead];
 SteamAPICall_t call = SteamUserStats()->FindOrCreateLeaderboard(lead.Name,

lead.SortMethod, lead.DisplayType);
 mImpl->mLeaderFindResult.Set(call, mImpl.get(),

&Impl::OnLeaderFindCallback);
 }

 void GamerServices::Impl::OnLeaderFindCallback(
 LeaderboardFindResult_t* inCallback, bool inIOFailure)
 {
 if(!inIOFailure && inCallback->m_bLeaderboardFound)
 {

mLeaderArray[mCurrentLeaderFind].Handle =
inCallback->m_hSteamLeaderboard;

//load the next one
mCurrentLeaderFind++;

ptg16606381

308 CHAPTER 12 GAMER SERVICES

if(mCurrentLeaderFind != MAX_LEADERBOARD)
{

GamerServices::sInstance->FindLeaderboardAsync(
static_cast<Leaderboard>(mCurrentLeaderFind));

}
else
{

mAreLeadersReady = true;
}

 }
 }

 The other thing that’s different is that finding the leaderboard doesn’t download

any of the entries from the leaderboard. Instead, it simply gives you a handle to the

leaderboard. If you want to download the entries from a leaderboard for display, you

provide the handle and the parameters of your download (global, friends only, etc.) to

the DownloadLeaderboardEntries function in the Steamworks SDK. This will then

trigger a call result when the leaderboard entries have downloaded, at which point you can

display the leaderboards. A similar process is used for uploading leaderboard scores, via the

 UploadLeaderboardScore function. Code using these two functions can be found in

 GamerServicesSteam.cpp .

 Since RoboCat doesn’t contain a user interface to display the leaderboard, to verify the

leaderboard functionality, there are a couple of debug commands. Pressing F10 will upload

your current kill count to the leaderboard, and pressing F11 will download the global kill count

leaderboard, centered on your current global rank. On a related note, pressing F9 will also reset

all the achievements and stats associated with the app ID (in this case, SpaceWar).

 One cool aspect of leaderboards on Steam is that it is possible to upload user-generated

content associated with a leaderboard entry. For example, a quick run through a level could

have an associated screenshot or video showing the run. Alternatively, a racing game could

have a ghost that players could download to race against. This allows for ways to make the

leaderboards more interactive than simply listing top scores.

 Other Services
 Although this chapter has covered many different aspects of the Steamworks SDK, there still

is much more available. There’s cloud storage that allows users to synchronize their saves

across multiple computers. There’s support for a text entry UI for playing in “Big Picture Mode,”

that’s designed for users with only a controller. There’s also support for microtransactions and

downloadable content (DLC).

 There also are many other gamer service options in use today. PlayStation Network works on

the PlayStation family of devices such as PlayStation consoles, PlayStation Vita, and PlayStation

ptg16606381

SUMMARY 309

mobile phones. Xbox Live has historically been designed for the Xbox consoles, but with

Windows 10, it is also available on PC. Other services include Apple’s Game Center for Mac/iOS

games and the Googles Play Games Services, which work on both Android and iOS devices.

 Gamer services sometimes have features specific to them. For example, Xbox Live supports

the idea of parties persisting between different games, and the idea that an entire party can

start a new game together. Also, on the consoles it’s very common to have standardized user

interfaces provided via the gamer service. So for example, choosing a save location on the Xbox

must always use a specific UI that’s provided via a gamer service call.

 The concept of what a gamer service should provide is constantly evolving over time. Players

will expect these features to be integrated with the latest and greatest games, so whichever

gamer service you choose, it is important to spend some time thinking about how best you can

leverage the service to improve the experience for your players.

 Summary
 Gamer services provide a wide range of features for players. Some gamer services are tied to a

specific platform, but on a platform such as PC, there are many possible choices. Arguably the

most popular gamer service for PC, Mac, and Linux is Steam, and this was the service that was

integrated throughout this chapter.

 One important decision when adding gamer service code is to devise a method to modularize

the code specific to a particular gamer service. This is important because a future port on a

different platform may not support the first gamer service you add to your codebase. One way

to accomplish this is via the pointer to implementation idiom.

 Matchmaking is an important feature provided by most gamer services. This allows users to

meet up with each other in order to play a game. In the case of Steamworks, the players first

search for and join a lobby. Once the game is ready to start, the players connect to a server (if

client-server), or begin communicating with each other (if peer-to-peer) prior to leaving the

lobby.

 Gamer services also commonly provide a mechanism to send packets of data to other users.

This is both to protect users from having their IP addresses revealed, and to allow for the gamer

service to perform any necessary NAT punch-through or relaying. In the case of RoboCat RTS ,

the networking code was changed to solely use the Steamworks SDK for sending data. As a

bonus, the SDK provides a reliable method of communication. Because the first packet sent to

a user has some amount of delay for the session to be established, the startup procedure for

 RoboCat was modified so that peers begin communicating with each other in a “ready” state

prior to beginning the game countdown.

 Other common features in a gamer service include statistics tracking, achievements, and

leaderboards. The GamerServices class’ implementation of statistics involved declaring

ptg16606381

310 CHAPTER 12 GAMER SERVICES

all the possible statistics in an external Stats.def file. This information then was used in

multiple spots via an X macro, in order to ensure that an enum and an array containing the stats

information remained synchronized. A similar approach was used for the implementation of

both achievements and leaderboards.

 Review Questions
1. Describe the pointer to implementation idiom. What advantages does it provide? What are

its disadvantages?

2. What purpose does a callback serve in Steamworks?

3. Roughly describe the lobby and matchmaking procedure used by Steamworks.

4. What are the advantages of networking provided by the gamer service?

5. Describe how the X macro technique works. What benefits and drawbacks does it have?

6. Implement a GamerServiceID class, and use this as a wrapper for a Steam ID. Change

every reference to a uint64_t player ID value to use this new class.

7. Implement a GamerServicesSocket class, in the vein of the UDPSocket class, which

internally uses the Steamworks SDK to send data. Be sure to provide the ability to specify

the reliability of communication. Change the NetworkManager to use this new class.

8. Implement a menu that displays the stats for the current user. Now implement a

leaderboard browser.

 Additional Readings
 Apple, Inc. “Game Center for Developers.” Apple Developer . https://developer.apple.com

/game-center/ . Accessed September 14, 2015.

 Google. “Play Games Services.” Google Developers. https://developers.google.com/games

/services/ . Accessed September 14, 2015.

 Microsoft Corporation. “Developing Games – Xbox One and Windows 10.” Microsoft Xbox .

 http://www.xbox.com/en-us/Developers/ . Accessed September 14, 2015.

 Sony Computer Entertainment America. “Develop.” PlayStation Developer . https://www

.playstation.com/en-us/develop/ . Accessed September 14, 2015.

 Valve Software. “Steamworks.” Steamworks . https://partner.steamgames.com/ . Accessed

September 14, 2015.

https://developer.apple.com/game-center/
https://developers.google.com/games/services/
http://www.xbox.com/en-us/Developers/
https://www.playstation.com/en-us/develop/
https://partner.steamgames.com/
https://developer.apple.com/game-center/
https://developers.google.com/games/services/
https://www.playstation.com/en-us/develop/

ptg16606381

 C H A P T E R 13

 CLOUD HOSTING

DEDICATED SERVERS

 The changing cloudscape means even small studios

can afford to host their own dedicated servers. No

longer must the fate of a game rely on players with

fast net connections hosting fairly administered

servers. This chapter explores the pros, cons, and

methods necessary to get your game’s servers

running in the cloud.

ptg16606381

312 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

 To Host or Not To Host
 In the early days of online gaming, hosting your own dedicated servers required the Herculean

task of acquiring and maintaining large amounts of computer hardware, networking

infrastructure, and IT staff. Any hardware ramp-up was a gamble at that. If you overestimated the

number of players at launch, you'd end up with racks and racks of machines lying fallow. Worse,

if you underestimated, your paying players would be unable to connect due to processing and

bandwidth constraints. While you struggled to obtain more last minute equipment, your players

would give up, write bad reviews, and warn their friends not to play your game.

 Those days of terror are over. Thanks to the abundance of on-demand processing power

available from giant cloud host providers like Amazon, Microsoft, and Google, gaming

companies are able to spin up and down servers on a whim. Third-party services like Heroku

and MongoLabs make deployment even easier by providing server and database management

services as needed.

 With the huge barrier to entry gone, the proposition of hosting dedicated servers is one that

every developer should consider, no matter how small the studio. Despite the lack of upfront

server cost, there are still some potential drawbacks to consider:

■ Complexity. Running a dedicated fleet of servers is more complex than allowing players

to host their own. Even though cloud hosts provide the infrastructure and some of

the management software, you still need to write custom process and virtual machine

management code, as described later in this chapter. Also you have to interface with one or

more cloud host providers, which means adapting to changing APIs.

■ Cost. Even though the cloud decreases upfront and long-term cost significantly, it’s still not

free. Increased player interest may cover the increased cost, but that’s not always the case.

■ Reliance on a third party. Hosting your game on Amazon or Microsoft’s servers means

the entire fate of your game rests on Amazon or Microsoft’s shoulders. Although hosting

companies offer service-level agreements that guarantee minimum uptime, these do

little to console paying players when every server suddenly goes down at once.

■ Unexpected hardware changes. Hosting providers usually guarantee to provide

hardware that meets certain minimum specifications. This does not prevent them from

changing hardware without warning, as long as it is above the minimum specification. If

they suddenly introduce a bizarre hardware configuration which you have not tested, it

may cause issues.

■ Loss of player ownership. In the early days of multiplayer gaming, administering your

own game server was a matter of pride. It was a way for players to be an important part

of the game community, and it created alpha players that spread the gospel of whatever

game they were hosting. Even today the culture still lives on in the myriad custom

 Minecraft servers hosted across the land. The intangible benefits of player ownership are

lost when the responsibility of running servers moves to the cloud.

ptg16606381

TOOLS OF THE TRADE 313

 Although these downsides can be significant, the benefits often outweigh them:

■ Reliable, scalable, high-bandwidth servers. Upstream bandwidth comes at a premium,

and there’s no guarantee that the right players will be hosting the right servers when your

other players want to play. With cloud hosting and a good server management program,

you can spin up whatever server is necessary, wherever and whenever you need it.

■ Cheat prevention. If you run all the servers, you can make sure they’re running

unmodified, legitimate versions of the games. This means all players get a uniform

experience not subject to the whims of player administrators. This enables not only reliable

rankings and leaderboards, but also persistent player progress based on gameplay, as

found in Call of Duty , for example.

 ■ Reasonable copy protection. Players have a lot of hate for intrusive copy protection and

 digital rights management (DRM). However, DRM can be a necessity for some types of

games, especially those that rely on microtransactions for revenue, like League of Legends .

Restricting your game to run on company hosted, dedicated servers provides a de facto,

nonintrusive form of DRM. You never have to release server executables to players, which

makes it much harder for them to run cracked servers that illegally unlock content. It also

allows you to check login credentials for every player, ensuring that they really should be

playing your game.

 As a multiplayer engineer, the choice of whether to host dedicated servers may be above your

pay grade. However, given the value of full stack engineers in the work force, it is important to

understand all the implications of the decision so you can weigh in with an informed opinion

based on the specifics of the game your team is making.

 Tools of the Trade
 When working in a new environment, it is most efficient to work with tools tailored for that

environment. Backend server development is a rapidly evolving field, with a rapidly evolving

set of tools. There are many languages, platforms, and protocols designed to make life easier

for the backend developer. At the time of this writing, there is a definite trend for services to

use REST APIs, JSON data, and Node.JS. These are flexible and widely accepted tools for server

development, and the examples in this chapter make use of them. You can choose different

tools for your cloud server hosting development and the basic concepts will remain the same.

 REST

 REST stands for representational state transfer . A REST interface is one that supports the idea

that all requests to a server should be self-contained and not rely on previous or future requests

for interpretation. HTTP, the protocol that drives the web, is a perfect example of this, and thus

typical REST APIs are built heavily around the use of HTTP requests to store, fetch, and modify

server-side data. Requests are sent using the common HTTP methods GET and POST, and also

ptg16606381

314 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

the less common PUT, DELETE, and PATCH. Although various authors have proposed standards

on exactly how these HTTP requests need to be structured to qualify as a REST interface, many

engineers end up creating interfaces that are REST-flavored to best suit the needs of the users,

but do not adhere strictly to any set of REST requirements. Generally, REST interfaces should

use the HTTP methods in a fairly consistent manor: GET requests fetch data, POST requests

create new pieces of data, PUT requests store data in a specific place, DELETE requests remove

data, and PATCH requests edit data directly.

 One major advantage of REST interfaces is that they are mostly plain text. Thus, they are human

readable, discoverable, and debuggable. In addition, they employ HTTP, which itself uses TCP

for transport and thus they are reliable. The self-contained nature of the REST request expands

request debuggability, cementing REST as the chosen API style for the backbone of today’s

cloud services. More details on REST style interfaces and proposed REST standards can be

found in the resources listed in this chapter’s “Additional Readings” section.

 JSON

 In the late 1990s and early 2000s, XML was heralded as the universal data exchange format

that would change the world. It started to change the world, but it had way too many angle

brackets, equal signs, and closing element tags to last forever. These days JSON is the new

darling for universal data exchange. Standing for JavaScript object notation , JSON is actually

a subset of the JavaScript language. An object serialized to JSON is exactly the JavaScript that

would be needed to recreate that object. It is text based, maintaining all the human readability

of XML, but with fewer formatting and tag closing requirements. This makes it even more

pleasant to read and debug. Additionally, because it is valid JavaScript, you can paste it directly

into a JavaScript program to debug it.

 JavaScript works well as a data format for REST queries. By specifying a Content-Type of

 application/json in the HTTP header, you can pass data to a POST, PATCH, or PUT request

in JSON format, or return data from a GET request. It supports all the basic JavaScript datatypes,

such as bools, strings, numbers, arrays, and objects.

 Node.JS

 Built on Google’s V8 JavaScript engine, Node JS is an open-source engine for building backend

services in JavaScript. The idea behind the language choice was that it would facilitate

development of AJAX style websites that also used JavaScript on the frontend. By using the

same language on both client and server, developers can write functions and easily switch or

share them between layers as necessary. The idea caught on and a very rich community has

grown up around Node. Part of its success is due to the vast number of open-source packages

available for Node, easily installable through the Node package manager (npm). Almost all

popular services with REST APIs have node package wrappers, making it trivial to interface with

the vast array of cloud service providers.

ptg16606381

OVERVIEW AND TERMINOLOGY 315

 Node itself provides a single-threaded, event-driven JavaScript environment. An event loop

runs on the main thread, much like in a video game, dispatching event handlers for any

incoming events. These event handlers can in turn make long running requests to the file

system, or to external services like databases or REST servers, that execute as asynchronous

jobs on non-JavaScript threads. While the jobs execute, the main thread returns to the

processing of incoming events. When an asynchronous job completes, it sends an event to the

main thread, so the event loop can call an appropriate callback and execute an appropriate

JavaScript handler. In this way, Node provides an environment that prevents the pain of race

conditions while still allowing for non-blocking asynchronous behavior. As such it is a prime

candidate for building services to handle incoming REST requests.

 Node ships with a simple built-in HTTP server, but the task of decoding incoming HTTP

requests, headers and parameters, and routing them to the appropriate JavaScript functions

is usually handled by one of several open-source Node packages dedicated to the purpose.

 Express JS is one such very popular package and the one used by the examples in this chapter.

More information on Express JS and Node JS can be found in the resources listed in the

“Additional Readings” section.

 Overview and Terminology
 From the player’s perspective, the cloud server spin-up process should be transparent.

When a player wants to join a game, the player’s client requests info on a match from the

matchmaking service endpoint. The endpoint looks for one, and if it can’t find one, it should

somehow trigger a new server to spin up. It then returns the IP address and port of the new

server instance to the client. The client connects there automatically and the player joins the

game.

 Note that it can be tempting to combine the processes of matchmaking and dedicated server

deployment into one giant blob of functionality. It saves on some redundant code and data,

and can even aid in performance a little. However, it can be more useful to keep them separate

for the single fact that you may want to plug one or more third-party matchmaking solutions

into your dedicated server system. Just because your studio hosts its own dedicated servers,

does not mean it can’t take advantage of third-party matchmaking solutions like Steam, Xbox

Live, or PlayStation Network. In fact, depending on the platform for which you’re developing,

it may be required. For this reason, it is sensible to keep the server deployment module clearly

isolated from your matchmaking module.

 When your deployment system finishes spinning up a new server, it should simply register

itself with the matchmaking system just as a player hosted game server would. After that,

the matchmaking system can take over matching players to server instances and your cloud

deployment system can focus on what it does best—spinning up and down game instances as

necessary.

ptg16606381

316 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

 Server Game Instance

 Before going on, it is worthwhile to disambiguate some of the overloaded meanings of the

word “server” when used in various contexts. Sometimes “server” refers to an instance of the

class in code that simulates the one true version of the game world and replicates it to clients.

Other times, it refers to the process listening for incoming connections, hosting that class

instance. Still other times, it refers to the physical piece of hardware running that process, as in

“check out all the servers I can fit on this rack.”

 To avoid confusion, this chapter uses the term server game instance or just game instance to

represent the entity that simulates the game world and replicates information to clients. The

concept is an abstraction that represents a single reality shared by a group of players playing

together. If your game supports 16-player battles, then a server game instance is a running

16-player battle. In League of Legends it is typically a 5 versus 5 game in the “Summoner’s Rift”

level. In matchmaking terms, it is a single match.

 Game Server Process

 A game instance does not exist in a void. It lives inside a game server process , which updates

it, manages its clients, interacts with the operating system, and does everything else a process

typically does. It is the embodiment of your game, as far as the operating system is concerned.

In all previous chapters, the concepts of game server process and game instance were not

separated because there was a one-to-one mapping between them. Each game server process

was responsible for maintaining only one game instance. However, in the world of dedicated

server hosting, that can change.

 In properly abstracted code, a single process can manage multiple game instances. As long as

the process updates each instance, binds a unique port for each instance, and does not share

mutable data between the instances, multiple game worlds can coexist peacefully in the same

process.

 Multiple instances per process can be an efficient way to host multiple games, because it allows

sharing of large immutable resources like collision geometry, navigation meshes, and animation

data. When multiple game instances run in their own processes, they each need copies of this

data, which can cause unnecessary memory pressure. Games employing multiple instances

per process also benefit from finer control of scheduling: By iterating through each instance

each update, they can assure a roughly regular update pattern across instances. With multiple

processes on the same host, this is not necessarily the case, as the operating system scheduler

decides which process is updated when. This is not always a problem, but finer-grained control

can be useful at times.

 The significant advantages of the multi-instance approach may seem compelling, but the

disadvantages of the tactic are just as significant. If a single instance crashes it can bring down

the entire process, with all of its contained game instances. This can be particularly nasty if an

ptg16606381

OVERVIEW AND TERMINOLOGY 317

individual instance corrupts a shared, supposedly immutable resource. Alternatively, when each

game instance runs in a dedicated process, a corrupted or crashing game instance can only

bring down itself. In addition, single game instance processes are easier to maintain and test.

Engineers developing server code commonly only need a single game instance at a time to test

and debug code. If the process supports multiple instances and engineers aren’t running them,

it leaves a large code path without regular development coverage. A good QA team with a solid

test plan can partially accommodate for this, but there is no substitution for engineers having

full coverage of production code paths during development. For these reasons, it is most

common for game server processes to contain a single game instance.

 Game Server Machine

 Just as a game instance needs to live in a game server process, a game server process needs

to live on a game server machine , and just as a single process can host multiple instances,

a single machine can host multiple processes. The choice of how many processes to run

per machine should depend on the performance requirements of your specific game. For

maximum performance, you can run a single process per machine. This ensures the machine’s

full resources, including CPU, GPU, and RAM, are dedicated to your game process. However, it

can be quite wasteful. Each machine needs an operating system and a typical OS is an immense

consumer of resources.

 Running a unique OS just for a single game process, especially one that contains only a single

game instance, can be too expensive an endeavor. Luckily operating systems are designed to

support multiple processes with features like protected memory to keep them from interfering

with each other’s immutable assets. On a modern operating system, it is extremely unlikely

that a crashing process can bring down another process on the same game server machine.

Therefore, to be cost-efficient, it is typical to run multiple game server processes per server

machine—often as many as the performance requirements will allow. Tweaking and tuning

server performance and RAM use can pay off many times over if it allows more game processes

to be hosted on the same server machine.

 Hardware

 In the cloud, a game server machine does not necessarily equate to a physical piece of

hardware. Instead, machine images represent virtual machines (VM s) which are spun up

and down at will, sometimes residing alone on a physical machine, or other times sharing

resources with multiple other virtual machines on a physical machine of 16 cores or more.

Depending on your cloud hosting provider, and your budget, you may not get to choose how

your virtual machines are hosted. At lower price points, they must often share hardware, and

are put to sleep when not used for a set amount of time. This can result in erratic performance.

At higher price points, you can often specify the exact physical hardware configurations you

desire.

ptg16606381

318 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

 WHY VIRTUAL MACHINES?

 It may seem odd to have to pack your operating system of choice and game process into

a virtual machine just to get hosted in the cloud. However, virtual machines provide an

excellent way for cloud service providers to distribute the use of their hardware across

their customer base. At Amazon, a single 16-core computer might be running four Call
of Duty VMs, each requiring 4 cores. As demand for Call of Duty wanes at a certain time

of day, Amazon might spin down two of those VMs, leaving an underutilized piece of

hardware. When a request comes in from EA to spin up an 8-core Sim City machine, it can

run that VM on the same hardware running the two Call of Duty VMs and make the most

of its resources.

 Virtual machines are also useful when dealing with hardware failure. Because virtual

machine images contain the OS and application all as a single package, providers can

recover from hardware failure very rapidly by just moving virtual machines from one

physical piece of hardware to another.

 Local Server Process Manager
 A cloud server provisioning system needs a way to start up and monitor game server processes

on game server machines. Server machines cannot simply launch the maximum number of

game server processes at boot with the expectation that they will run for the uptime of the

machine. One process could crash at any time, at which point the virtual machine would

be underutilizing its resources. Also, even the most carefully engineered games can end up

shipping with memory leaks. Sometimes ship dates are immovable and it is necessary to

deploy servers that leak a few megabytes here or there. To keep small memory leaks from

accumulating, and also to avoid the problem of resetting game state improperly, it is a good

practice to shut down and restart server processes at the end of each match when possible.

 If server processes can terminate, the virtual machine needs a way to start them back up. It

also needs a way to configure them based on what kind of game players want to start. For all

these reasons, a robust provisioning system needs a mechanism through which it can ask a

given server machine to start up a server process configured in a specific way. To build such a

system, you could hunt and peck around in the details of your operating system to see if there

is a built-in way to remotely start and monitor processes. A more cross-platform and less fragile

approach, however, is to build a local server process manager (LSPM).

 The LSPM is itself a process that assumes the responsibility of listening for remote commands,

spawning server processes as requested, and monitoring those processes to determine which

processes the given machine is currently running. Listing 8.1 demonstrates initialization, launch,

and kill routes for a simple node.js/express application to manage local server processes.

ptg16606381

LOCAL SERVER PROCESS MANAGER 319

 Listing 13.1 Initialization, Launch, and Kill

 var gProcesses = {};
 var gProcessCount = 0;
 var gProcessPath = process.env.GAME_SERVER_PROCESS_PATH;
 var gMaxProcessCount = process.env.MAX_PROCESS_COUNT;
 var gSequenceIndex = 0;

 var eMachineState =
 {
 empty: "empty",
 partial: "partial",
 full: "full",
 shuttingDown: "shuttingDown",
 };
 var gMachineState = eMachineState.empty;
 var gSequenceIndex = 0;

 router.post('/processes/', function(req, res)
 {
 if(gMachineState === eMachineState.full)
 {

res.send(
{

msg: 'Already Full',
machineState: gMachineState,
sequenceIndex: ++gSequenceIndex

});
 }
 else if(gMachineState === eMachineState.shuttingDown)
 {

res.send(
{

msg: 'Already Shutting Down',
machineState: gMachineState,
sequenceIndex: ++gSequenceIndex

});
 }
 else
 {

var processUUID = uuid.v1();
var params = req.body.params;
var child = childProcess.spawn(gProcessPath,
[

'--processUUID', processUUID,
'--lspmURL', " http://127.0.0.1 :" + gListenPort,
'--json', JSON.stringify(params)

]);
gProcesses[processUUID] =
{

ptg16606381

320 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

child: child,
params: params,
state: 'starting',
lastHeartbeat: getUTCSecondsSince1970()

};
++gProcessCount;
gMachineState = gProcessCount === gMaxProcessCount?

eMachineState.full: eMachineState.partial;
child.stdout.on('data', function (data) {

console.log('stdout: ' + data);
});
child.stderr.on('data', function (data) {

console.log('stderr: ' + data);
});
child.on('close', function (code, signal)
{

console.log('child terminated by signal '+ signal);
//were you at max process count?
var oldMachineState = gMachineState;
--gProcessCount;
gMachineState = gProcessCount > 0 ?

eMachineState.partial: eMachineState.empty;
if(oldMachineState !== gMachineState)
{

console.log("Machine state changed to " + gMachineState);
}
delete gProcesses[processUUID];

});
res.send(
{

msg: 'OK',
processUUID: processUUID,
machineState: gMachineState,
sequenceIndex: ++gSequenceIndex

});
 }
 });

 router.post('/process/:processUUID/kill', function(req, res)
 {
 var processUUID = req.params.processUUID;
 console.log("attempting to kill process: " + processUUID);
 var process = gProcesses[processUUID];
 if(process)
 {

//killing triggers the close event and removes from the process list
process.child.kill();
res.sendStatus(200);

 }

ptg16606381

LOCAL SERVER PROCESS MANAGER 321

 else
 {

res.sendStatus(404);
 }
 });

 The LSPM starts by initializing some global variables. gProcesses holds a map of all the

processes currently being managed, while gProcessCount tracks the count. gProcessPath

and gMaxProcessCount are read in from environment variables so they can be easily

configured on a machine-by-machine basis. gMachineState caches the state of the entire

machine, regarding whether it has room for more processes, is full, or is shutting down. The

variable holds values from the eMachineState object.

 The LSPM supports creation of new processes through a POST request to the /api/

processes/ endpoint. Specifically, if the LSPM is running locally and listening on port 3000,

you can use the curl web request program to launch a new process configured to host four

players with the command line:

 curl -H "Content-Type: application/json" -X POST -d '{"params":{"maxPlayers":4}}'
 http://127.0.0.1 :3000/api/processes

 When the LSPM receives this request, it first checks that it is neither shutting down nor running

the maximum number of processes allowed. If that is the case, it creates a new universally

unique identifier for the pending process, and uses the Node JS child_process module to

spawn a game server process. Through command line arguments, it passes the process both

the unique ID and any configuration parameters posted by the requester.

 Next, the LSPM stores a record of the spawned child process in its gProcesses map. The

 state variable is used to track whether the process is currently starting up, or is known to be

running. The lastHeartbeat variable tracks the last time the LSPM heard from this process,

and will come into play in the next section.

 After recording the existence of the process, the LSPM sets up some event handlers to receive

and log any output from the process. It also sets up a very important listener for the "close"

event, which removes the process from the gProcesses map and reports on any change in

 gMachineState .

 Finally, the LSPM responds to the request with the unique process ID and information regarding

how many processes are currently running. Remember that the Node event model is single

threaded, so there is no worry of a race condition changing the gProcessCount or the

 gProcesses hash map during the execution of the function.

 With a copy of the unique process ID, the requester can then query information about the

process by sending a GET request to the /processes/:processUUID endpoint (code not

ptg16606381

322 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

shown) or shutdown a process by sending a POST to the /processes/:processUUID/kill

endpoint.

 warning

 When in production, you want to restrict who can launch and kill servers through

your LSPM. One way to accomplish this is by whitelisting all IP addresses that are

allowed to send requests directly to the LSPM, and then discarding any incoming

requests not from those IP addresses. This will prevent mischievous players from

sending process launch commands directly to your LSPM. Alternatively, you can

add a security token in the request header and verify its presence before granting

any request. Either way, you need to implement some level of security or run the

risk of your provisioning system being disrupted.

 Process Monitoring

 Once the LSPM can launch a process, it needs a way to monitor them. It accomplishes this by

listening for heartbeats from the processes. These are periodic packets from the processes

indicating that they are still alive. If a set amount of time passes without the LSPM hearing from

a particular process, the LSPM assumes that the process has halted, hung, slowed down, or

broken in some unacceptable fashion, and it terminates the process. Listing 13.2 demonstrates.

 Listing 13.2 Process Monitoring

 var gMaxStartingHeartbeatAge = 20;
 var gMaxRunningHeartbeatAge = 10;
 var gHeartbeatCheckPeriod = 5000;

 router.post('/processes/:processUUID/heartbeat', function(req, res)
 {
 var processUUID = req.params.processUUID;
 console.log("heartbeat received for: " + processUUID);
 var process = gProcesses[processUUID];
 if(process)
 {

process.lastHeartbeat = getUTCSecondsSince1970();
process.state = 'running';
res.sendStatus(200);

 }
 else
 {

res.sendStatus(404);
 }
 });

ptg16606381

LOCAL SERVER PROCESS MANAGER 323

 function checkHeartbeats()
 {
 console.log("Checking for heartbeats...");
 var processesToKill = [], processUUID;
 var process, heartbeatAge;
 var time = getUTCSecondsSince1970();
 for(processUUID in gProcesses)
 {

process = gProcesses[processUUID];
heartbeatAge = time - process.lastHeartbeat;
if(heartbeatAge > gMaxStartingHeartbeatAge ||

(heartbeatAge > gMaxRunningHeartbeatAge
&& process.state !== 'starting'))

{
console.log("Process " + processUUID + " timeout!");
processesToKill.push(process.child);

}
 }
 processesToKill.forEach(function(toKill)
 {

toKill.kill();
 });
 }

 setInterval(checkHeartbeats, gHeartbeatCheckPeriod);

 Sending a POST to the /processes/:processUUID/heartbeat endpoint registers a

heartbeat for the given process ID. When a heartbeat comes in, the LSPM checks the current

timestamp and updates the last received heartbeat time of the appropriate process. Once a

process sends its first heartbeat, the LSPM changes its state from starting to running to

mark that it has proof that the game process has started.

 The checkHeartbeat function loops through all processes owned by the LSPM and checks

to make sure it has received a recent enough heartbeat. If a process is still in the starting

state, it may have a slow initialization process to complete, so the function allows it a little

extra time to register its first heartbeat. After that, if the latest heartbeat for a process is not

within gMaxRunningHeartbeat seconds of the current time, it means something terrible

happened to the server process. To deal with this, the LSPM attempts to manually kill the child

process, in case it is not dead yet. When the process dies, the close event registered earlier

removes it from the list of processes. The LSPM calls the checkHeartbeat function every

 gHeartbeatCheckPeriod ms by means of the setInterval call at the bottom of the script.

 To send a heartbeat to the LSPM, each process needs to make a POST request to its LSPM

heartbeat endpoint at least once every gHeartbeatCheckPeriod seconds. To send a REST

request from a C++ program, you can build the http request as a string and then send it to

the appropriate LSPM’s port using the TCPSocket class described in Chapter 3 . For example,

ptg16606381

324 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

if the LSPM, listening on port 3000, launched a process with the -processUUID command

line parameter 49b74f902d9711e5-8de0f3f32180aa49 , then the process can register

heartbeats by sending the following string via TCP to port 3000:

 POST /api/processes/49b74f902d9711e5-8de0f3f32180aa49/heartbeat HTTP/1.1\r\n\r\n

 Notice the two end line sequences in a row used to denote the end of the http request.

For more on the textual format of HTTP requests, see the “Additional Readings” section.

Alternatively, for a more turn-key solution, you can integrate a third-party C++ REST library like

Microsoft’s open-source, cross-platform C++ REST SDK library. Listing 13.3 demonstrates how to

send a heartbeat using the C++ REST SDK.

 Listing 13.3 Sending a Heartbeat with the C++ REST SDK

 void sendHeartbeat(const std::string& inURL,const std::string& inProcessUUID)
 {
 http_client client(U(inURL.c_str()));
 uri_builder builder(U("/api/processes/" + inProcessUUID + "/heartbeat"));
 client.request(methods::POST, builder.to_string());
 }

 To check on the results of the heartbeat, you can append continuation tasks to the task

returned by the request invocation. The C++ REST SDK offers a rich library that provides not

only asynchronous, task-based HTTP request functionality, but also server functionality, JSON

parsing, WebSocket support, and more. For more on the C++ REST SDK and what it can do, refer

to the resources listed in the “Additional Readings” section.

 note

 REST requests are not the only way to send heartbeats to an LSPM. If you prefer,

the LSPM can open a TCP or even UDP port directly in Node, and the server process

can send very small heartbeat packets without the overhead of HTTP. Or, the game

can just write heartbeat data to its log file and the LSPM can monitor that. However,

given that your game will probably end up needing a REST API to talk to one or

more other services, and the ease of debugging REST data, and the fact that the

LSPM is already listening for incoming REST requests, it reduces complexity to just

send heartbeats via REST.

 Virtual Machine Manager
 By facilitating remote startup and monitoring of an arbitrary number of processes on a virtual

machine, the LSPM solves a significant portion of the cloud hosting problem. However, it does

nothing to actually provision the machines themselves. To do this, you need a virtual machine

ptg16606381

VIRTUAL MACHINE MANAGER 325

manager (VMM). The VMM is responsible for tracking all the LSPMs, requesting LSPMs to

spawn game processes when necessary, and spinning up and down entire virtual machines,

with their associated LSPMs.

 To provision a new virtual machine with a cloud provider, the VMM must identify what software

to run on the machine. It does this by specifying a virtual machine image (VMI). The VMI

represents the contents of the disk drive that the VM should boot. It contains the OS, the

process executables, and any initialization scripts to run at boot. Each cloud host provider has a

slightly different VMI format they prefer, and usually custom tools to create the VMs. To prepare

for VM provisioning, you must create a VMI with your chosen OS, your compiled game server

executable and data, your LSPM, and any necessary assets.

 note

 Although each cloud provider has their own VMI format, many may soon be

standardizing on the Docker Container format. For more on the Docker standard,

see the “Additional Readings” section.

 Asking a cloud hosting provider to spin up a VM from a VMI comes down to the details of

the provider. Providers typically have a REST API for this purpose, with wrappers in common

backend languages like JavaScript and Java. Because you may need to switch cloud host

providers, or use multiple ones in multiple regions, it is a good idea to cleanly abstract the

details of the provider API from your VMM code.

 In addition to simply spinning up VMs when necessary, a VMM must be able to request

new processes from the LSPM on each VM. It must also ask the cloud provider to shut down

and deprovision any VMs no longer in use. Finally, it must monitor the health of all the VMs

it manages to make sure none leak in case of error. Although Node is single threaded, the

asynchronous interactions between requester, VMM, and LSPM present ample opportunity for

a variety of race conditions. In addition, even though TCP is reliable, each REST request is on its

own connection, which means communications can arrive out of order. Listing 13.4 shows the

initialization and data structure of the VMM.

 Listing 13.4 Initialization and Data Structures

 var eMachineState =
 {
 empty: "empty",
 partial: "partial",
 full: "full",
 pending: "pending",
 shuttingDown: "shuttingDown",
 recentLaunchUnknown: "recentLaunchUnknown"
 };

ptg16606381

326 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

 var gVMs = {};
 var gAvailableVMs = {};

 function getFirstAvailableVM()
 {
 for(var vmuuid in gAvailableVMs)
 {

return gAvailableVMs[vmuuid];
 }
 return null;
 }

 function updateVMState(vm, newState)
 {
 if(vm.machineState !== newState)
 {

if(vm.machineState === eMachineState.partial)
{

delete gAvailableVMs[vm.uuid];
}
vm.machineState = newState;
if(newState === eMachineState.partial)
{

gAvailableVMs[vm.uuid] = vm;
}

 }
 }

 The core data of the VMM lives in two hash maps. The gVMs hash map contains all currently active

VMs managed by the VMM. The gAvailableVMs map is the subset of VMs which are available

for spawning a new process. That is, they are not shutting down, starting up, currently spawning a

process, or already at max process count. Each VM object needs the following members:

■ machineState. Representing the current state of the VM, this holds one of the members

of the eMachineStates object. These states are a superset of the eMachineStates the

LSPM uses, containing a few more states that are only relevant to the VMM.

■ uuid . This is the VMM-assigned unique identifier for the VM. When spawning the VM, the

VMM passes the uuid to the LSPM so that the LSPM can tag any updates it sends the VMM.

■ url. The url stores the IP address and port of the LSPM on the VM. The IP and possibly the

port are assigned by the cloud service provider whenever a VM is provisioned. The VMM

must store it so it can communicate with the LSPM on the VM.

■ lastHeartbeat. Similar to how the LSPM listens for process heartbeats, the VMM listens

for LSPM heartbeats. This stores the time the last heartbeat was received.

■ lastSequenceIndex. Because each REST request can come in on its own TCP connection,

it’s possible for them to arrive out of their original order. To make sure the VMM ignores

ptg16606381

VIRTUAL MACHINE MANAGER 327

any stale updates from an LSPM, the LSPM tags each piece of communication with an

increasing sequence index, and the VMM ignores any incoming data with a sequence index

less than the lastSequenceIndex .

■ cloudProviderId. This stores the VMs identity as far as the cloud service provider is

concerned. The VMM uses this when asking the provider to deprovision the VM.

 When it’s time to spawn a new VM, the getFirstAvailableVM function finds the first VM

in the gAvailableVMs map and returns it. The updateVMState function is responsible

for transitioning VMs into and out of the gAvailableVMs map as their state changes. For

consistency, the VMM should only change the state of a VM via the updateVMState

function. With the necessary data structures in place, Listing 13.5 shows the REST endpoint

handler that actually spawns a process. It provisions a VM first if necessary.

 Listing 13.5 Spawning a Process and Provisioning a VM

 router.post('/processes/', function(req, res)
 {
 var params = req.body.params;
 var vm = getFirstAvailableVM();
 async.series(
 [

function(callback)
{

if(!vm) //spin up if necessary
{

var vmUUID = uuid.v1();
askCloudProviderForVM(vmUUID,

function(err, cloudProviderResponse)
{

if(err) {callback(err);}
else
{

vm =
{

lastSequenceIndex: 0,
machineState: eMachineState.pending,
uuid: vmUUID,
url: cloudProviderResponse.url,
cloudProviderId: cloudProviderResponse.id,
lastHeartbeat: getUTCSecondsSince1970()

};
gVMs[vm.uuid] = vm;
callback(null);

}
});

}

ptg16606381

328 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

else
{

updateVMState(vm, eMachineState.pending);
callback(null);

}
},
//vm is valid and in the pending state so no other can touch it
function(callback)
{

var options =
{

url: vm.url + "/api/processes/",
method: 'POST',
json: {params: params}

};

request(options, function(error, response, body)
{

if(!error && response.statusCode === 200)
{

if(body.sequenceIndex > vm.lastSequenceIndex)
{

vm.lastSequenceIndex = body.sequenceIndex;
if(body.msg === 'OK')
{

updateVMState(vm, body.machineState);
callback(null);

}
else
{

callback(body.msg); //failure- probably full
}

}
else
{

callback("seq# out of order: can't trust state");
}

}
else
{

callback("error from lspm: " + error);
}

});
}

],
 function(err)
 {

if(err)
{

ptg16606381

VIRTUAL MACHINE MANAGER 329

//if vm is set, make sure it's not stuck in the pending state
if(vm)
{

updateVMState(vm, eMachineState.recentLaunchUnknown);
}
res.send({msg: "Error starting server process: " + err});

}
else
{

res.send({msg: 'OK'});
}

 });
 });

 note

 This endpoint handler makes use of the async.series function, which is a utility

in the popular async JavaScript library. It takes an array of functions, and a final

completion function as parameters. It calls each of the functions in the array in

order, waiting until they call their respective callback function to proceed. When

the series is done, async.series calls the completion function. If any one of the

functions in the array passes an error to its callback function, series immediately

passes the error to the completion function and aborts the calling of any more

functions in the array. async contains many other useful high-order asynchronous

constructs and is one of the most depended upon packages in the Node

community.

 The handler also makes use of the request library for making REST requests to the

LSPM. request is a full featured HTTP client library, similar in power and functionality

to the curl command line utility. Like async, it is also a top library in the Node

community and one worth learning. More information on both the async and

request libraries can be found in the “Additional Readings” section.

 Posting game parameters to the /processes/ endpoint of the VMM triggers the launch of a

game process with those parameters. The handler has two main sections: the VM procurement

and then the process spawn. First, the handler checks the gAvailableVMs map to see if

there is a VM available to spawn a process. If there is not, it creates a unique ID for a new VM

and asks the cloud provider to provision it. The function askCloudProviderForVM is highly

dependent on the specific cloud provider used, and so is not listed here. It should call the cloud

provider’s API for provisioning a VM, use the image that contains the game and the LSPM, and

then start the LSPM, passing the VM identifier as a parameter.

 Whether the VM is started up fresh, or already available, the handler sets its state to pending .

This makes sure that the VMM will not try to start up another process on it while there is one

ptg16606381

330 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

currently starting up. The single-threaded nature of Node prevents traditional race conditions,

but because the endpoint handler uses asynchronous callbacks, it is possible another process-

launch request might arrive before the current one is fulfilled. In that case, it is necessary for the

request to be handled by a different VM to avoid overlapping state updates. To facilitate this,

the change to pending state removes the VM from the gAvailableVMs map.

 With the VM in pending state, the handler sends a REST request to the VM’s LSPM to launch

a game process. If the launch succeeds, the handler sets the VM state to the new state

returned by the LSPM—it should be either partial or full , depending on how many

game processes the VM is currently hosting. If there is a bad or missing response from the

LSPM, the VMM cannot know the resultant state of the VM. It is possible that the process did

not launch before the error was returned, or that the process did launch and the response

was lost somewhere in the network. Even though TCP is reliable, HTTP clients and servers

have timeouts. Loose network cables, persistent traffic spikes, or bad Wi-Fi signals can cause

communication to time out. In the case of indeterminate error, the handler sets the VM’s state

to recentLaunchUnknown . This removes the server from the pending state so that the

heartbeat monitoring system, explained later, can either restore the VM to a known state or kill

it. It also keeps the VM out of the gAvailableVMs map, because its availability is unknown.

 If all goes well, the handler finally responds to the original request with the message “OK,”

meaning the new game process on a remote VM has launched.

 Virtual Machine Monitoring

 Because an LSPM can hang or crash at any time, the VMM needs to monitor each LSPM for

heartbeats. To ensure that the VMM’s perception of the LSPM state remains accurate, the LSPM

can send state updates with each heartbeat, tagged with an increasing sequenceIndex to

help the VMM ignore out-of-order heartbeats. When a heartbeat indicates that an LSPM is

running no processes, the VMM initiates a shutdown handshake with the LSPM. The handshake

prevents race conditions that might cause the LSPM to launch a process while the VMM is trying

to shut it down. Due to both the shutdown handshake and the state included in the heartbeat,

the system is somewhat more complicated than the one the LSPM uses to monitor processes.

Listing 13.6 demonstrates the VMM heartbeat monitoring system.

 Listing 13.6 VMM Heartbeat Monitoring

 router.post('/vms/:vmUUID/heartbeat', function(req, res)
 {
 var vmUUID = req.params.vmUUID;
 var sequenceIndex = req.body.sequenceIndex;
 var newState = req.body.machineState;
 var vm = gVMs[vmUUID];
 if(vm)
 {

ptg16606381

VIRTUAL MACHINE MANAGER 331

var oldState = vm.machineState;
res.sendStatus(200); //send status now so lspm can close connection
if(oldState !== eMachineState.pending &&

oldState !== eMachineState.shuttingDown &&
sequenceIndex > vm.lastSequenceIndex)

{
vm.lastHeartbeat = getUTCSecondsSince1970();
vm.lastSequenceIndex = sequenceIndex;
if(newState === eMachineState.empty)
{

var options = {url: vm.url + "/api/shutdown", method: 'POST'};
request(options, function(error, response, body)
{

body = JSON.parse(body);
if(!error && response.statusCode === 200)
{

updateVMState(vm, body.machineState);
//does lspm still think it's okay to shut down?
if(body.machineState === eMachineState.shuttingDown)
{

shutdownVM(vm);
}

}
});

}
else
{

updateVMState(vm, newState);
}

}
 }
 else
 {

res.sendStatus(404);
 }
 });

 function shutdownVM(vm)
 {
 updateVMState(vm, eMachineState.shuttingDown);
 askCloudProviderToKillVM(vm.cloudProviderId, function(err)
 {

if(err)
{

console.log("Error closing vm " + vm.uuid);
//we'll try again when heartbeat is missed

}
else
{

ptg16606381

332 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

delete gVMs[vm.uuid]; //success...delete from everywhere
delete gAvailableVMs[vm.uuid];

}
 });
 }
 function checkHeartbeats()
 {
 var vmsToKill = [], vmUUID, vm, heartbeatAge;
 var time = getUTCSecondsSince1970();
 for(vmUUID in gVMs)
 {

vm = gVMs[vmUUID];
heartbeatAge = time - vm.lastHeartbeat;
if(heartbeatAge > gMaxRunningHeartbeatAge &&

vm.machineState !== eMachineState.pending)
{

vmsToKill.push(vm);
}

 }
 vmsToKill.forEach(shutdownVM);
 }
 setInterval(checkHeartbeats, gHeartbeatCheckPeriodMS);

 The heartbeat endpoint handler ignores heartbeats for VMs that are in the pending or

 shuttingDown states. Pending VMs change state as soon as their launch request is answered,

so any other state change during that time needs to be handled after the launch completes.

VMs in the shuttingDown state are shutting down already so do not require monitoring

updates. The handler also ignores heartbeats with out-of-order sequence indices. If a heartbeat

is worth considering, the handler updates the lastSequenceIndex and lastHeartbeat

properties of the VM. Then, if the state is empty , indicating there are no game processes

running on the VM, the handler begins the shutdown process by sending a shutdown request

to the LSPM. The LSPM’s shutdown handler checks its own gMachineState to make sure that

it hasn’t changed since the empty heartbeat went out. If it did not, it changes its own state

to shuttingDown and responds to the VMM that it has accepted the request to shut down.

The VMM then marks the VM as shuttingDown and asks the cloud provider to completely

deprovision the VM.

 The VMM checkHeartbeats function works like the LSPM function, but it ignores any

timeouts for servers in the pending state. If a VM does time out, it means there is something

wrong with the LSPM, so the VMM does not bother with the shutdown handshake. It instead

immediately requests deprovisioning from the cloud service provider.

 When the LSPM experiences a change in state due to a process shutting down, it does not need

to wait for the predetermined heartbeat interval to notify the VMM. Instead, it can just send an

extra heartbeat right away in response to the change. This is a simple way to give immediate

feedback to the VMM and requires no extra functionality on the VMM’s part.

ptg16606381

SUMMARY 333

 This VMM implementation is functionally correct, prevents errors from race conditions, and

is reasonably efficient. If many requests come in at once during the time it takes to provision

a VM, though, it will end up provisioning one VM for each request. If the traffic is consistent

this won’t be a problem, but in the case of an anomalous spike, this may end up spawning a

wasteful number of VMs. A better implementation could detect this situation and throttle the

VM provisioning requests. Similarly, the VMM is possibly inefficiently aggressive in its shutting

down of empty VMs. Depending on the rate at which games are requested and exited, it might

be beneficial to keep empty VMs alive for a certain duration before deprovisioning them. A

more robust VMM would have a tweakable threshold for this. Improvement of the VMM is left

as an exercise.

 tip

 If a VMM needs to handle hundreds of requests per second, it may need a dynamic

load balancer in front of it, and several Node instances to bear the brunt of the

requests. In this case, the statuses of the VMs in the gVMs array need to be shared

between instances, so instead of living in a single process’ local memory, they

should live in a rapid access shared data store such as redis . For more on redis, see

the “Additional Readings” section. Alternatively, if requests are this frequent, it may

be better to shard players geographically, with a statically dedicated VMM for each

region.

 Summary
 With the increased prevalence of cloud service providers, every studio building a multiplayer

game should consider hosting dedicated servers in the cloud. Even though it is easier than

ever before, hosting dedicated servers still costs more than having the players host the servers,

and increases complexity as well. It also introduces a dependency on third-party cloud service

providers and removes feelings of ownership from your players. The advantages of hosting

dedicated servers often outweigh the drawbacks though. Hosted servers provide reliability,

availability, high bandwidth, cheat prevention, and unobtrusive copy protection.

 Hosting dedicated servers requires building a few backend utilities. The tools of backend

development differ significantly from those of client-side game development. REST APIs

provide a text-based, discoverable, and easily debuggable interface between services. JSON

provides a clean and compact format for data exchange. Node JS provides an optimized, event-

loop driven, JavaScript engine for rapid development.

 There are several moving parts in a dedicated server infrastructure. The server game instance

represents an instance of the game shared between players. There may be one or more

game instances in a game server process, which represents the game to the OS. One or more

ptg16606381

334 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

game server processes may run on a game server machine. Typically game server machines

are actually virtual machines, running with zero or more other virtual machines on the same

physical machine.

 To manage all of these parts, there is a local server process manager and a virtual machine

manager. There is one LSPM per virtual machine, and it is responsible for spawning and

monitoring processes on that machine, as well as reporting on its own health to the VMM. The

VMM itself is the main entry point for process launch. When a matchmaking service decides

that it needs a new game server launched, it sends a REST request to a VMM endpoint. The

handler for that endpoint then either finds an underutilized VM or requests the cloud service

provider provision a new one. With a VM identified, it requests the VM’s LSPM launch the new

game server process.

 All these pieces work in concert to provide a robust, dedicated server environment, capable of

supporting a vast and scalable number of players with no upfront hardware cost.

 Review Questions
1. What are the advantages and disadvantages of hosting dedicated servers? Why was

hosting dedicated servers much harder in the past?

2. What are the pros and cons of supporting multiple game instances per game server process?

3. What is a virtual machine? Why does cloud hosting typically involve virtual machines?

4. What main functions does a local server process manager provide?

5. List multiple ways a server game process can provide feedback to a local server process

manager.

6. What is a virtual machine manager and what purpose does it serve?

7. Explain how the VMM might sometimes provision more VMs than it needs. Implement an

improvement.

8. Explain how the VMM might sometimes deprovision VMs sooner than it should. Implement

an improvement.

 Additional Readings
 C++ REST SDK—Home . Retrieved from https://casablanca.codeplex.com . Accessed September

12, 2015.

 Caolan/async . Retrieved from https://github.com/caolan/async . Accessed September 12, 2015.

 Docker—Build, Ship, and Run Any App, Anywhere . Retrieved from https://www.docker.com .

Accessed September 12, 2015.

https://casablanca.codeplex.com
https://github.com/caolan/async
https://www.docker.com

ptg16606381

ADDITIONAL READINGS 335

 Express—Node.js web application framework . Retrieved from http://expressjs.com . Accessed

September 12, 2015.

 Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. (1999, June).

 Hypertext Transfer Protocol—HTTP/1.1 . Retrieved from http://www.w3.org/Protocols/rfc2616/

rfc2616.html . Accessed September 12, 2015.

 Introducing JSON . Retrieved from http://json.org . Accessed September 12, 2015.

 Node.js . Retrieved from https://nodejs.org . Accessed September 12, 2015.

 Redis. Retrieved from http://redis.io/documentation . Accessed September 12, 2015.

 Request/request . Retrieved from https://github.com/request/request . Accessed September 12,

2015.

 Rest . Retrieved from http://www.w3.org/2001/sw/wiki/REST . Accessed September 12, 2015.

http://expressjs.com
http://json.org
https://nodejs.org
http://redis.io/documentation
https://github.com/request/request
http://www.w3.org/2001/sw/wiki/REST
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

ptg16606381

This page intentionally left blank

ptg16606381

A P P E N D I X A

A MODERN C++ PRIMER

 C++ is the video game industry standard

programming language. While many game

companies might use higher-level languages for

gameplay logic, lower-level code such as networking

logic is almost exclusively written in C++. The code

throughout this book uses concepts relatively new

to the C++ language, and this appendix covers these

concepts.

ptg16606381

338 APPENDIX A A MODERN C++ PRIMER

 C++11
 Ratified in 2011, C++11 introduced many changes to C++ standard. Several major features were

added in C++11, including both fundamental language constructs (such as lambda expressions)

and new libraries (such as one for threading). Although a large number of concepts were added

to C++11 this book only uses a handful of them. That being said, it is a worthwhile exercise

to peruse additional references to get a sense of all of the additions that were made to the

language. This section covers some general C++11 concepts that did not really fit in the other

sections of this appendix.

 One caveat is that since the C++11 standard is still relatively new, not all compilers are fully

C++11-compliant. However, all the C++11 concepts used in this book work in three of the most

popular compilers in use today: Microsoft Visual Studio, Clang, and GCC.

 It should also be noted that there is a newer version of the C++ standard called C++14. However,

C++14 is more of an incremental update, so there are not nearly as many language additions as

in C++11. The next major revision to the standard is slated for release in 2017.

 auto
 While the auto keyword existed in previous versions of C++, in C++11 it takes on a new

meaning. Specifically, this keyword is used in place of a type, and instructs the compiler to

deduce the type at compile time. Since the type is deduced at compile time, this means that

there is no runtime cost for using auto— but it certainly allows for more succinct code to be

written.

 For example, one headache in old C++ is declaring an iterator (if you are fuzzy on the concept

iterators, you can read about them later in this appendix):

 //Declare a vector of ints
 std::vector<int> myVect;
 //Declare an iterator referring to begin
 std::vector<int>::iterator iter = myVect.begin();

 However, in C++11 you can replace the complicated type for the iterator with auto :

 //Declare a vector of ints
 std::vector<int> myVect;
 //Declare an iterator referring to begin (using auto)
 auto iter = myVect.begin();

 Since the return type of myVect.begin () is known at compile time, it is possible for the

compiler to deduce the appropriate type for iter . The auto keyword can even be used for

basic types such as integers or floats, but the value in these cases is rather questionable. One

caveat to keep in mind is that auto does not default to a reference nor is it const— if these

properties are desired, auto& , const auto , or even const auto& can be specified.

ptg16606381

REFERENCES 339

 nullptr
 Prior to C++11, the way a pointer was set to null was either with the number 0 or the macro

 NULL (which is just a #define for the number 0). However, one major issue with this approach

is that 0 is first and foremost treated as an integer. This can be a problem in the case of function

overloading. For example, suppose the following two functions were defined:

 void myFunc(int* ptr)
 {
 //Do stuff
 //...
 }
 void myFunc(int a)
 {
 //Do stuff
 //...
 }

 An issue comes up if myFunc is called with NULL passed as the parameter. Although one might

expect that the first version would be called, this is not the case. That’s because NULL is 0, and 0

is treated as an integer. If, on the other hand, nullptr is passed as the parameter, it will call the

first version, as nullptr is treated as a pointer.

 Although this example is a bit contrived, the point holds that nullptr is strongly typed as a

pointer, whereas NULL or 0 is not. There’s a further benefit that nullptr can be easily searched

for in a file without any false positives, whereas 0 may appear in many cases where there is not

a pointer in use.

 References
 A reference is a variable type that refers to another variable. This means that modifying the

reference will modify the original variable. The most basic usage case of references is when

writing a function that modifies function parameters. For example, the following function

would swap the two parameters a and b :

 void swap(int& a, int& b)
 {
 int temp = a;
 a = b;
 b = temp;
 }

 Thus if the swap function is called on two integer variables, upon completion of the function,

these two variables would have their values swapped. This is because a and b are references to

the original variables. Were the swap function written in C, we would have to use pointers instead

of references. Internally, a reference is in fact implemented as a pointer—however, the semantics

ptg16606381

340 APPENDIX A A MODERN C++ PRIMER

of using a reference are simpler because dereferences are implicit. References are also generally

safer to use as function parameters, because it can be assumed that a reference will never be null

(though it is technically possible to write malformed code where a reference is null).

 Const References

 Modifying parameters is only the tip of the iceberg when it comes to references. For nonbasic

types (such as classes and structs), passing by reference is almost always going to be more

efficient than passing by value. This is because passing by value necessitates creating a copy

of the variable—in the case of nonbasic type such as a vector or a string, creating the copy

requires a dynamic allocation which adds a huge amount of overhead.

 Of course, if the vector or string were just passed into a function by reference, this would mean

that the function would be free to modify the original variable. What about the cases where this

should be disallowed, such as when the variable is data encapsulated in a class? The solution

to this is what’s called a const reference . A const reference is still passed by reference, but it

can only be accessed—no modification is allowed. This is the best of both worlds—a copy is

avoided and the function can’t modify the data. The following print function is one example

of passing a parameter by const reference:

 void print(const std::string& toPrint)
 {
 std::cout << toPrint << std::endl;
 }

 In general, for nonbasic types it is a good idea to pass them into functions by const reference, unless

the function intends to modify the original variable, in which case a normal reference should be

used. However, for basic types (such as integers and floats) it generally is slower to use references as

opposed to making a copy. Thus, for basic types it’s preferred to pass by value, unless the function

intends to modify the original variable, in which case a non-const reference should be used.

 Const Member Functions

 Member functions and parameters should follow the same rules as standalone functions.

So nonbasic types should generally be passed by const reference and basic types should

generally be passed by value. It gets a little bit trickier for the return type of so-called getter

functions—functions that return encapsulated data. Generally, such functions should return

const references to the member data—this is to prevent the caller from violating encapsulation

and modifying the data.

 However, once const references are being used with classes, it is very important that any

member functions that do not modify member data are designated as const member functions.

A const member function guarantees that the member function in question does not modify

internal class data (and it is strictly enforced). This is important because given a const reference

ptg16606381

TEMPLATES 341

to an object, only const member functions can be called on said object. If you attempt to call a

non-const function on a const reference, it causes a compile error.

 To designate a member function as const, the const keyword appears in the declaration,

after the closing parenthesis for the function’s parameters. The following Student class

demonstrates proper usage of references as well as const member functions. Using const

appropriately in this manner is often referred to as const-correctness .

 class Student
 private:
 std::string mName;
 int mAge;
 public:
 Student(const std::string& name, int age)

 : mName(name)
 , mAge(age)

 { }

 const std::string& getName() const {return mName;}
 void setName(const std::string& name) {mName = name;}

 int getAge() const {return mAge;}
 void setAge(int age) {mAge = age;}
 };

 Templates
 A template is a way to declare a function or class such that it can generically apply to any type.

For example, this templated max function would support any type that supports the greater

than operator:

 template <typename T>
 T max(const T& a, const T& b)
 {
 return ((a > b) ? a : b);
 }

 When the compiler sees a call to max , it instantiates a version of the template for the type in

question. So if there are two calls to max— one with integers and one with floats—the compiler

would create two corresponding versions of max . This means that the executable size and

execution performance will be identical to code where two versions of max were manually

declared.

 An approach similar to this can be applied to classes and/or structs, and it is used extensively in

STL (covered later in this appendix). However, as with references there are quite a few additional

possible uses of templates.

ptg16606381

342 APPENDIX A A MODERN C++ PRIMER

 Template Specialization

 Suppose there is a templated function called copyToBuffer that takes in two parameters: a

pointer to the buffer to write to, and the (templated) variable that should be written. One way

to write this function might be:

 template <typename T>
 void copyToBuffer(char* buffer, const T& value)
 {
 std::memcpy(buffer, &value, sizeof(T));
 }

 However, there is a fundamental problem with this function. While it’ll work perfectly fine

for basic types, nonbasic types such as string will not function properly. This is because the

function will perform a shallow copy as opposed to a deep copy of the underlying data. To

solve this issue, a specialized version of copyToBuffer can be created that performs the deep

copy for strings:

 template <>
 void copyToBuffer<std::string>(char* buffer, const std::string& value)
 {
 std::memcpy(buffer, value.c_str(), value.length());
 }

 Then, when copyToBuffer is invoked in code, if the type of value is a string it will choose

the specialized version. This sort of specialization can also be applied to a template that takes in

multiple template parameters—in which case it is possible to specialize on any number of the

template parameters.

 Static Assertions and Type Traits

 Runtime assertions are very useful for validation of values. In games, assertions are often

preferred over exceptions both because there is less overhead and the assertions can be easily

removed for an optimized release build.

 A static assertion is a type of assertion that is performed at compile time. Since this

assertion is during compilation, the Boolean expression to be validated must also be known

at compilation. Here’s a very simple example of a function which will not compile due to the

static assertion:

 void test()
 {
 static_assert(false, "Doesn't compile!");
 }

 Of course, a static assert with a false condition doesn’t really accomplish much other than halt

compilation. An actual usage case is combining static assertions with the C++11 type_traits

ptg16606381

SMART POINTERS 343

header in order to disallow templated functions on certain types. Returning to the earlier

 copyToBuffer example, it would be preferable if the generic version of the function only

worked on basic types. This could be accomplished with a static assertion, like so:

 template <typename T>
 void copyToBuffer(char* buffer, const T& value)
 {
 static_assert(std::is_fundamental<T>::value,

"copyToBuffer requires specialization for non-basic types.");
 std::memcpy(buffer, &value, sizeof(T));
 }

 The is_fundamental value will only be true in the case where T is a basic type. This means that

any calls to the generic version of copyToBuffer will not compile if T is nonbasic. Where this

gets interesting is when specializations are thrown into the mix—if the type in question has a

template specialization associated with it, then the generic version is ignored, thus skipping the

static assertion. This means that if the string version of copyToBuffer were still written as in that

earlier example, calls to the function with a string as the second parameter would work just fine.

 Smart Pointers
 A pointer is a type of variable that stores a memory address, and is a fundamental construct

used by C/C++ programmers. However, there are a few common issues that can crop up when

using pointers incorrectly. One such issue is a memory leak—when memory is dynamically

allocated on the heap, but never deleted. For example, the following class leaks memory:

 class Texture
 {
 private:
 struct ImageData
 {

//...
 };
 ImageData* mData;
 public:
 Texture(const char* filename)
 {

mData = new ImageData;
//Load ImageData from the file
//...

 }
 };

 Notice how there is memory dynamically allocated in the constructor of the class, but that

memory is not deleted in the destructor. To fix this memory leak, we need to add a destructor

that deletes mData . The corrected version of Texture follows:

ptg16606381

344 APPENDIX A A MODERN C++ PRIMER

 class Texture
 {
 private:
 struct ImageData
 {

//...
 };
 ImageData* mData;
 public:
 Texture(const char* fileName)
 {

mData = new ImageData;
//Load ImageData from the file
//...

 }
 ~Texture()
 {

delete mData; //Fix memory leak
 }
 };

 A second, more insidious, issue can crop up when multiple objects have pointers to the same

variable that was dynamically allocated. For example, suppose there is the following Button

class (that uses the previously declared Texture class):

 class Button
 {
 private:
 Texture* mTexture;
 public:
 Button(Texture* texture)

: mTexture(texture)
 {}
 ~Button()
 {

delete mTexture;
 }
 };

 The idea is that each Button should display a Texture , and the Texture must have been

dynamically allocated beforehand. However, what happens if two instances of Button are

created, both pointing to the same Texture ? As long as both buttons are active, everything

will work fine. But once the first Button instance is destructed, the Texture will no longer

be valid. But the second Button instance would still have a pointer to that newly deleted

 Texture , which in the best case causes some graphical corruption, and in the worst case

causes the program to crash. This issue is not easily solvable with normal pointers.

ptg16606381

SMART POINTERS 345

 Smart pointers are a way to solve both of these issues, and as of C++11 they are now part of the

standard library (in the memory header file).

 Shared Pointers

 A shared pointer is a type of smart pointer that allows for multiple pointers to the same

dynamically allocated variable. Behind the scenes, a shared pointer tracks the number of

pointers to the underlying variable, which is a process called reference counting . The

underlying variable is only deleted once the reference count hits zero. In this way, a shared

pointer can ensure that a variable that’s still being pointed at is not deleted prematurely.

 To construct a shared pointer, it is preferred to use the make_shared templated function.

Here’s a simple example of using shared pointers:

 {
 //Construct a shared pointer to an int
 //Initialize underlying variable to 50
 //Reference count is 1
 std::shared_ptr<int> p1 = std::make_shared<int>(50);
 {

//Make a new shared pointer that's set to the
//same underlying variable.
//Reference count is now 2
std::shared_ptr<int> p2 = p1;

//Dereference a shared_ptr just like a regular one
*p2 = 100;
std::cout << *p2 << std::endl;

 } //p2 destructed, reference count now 1
 } //p1 destructed, reference count 0, so underlying variable is deleted

 Note that both the shared_ptr itself and the make_shared function are templated by

the type of the underlying dynamically allocated variable. The make_shared function

automatically performs the actual dynamic allocation—notice how there are no direct calls

to either new or delete in this code. It is possible to directly pass a memory address into

the constructor of a shared_ptr , but this approach is not recommended unless absolutely

necessary, as it is less efficient and more error-prone than using make_shared .

 If you want to pass a shared pointer as a parameter to a function, it should always be passed by

value, as if it were a basic type. This is contrary to the usual rules of passing by reference, but it

is the only way to ensure the reference count of the shared pointer is correct.

 Putting this all together, it means that the Button class from earlier in this section could be

rewritten to instead use a shared_ptr to a Texture , as shown in the following code. In this

way, the underlying Texture data is guaranteed to never be deleted as long as there are active

shared pointers to that Texture .

ptg16606381

346 APPENDIX A A MODERN C++ PRIMER

 class Button
 {
 private:
 std::shared_ptr<Texture> mTexture;
 public:
 Button(std::shared_ptr<Texture> texture)

: mTexture(texture)
 {}
 //No destructor needed, b/c smart pointer!
 };

 There’s another related feature of shared_ptr that bears mentioning. If a class needs to get

a shared_ptr to itself, it should not manually construct a new shared_ptr from the this

pointer, as this would not take into account any existing references. Instead, there is a template

class you can inherit from called enable_shared_from_this . For example, if Texture

needs to be able to get a shared_ptr to itself, it could inherit from enable_shared_from_

this as follows:

 class Texture: public std::enable_shared_from_this<Texture>
 {
 //Implementation
 //...
 };

 Then, inside any of Texture ’s member functions, you can call the shared_from_this

member function, which will return a shared_ptr with the correct reference count.

 There also are templated functions that can be used to cast between shared pointers to

different classes in a hierarchy: static_pointer_cast and dynamic_pointer_cast .

 Unique Pointer

 A unique pointer is similar to a shared pointer, except it guarantees that only one pointer

can ever point to the underlying variable. If you try to assign one unique pointer to another, it

results in an error. This means that unique pointers don’t need to track a reference count—they

simply automatically delete the underlying variable when the unique pointer is destructed.

 For unique pointers, use unique_ptr and make_unique— beyond the lack of reference

counting, the code for using unique_ptr is very similar to code for using shared_ptr .

 Weak Pointer

 Behind the scenes, a shared_ptr actually has two types of reference counts: a strong

reference count and a weak reference count. When the strong reference count hits zero, the

underlying object is destroyed. However, the weak reference count has no bearing on whether

or not the underlying object is destroyed. This leads to a weak pointer, which holds a weak

ptg16606381

STL CONTAINERS 347

reference to the object controlled by a shared pointer. The basic idea of a weak pointer is it

allows code that doesn’t actually want to own an object to safely check whether or not said

object still exists. The class used for this in C++11 is weak_ptr .

 Suppose sp is already declared as a shared_ptr<int> . You could then create a weak_ptr

directly from the shared_ptr as follows:

 std::weak_ptr<int> wp = sp;

 You can then use the expired function to test whether or not the weak pointer still exists. And

if it’s not expired, you can use lock to reacquire a shared_ptr , which will increase the strong

reference count. This would look like:

 if (!wp.expired())
 {
 //This will increase the strong reference count
 std::shared_ptr<int> sp2 = wp.lock();
 //Now use sp2 like a shared_ptr
 //...
 }

 Weak pointers can also be used to avoid a circular reference. Specifically, if object A has a

 shared_ptr to object B, and object B has a shared_ptr to object A, there is no way object A

or B can ever be deleted. However, if one of them has a weak_ptr , then the circular reference is

avoided.

 Caveats

 There are a couple of things to watch out for with regards to smart pointers as implemented

in C++11. First of all, they are difficult to use correctly with dynamically allocated arrays. If you

want to use a smart pointer to an array, it is generally simpler to use an STL container array. It

should also be noted that in comparison to normal pointers, smart pointers do come with a

slight added memory overhead and performance cost. So for code that needs to be absolutely

as fast as possible, it is not wise to use smart pointers. But for most typical usage cases, it’s safer

and easier (and thus, likely preferred) to use smart pointers.

 STL Containers
 The C++ standard template library (STL) contains a large number of container data

structures. This section summarizes the most commonly used containers and their typical

usage cases. Each container is declared in a header file corresponding to the container name, so

it’s not uncommon to need to include several headers to support several containers.

ptg16606381

348 APPENDIX A A MODERN C++ PRIMER

 array
 The array container (added in C++11) is essentially a wrapper for a constant size array. Because

it is constant size, there are no push_back member functions or the like. Indices into the

 array can be accessed using the standard array subscript operator [] . Recall that the main

advantage of arrays (in general) is that random access can be performed with an algorithmic

complexity of O(1) .

 While C-style arrays serve the same purpose, one advantage of using the array container is

that it supports iterator semantics. Furthermore, it is possible to employ bounds checking if the

 at member function is used instead of the array subscript operator.

 vector

 The vector container is a dynamically sized array. Elements can be added and removed from

the back of a vector using push_back and pop_back , with O(1) algorithmic complexity. It

is also possible to use insert and remove at any arbitrary location in the vector. However,

these operations require copying some or all of the data in the array, which can make them

computationally expensive. Resizing a vector is expensive for the same reason, in spite of its

 O(n) algorithmic complexity. This further means that even though push_back is considered

 O(1) , calling it on a full vector will incur copying costs. As with array , bounds checking is

performed if the at member function is used.

 If you know how many elements you need to place in the vector, you can use the reserve

member function to allocate space to fit that many elements. This will avoid any cost of

growing and copying the vector as you add elements, and can save a tremendous amount of

time.

 For adding elements to a vector, C++11 provides a new member function emplace_back .

The difference between emplace_back and push_back is apparent when you have a vector

of a nonbasic type. Suppose you have a vector of a custom class Student . Suppose that the

constructor of Student takes in the name of the student and their grade. If you were to use

 push_back , you might write code like this:

 students.push_back(Student("John", 100));

 This code first constructs a temporary instance of the Student class, and then makes a copy of this

temporary instance in order to add it to the vector. However, emplace_back can construct the

object in place, which avoids creating a temporary. You would call emplace_back as follows:

 students.emplace_back("John", 100);

 Notice how the call to emplace_back does not explicitly mention the Student type. This

is called perfect forwarding , because the parameters are forwarded to the Student that is

constructed in the vector.

ptg16606381

STL CONTAINERS 349

 There is no disadvantage of using emplace_back in lieu of push_back . All the other STL

containers (other than array) support emplace functionality, as well, so you should get into the

habit of using emplace functions to add elements to containers.

 list

 The list container is a doubly linked list. Elements can be added/removed from the front

and back with guaranteed O(1) algorithmic complexity. Furthermore, given an iterator at an

arbitrary location in the list, it is possible to insert and remove with O(1) complexity. Recall

that lists do not support random access of specific elements. One advantage of a linked list is

that it can never really be “full”—elements are added one at a time, so there is no need to worry

about resizing a linked list. However, it should be noted that one disadvantage of a linked list

is that because elements are not next to each other in memory, they are not as cache-friendly

as an array. It turns out that cache performance is actually a significant bottleneck on modern

computers. So as long as the size of each element is relatively small (64 bytes or less), a vector

will almost always outperform a list.

 forward_list
 The forward_list container (added in C++11) is a singly linked list. This means that

 forward_list only supports O(1) addition and removal from the front of the list. The

advantage of this is that it uses less memory per node in the list.

 map
 A map is an ordered container of {key, value} pairs, that are ordered by the key. Each key in the

map must be unique and support strict weak ordering , meaning that if key A is less than B,

then key B cannot be less than or equal to A. If you wish to use a custom type as a key, typically

you override the less than operator. A map is implemented as a type of binary search tree,

which means that lookup by key has an average algorithmic complexity of O(log(n)) . Since it is

ordered, iterating through the map is guaranteed to be sorted in ascending order.

 set
 A set is like map, except there is no pair—the key is simply also the value. All other behavior is

identical.

 unordered_map
 The unordered_map container (added in C++11) is a hash table of {key, value} pairs. Each

key must be unique. Since it is a hash table, lookup can be performed with an algorithmic

complexity of O(1) . However, it’s unordered which means iterating through an unordered_

map will not yield any meaningful order. Similarly, there is a hash set container called

ptg16606381

350 APPENDIX A A MODERN C++ PRIMER

 unordered_set . For both unordered_map and unordered_set , hashing functions are

provided for built-in types. If you wish to hash a custom type, you must provide your own

specialization of the templated std::hash function.

 Iterators
 An iterator is a type of object whose intent is to allow for traversal through a container. All STL

containers support iterators, and this section covers the common usage cases.

 The following code snippet constructs a vector, adds the first five Fibonacci numbers to the

vector, and then uses iterators to print out each element in the vector:

 std::vector<int> myVec;
 myVec.emplace_back(1);
 myVec.emplace_back(1);
 myVec.emplace_back(2);
 myVec.emplace_back(3);
 myVec.emplace_back(5);

 //Iterate through vector, and output each element
 for(auto iter = myVec.begin();
 iter != myVec.end();
 ++iter)
 {
 std::cout << *iter << std::endl;
 }

 To grab an iterator to the first element in an STL container, the begin member function is used,

and likewise the end member function grabs an iterator to one past the last element. Notice

that the code used auto to declare the type of the iterator, in order to avoid needing to spell

out the full type (which in this case is std::vector<int>::iterator).

 Also notice that the iterator is incremented to the next element by using the prefix ++

operator—for performance reasons, the prefix operator should be used in lieu of the postfix

operator. Finally, iterators are dereferenced like pointers are dereferenced—this is how the

underlying data at the element is accessed. This can be tricky if the underlying element is a

pointer, because there are two dereferences: first of the iterator and then of the pointer itself.

 All STL containers also support two kinds of iterators: the normal iterator as shown earlier, and

a const_iterator . The difference is that a const_iterator does not allow modification

of the data in the container, whereas a normal iterator does. This means that if code has a const

reference to an STL container, it is only allowed to use a const_iterator .

ptg16606381

ADDITIONAL READINGS 351

 Range-Based For Loop

 In the case where it is simply desired to loop through an entire container, it is simpler to use a

new C++11 addition called the range-based for loop . The loop just mentioned could instead

be rewritten as follows:

 //Iterate using a range-based for
 for (auto i : myVec)
 {
 std::cout << i << std::endl;
 }

 A range-based for loop looks much like what a foreach might look like in other languages

such as Java or C#. This code grabs each element in the container, and saves it into the

temporary variable i . The loop ends only once all elements have been visited. In a range-based

for, it is possible to grab each element by value or by reference. This means that if it is desired

to modify elements in the container, references should be used, and furthermore for nonbasic

types either references or const references should always be used.

 Internally, a range-based for will work on any container that supports STL-style iterator

semantics (e.g., there is an iterator member, a begin , an end , the iterator can be

incremented, dereferenced, and so on). This means that it is possible to create a custom

container that supports the range-based for loop.

 Other Uses of Iterators

 There are a multitude of functions in the algorithm header that use iterators in one way

or another. However, one other common use of iterators is the find member function that

 map , set , and unordered_map support. The find member function searches through the

container for the specified key, and returns an iterator to the corresponding element in the

container. If the key is not found, find will instead return an iterator equal to the end iterator.

 Additional Readings
 Meyers, Scott. (2014, December). Effective Modern C++ . O’Reilly Media.

 Stroustrup, Bjarne. (2013, May). The C++ Programming Language, 4th ed . Addison-Wesley.

ptg16606381

This page intentionally left blank

ptg16606381

 INDEX

 Page numbers followed by " f " and " t " indicate fi gures and tables, respectively.

 A

 AchieveData, 305
 Achieve.def, 305
 ACK fl ag, 46
 acknowledgment. See also packet delivery

notifi cation
 delivery status and, 216 – 221
 pending, 213 – 216
 processing, 216 – 218

 acknowledgment number (32 -bits), 43
 ACK packet, 51 , 52
 AckRange, 213 – 215 , 216 – 218
 Actor class, 281
 actor replication

 defi ned, 282
 Unreal Engine 4 , 282 – 283

 AddPendingAck(), 213
 address, bind function, 78
 address_len, bind function, 79
 address resolution protocol (ARP), 26 – 28

 hardware address length (8 bits), 28
 hardware type (16 bits), 27
 operation (16 bits), 28
 packet structure, 27 – 28 , 27 f
 protocol address length (8 bits), 28
 protocol type (16 bits), 27
 sender hardware address (variable length), 28
 sender protocol address (variable length), 28
 table, 27 t
 target hardware address (variable length), 28
 target protocol address (variable length), 28

 AddToStat, 304 – 305
 AF_INET, 66 , 66 t
 AF_INET 6 , 66 , 66 t
 AF_IPX, 66 t
 af parameter, 66

 AF_UNSPEC, 66 t
 Age of Empires, 10 – 13

 deterministic lockstep model, 10
 synchronization, 12 – 13
 turn timer, 11 – 12

 AIController class, 281
 API, socket creation, 66
 app ID, 290
 application layer, 52 – 53

 DHCP, 52
 DNS, 52 – 53

 ARPANET, 16
 Asheron's Call, 256
 askCloudProviderForVM function, 329
 assertions

 runtime, 342
 static, 342 – 343

 asynchronous, 5
 async.series function, 329
 authoritative server, 167
 authority, 282 – 283
 autonomous proxy, 282

 B

 backend server development, 313
 bad data, 274 – 275
 ban wave, 273
 Battlefi eld , 167
 BBN Report 1822, 17
 BBS. See bulletin board system (BBS)
 Berkeley Sockets API. See socket
 Bettner, Paul, 12
 bind function, 78 – 79
 binding address to socket, 78 –7912
 bit streams, 114 – 119

 input memory, 119

ptg16606381

INDEX354

 client function, 283 – 284
 client proxy, 177
 ClientProxy class, 180 – 181
 client RPC function, 286
 client-server topology, 7 , 166 – 168 , 166 f

 authoritative server, 167
 dedicated server, 167
 host migration, 168
 implementing, 170 – 182
 listen server, 168
 Unity, 285
 Unreal, 281 – 282

 client side interpolation, 236 – 237
 interpolation period, 237
 packet period, 237
 timing, 236 f

 client side prediction, 238 – 248
 dead reckoning, 240 – 242 , 241 f
 optimistic algorithm, 241

 closesocket function, 67
 cloud hosting dedicated server

 benefi ts, 313
 drawbacks, 312
 game server machine, 317
 game server process, 316 – 317
 hardware, 317
 JSON, 314
 LSPM, 318 – 324
 Node.JS, 314 – 315
 overview, 311
 REST, 313 – 314
 server game instance, 316
 terminology, 315 – 317
 tools, 313 – 315
 VMM, 324 – 333

 cloudProviderId, 327
 command, in Unity, 286
 Command class, 186 – 187
 CommandList, 188
 communications protocol, 6
 complexity, cloud hosting server, 312
 Component classes, 285
 compression, 123 – 130

 entropy encoding, 125 – 127
 fi xed point, 127 – 129
 geometry, 129 – 130
 sparse array, 124 – 125

 ComputeGlobalCRC, 194 – 195

 bit streams (continued)
memory, 114
 output memory, 114 – 119
 serialization of fi eld's value, 149 – 150

 Blizzard Entertainment, 273
 Blueprint, 283
 Bluetooth, 21
 bot, 272
 bReplicateMovement fl ag, 283
 broadcast address

 MAC address, 30
 subnet mask, 30

 buf, receiving data
 TCP socket, 86
 UDP socket, 80

 buf, sending data
 TCP socket, 85
 UDP socket, 79 – 80

 bulletin board system (BBS), 3
 BYTE Magazine, 2
 bytes, 43
 ByteSwap function, 113
 ByteSwapper, 113
 byte swapping functions, 111 – 113

 C

 C#, built-in refl ection systems, 133
 C++, 337

 offsetof macro, 135
 refl ection systems, 133

 C++ 11 , 338 – 339
 auto, 338
 nullptr, 339

 callback function, 329
 cheat prevention, cloud hosting server, 313
 checkHeartbeat function, 323 , 332
 checksum (16 bits), 194

 IPv 4 packet header, 25
 UDP header, 42

 CheckSync function, 195
 CIDR. See classless inter-domain routing (CIDR)
 circuit switching, 16 , 16 f
 class identifi er

 object creation registry, 144 – 148
 replication, 142 – 144

 classless inter-domain routing (CIDR), 31
 client code for move lists, 179 – 180

ptg16606381

355INDEX

 destination address (32 bits), 26
 destination port (16 bits)

 TCP header, 42
 UDP header, 41

 deterministic lockstep model, 10
 DHCP. See Dynamic host confi guration protocol

(DHCP)
 DHCPDISCOVER message, 52
 DHCPOFFER packet, 52
 digital rights management (DRM), 313
 display lag, 202
 distributed denial-of-service attack (DDoS), 274
 DNS. See Domain name system (DNS)
 Docker Container format, 325
 DoClientSidePredictionAfter

ReplicationForLocalCat, 247
 DoClientSidePredictionAfter

ReplicationForRemoteCat, 247
 Domain name system (DNS), 52 – 53
 do not fragment fl ag, 36
 DownloadLeaderboardEntries

function, 308
 DRM. See digital rights management (DRM)
 dumb terminal client, 234 – 236
 Dynamic host confi guration protocol (DHCP), 52
 dynamic ports, 40

 E

 eMachineState object, 321
 embedding. See inlining/embedding
 Empire, 2
 endianness, 110 – 113

 big-endian, 110
 byte swapping functions, 111 – 113
 little-endian, 110

 Engine::DoFrame, 293
 Engine::StaticInit, 292
 EnterLobby function, 295
 entropy, 125 , 192
 entropy encoding, 125 – 127 . See also compression
 EPrimitiveType, 134
 errno, 70
 Ethernet, 21 – 23

 FCS, 23
 hubs, 23
 MAC address, 21 – 22
 NIC, 21 , 22

 congestion control, 50 – 51
 connection manager, 8
 conservative algorithm, 235
 const-correctness, 341
 const member function, 340 – 341
 const reference, 340
 control bits (9 bits), 43
 Controller class, 281
 cost, cloud hosting server, 312
 Counter-Strike, 248
 CRC. See cyclic redundancy check (CRC)
 Create function, 280
 CreateGameObjectFromStream

functions, 144
 CreateTCPSocket function, 88
 C++ REST SDK, 324
 cryptography, 267 – 269
 CSteamID class, 293
 cyclic redundancy check (CRC), 23 , 194 – 195

 D

 daisy chain, 2
 data driven serialization, 133 – 135
 data off set (4 bits), 43
 data transmission, TCP, 46 – 51

 congestion control, 50 – 51
 delayed acknowledgment, 50
 fl ow control, 49 – 50 , 49 f
 with no packet loss, 47 f
 in order, 48
 packet lost and retransmitted, 47 f

 DataType class, 134
 data type registry, 148
 DDoS. See distributed denial-of-service attack

(DDoS)
 dead reckoning, 240 – 242 , 241 f . See also client

side prediction
 dedicated server, 167

 Unity, 285
 Unreal, 281 – 282

 default address, 34
 delayed acknowledgment, 50
 DeliveryNotificationManager,

 216 – 221 , 227 – 228
 delivery status, receiving acknowledgment

and, 216 – 221
 delivery status notifi cation, 8

ptg16606381

INDEX356

 choosing, 290
 leaderboards, 307 – 308
 lobbies and matchmaking, 294 – 298
 networking, 298 – 300
 other options, 308 – 309
 overview, 289
 player achievements, 305 – 306
 player statistics, 300 – 305

 GamerServices class, 291 , 298
 GamerServices.h, 291
 GamerServices::Impl, 295 , 303
 GamerServices object, 291 , 303
 GamerServiceSocket class, 292
 GamerServices::StaticInit, 292
 GamerServicesSteam.cpp, 291
 GamerServices::Update, 293
 game server machine, 317
 game server process, 316 – 317
 gAvailableVMs map, 326 , 329 , 330
 geometry compression, 129 – 130
 GetDataType virtual function, 148
 GetDesiredHorizontalDelta

function, 178
 GetDesiredVerticalDelta function, 178
 getFirstAvailableVM function, 327
 GetLobbyPlayerMap function, 297
 GetLocalPlayerId function, 293
 GetOffsetof method, 135
 GetPrimitiveType method, 135
 GetSize, 74
 GetStatInt, 304 – 305
 GetTimeDispatched(), 219
 gHeartbeatCheckPeriod, 323
 ghost manager, 9
 gMachineState, 321 , 332
 gMaxProcessCount, 321
 gMaxRunningHeartbeat, 323
 Google on IPv 6 , 38
 gProcessCount, 321
 gProcesses, 321
 gProcesses map, 321
 guaranteed data, 6
 guaranteed quickest data, 6

 H

 HandleDeliveryFailure(), 226
 hardware address length (8 bits), 28

 Ethernet (continued)
OUI, 21
 switches, 23

 EtherType, 22 , 25
 event manager, 8 – 9
 Express JS, 315
 ExtendIfShould(), 215

 F

 FCS. See frame check sequence (FCS)
 fi le output stream, 105
 FIN packet, 51 – 52
 FIN packet, 67 – 68
 fi xed point compression, 127 – 129
 fl agging functions, in Unity, 286
 flags, receiving data

 TCP socket, 86
 UDP socket, 80

 flags, sending data
 TCP socket, 85
 UDP socket, 80

 fl ow control, TCP, 49 – 50 , 49 f
 fragmentation, IPv 4 , 35 – 38

 concept, 35
 do not fragment fl ag, 36
 fragment fl ags (3 bits), 25 , 36
 fragment identifi cation (16 bits), 25 , 35
 fragment off set (13 bits), 25 , 35
 relevant header fi elds, 36 , 36 t

 fragment fl ags (3 bits), 25 , 36
 fragment identifi cation (16 bits), 25 , 35
 fragment off set (13 bits), 25 , 35
 frame, 19

 delivery of, 20
 jumbo, 22

 frame check sequence (FCS), 23
 frequency, 263
 from, receiving data

 UDP socket, 81
 fuzz testing, 274 – 275

 G

 game instance. See server game instance
 GameObject class, 285
 gamer service

 basic setup, 290 – 294

ptg16606381

357INDEX

 interpolation period, 237 . See also client side
interpolation

 intrusions, 276 – 277
 IP address

 DHCP server, 52
 DNS and, 52 – 53
 ICANN distribution, 53
 loopback, 35
 name server and, 53
 ports and, 41
 privately routable, 53 – 54 , 54 t
 as publically routable, 53
 subnet mask and, 30 , 30 t
 zero network broadcast address, 35

 IPPROTO_TCP options, 97 t
 IPv 4 , 24 – 38

 ARP, 26 – 28
 concept, 24
 fragmentation, 35 – 38
 IP address, 24
 IPv 6 vs., 39
 packet, 24 – 26
 prefi x, 39
 subnet and indirect routing, 29 – 35 . See also

subnet mask
 IPv 6 , 38 – 39

 address forms, 39 t
 fi nal 64 bits of, 39
 fi rst 64 bits of, 39
 Google on, 38
 interface identifi er, 39
 IPv 4 vs., 39

 IsInput method, 131
 ISocketSubsystem class, 280
 iterators, 350 – 351

 J

 Java, 314
 built-in refl ection systems, 133

 JavaScript object notation (JSON), 314
 jitter, 204 – 205

 defi ned, 204
 processing delay, 205
 propagation delay, 205
 queuing delay, 205
 simulating, 228 – 230
 transmission delay, 205

 hardware type (16 bits), 27
 hashing algorithm for passwords, 277
 hash maps, VMM, 326
 header checksum (16 bits), 25
 header length (4 bits), 25
 heartbeat monitoring system, 330 – 332
 Hearthstone: Heroes of Warcraft, 5
 helper functions, 178
 host migration, 168
 how, 67 – 68
 HTTP, 313 – 314
 hubs, 23

 I

 IANA. See Internet Assigned Numbers Authority
(IANA)

 ICANN. See Internet Corporation for Assigned
Names and Numbers (ICANN)

 IGDP. See Internet gateway device protocol
(IGDP)

 indirect routing, IPv 4 . See subnet mask
 InFlightPackets, 217 – 218 , 228
 in-fl ight packets, optimization from, 226 – 228
 information cheat, 269
 inGameObject, 142
 InitDataType function, 134
 inlining/embedding, 120 – 121
 input lag, 12
 InputManager class, 177 , 178
 InputMemoryStream class, 131
 input memory streams, 108 – 109
 input sampling latency, 200
 input sharing model, 169
 InputState class, 177 – 178
 input stream, 105
 input validation, 270 – 271
 instancing, 262
 interface identifi er, 39 . See also IPv 6
 Internet. See IP address; TCP/IP suit
 Internet Assigned Numbers Authority (IANA), 40
 Internet Corporation for Assigned Names and

Numbers (ICANN), 40 , 53
 Internet gateway device protocol (IGDP), 60
 Internet protocol version 4 . See IPv 4
 Internet Service Provider (ISP), 32 – 33
 InterpolateClientSidePrediction(),

 247

ptg16606381

INDEX358

 kill routes, 319 – 321
 launch, 319 – 321
 process monitoring, 322 – 324
 sending heartbeat to, 323 – 324

 loopback, 35
 lpWSAData, 70
 LSPM. See local server process manager (LSPM)

 M

 MAC (media access control) address, 21 – 22
 mAchieveArray, 305
 machine images, 317
 machineState, 326
 man-in-the-middle attack, 266 – 269 , 266 f

 concept, 266
 public key cryptography, 267 – 268 , 268 f

 map hacking, 272
 map hacks, 13
 Massively Multiplayer Online Game (MMO), 4 – 5
 master peer, 169 , 183
 matchmaking, 169

 gamer service, 294 – 298
 Unity, 285 – 286

 maximum segment size (MSS), 48
 maximum transmission unit (MTU), 22
 Maze War, 2
 media access control (MAC). See MAC (media

access control) address
 members, VM object, 326 – 327
 MemberVariable class, 134 , 135
 MemoryStream, 131 – 132 , 141
 memory streams, 106 – 110
 mMemberVariables, 134
 MMOFPS, 4
 MMORPG, 4 – 5
 mNetworkReplicationCommand, 222
 mobile networked games, 5
 MonoBehaviour, 285 , 287
 more fragments fl ag, 36
 most recent state data, 6
 MouseStatus function, 134
 Move class, 178 – 179
 MoveList class, 179 , 188
 move manager, 10
 MSS. See maximum segment size (MSS)
 MTU. See maximum transmission unit (MTU)
 MUD. See multi-user dungeon (MUD)

 JSON. See JavaScript object notation (JSON)
 jumbo frames, 22

 L

 lastHeartbeat, 321 , 326 , 332
 lastSequenceIndex, 326 , 332
 latency, 200 – 204

 defi ned, 200
 display lag, 202
 dumb terminal client, 234 – 236
 input sampling, 200
 multithreaded render pipeline, 201
 network, 202 – 204
 non-network, 200 – 202
 pixel response time, 202
 render pipeline, 200 – 201
 simulating, 228 – 230
 VSync, 201

 leaderboards, 307 – 308 . See also gamer service
 Leaderboards.def, 307
 League of Legends, 316
 len, sending data

 TCP socket, 85
 UDP socket, 80

 length (16 bits)
 IPv 4 packet, 25
 UDP header, 41

 linking, 121 – 123
 LinkingContext class, 122 – 123
 link layer, 19 – 23

 concept, 19
 duties of, 19
 Ethernet, 21 – 23
 physical medium and, 20 , 20 t
 shortcomings, 23 – 24

 listen server, 168
 Unity, 285
 Unreal, 282

 lobbies, gamer service, 294 – 298
 LobbyChatMsg_t callback, 297
 LobbySearchAsync function, 294 , 295
 local area network (LAN), 3 , 54
 localhost address. See loopback
 local multiplayer games, 2
 local perception fi lter, 236
 local server process manager (LSPM), 318 – 324

 initialization, 319 – 321

ptg16606381

359INDEX

 NetworkManager::EnterLobby function, 296
 NetworkMatch class, 287
 NetworkServer, 285
 network stream, 105
 network topologies

 client-server, 166 – 168 , 166 f
 concept, 166
 peer-to-peer, 168 – 169 , 168 f
 Unity game engine, 285
 Unreal Engine 4 , 281 – 282

 NetworkTransport.Connect function, 285
 NIC. See network interface controller (NIC)
 Node.JS, 314 – 315
 Node package manager (npm), 314
 nodes, 17
 non-guaranteed data, 6
 non-network latency, 200 – 202
 nullptr, 339

 O

 object
 identifying serialized object, 141 – 142
 multiple, per packet, 148
 replication. See replication
 serialization. See serialization

 object creation registry, 144 – 148
 ObjectCreationRegistry, 163
 object relevancy, 254
 ObjectReplicationHeader, 162
 object state delta, 152 – 153
 octets, 43
 offsetof macro, 135
 OnDeserialize, 286
 online game, 4
 OnLobbyChatUpdate, 297
 OnLobbyCreateCallback, 295
 OnLobbyEnteredCallback, 295
 OnLobbyMatchListCallback functions, 295
 OnSerialize, 286
 OnStatsReceived, 303
 Open Systems Interconnection (OSI) model, 18
 operating system diff erences, for sockets, 68 – 71
 operation (16 bits), 28
 ## operator, 302
 optimistic algorithm, 241
 optimization from in-fl ight packets, 226 – 228
 organizationally unique identifi er (OUI), 21

 multicast function, 284
 multiplayer games

 brief history of, 2 – 5
 early networked, 2 – 3
 local area network, 3
 local multiplayer, 2
 MMO, 4 – 5
 mobile networked games, 5
 multi-user dungeon, 3
 online games, 4

 multithreaded render pipeline latency, 201
 multi-user dungeon (MUD), 3

 N

 Nagle's algorithm, 51
 name server, 53
 NAT. See network address translation (NAT)
 NAT table, 56

 original destination IP address and port to, 57
 STUN, 58 f

 NDP. See neighbor discovery protocol (NDP)
 neighbor discovery protocol (NDP), 39
 network address, 30
 network address translation (NAT), 53 – 60

 concept, 53
 functioning, 54 – 56
 privately routable IP address, 53 – 54 , 54 t
 STUN, 57 – 59
 traversal, 57 – 59

 NetworkBehaviour, 286
 networked multiplayer games. See multiplayer

games
 NetworkEventType, 285
 network interface controller (NIC), 21 , 22
 network latency

 processing delay, 202 – 203
 propagation delay, 203 , 204
 queuing delay, 203
 transmission delay, 203

 network layer, 23 – 39
 duty, 24
 IPv 4 , 24 – 38
 IPv 6 , 38 – 39

 NetworkManager class, 185
 Unity, 285
 Unreal, 280

 NetworkManagerClient, 179

ptg16606381

INDEX360

 PlayerCat component, 285
 PlayerController, 281 , 283
 player IDs and name, 293 – 294
 pointers, 343 – 345

 shared, 345 – 346
 unique, 346
 weak, 346 – 347

 pointer to implementation, 291
 port(s)

 bind, 40
 concept, 40
 dynamic (49152 to 65535), 40
 IP addresses and, 41
 system (0 to 1023), 40
 user (1024 -49151), 40

 port assignment prediction, 60
 port number registry, 40
 POSIX-compatible operating systems, sockets

on, 68 – 69 , 70 – 71
 potentially visible set (PVS), 258 – 259
 preamble, 22
 prefab in Unity, 285 – 286
 prefi x, IPv 6 , 39
 prioritization, 263
 privately routable IP address, 53 – 54 , 54 t
 PRNG. See pseudo-random number generator

(PRNG)
 ProcessAcks(), 216 – 217
 ProcessCommand, 188
 ProcessCommand, 187 , 188
 processing delay

 jitter, 205
 network latency, 202 – 203

 ProcessReplicationAction, 160
 ProcessSequenceNumber(), 211 – 213
 ProcessTimedOutPackets(), 218
 propagation delay

 jitter, 205
 network latency, 203 , 204

 protocol (8 bits), 25
 protocol address length (8 bits), 28
 protocol type (16 bits), 27
 pseudo-random number generator (PRNG), 13

 synchronizing, 191 – 194
 PT_ReplicationData, 141 , 148
 publically routable IP address, 53
 public key cryptography, 267 – 269 , 268 f
 pure servers, 273
 PVS. See potentially visible set (PVS)

 OUI. See organizationally unique identifi er
(OUI)

 OutputMemoryBiyStream class
 declaration, 114
 WriteBits methods, 114 – 116

 OutputMemoryStream class, 131
 output memory streams, 106 – 108
 output stream, 105

 P

 packet, IPv 4 , 24 – 26
 packet delivery notifi cation, 209 – 221

 acknowledgments and delivery status, 216 – 221
 pending acknowledgment, 213 – 216
 processing incoming sequence number,

 211 – 213
 tagging outgoing packets, 210 – 211

 packet length (16 bits), IPv 4 header, 25
 packet loss, 206 – 207

 simulating, 228 – 230
 packet period, 237
 packets, 7 , 17
 packet sniffi ng

 concept, 266
 host machine, 269 – 270
 man-in-the-middle attack, 266 – 269

 packet switching, 16 – 17 , 17 f
 PacketType enum, 140 – 141 , 162
 partial object state replication, 156 – 159
 passwords, 276 – 277
 peer-to-peer topology, 7 , 11 , 168 – 169 , 168 f

 connecting new players in, 169
 implementing, 182 – 196
 input sharing model, 169
 synchronization, 191 – 196

 peer-to-peer validation system, 270 , 271
 pending acknowledgment

 adding, 213 – 215
 writing, 215 – 216

 perfect forwarding, 348
 physical layer, 19
 pixel response time, 202
 platform packet module, 7
 PLATO system, 2
 player, gamer service and

 achievements, 305 – 306
 IDs and name, 293 – 294
 statistics, 300 – 305

ptg16606381

361INDEX

 render pipeline latency, 200 – 201
 rendezvous server, 184 , 184 f
 replication

 customization, 162
 defi ned, 140
 identifying class, 142 – 144
 marking packet, 140 – 141
 object creation registry, 144 – 148
 preparatory steps, 140
 reliability, 221 – 228
 RPC as serialized object, 159 – 162
 serialized object identifi er, 141 – 142
 Unity game engine, 286
 world state. See world state

 ReplicationCommand, 223
 replication commands, 177
 replication header, 153 – 154
 ReplicationHeader serialization

code, 160
 ReplicationManager, 161 , 162 , 221 – 227
 ReplicationTransmissionData, 227
 ReplicationTransmissions, 228
 replication update packets, 177
 representational state transfer (REST), 313 – 314
 RequestCurrentStats function, 305
 request library for REST, 329
 reserved ports. See system ports
 REST. See representational state transfer (REST)
 RetrieveStatsAsync, 303
 RFC 1122, 18
 RMI. See Remote Method Invocation (RMI)
 Robo Cat Action, 167

 client-server model, 170 – 182
 controls for, 170

 Robo Cat RTS
 hello packet, 183
 introduction packet, 183 – 184
 launching, 183
 master peer, 183
 peer-to-peer model, 182 – 196

 roles, 282
 authority, 282 , 283
 autonomous proxy, 282
 simulated proxy, 282

 round trip time (RTT), 167 , 204 , 234
 routing table, 31 , 31 t
 RPC. See remote procedure calls (RPC)
 RPCManager, 160 – 161 , 162
 RSA system, 268 – 269

 Q

 QosType enum, 284
 Quake, 234 – 235
 quaternion, 129
 queuing delay

 jitter, 205
 network latency, 203

 R

 random_device class, 193
 range-based for loop, 351
 Read function, 187
 ReadLastMoveProcessedOnServer

Timestamp, 245
 real-time strategy game. See Age of Empires
 reasonable copy protection, 313
 receive window (16 bits), 43
 receiving data

 TCP socket, 86
 UDP socket, 80 – 81

 recentLaunchUnknown, 330
 recv, TCP socket, 86
 recvfrom function, UDP socket, 80 – 81
 redis, 333
 reference, 339 – 341

 const, 340
 const member function, 340 – 341

 referenced data
 inlining/embedding, 120 – 121
 linking, 121 – 123

 refl ection systems, 133 – 134
 registered ports. See user ports
 reliability

 object replication, 221 – 228
 TCP, 207 – 208 , 209 t
 UDP, 208 – 209 , 209 t

 Reliable, 285
 reliable data transfer, 43 – 44 , 44 f
 ReliableFragmented, 285
 reliance on third party, 312
 Remote Method Invocation (RMI), 162
 remote players, dead reckoning for, 242
 remote procedure calls (RPC)

 as serialized objects, 159 – 162
 Unity game engine, 286
 Unreal Engine 4 , 283 – 284

 RemovedProcessedMoves, 245

ptg16606381

INDEX362

 server function, 283
 server game instance, 316
 server partitioning/sharding, 260 – 262 , 261 f
 server security

 bad data, 274 – 275
 DDoS, 274
 fuzz testing, 274 – 275
 intrusions, 276 – 277
 timing attacks, 275 – 276

 server side rewind, 248 – 249
 service-level agreements, 312
 setInterval call, 323
 SetLobbyChatMsg function, 297
 SetLobbyGameServer function, 297
 setsockopt, 96
 SFD. See start frame delimiter (SFD)
 shutdown function, 67
 shuttingDown state, 332
 simple traversal of UDP through NAT. See STUN
 simulated proxy, 282
 simulating

 jitter, 228 – 230
 latency, 228 – 230
 packet loss, 228 – 230

 sin_addr, 71 – 72
 sin_family, 71
 sin_port, 71
 sin_zero, 72
 smart pointers. See pointers
 sock, bind function, 78
 sock, receiving data

 TCP socket, 86
 UDP socket, 80

 sock, sending data
 TCP socket, 85
 UDP socket, 79

 sockaddr
 data type, 71
 from string, 75 – 78

 sockaddr_in, 71
 SOCK_DGRAM, 66 t
 socket

 additional options, 96 , 97 t, 98 t
 closing, 67
 creating, 66 – 68
 operating system diff erences, 68 – 71
 POSIX-based platforms, 68 – 69
 TCP, 83 – 88
 UDP, 79 – 83

 RTT. See round trip time (RTT)
 runtime assertions, 342

 S

 scalability
 frequency, 263
 instancing, 262
 overview, 253
 prioritization, 263
 server partitioning/sharding, 260 – 262 , 261 f
 visibility culling, 255 – 260

 SD_BOTH, 67
 SD_RECEIVE, 67
 SD_SEND, 67 – 68
 security

 input validation, 270 – 271
 packet sniffi ng, 266 – 270
 server, 274 – 276
 software cheat detection, 271 – 274

 seeds, 191
 segment, TCP, 42 – 43

 ACK fl ag, 46
 SYN fl ag, 46

 semiprime, 268
 sender hardware address (variable length), 28
 sender protocol address (variable length), 28
 sending data

 TCP socket, 85 – 86
 UDP socket, 79 – 80

 SendInputPacket, 180 , 245
 SendP 2 PPacket, 299
 sendto function

 TCP socket, 85 – 86
 UDP socket, 79 – 80

 sequence number (32 -bits), 42 – 43
 serialization

 abstracting direction, 131 – 132
 compression, 123 – 130
 data driven, 133 – 135
 defi ned, 102
 of fi eld's value, bits for, 149 – 150
 maintainability, 130 – 135
 need for, 102 – 105
 referenced data, 119 – 123
 streams, 105 – 119

 Serialize function, 135
 Serialize method, 131 – 132
 serial port, 2

ptg16606381

363INDEX

 StatData instantiation, 303
 StatData structure, 302
 static assertion, 342 – 343
 StaticCreate function, 187 – 188
 StaticReadAndCreate function, 187
 static zones, 255 – 256
 Stat_. Next, 302
 Stat_NumGames, 302
 STAT(NumGames,INT), 302
 Stats.def, 302
 Steam, 290

 integrating, 290
 SteamAPICall_t, 295
 SteamAPI_Init, 292
 SteamAPI_RunCallbacks, 292 – 293
 steam_appid.txt fi le, 292
 STEAM_CALLBACK macro, 296
 SteamFriends function, 292
 SteamGameServer_Init, 293
 SteamGameServer_Shutdown, 293
 SteamUser function, 292
 SteamUtils function, 292
 Steamworks partner, 290
 Steamworks SDK Access Agreement, 290
 store and forward process, 17
 stream manager, 8
 streams

 bit, 114 – 119
 defi ned, 105
 endian compatibility, 110 – 113
 fi le output, 105
 input, 105
 memory, 106 – 110
 network, 105
 output, 105

 STUN, 57 – 59
 data fl ow, 58 f
 defi ned, 57
 NAT tables, 58 f
 packets exchanged, 58 f

 subnet mask
 in binary form, 30 – 31
 broadcast address, 30
 CIDR notation, 31
 default address, 34
 defi ned, 30
 indirect routing and, 29 – 35
 IP addresses and, 30 , 30 t
 ISP, 32 – 33

 Unreal Engine 4 , 280
 socket address, 71 – 79

 binding, 78 – 79
 sockaddr from string, 75 – 78

 SocketAddress class, 74
 SocketAddressFactory, 77 – 78
 socket function, 66

 af parameter, 66
 protocol parameter, 67
 type parameter, 66 – 67

 SOCK_RAW, 66 t
 SOCK_SEQPACKET, 66 t
 SOCK_STREAM, 66 t, 67
 software cheat detection, 271 – 274

 bot, 272
 concept, 272
 map hacking, 272
 VAC, 273
 Warden, 273 – 274

 SO_KEEPALIVE, 97 t
 SOL_SOCKET options, 97 t
 SO_RCVBUF, 97 t
 SO_RECVTIMEO, 97 t
 SO_REUSEADDR, 97 t
 SO_SNDBUF, 97 t
 SO_SNDTIMEO, 97 t
 source address (32 bits), 26
 source port (16 bits)

 TCP header, 42
 UDP header, 41

 SpaceWar, 290
 sparse array compression, 124 – 125
 spatial approach, 254
 spawning objects, in Unity game engine, 285 – 286
 spear phishing attack, 276
 standard template library (STL) containers,

 347 – 350
 array, 348
 forward_list, 349
 list, 349
 map, 349
 unordered_map, 349 – 350
 unordered_set, 350
 vector, 348 – 349

 Starsiege: Tribes, 5 – 10
 start frame delimiter (SFD), 22
 start packet, 185
 Star Wars: The Old Republic, 262
 STAT, 302

ptg16606381

INDEX364

 segment, 42 – 43
 state variables, 44 , 45 t
 three-way handshake, 45 – 46 , 45 f

 transmission delay
 jitter, 205
 network latency, 203

 transport layer, 39 – 52
 bind, 40
 concept, 39 – 40
 ports, 40
 TCP, 42 – 52 . See also transmission control

protocol (TCP)
 UDP, 41 – 42

 transport layer API
 Unity game engine, 284 – 285

 transport layer protocol, 41 , 41 t
 TryAdvanceTurn function, 189 – 190
 TTL. See time to live (8 bits)
 TurnData class, 188
 TurnData constructor, 189
 turn timer, 11 – 12
 TypeAliaser, 113
 type of service (8 bits), 25
 type-safe

 socket address, 73 – 74
 TCP sockets, 86 – 88

 U

 UDP. See user datagram protocol (UDP)
 UDP socket

 receiving data, 80 – 81
 sending data, 79 – 80
 type-safe, 81 – 83

 udpSocket, 67
 UDP sockets

 creating, 67
 UNetDriver class, 280
 UNET library, 284 , 285
 unexpected hardware changes, 312
 uniform_int_distribution class, 193
 uniqueness, between networks, 54
 United States Advanced Research Projects

Agency, 16
 Unity game engine, 284 – 287

 game objects, 285
 matchmaking, 286 – 287
 network topology, 285

 network address, 30 , 31
 routing table, 31
 sample, 30 t

 Sweeney, Tim, 234
 switches, 23
 symmetric NAT, 59 – 60
 SYN-ACK segment, 46
 SyncVars, 286
 SYN fl ag, 46
 system ports, 40

 T

 target hardware address (variable length), 28
 target protocol address (variable length), 28
 TCP header, 42 – 43 , 42 f
 TCP hole punching, 60
 TCP/IP suite, 17 – 19

 layers, 18 – 19 , 18 f . See also specifi c layer
 TCP_NODELAY, 98 t
 TCP phantom byte, 46
 tcpSocket, 67
 TCPSocket class, 323 – 324
 TCPSocket class

 type-safe, 87 – 88
 TCPSocketPtr, 88
 TCP sockets, 83 – 88

 connection, 83 – 85
 creating, 67
 disposing, 67
 type-safe, 86 – 88

 template, 341 – 343
 specialization, 342

 template metaprogramming, 150
 Terrano, Mark, 12
 third party, reliance on, 312
 third-party host, STUN and, 57 – 59
 time dilation, 262
 time to live (8 bits), 25
 timing attack, 275 – 276
 transmission control protocol (TCP), 42 – 52

 concept, 42
 data transmission, 46 – 51
 delayed acknowledgment, 50
 disconnecting, 51 – 52
 Nagle's algorithm, 51
 reliability, 207 – 208 , 209 t
 reliable data transfer, 43 – 44 , 44 f

ptg16606381

365INDEX

 virtual machines (VM), 317 , 318
 visibility culling

 defi ned, 255
 hierarchical techniques, 259 – 260
 PVS, 258 – 259 , 259 f
 relevancy when not visible, 260
 static zones, 255 – 256
 view frustum, 256 – 257 , 258 f

 VMI. See virtual machine image (VMI)
 VMM. See virtual machine manager (VMM)
 VSync, 201

 W

 WAN. See wide area network (WAN)
 Warden, 273 – 274
 wide area network (WAN), 54
 Wi-Fi, 21
 Windows version of socket library, 69 – 71
 Winsock 2 -specifi c functions, 69 – 71
 Words with Friends, 5
 World of Warcraft, 261
 world state, 140

 changes, 152 – 159
 replication, 148 – 152

 world state delta, 152
 WriteBatchedCommand(), 223 – 225
 WriteBits methods, 114 – 116
 WriteForCRC function, 194
 Write function, 187
 Write method, 119
 WritePendingAcks(), 215
 WSACleanup, 70
 WSAGetLastError, 70
 WSAStartup functions, 69 – 70
 wVersionRequested, 69

 X

 Xbox Live games, 290
 Xbox One games, 290
 X macro, 301 – 303 , 305

 Z

 zero network broadcast address, 35

 remote procedure calls, 286
 replication, 286
 spawning objects, 285 – 286
 transport layer API, 284 – 285

 Universal Plug and Play (UPnP), 60
 Unreal Engine 4

 actor replication, 282 – 283
 game object class, 281
 networking, 280
 network topology, 281 – 282
 remote procedure calls (RPC), 283 – 284
 socket subsystem, 280

 Unreliable, 284
 UnreliableSequenced, 284
 UpdateLobbyPlayers function, 296 , 297
 UPnP. See Universal Plug and Play (UPnP)
 urgent pointer (16 bits), 43
 url, 326
 user datagram protocol (UDP), 41 – 42

 checksum (16 bits), 42
 destination port (16 bits), 41
 length (16 bits), 41
 reliability, 208 – 209 , 209 t
 source port (16 bits), 41

 user passwords, 276 – 277
 user ports, 40
 uuid, 326

 V

 VAC. See Valve Anti-Cheat (VAC)
 values

 af parameter, 66 t
 protocol parameter, 67 t
 type parameter, 66 t

 Valve Anti-Cheat (VAC), 273
 Valve Software, 290
 version (4 bits), IPv 4 packet, 25
 view frustum, 256 – 257 , 258 f
 virtual machine image (VMI), 325
 virtual machine manager (VMM), 324 – 333

 hash maps, 326
 initialization and data structure, 325 – 326
 members, 326 – 327
 monitoring, 330 – 333
 spawning and provisioning, 327 – 329

ptg16606381

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

ApplY And get stArted!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

InformIt
AffiliAte teAm!

	Contents
	1 Overview of Networked Games
	A Brief History of Multiplayer Games
	Starsiege: Tribes
	Age of Empires
	Summary
	Review Questions
	Additional Readings

	2 The Internet
	Origins: Packet Switching
	The TCP/IP Layer Cake
	The Physical Layer
	The Link Layer
	The Network Layer
	The Transport Layer
	The Application Layer
	NAT
	Summary
	Review Questions
	Additional Readings

	3 Berkeley Sockets
	Creating Sockets
	API Operating System Differences
	Socket Address
	UDP Sockets
	TCP Sockets
	Blocking and Non-Blocking I/O
	Additional Socket Options
	Summary
	Review Questions
	Additional Readings

	4 Object Serialization
	The Need for Serialization
	Streams
	Referenced Data
	Compression
	Maintainability
	Summary
	Review Questions
	Additional Readings

	5 Object Replication
	The State of the World
	Replicating an Object
	Naïve World State Replication
	Changes in World State
	RPCs as Serialized Objects
	Custom Solutions
	Summary
	Review Questions
	Additional Readings

	6 Network Topologies and Sample Games
	Network Topologies
	Implementing Client-Server
	Implementing Peer-to-Peer
	Summary
	Review Questions
	Additional Reading

	7 Latency, Jitter, and Reliability
	Latency
	Jitter
	Packet Loss
	Reliability: TCP or UDP?
	Packet Delivery Notification
	Object Replication Reliability
	Simulating Real-World Conditions
	Summary
	Review Questions
	Additional Readings

	8 Improved Latency Handling
	The Dumb Terminal Client
	Client Side Interpolation
	Client Side Prediction
	Server Side Rewind
	Summary
	Review Questions
	Additional Readings

	9 Scalability
	Object Scope and Relevancy
	Server Partitioning
	Instancing
	Prioritization and Frequency
	Summary
	Review Questions
	Additional Readings

	10 Security
	Packet Sniffing
	Input Validation
	Software Cheat Detection
	Securing the Server
	Summary
	Review Questions
	Additional Readings

	11 Real-World Engines
	Unreal Engine 4
	Unity
	Summary
	Review Questions
	Additional Readings

	12 Gamer Services
	Choosing a Gamer Service
	Basic Setup
	Lobbies and Matchmaking
	Networking
	Player Statistics
	Player Achievements
	Leaderboards
	Other Services
	Summary
	Review Questions
	Additional Readings

	13 Cloud Hosting Dedicated Servers
	To Host or Not To Host
	Tools of the Trade
	Overview and Terminology
	Local Server Process Manager
	Virtual Machine Manager
	Summary
	Review Questions
	Additional Readings

	Appendix A: A Modern C++ Primer
	C++11
	References
	Templates
	Smart Pointers
	STL Containers
	Iterators
	Additional Readings

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

