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  PREFACE 

 Networked multiplayer games are a huge part of the games industry today. The number of 

players and amount of money involved are staggering. As of 2014,  League of Legends  boasts 

67 million active players each month. The 2015  DoTA 2  world championship has a prize pool of 

over $16 million at the time of writing. The  Call of Duty  series, popular in part due to the 

multiplayer mode, regularly has new releases break $1 billion in sales within the first few days of 

release. Even games that have historically been single-player only, such as  the Grand Theft Auto  

series, now include networked multiplayer components. 

 This book takes an in-depth look at all the major concepts necessary to program a networked 

multiplayer game. The book starts by covering the basics of networking—how the Internet 

works and how to send data to other computers. Once the fundamentals are established, the 

book discusses the basics of transmitting data for games—how to prepare game data to be 

sent over the network, how to update game objects over the network, and how to organize the 

computers involved in the game. The book next discusses how to compensate for unreliability 

and lag on the Internet, and how to design game code to scale and be secure.  Chapters   12    and 

   13    cover integrating gamer services into and using cloud hosting for dedicated servers—two 

topics that are extremely important for networked games today. 

 This book takes a very practical approach. Most chapters not only discuss the concepts, they 

walk you through the actual code necessary to get your networked game working. The full 

source code for two different games is provided on the companion website—one game is an 

action game and the other is a real-time strategy (RTS). To help with the progression of topics, 

multiple versions of these two games are presented throughout the course of this book. 

 Much of the content in this book is based on curriculum developed for a multiplayer-game 

programming course at the University of Southern California. As such, it contains a proven 

method for learning how to develop multiplayer games. That being said, this book is not 

written solely for those in an academic setting. The approach taken by this book is just as 

valuable to any game programmer interested in learning how to engineer for a networked 

game. 

  Who Should Read This Book? 
 While Appendix A covers some aspects of modern C++ used in this book, it is assumed that 

the reader already is comfortable with C++. It is further assumed that the reader is familiar with 
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the standard data structures typically covered in a CS2 course. If you are unfamiliar with C++ or 

want to brush up on data structures, an excellent book to refer to is  Programming Abstractions in 
C++  by Eric Roberts. 

 It is further assumed that the reader already knows how to program single-player games. The 

reader should ideally be familiar with game loops, game object models, vector math, and basic 

game physics. If you are unfamiliar with these concepts, you will want to first start with an 

introductory game programming book such as  Game Programming Algorithms and Techniques  

by Sanjay Madhav. 

 As previously mentioned, this book should be equally effective either in an academic 

environment or for game programmers who simply want to learn about networked games. 

Even game programmers in the industry who have not previously made networked games 

should find a host of useful information in this book.  

  Conventions Used in This Book 
 Code is always written in a fixed-point font. Small code snippets may be presented either 

 inline  or in standalone paragraphs: 

  std::cout << “Hello, world!” << std::endl;  

 Longer code segments are presented in code listings, as in Listing 0.1. 

  Listing 0.1 Sample Code Listing 

 // Hello world program! 
 int main() 
 { 
   std::cout << “Hello, world!” << std::endl; 
   return 0; 
 }  

 For readability, code samples are color coded much like in an IDE. 

 Throughout this book, you will see some paragraphs marked as notes, tips, sidebars, and 

warnings. Samples of each are provided for the remainder of this section. 

  note 

 Notes contain useful information that is separate from the flow of the normal text 

of the section. Notes should almost always be read.  
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  tip 

 Tips are used to provide helpful hints when implementing specific systems in your 

game’s code.  

  warning 

 Warnings are very important to read, as they contain common pitfalls or issues to 

watch out for, and ways to solve or work around these issues.  

    SIDEBAR 

 Sidebars contain lengthier discussions that usually are tangential to the main 

content of the chapter. These can provide some interesting insight to a variety of 

issues, but contain content that is deemed nonessential to the pedagogical goals 

of the chapter.   

  Why C++? 
 The vast majority of this book uses C++ because it is still the de facto language used in the 

game industry by game engine programmers. Although some engines allow a great deal 

of code for a game to be written in other languages, such as Unity in C#, it is important to 

remember that most of the lower-level code for these engines is still written in C++. Since 

this book is focused on writing a networked multiplayer game from the ground up, it makes 

the most sense to do so in the language that most game engines are written in. That being 

said, even if you are writing all your game’s networking code in another language, all the core 

concepts will still largely be the same. Still, it is recommended that you be familiar with C++, 

otherwise the code samples may not make much sense.  

  Why JavaScript? 
 Since starting off life as a hastily hacked together scripting language to support the Netscape 

browser, JavaScript has evolved into a standardized, full-featured, somewhat functional language. 

Its popularity as a client-side language helped it make the leap to server side, where its first-class 

procedures, simple closure syntax, and dynamically typed nature make it very efficient for the 

rapid development of event-driven services. It’s a little hard to refactor and it provides worse 

performance than C++, making it a bad choice for next-generation front-end development. 
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 That’s not an issue on the backend, where scaling up a service can mean nothing more 

than dragging a slider to the right. The backend examples in  Chapter   13    use JavaScript, and 

understanding them will require a decent knowledge of the language. As of this writing, 

JavaScript is currently the number one most active language on GitHub by a margin of almost 

50%. Following trends for the sake of trends is rarely a good idea, but being able to program in 

the world’s most popular language definitely has its benefits.  

  Companion Website 
 The companion website for this book is at https://github.com/MultiplayerBook. The website has 

a link to the sample code used throughout the book. It also contains the errata, as well as links 

to PowerPoint slides and a sample syllabus for use in an academic setting.   

https://github.com/MultiplayerBook
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 C H A P T E R  1 

 OVERVIEW OF 

NETWORKED GAMES 

      Although there are notable exceptions, the concept 

of networked multiplayer games didn’t really catch 

on with mainstream gamers until the 1990s. This 

chapter first gives a brief history of how multiplayer 

games evolved from the early networked games of 

the 1970s to the massive industry today. Next, the 

chapter provides an overview of the architecture 

of two popular network games from the 1990s—   

Starsiege: Tribes   and   Age of Empires  . Many of the 

techniques used in these games are still in use 

today, so this discussion gives insight into the 

overall challenges of engineering a networked 

multiplayer game.    
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     A Brief History of Multiplayer Games 
 The progenitor of the modern networked multiplayer game began on university mainframe 

systems in the 1970s. However, this type of game didn’t explode until Internet access became 

common in the mid-to-late 1990s. This section gives a brief overview of how networked games 

first started out, and the many ways these types of games have evolved in the nearly half 

century since the first such games. 

  Local Multiplayer Games 

 Some of the earliest video games featured  local multiplayer , meaning they were designed 

for two or more players to play the game on a single computer. This included some very early 

games such as including  Tennis for Two  (1958) and  Spacewar!  (1962). For the most part, local 

multiplayer games can be programmed in the same manner as single-player games. The only 

differences typically are multiple viewpoints and/or supporting multiple input devices. Since 

programming local multiplayer games is so similar to single-player games, this book does not 

spend any time on them.  

  Early Networked Multiplayer Games 

 The first  networked multiplayer games  were run on small networks composed of mainframe 

computers. What distinguishes a networked multiplayer game from a local multiplayer game is 

that networked games have two or more computers connected to each other during an active 

game session. One such early mainframe network was the PLATO system, which was developed 

at the University of Illinois. It was on the PLATO system that one of the first networked games, 

the turn-based strategy game  Empire  (1973), was created. Around the same time as  Empire , the 

first-person networked game  Maze War  was created, and there is not a clear consensus as to 

which of these two games was created first. 

 As personal computers started to gain some adoption in the latter part of the 1970s, 

developers figured out ways to have two computers communicate with each other over 

serial ports. A  serial port  allows for data to be transmitted one bit at a time, and its typical 

purpose was to communicate with external devices such as printers or modems. However, 

it was also possible to connect two computers to each other and have them communicate 

via this connection. This made it possible to create a game session that persisted over 

multiple personal computers, and led to some of the earliest networked PC games. The 

December 1980 issue of  BYTE Magazine  featured an article on how to program so-called 

Multimachine Games in BASIC (Wasserman and Stryker 1980). 

 One big drawback of using serial ports was that computers typically did not have more than two 

serial ports (unless an expansion card was used). This meant that in order to connect more than 

two computers via serial port, a  daisy chain  scheme where multiple computers are connected 

to each other in a ring had to be used. This could be considered a type of network topology, a 

topic that is covered in far more detail in  Chapter   6   , “Network Topologies and Sample Games.” 
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 So in spite of the technology being available in the early 1980s, most games released during 

the decade did not really take advantage of local networking in this manner. It wasn’t until 

the 1990s that the idea of locally connecting several computers to play a game really gained 

traction, as discussed later in this chapter.  

  Multi-User Dungeons 

 A  multi-user dungeon  or MUD is a (usually text-based) style of multiplayer game where 

several players are connected to the same virtual world at once. This type of game first gained 

popularity on mainframes at major universities, and the term originates from the game  MUD  

(1978), which was created by Rob Trushaw at Essex University. In some ways, MUDs can be 

thought of as an early computer version of the role-playing game  Dungeons and Dragons , 

though not all MUDs are necessarily role-playing games. 

 Once personal computers became more powerful, hardware manufacturers began to offer 

modems that allowed two computers to communicate with each other over standard phone 

lines. Although the transmission rates were extraordinarily slow by modern standards, this 

allowed for MUDs to be played outside the university setting. Some ran MUD games on a 

  bulletin board system  (BBS), which allowed for multiple users to connect via modem to a 

system that could run many things including games.  

  Local Area Network Games 

 A  local area network  or LAN is a term used to describe several computers connected to each 

other within a relatively small area. The mechanism used for the local connection can vary—for 

example, the serial port connections discussed earlier in this chapter would be one example 

of a local area network. However, local area networks really took off with the proliferation of 

Ethernet (a protocol which is discussed in more detail in  Chapter   2   , “The Internet”). 

 While by no means the first game to support LAN multiplayer,  Doom  (1993) was in many 

ways the progenitor of the modern networked game. The initial version of the id Software 

first-person shooter supported up to four players in a single game session, with the option to 

play cooperatively or in a competitive “deathmatch.” Since  Doom  was a fast-paced action game, 

it required implementation of several of the key concepts covered in this book. Of course, these 

techniques have evolved a great deal since 1993, but the influence of  Doom  is widely accepted. 

For much greater detail on the history and creation of  Doom , read  Masters of Doom  (2003), listed 

in the references at the conclusion of this chapter. 

 Many games that support networked multiplayer over a LAN also supported networked 

 multiplayer in other ways—whether by modem connection or an online network. For many years, 

the vast majority of networked games also supported gaming on a LAN. This led to the rise of LAN 

parties where people would meet at a location and connect their computers to play networked 

games. Although some networked multiplayer games are still released with LAN play, the trend in 

recent years seems to have developers forgoing LAN play for exclusively online multiplayer.  
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  Online Games 

 In an  online game , players connect to each other over some large network with geographically 

distant computers. Today, online gaming is synonymous with Internet gaming, but the term 

“online” is a bit broader and can include some of the earlier networks such as CompuServe that, 

originally, did not connect to the Internet. 

 As the Internet started to explode in the late 1990s, online games took off alongside it. Some 

of the popular games in the earlier years included id Software’s  Quake  (1996) and Epic Game’s 

 Unreal  (1998). 

 Although it may seem like an online game could be implemented in much the same way as a 

LAN game, a major consideration is  latency , or the amount of time it takes data to travel over 

the network. In fact, the initial version of  Quake  wasn’t really designed to work over an Internet 

connection, and it wasn’t until the  QuakeWorld  patch that the game was reliably playable over 

the Internet. Methods to compensate for latency are covered in much greater detail in  Chapter   7   , 

“Latency, Jitter, and Reliability” and  Chapter   8   , “Improved Latency Handling.” 

 Online games took off on consoles with the creation of services such as Xbox Live and 

PlayStation Network in the 2000s, services that were direct descendants of PC-based services 

such as GameSpy and DWANGO. These console services now regularly have several million 

active users during peak hours (though with expansion of video streaming and other services 

to consoles, not all of these active users may be playing a game).  Chapter   12   , “Gamer Services,” 

discusses how to integrate one such gamer service—Steam—into a PC game.  

  Massively Multiplayer Online Games 

 Even today, most online multiplayer games are limited to a small number of players per game 

session—somewhere from 4 to 32 is commonly the number of supported players. In a  Massively 
Multiplayer Online Game  (MMO), however, hundreds if not thousands of players can participate 

in a single game session. Most MMO games are role-playing games and thus called  MMORPGs . 

However, there are certainly other styles of MMO games such as first-person shooters (MMOFPS). 

 In many ways, MMORPGs can be thought of as the graphical evolution of multi-user dungeons. 

Some of the earliest MMORPGs actually predated the widespread adoption of the Internet, 

and instead functioned over dial-in networks such as Quantum Link (later America Online) 

and CompuServe. One of the first such games was  Habitat  (1986) which implemented several 

pieces of novel technology (Morningstar and Farmer 1991). However, it wasn’t until the Internet 

became more widely adopted that the genre gained more traction. One of the first big hits was 

 Ultima Online  (1997). 

 Other MMORPGs such as  EverQuest  (1999) were also successful, but the genre took the world by 

storm with the release of  World of Warcraft  (2004). At one point, Blizzard’s MMORPG had over 
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12 million active subscribers worldwide, and the game became such a large part of popular 

culture that it was featured in a 2006 episode of the animated series  South Park . 

 Architecting an MMO is a complex technical challenge, and some of these challenges are 

discussed in  Chapter   9   , “Scalability.” However, most of the techniques necessary to create an 

MMO are well beyond the scope of this book. That being said, the foundations of creating 

a smaller-scale networked game are important to understand before it’s possible to even 

consider creating an MMO.  

  Mobile Networked Games 

 As gaming has expanded to the mobile landscape, multiplayer games have followed right along. 

Many multiplayer games on these platforms are  asynchronous —typically turn-based games 

that do not require real-time transmission of data. In this model, players are notified when it is 

their turn, and have a large amount of time to make their move. The asynchronous model has 

existed from the very beginning of networked multiplayer games. Some BBS only had one 

incoming phone line connection, which meant that only one user could be connected at any 

one time. Thus, a player would connect, take their turn, and disconnect. Then at some point in 

the future, another player would connect and be able to respond and take their own turn. 

 An example of a mobile game that uses asynchronous multiplayer is  Words with Friends  (2009). 

From a technical standpoint, an asynchronous networked game is simpler to implement than a 

real-time one. This is especially true on mobile platforms, because the platform APIs (application 

program interfaces) have built-in functionality for asynchronous communication. Originally, 

using an asynchronous model for mobile games was somewhat out of necessity because the 

reliability of mobile networks is comparatively poor to wired connections. However, with the 

proliferation of Wi-Fi–capable devices and improvements to mobile networks, more and more 

real-time networked games are appearing on these devices. An example of a mobile game that 

takes advantage of real-time network communication is  Hearthstone: Heroes of Warcraft  (2014).   

  Starsiege: Tribes 
  Starsiege: Tribes  is a sci-fi first-person shooter that was released at the end of 1998. At the time of 

release, it was well regarded as a game featuring both fast-paced combat and a comparatively 

massive number of players. Some game modes supported 128 players over either a LAN or the 

Internet. To gain some perspective on the magnitude of the challenge in implementing such a 

game, keep in mind that during this time period, the vast majority of players with an Internet 

connection used a dial-up service. At best, these dial-up users had a modem capable of speeds 

up to 56.6 kbps. In the case of  Tribes , it actually supported users with modem speeds of only 

28.8 kbps. By modern standards, these are extremely slow connection speeds. Another factor 

was that dial-up connections also had relatively high latency—a latency of several hundred 

milliseconds was rather common. 
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 It may seem that a networking model designed for a game with low bandwidth constraints 

would be irrelevant in the modern day. However, it turns out that the model used in  Tribes  still 

has a great deal of validity even today. This section summarizes the original  Tribes  networking 

model—for a more in-depth discussion, refer to the article by Frohnmayer and Gift referenced 

at the end of this chapter. 

 Do not be concerned if some of the concepts covered in this section don’t entirely make sense 

right now. The intent is that by looking at a networked multiplayer game’s architecture at a high 

level, you will gain an appreciation for the numerous technical challenges faced and decisions to 

be made. All the topics touched on in this section are covered in much greater detail throughout 

the remainder of this book. Furthermore, one of the sample games built throughout this book, 

 RoboCat Action , ultimately uses a model similar to the  Tribes  networking model. 

 One of the first choices made when engineering a networked game is to choose a 

 communications protocol , or an established convention by which data is exchanged 

between two computers.  Chapter   2   , “The Internet,” covers how the Internet works and the 

commonly used protocols.  Chapter   3   , “Berkeley Sockets,” covers a ubiquitous library used to 

facilitate communication via these protocols. For the sake of the current discussion, the only 

thing you need to know is that, for efficiency reasons,  Tribes  uses an  unreliable  protocol. This 

means that data sent over the network is  not  guaranteed to be received by the destination. 

 However, using an unreliable protocol can be problematic when a game needs to send 

information that is important to all the players in the game. Thus, the engineers needed to 

consider the different types data they wanted to send out. The developers of  Tribes  ultimately 

separated their data requirements into the following four categories: 

   1. Non-guaranteed data.  As one might expect, this is data that the game designates as 

nonessential to the game. When bandwidth-starved, the game can choose to drop this 

data first.  

  2. Guaranteed data.  This data guarantees both arrival and ordering of the data in question. 

This is used for data deemed critical by the game, such as an event signifying when a player 

has fired a weapon.  

  3. “Most recent state” data.  This type of data is for cases where only the most recent version 

of the data is of importance. One example is the hit points of a particular player. A player’s 

hit points 5 seconds ago are not terribly relevant if the game knows what their hit points 

are right now.  

  4. Guaranteed quickest data.  This data is given the highest priority in order to transmit 

as quickly as possible  with  guaranteed delivery. An example of this type of data is player 

movement information, which is typically relevant for a very short period of time, and thus 

should be transmitted quickly.   

 Many of the implementation decisions made in the  Tribes  Networking Model center on 

providing these four types of data transmission. 
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 Another important design decision was to utilize a client-server model instead of a peer-to-peer 

model. In a  client-server model , players all connect to a central server, whereas in a  

peer-to-peer model , every player connects to every other player. As discussed in  Chapter   6   , 

“Network Topologies and Sample Games,” a peer-to-peer model requires    O(n2)    bandwidth. This 

means that the bandwidth grows at a quadratic rate based on the number of users. In this case, 

with    n    being as high as 128, using peer-to-peer would lead to very little bandwidth per player. 

To avoid this issue,  Tribes  instead implemented a client-server model. In this configuration, the 

bandwidth requirements of each player remain constant, while the server must handle only    O(n)    

bandwidth. However, this meant that the server needed to be on a network that would allow for 

several incoming connections—the type of connection that only a company or  university might 

have owned at the time. 

 Next,  Tribes  split up their networking implementation into several different layers—one can 

think of this as a “layer cake” of the  Tribes  Networking Model. This is illustrated in  Figure   1.1   . The 

remainder of this section briefly describes the composition of each of these layers.  

Game’s Simulation Layer

Stream Manager

Connection Manager

Platform Packet Module

Ghost
Manager

Move
Manager

Event
Manager

Other
…

  Figure 1.1  The main components of the  Tribes  Networking Model       

  Platform Packet Module 

 A  packet  is a formatted set of data sent over a network. In the  Tribes  model, the  platform 
packet module  is the lowest layer. It is the only layer in the model that is platform-specific. In 

essence, this layer is a wrapper for the standard socket APIs that can construct and send various 

packet formats. The implementation of this layer might look rather similar to the systems 

implemented in  Chapter   3   , “Berkeley Sockets.” 

 Since  Tribes  utilized an unreliable protocol, the developers needed to add some mechanism to 

handle the data they decided needed to be guaranteed. Similar to the approach discussed 

in  Chapter   7   , “Latency, Jitter, and Reliability,”  Tribes  implemented a custom reliability layer. 

However, this reliability layer is not handled by the platform packet module; instead the higher 

level managers such as the ghost manager, move manager, or event manager are responsible 

for adding any reliability.  
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  Connection Manager 

 The job of the  connection manager  is to abstract the connection between two computers 

over the network. It receives data from the layer above it, the stream manager, and transmits 

data to the layer below it, the platform packet module. 

 The connection manager level is still unreliable. It  does not  guarantee delivery of data sent to it. 

However, the connection manager  does  guarantee a  delivery status notification —that is to 

say, the status of a request passed to the connection manager can be verified. In this way, it is 

possible for the level above the connection manager (the stream manager) to know whether or 

not particular data was successfully delivered. 

 The delivery status notification is implemented with a sliding window bit field of 

acknowledgments. Although the original  Tribes  Networking Model paper does not contain 

a detailed discussion regarding the implementation of the connection manager, an 

implementation of a similar system is discussed in  Chapter   7   , “Latency, Jitter, and Reliability.”  

  Stream Manager 

 The primary job of the  stream manager  is to send data to the connection manager. One 

important aspect of this is determining the maximum rate of data transmission that is allowed. 

This will vary depending on the quality of the Internet connection. An example given in the 

original paper is where a user on a 28.8-kbps modem might have their packet rate set to 

10 packets per second with a maximum size of 200 bytes per packet, for approximately 2 kB of 

data per second. This rate and size is sent to the server upon connection of the client, in order 

to ensure that the server does not overwhelm the client’s connection with too much data. 

 Since several other systems will ask the stream manager to send data, it is also the duty of the 

stream manager to prioritize these requests. The move, event, and ghost managers are given 

the highest priority when in a bandwidth-bound scenario. Once the stream manager decides 

on what data to send, the packets are dispatched to the connection manager. In turn, the 

higher-level managers will be informed by the stream manager regarding the status of delivery. 

 Because of the set interval and packet size enforced by the stream manager, it is very much 

possible for a packet to be dispatched with multiple types of data in it. For example, a packet 

may have some data from the move manager, some data from the event manager, and some 

data from the ghost manager.  

  Event Manager 

 The  event manager  maintains a queue of events that are generated by the game’s simulation. 

These events can be thought of as a simple form of a  remote procedure call  or  RPC , a 

function that can be executed on a remote machine. RPCs are discussed in  Chapter   5   , “Object 

Replication.” 
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 For example, when a player fires a weapon, this would likely cause a “player fired” event to be 

sent to the event manager. This event can then be sent to the server, which will actually validate 

and execute the weapon firing. It is also the purview of the event manager to prioritize the 

events—it will try to write as many of the highest priority events as possible until any of the 

following conditions are true: the packet is full, the event queue is empty, or there are currently 

too many active events. 

 The event manager also tracks the transmission records for each event marked as reliable. 

In this way, it is very simple for the event manager to enforce reliability. If a reliable event is 

 unacknowledged, then the event manager can simply prepend the event to the event queue 

and try again. Of course, there will be some events that are marked as unreliable. For these 

unreliable events, there is no need to even track their transmission records.  

  Ghost Manager 

 The  ghost manager  is perhaps the most important system in terms of supporting up to 

128 players. At a high level, the job of the ghost manager is to  replicate  or “ghost”  dynamic  

objects that are deemed relevant to a particular client. In other words, the server sends 

information about dynamic objects to the clients, but only the objects that the server thinks 

the client needs to know about. The game’s simulation layer is responsible for determining 

what a client absolutely  needs  to know and what a client ideally  should  know. This adds an 

inherent  prioritization to game objects in the world: “need to know” objects are the highest 

priority, while “should know” objects are lower priority. In order to determine whether or not 

an object is relevant to a particular client, there are several different approaches that can be 

employed.  Chapter   9   , “Scalability,” covers some of these approaches. In general, determining 

object  relevancy is very game-specific. 

 Regardless of how the set of relevant objects is computed, the job of the ghost manager is to 

transmit object state from server to client for as many relevant objects as possible. It’s very 

important that the ghost manager guarantees that the most recent data is always successfully 

transmitted to all of the clients. The reason for this is that the game object information that is 

ghosted will often contain information such as health, weapons, ammo count, and so on—all 

cases where the most recent data is the only information that matters. 

 When an object becomes  relevant  (or “in scope”), the ghost manager will assign some 

information to the object, which is appropriately called a  ghost record . This record will include 

items such as a unique ID, a state mask, the priority, and status change (whether or not the 

object has been marked as in or out of scope). 

 For transmission of the ghost records, the objects are prioritized first by status change and 

then by the priority level. Once the ghost manager determines the objects that should be sent, 

their data can be added to the outgoing packet using an approach similar to what is covered in 

 Chapter   5   , “Object Replication.”  
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  Move Manager 

 The responsibility of the  move manager  is to transmit player movement data as quickly as 

possible. If you’ve ever played a fast-paced multiplayer game, you are likely cognizant of the 

fact that accurate movement information is extremely important. If the information regarding a 

player’s position is slow to arrive, it could result in players shooting at where a player used to be 

instead of where a player is, which can result in frustrating gameplay. Quick movement updates 

can be an important way to reduce the perception of latency on the part of player. 

 The other reason the move manager is assigned a high priority is because input data is 

captured at 30 FPS. This means there is new input information available 30 times per second, 

so the latest data is sent as quickly as possible. This higher priority also means that, when move 

data is available, the stream manager will always first add any pending move manager data 

to an outgoing packet. Each client is responsible for transmitting their move information to 

the server. The server then applies this move information in its simulation of the game, and 

acknowledges the receipt of the move information to the client who sent it.  

  Other Systems 

 There are a few other systems in the  Tribes  model, though these are less critical to the overarching 

design. For example, there is a datablock manager, which handles transmission of game objects 

that are relatively static in nature. This differs from the relatively dynamic objects that are handled 

by the ghost manager. An example for this might be a static vehicle such as a turret—the object 

doesn’t really move, but it exists to serve a purpose when a player interacts with it.   

  Age of Empires 
 As with  Tribes , the real-time strategy (RTS) game  Age of Empires  was released in the late 1990s. 

This means that  Age of Empires  faced many of the same bandwidth and latency constraints 

of dial-up Internet access.  Age of Empires  uses a  deterministic lockstep  networking model. 

In this model, all the computers are connected to each other, meaning it is peer-to-peer. A 

guaranteed  deterministic  simulation of the game is concurrently performed by each of the 

peers. It is  lockstep  because peers use communication to ensure that they remain synchronized 

throughout the game. As with  Tribes , even though the deterministic lockstep model has existed 

for many years, it is still commonly used in modern RTS games. The other sample game built 

during the course of this book,  RoboCat RTS , implements a deterministic lockstep model. 

 One of the largest differences between implementing networked multiplayer for an RTS 

instead of an FPS is the number of relevant units. In  Tribes , even though there are up to 

128 players, at any particular point in time only a fraction of these players is going to be relevant 

to a particular client. This means that the ghost manager in  Tribes  rarely has to send information 

about more than 20 to 30 ghosts at a time. 
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 Contrast this with an RTS such as  Age of Empires . Although the player cap is much smaller 

(limited to eight simultaneous players in the original game), each player can control a large 

number of units. The original  Age of Empires  capped the number of units for each player at 

50, whereas in later games the cap was as high as 200. Using the cap of 50, this means that 

in a massive eight-player battle, there could be up to 400 units active at a time. Although it 

is natural to wonder if some sort of relevancy system could reduce the number of units that 

need to be synchronized, it’s important to consider the worst-case scenario. What if a battle 

toward the end of a game featured the armies of all eight players? In this case, there are 

going to be several hundred units that are relevant at the same time. It would be hard for the 

synchronization to keep up even if a minimal amount of information is sent per unit. 

 To alleviate this issue, the engineers for  Age of Empires  decided to synchronize the  commands  

each player issued, rather than synchronizing the units. There’s a subtle but important 

distinction in this implementation—even a professional RTS player may be able to issue no 

more than 300 commands per minute. This means that even in an extreme case, the game 

need only transmit a few commands per second per each player. This requires a much more 

manageable amount of bandwidth than transmitting information about several hundred units. 

However, given that the game is no longer transmitting unit information over the network, 

each instance of the game needs to independently apply the commands transmitted by each 

player. Since each game instance is performing an independent simulation, it is of the utmost 

importance that each game instance remains synchronized with the other game instances. This 

ends up being the largest challenge of implementing the deterministic lockstep model. 

  Turn Timers 

 Since every game instance is performing an independent simulation, it makes sense to utilize 

a peer-to-peer topology. As discussed in  Chapter   6   , “Network Topologies and Sample Games,” 

one advantage of a peer-to-peer model is that data can reach every computer more quickly. 

This is because the server is not acting as a middleman. However, one disadvantage is that each 

player needs to send their information to every other player, as opposed to just a single server. 

So for example, if player A issues an attack command, then every game instance needs to be 

aware of this attack command, or their simulations would diverge from each other. 

 However, there is another key factor to consider. Different players are going to run the game 

at different frame rates, and different players are going to have different quality connections. 

Going back to the example where player A issues an attack command, it’s just as important 

that player A does not immediately apply the attack command. Instead, player A should only 

apply the attack command once players B, C, and D are all ready to simultaneously apply the 

command. But this introduces a conundrum: If player A’s game waits too long to execute the 

attack command, the game will seem very unresponsive. 

 The solution to this problem is to introduce a  turn timer  to queue up commands. With the 

turn timer approach, first a turn length is selected—in the case of  Age of Empires , the default 
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duration was 200 ms. All commands during these 200 ms are saved into a buffer. When the 

200 ms are over, all the commands for that player’s turn are transmitted over the network to all 

other players. Another key aspect of this system is a turn execution delay of two turns. What 

this means is that, for example, commands that are issued by the player on turn 50 will not be 

executed by any game until turn 52. In the case of a 200-ms turn timer, this means that the 

 input lag , the amount of time it takes for a player’s command to be displayed on screen, could 

be as high as 600 ms. However, the two turns of slack allows for every other player to receive 

and acknowledge the commands for a particular turn. It may seem slightly counterintuitive for 

an RTS game to actually have turns, but you can see the hallmarks of the turn timer approach in 

many different RTS games, including  StarCraft II . Of course, modern games can have the luxury 

of shorter turn timers since bandwidth and latency are much better for most users today in 

comparison to the late 1990s. 

 There is one important edge case to consider with the turn timer approach. What happens 

if one of the players experiences a lag spike and they can no longer keep up with the 

200-ms timer? Some games might temporarily pause the simulation to see if the lag spike can 

be overcome—eventually, the game may decide to drop the player if they continue to slow 

down the game for everyone else.  Age of Empires  also tries to compensate for this scenario by 

dynamically adjusting the rendering frame rate based on network conditions—thus a computer 

with a particularly slow Internet connection might allocate more time to receive data over the 

network, with less time being allotted for rendering graphics. For more detail on the dynamic 

turn adjustment, consult the original Bettner and Terrano article listed in the references. 

 There’s also an extra benefit of transmitting the commands issued by the clients. With such an 

approach, it does not take much extra memory or work to save the commands issued over the 

course of an entire match. This directly leads to the possibility of implementing savable match 

replays, as in  Age of Empires II . Replays are very popular in RTS games because it allows players 

to evaluate matches to gain a deeper understanding of strategies. It would require significantly 

more memory and overhead to create replays in an approach that transmitted unit information 

instead of commands.  

  Synchronization 

 Turn timers alone are not enough to guarantee synchronization between each peer. Since each 

machine is receiving and processing commands independently, it is of the utmost importance 

that each machine arrives at an identical result. In their paper, Bettner and Terrano write that 

“the difficulty with finding out-of-sync errors is that very subtle differences would multiply over 

time. A deer slightly out of alignment when the random map was created would forage slightly 

differently—and minutes later a villager would path a tiny bit off, or miss with his spear and 

take home no meat.” 

 One concrete example arises from the fact that most games have some amount of randomness 

in actions. For instance, what if the game performs a random check in order to determine 
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whether or not an archer hits an infantry? It would be conceivable that player A’s instance 

decides the archer does hit the infantry, whereas player B’s instance decides the archer doesn’t 

hit the infantry. The solution to this problem is to exploit the “pseudo” prefix of the pseudo-
random number generator (PRNG). Since all PRNGs use some sort of seeding, the way you can 

guarantee both players A and B arrive at the same random results is to synchronize the seed 

value across all game instances. One should keep in mind, however, that a seed only guarantees 

a particular sequence of numbers. So not only is it important that each game instance uses the 

same seed, it’s equally important that each game instance makes the same number of calls to 

the random generation number—otherwise the PRNG numbers will become out of sync. PRNG 

synchronization in a peer-to-peer configuration is further elaborated in  Chapter   6   , “Network 

Topologies and Sample Games.” 

 There is also an implicit advantage to checking for synchronization—it reduces the opportunity 

for players to cheat. For example, if one player gives themselves 500 extra resources, the other 

game instances could immediately detect the desynchronization in the game state. It would 

then be trivial to kick the offending player out of the game. However, as with any system, there 

are tradeoffs—the fact that each game state simulates each unit in the game means that it is 

possible to create cheats that reveal information that should not be visible. This means that  the 

so-called “map hacks” that reveal the entire map are still a common issue in most RTS games. 

This and other security concerns are covered in  Chapter   10   , “Security.”    

     Summary 
 Networked multiplayer games have a lengthy history. They began as games playable on networks 

of mainframe computers, such as  Empire  (1973), which was playable on the PLATO network. 

Networked games later expanded to text-based multi-user dungeon games. These MUDs later 

expanded to bulletin board systems which allowed for users to dial in over phone lines. 

 In the early 1990s, local area network games, led by  Doom  (1993), took the computer gaming 

world by storm. These games allowed for players to locally connect multiple computers and 

play with or against each other. As adoption of the Internet expanded in the late 1990s, online 

games such as  Unreal  (1998) became very popular. Online games also started to see adoption 

on consoles in the early 2000s. One type of online game is the massively multiplayer online 

game, which supports hundreds if not thousands of players in the same game session at once. 

  Starsiege: Tribes  (1998) implemented a network architecture still relevant to a modern-day 

action game. It uses a client-server model, so each player in the game is connected to a server 

that coordinates the game. At the lowest level, the platform packet module abstracts sending 

packets over the network. Next, the connection manager maintains connections between the 

players and the server, and provides delivery status notifications. The stream manager takes data 

from the higher-level managers (including the event, ghost, and move managers), and based on 

priority, adds this data to outgoing packets. The event manager takes important events, such as 

“player fired” and ensures that this data is received by the relevant parties. The ghost manager 
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handles sending object updates for the set of objects deemed relevant for a particular player. 

The move manager sends the most recent movement information for each player. 

  Age of Empires  (1997) implemented a deterministic lockstep model. All computers in the game 

connect to each other in a peer-to-peer manner. Rather than sending information about each 

unit over the network, the game instead sends commands to each peer. These commands are 

then independently evaluated by each peer. In order to ensure the machines stay synchronized, 

a turn timer is used to save up commands over a period of time before sending them over the 

network. These commands are not executed until two turns later, which gives enough time for 

each peer to send and receive turn commands. Additionally, it is important that each peer runs 

a deterministic simulation, which means, for example, pseudo-random number generators 

need to be synchronized.  

  Review Questions 
  1.    What is the difference between a local multiplayer game and a networked multiplayer game?  

  2.    What are three different types of local network connections?   

  3.    What is a major consideration when converting a networked game that works over a LAN 

to work over the Internet?   

  4.    What is an MUD, and what type of game did it evolve into?   

  5.    How does an MMO differ from a standard online game? 

  6.    In the  Tribes  model, which system(s) provide reliability? 

  7.    Describe how the ghost manager in the  Tribes  model reconstructs the minimal necessary 

transmission in the event that a packet is dropped.   

  8.    In the  Age of Empires  peer-to-peer model, what is the purpose of the turn timer? What 

 information is transmitted over the network to the other peers?    
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 THE INTERNET 

      This chapter provides an overview of the TCP/IP 

suite and the associated protocols and standards 

involved in Internet communication, including a 

deep dive into those which are most relevant for 

multiplayer game programming.    
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     Origins: Packet Switching 
 The Internet as we know it today is a far cry from the four-node network as which it started life 

in late 1969. Originally known as ARPANET, it was developed by the United States Advanced 

Research Projects Agency with the stated goal of providing geographically dispersed scientists 

with access to uniquely powerful computers, similarly geographically dispersed. 

 ARPANET was to accomplish its goal using a newly invented technology called  packet 
switching . Before the advent of packet switching, long-distance systems transmitted 

information through a process known as  circuit switching . Systems using circuit switching sent 

information via a consistent circuit, created by dedicating and assembling smaller circuits into 

a longer path that persisted throughout the duration of the transmission. For instance, to send 

a large chunk of data, like a telephone call, from New York to Los Angeles, the circuit switching 

system would dedicate several smaller lines between intermediary cities to this chunk of 

information. It would connect them into a continuous circuit, and the circuit would persist 

until the system was done sending the information. In this case, it might reserve a line from 

New York to Chicago, a line from Chicago to Denver, and a line from Denver to Los Angeles. In 

reality these lines themselves consisted of smaller dedicated lines between closer cities. The 

lines would remain dedicated to this information until the transmission was complete; that is, 

until the telephone call was finished. After that the system could dedicate the lines to other 

information transmissions. This provided a very high quality of service for information transfer. 

However, it limited the usability of the lines in place, as the dedicated lines could only be used 

for one purpose at a time, as shown in  Figure   2.1   .  

New YorkChicago

Denver

Los Angeles

Boston
Seattle

In progress transmission from New York to Los Angeles

Obstructed transmission from Boston to Seattle

  Figure 2.1  Circuit switching       

 Packet switching, however, provides increased usability by removing the requirement that 

a circuit be dedicated to a single transmission at a time. It achieves this by breaking up 
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transmissions into small chunks called  packets  and sending them down shared lines using a 

process called  store and forward . Each node of the network is connected to other nodes in the 

network using a line that can carry packets between the nodes. Each node can store incoming 

packets and then forward them to a node closer to their final destination. For instance, in the 

call from New York to Los Angeles, the call would be broken up into very short packets of data. 

They would then be sent from New York to Chicago. When the Chicago node receives a packet, 

it examines the packet’s destination and decides to forward the packet to Denver. The process 

continues until the packets arrive in Los Angeles and then the call receiver’s telephone. The 

important distinction from circuit switching is that other phone conversations can happen at 

the same time, using the same lines. Other calls from New York to Los Angeles could have their 

packets forwarded along the same lines at the same time, as could a call from Boston to Seattle, 

or anywhere in between. Lines can hold packets from many, many transmissions at once, 

increasing usability, as shown in  Figure   2.2   .  

New YorkChicago

Denver

Los Angeles

Boston
Seattle

In progress transmission from New York to Los Angeles

In progress transmission from Boston to Seattle

  Figure 2.2  Packet switching       

 Packet switching itself is just a concept, though. Nodes on the network need a formal protocol 

collection to actually define how data should be packaged into packets and forwarded 

throughout the network. For the ARPANET, this protocol collection was defined in a paper known 

as the BBN Report 1822 and referred to as the 1822 protocol. Over many years, the ARPANET grew 

and grew and became part of the larger network now known as the Internet. During this time 

the protocols of the 1822 report evolved as well, becoming the protocols that drive the Internet of 

today. Together, they form a collection of protocols now known as the  TCP/IP suite .  

  The TCP/IP Layer Cake 
 The TCP/IP suite is at once both a beautiful and frightening thing. It is beautiful because in 

theory it consists of a tower of independent and well-abstracted layers, each supported by 



ptg16606381

18 CHAPTER 2 THE INTERNET

a variety of interchangeable protocols, bravely fulfilling their duties to support dependent 

layers and relay their data appropriately. It is frightening because these abstractions are often 

flagrantly violated by protocol authors in the name of performance, expandability, or some 

other worthwhile yet complexity-inducing excuse. 

 As multiplayer game programmers, our job is to understand the beauty and horror of the TCP/

IP suite so that we can make our game functional and efficient. Usually this involves touching 

only the highest layers of the stack, but to do that effectively, it is useful to understand the 

underlying layers and how they affect the layers above them. 

 There are multiple models which explain the interactions of the layers used for Internet 

communication.  RFC 1122 , which defined early Internet host requirements, uses four layers: 

the link layer, the IP layer, the transport layer, and the application layer. The alternate Open 

Systems Interconnection (OSI) model uses seven layers: the physical layer, the data link layer, the 

network layer, the transport layer, the session layer, the presentation layer, and the application 

layer. To focus on matters relevant to game developers, this book uses a combined, five-model 

layer, consisting of the physical layer, the link layer, the network layer, the transport layer, and 

the application layer, as shown in  Figure   2.3   . Each layer has a duty, supporting the needs of the 

layer directly above it. Typically that duty includes 

   ■   Accepting a block of data to transmit from a higher layer  

■   Packaging the data up with a layer header and sometimes a footer  

■   Forwarding the data to a lower layer for further transmission  

■   Receiving transmitted data from a lower layer  

■   Unpackaging transmitted data by removing the header  

■   Forwarding transmitted data to a higher layer for further processing    

Application Layer
Application

Data

Transport Layer
Transport
Header

Network Layer
Network
Header

Link Layer
Link

Header
Link

Footer

Physical Layer Physical Medium

Data Flow

  Figure 2.3  A game developer’s view of the TCP/IP layer cake       

 The way a layer performs its duty, however, is not built into the definition of the layer. In fact, 

there are various protocols each layer can use to do its jobs, with some as old as the TCP/IP suite 
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and others currently being invented. For those familiar with object-oriented programming, it 

can be useful to think of each layer as an interface, and each protocol or collection of protocols 

as an implementation of that interface. Ideally, the details of a layer’s implementation are 

abstracted away from the higher layers in the suite, but as mentioned previously that is not 

always true. The rest of this chapter presents an overview of the layers of the suite and some of 

the most common protocols employed to implement them.  

  The Physical Layer 
 At the very bottom of the layer cake is the most rudimentary, supporting layer: the  physical 
layer . The physical layer’s job is to provide a physical connection between networked 

computers, or hosts. A physical medium is necessary for the transmission of information. 

Twisted pair Cat 6 cable, phone lines, coaxial cable, and fiber optic cable are all examples of 

physical media that can provide the connection required by the physical layer. 

 Note that it is not necessary that the physical connection be tangible. As anyone with a mobile 

phone, tablet, or laptop can attest, radio waves also provide a perfectly good physical medium 

for the transmission of information. Some day soon, quantum entanglement may provide a 

physical medium for the transmission of information across great distances at instantaneous 

speeds, and when it does, the great layer cake of the Internet will be ready to accept it as a 

suitable implementation of its physical layer.  

  The Link Layer 
 The  link layer  is where the real computer science of the layer cake begins. Its job is to provide 

a method of communication between physically connected hosts. This means the link layer 

must provide a method through which a source host can package up information and transmit 

it through the physical layer, such that the intended destination host has a sporting chance of 

receiving the package and extracting the desired information. 

 At the link layer, a single unit of transmission is known as a  frame . Using the link layer, hosts 

send frames to each other. Broken down more specifically, the duties of the link layer are to 

■   Define a way for a host to be identified such that a frame can be addressed to a specific 

destination.  

■   Define the format of a frame that includes the destination address and the data to be sent. 

■   Define the maximum size of a frame so that higher layers know how much data can be sent 

in a single transmission.  

■   Define a way to physically convert a frame into an electronic signal that can be sent over 

the physical layer and probably received by the intended host.   
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 Note that delivery of the frame to the intended host is only probable, not guaranteed. There are 

many factors which influence whether the electronic signal actually arrives uncorrupted at its 

intended destination. A disruption in the physical medium, some kind of electrical interference, 

or an equipment failure could cause a frame to be dropped and never delivered. The link 

layer does not promise any effort will be made to determine if a frame arrives or resend it if it 

does not. For this reason, communication at the link layer level is referred to as unreliable. Any 

higher-layer protocol that needs guaranteed, or reliable, delivery of data must implement that 

guarantee itself. 

 For each physical medium which can be chosen to implement the physical layer, there is a 

corresponding protocol or list of protocols which provide the services necessary at the link 

layer. For instance, hosts connected by twisted pair cable can communicate using one of the 

Ethernet protocols such as 1000BASET. Hosts connected by radio waves can communicate 

using one of the short-range Wi-Fi protocols (e.g., 802.11g, 802.11n, 802.11ac) or one of the 

longer-range wireless protocols such as 3G or 4G.  Table   2.1    lists some popular physical medium 

and link layer protocol combinations.  

 Table 2.1   Physical Medium and Link Layer Protocol Pairings 

 Physical Medium  Link Layer Protocol 

 Twisted pair  Ethernet 10BASET, Ethernet 100BASET, Ethernet 1000BASET 

 Twisted copper wire  Ethernet over copper (EoC) 

 2.4 GHz radio waves  802.11b, 802.11g, 802.11n 

 5 GHz radio waves  802.11n, 802.11ac 

 850 MHz radio waves  3G, 4G 

 Fiber optic cable  Fiber distributed data interface (FDDI), Ethernet 10GBASESR, 
Ethernet 10GBASELR 

 Coaxial cable  Ethernet over coax (also EoC), data over cable service interface 
specification (DOCSIS) 

 Because the link layer implementation and physical layer medium are so closely linked, some 

models group the two into a single layer. However, because some physical media support more 

than one link layer protocol, it can be useful to think of them as different layers. 

 It is important to note that an Internet connection between two distant hosts does not simply 

involve a single physical medium and a single link layer protocol. As will be explained in the 

following sections in the discussion of the remaining layers, several media and link layer 

protocols may be involved in the transmission of a single chunk of data. As such, many of the 

link layer protocols listed in the table may be employed while transmitting data for a networked 

computer game. Luckily, thanks to the abstraction of the TCP/IP suite, the details of the link 
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layer protocols used are mostly hidden from the game. Therefore, we will not explore in detail 

the inner workings of each of the existing link layer protocols. However, above all the rest, there 

is one link layer protocol group which both clearly illustrates the function of the link layer and is 

almost guaranteed to impact the working life of a networked game programmer in some way, 

and that is  Ethernet . 

  Ethernet/802.3 

 Ethernet is not just a single protocol. It is a group of protocols all based on the original Ethernet 

blue book standard, published in 1980 by DEC, Intel, and Xerox. Collectively, modern Ethernet 

protocols are now defined under IEEE 802.3. There are varieties of Ethernet which run over fiber 

optic cable, twisted pair cable, or straight copper cable. There are varieties that run at different 

speeds: As of this writing, most desktop computers support gigabit speed Ethernet but 10 GB 

Ethernet standards exist and are growing in popularity. 

 To assign an identity to each host, Ethernet introduces the idea of the media access control 

address or  MAC address . A MAC address is a theoretically unique 48-bit number assigned 

to each piece of hardware that can connect to an Ethernet network. Usually this hardware is 

referred to as a  network interface controller  or  NIC . Originally, NICs were expansion cards, but 

due to the prevalence of the Internet, they have been built into most motherboards for the last 

few decades. When a host requires more than one connection to a network, or a connection to 

multiple networks, it is still common to add additional NICs as expansion cards, and such a host 

then has multiple MAC addresses, one for each NIC. 

 To keep MAC addresses universally unique, the NIC manufacturer burns the MAC address 

into the NIC during hardware production. The first 24 bits are an  organizationally unique 
identifier  or  OUI , assigned by the IEEE to uniquely identify the manufacturer. It is then the 

manufacturer’s responsibility to ensure the remaining 24 bits are uniquely assigned within the 

hardware it produces. In this way, each NIC produced should have a hardcoded, universally 

unique identifier by which it can be addressed. 

 The MAC address is such a useful concept that it is not used in just Ethernet. It is in fact used in 

most IEEE 802 link layer protocols, including Wi-Fi and Bluetooth. 

  note 

 Since its introduction, the MAC address has evolved in two significant ways. First, it 

is no longer reliable as a truly unique hardware identifier, as many NICs now allow 

software to arbitrarily change their MAC address. Second, to remedy a variety of 

pending issues, the IEEE has introduced the concept of a 64-bit MAC style address, 

called the extended unique identifier or EUI64. Where necessary, a 48-bit MAC 

address can be converted to an EUI64 by inserting the 2 bytes FFFE right after the OUI.  
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 With a unique MAC address assigned to each host,  Figure   2.4    specifies the format for an 

Ethernet packet, which wraps an Ethernet link layer frame.  

Bytes
Preamble SFD

Frame Check Sequence

Destination MAC Address
Length/Type

Payload (46–1500 bytes)…
Source MAC Address

0 4
0–7

8–13

14–21

22–...

...

  Figure 2.4  Ethernet packet structure       

 The  Preamble and start frame delimiter  ( SFD ) are the same for each packet and consist of the 

hex bytes 0×55 0×55 0×55 0×55 0×55 0×55 0×55 0×D5. This is a binary pattern that helps 

the underlying hardware sync up and prepare for the incoming frame. The Preamble and SFD 

are usually stripped from the packet by the NIC hardware, and the remaining bytes, comprising 

the frame, are passed to the Ethernet module for processing. 

 After the SFD are 6 bytes which represent the MAC address of the intended recipient of the 

frame. There is a special destination MAC address, FF:FF:FF:FF:FF:FF, known as the  broadcast 
address , which indicates that the frame is intended for all hosts on the local area network. 

 The length/type field is overloaded and can be used to represent either length or type. When the 

field is used to represent length, it holds the size in bytes of the payload contained in the frame. 

However, when it is used to represent type, it contains an  EtherType  number which uniquely 

identifies the protocol that should be used to interpret the data inside the payload. When the 

Ethernet module receives this field, it must determine the correct way to interpret it. To assist with 

interpretation, the Ethernet standard defines the maximum length of the payload as 1500 bytes. 

This is known as the  maximum transmission unit , or  MTU , because it is the maximum amount 

of data that can be conveyed in a single transmission. The standard also defines the minimum 

EtherType value to be 0x0600, which is 1536. Thus, if the length/type field contains a number 

≤1500, it represents a length, and if it contains a number ≥1536, it represents a protocol type. 

  note 

 Although not a standard, many modern Ethernet NICs support frames with MTUs 

higher than 1500 bytes. These  jumbo frames  can often have MTUs up to 9000 bytes. 

To support this, they specify an EtherType in the frame header and then rely on the 

underlying hardware to compute the size of the frame based on incoming data.  

 The payload itself is the data transmitted by this frame. Typically it is a network layer packet, 

having been passed onto the link layer for delivery to the appropriate host. 
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 The  frame check sequence  ( FCS ) field holds a cyclic redundancy check (CRC32) value 

generated from the two address fields, the length/type field, the payload, and any padding. 

This way, as the Ethernet hardware reads in data, it can check for any corruption that occurred 

in transit and discard the frame if it did. Although Ethernet does not guarantee delivery of data, 

it makes a good effort to prevent delivery of corrupted data. 

 The specifics of the manner in which Ethernet packets are transmitted along the physical layer 

vary between media and are not relevant to the multiplayer game programmer. It suffices to 

say that each host on the network receives the frame, at which point the host reads the frame 

and determines if it is the intended recipient. If so, it extracts the payload data and processes 

it accordingly based on the value of the length/type field. 

  note 

 Initially, most small Ethernet networks used hardware known as  hubs  to connect 

multiple hosts together. Even older networks used a long coaxial cable strung 

between computers. In these style networks, the electronic signal for the Ethernet 

packet was literally sent to each host on the network, and it was up to the host 

to determine whether the packet was addressed to that host or not. This proved 

 inefficient as networks grew. With the cost of hardware declining, most modern 

networks now use devices known as  switches  to connect hosts. Switches 

remember the MAC addresses, and sometimes the IPs, of the hosts connected to 

each of their ports, so most packets can be sent on the shortest path possible to 

their intended recipient, without having to visit every host on the network.    

  The Network Layer 
 The link layer provides a clear way to send data from an addressable host to one or more 

similarly addressable hosts. Therefore, it may be unclear why the TCP/IP suite requires any 

further layers. It turns out the link layer has several shortcomings which require a superior layer 

to address: 

■   Burned in MAC addresses limit hardware flexibility. Imagine you have a very popular 

webserver that thousands of users visit each day via Ethernet. If you were only using the 

link layer, queries to the server would need to be addressed via the MAC address of its 

Ethernet NIC. Now imagine that one day the NIC explodes in a very small ball of fire. When 

you install a replacement NIC, it will have a different MAC address, and thus your server will 

no longer receive requests from users. Clearly you need some easily configurable address 

system that lives on top of the MAC address.  

■   The link layer provides no support for segmenting the Internet into smaller, local area 

networks. If the entire Internet were run using just the link layer, all computers would have
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to be connected in a single continuous network. Remember that Ethernet delivers each 

frame to every host on the network and allows the host to determine if it is the intended 

recipient. If the Internet used only Ethernet for communication, then each frame would 

have to travel to every single wired host on the planet. A few too many packets could bring 

the entire Internet to its knees. Also, there would be no ability to sanction different areas 

of the network into different security domains. It can be useful to easily broadcast a 

message to just the hosts in a local office, or just share files with the various computers in 

a house. With just the link layer there would be no ability to do this.  

■   The link layer provides no inherent support for communication between hosts using 

different link layer protocols. The fundamental idea behind allowing multiple physical and 

link layer protocols is that different networks can use the best implementation for their 

particular job. However, link layer protocols define no way of communicating from one link 

layer protocol to another. Again, you find yourself requiring an address system which sits 

on top of the hardware address system of the link layer.   

 The network layer’s duty is to provide a logical address infrastructure on top of the link layer, 

such that host hardware can easily be replaced, groups of hosts can be segregated into 

subnetworks, and hosts on distant subnetworks, using different link layer protocols and 

different physical media can send messages to each other. 

  IPv4 

 Today, the most common protocol used to implement the required features of the network 

layer is  Internet protocol version 4  or  IPv4 . IPv4 fulfills its duties by defining a logical 

addressing system to name each host individually, a subnet system for defining logical 

subsections of the address space as physical subnetworks, and a routing system for forwarding 

data between subnets. 

  IP Address and Packet Structure 

 At the heart of IPv4 is the  IP address . An IPv4 IP address is a 32-bit number, usually displayed 

to humans as four 8-bit numbers separated with periods. For example, the IP address of  www

.usc.edu  is 128.125.253.146 and the IP address of  www.mit.edu  is 23.193.142.184. When read 

aloud, the periods are usually pronounced, “dot.” With a unique IP address for each host on 

the Internet, a source host can direct a packet to a destination host simply by specifying the 

destination host’s IP address in the header of the packet. There is an exception to IP address 

uniqueness, explained later in the section “Network Address Translation.” 

 With the IP address defined, IPv4 then defines the structure of an IPv4 packet. The packet 

consists of a header, containing data necessary for implementing network layer functionality, 

and a payload, containing a higher layer’s data to be transferred.  Figure   2.5    gives the structure 

for an IPv4 packet.  

http://www.mit.edu
http://www.usc.edu
http://www.usc.edu


ptg16606381

THE NETWORK LAYER 25

  Version  (4 bits) specifies which version of the IP this packet supports. For IPv4, this is 4. 

  Header length  (4 bits) specifies the length of the header in 32-bit words. Due to the optional 

fields at the end of an IP header, the header may be a variable length. The length field specifies 

exactly when the header ends and the encapsulated data begins. Because the length is 

specified in only 4 bits, it has a maximum value of 15, which means a header can be a maximum 

of 15 32-bit words, or 60 bytes. Because there are 20 bytes of mandatory information in the 

header, this field will never be less than 5. 

  Type of service  (8 bits) is used to for a variety of purposes ranging from congestion control to 

differentiated services identification. For more information, see RFC 2474 and RFC 3168 in the 

“Additional Reading” section. 

  Packet length  (16 bits) specifies the length in bytes of the entire packet, including header and 

payload. As the maximum number representable with 16 bits is 65535, the maximum packet 

size is clamped at 65535. As the minimum size of an IP header is 20 bytes, this means the 

maximum payload conveyable in an IPv4 packet is 65515 bytes. 

  Fragment identification  (16 bits),  fragment flags  (3 bits), and  fragment offset  (13 bits), are 

used for reassembling fragmented packets, as explained later in the section “Fragmentation.” 

  Time to live  or  TTL  (8 bits) is used to limit the number of times a packet can be forwarded, as 

explained later in the section “Subnets and Indirect Routing.” 

  Protocol  (8 bits) specifies the protocol which should be used to interpret the contents of the 

payload. This is similar to the EtherType field in an Ethernet frame, in that it classifies a higher 

layer’s encapsulated data. 

  Header checksum  (16 bits) specifies a checksum that can be used to validate the integrity of 

the IPv4 header. Note that this is only for the header data. It is up to a higher layer to ensure 

integrity of the payload if required. Often, this is unnecessary, as many link layer protocols 

already contain a checksum to ensure integrity of their entire frame; for example, the FCS field 

in the Ethernet header. 

Bits

Destination Address

Time to Live
Identification

Options

Header Checksum
Source Address

Protocol
Fragment OffsetFlags

Total LengthType of ServiceVersion
Header
Length

0 16

0–31

32–63

64–95

96–127

128–159

160–...

  Figure 2.5  IPv4 header structure       
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  Source address  (32 bits) is the IP address of the packet’s sender, and  destination address  

(32 bits) is either the IP address of the packet’s destination host, or a special address specifying 

delivery to more than one host. 

  note 

 The confusing manner of specifying header length in 32-bit words, but packet 

length in 8-bit words, suggests how important it is to conserve bandwidth. 

Because all possible headers are a multiple of 4-bytes long, their byte lengths are 

all evenly divisible by 4, and thus the last 2 bits of their byte lengths are always 0. 

Thus specifying the header length as units of 32-bit words saves 2 bits. Conserving 

bandwidth when possible is a golden rule of multiplayer game programming.   

  Direct Routing and Address Resolution Protocol 

 To understand how IPv4 allows packets to travel between networks with different link layer 

protocols, one must first understand how it delivers packets within a single network with a 

single link layer protocol. IPv4 allows packets to be targeted using an IP address. For the link 

layer to deliver a packet to the proper destination, it needs to be wrapped in a frame with an 

address the link layer can understand. Consider how Host A would send data to Host B in the 

network in  Figure   2.6   .  

Host A
IP: 18.19.0.1

MAC: 01:01:01:00:00:10

Host B
IP: 18.19.0.2

MAC: 01:01:01:00:00:20

Host C
IP: 18.19.0.3

MAC: 01:01:01:00:00:30

  Figure 2.6  Three-host network       

 The sample network shown in  Figure   2.6    contains three hosts, each with a single NIC, all 

connected by Ethernet. Host A wants to send a network layer packet to Host B at its IP address 

of 18.19.0.2. So, Host A prepares an IPv4 packet with a source IP address of 18.19.0.1 and a 

destination IP address of 18.19.0.2. In theory, the network layer should then hand off the packet 

to the link layer to perform the actual delivery. Unfortunately, the Ethernet module cannot 

deliver a packet purely by IP address, as IP is a network layer concept. The link layer needs some 

way to figure out the MAC address which corresponds to IP address 18.19.0.2. Luckily, there is a 

link layer protocol called the  address resolution protocol  ( ARP ), which provides a method for 

doing just that. 
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  note 

 ARP is technically a link layer protocol because it sends out packets directly using 

link layer style addresses and does not require the routing between networks 

provided by the network layer. However, because the protocol violates some 

network layer abstractions by including network layer IP addresses, it can be useful 

to think of it more as a bridge between the layers than as a solely link layer protocol.  

 ARP consists of two main parts: a packet structure for querying the MAC address of the NIC 

associated with a particular IP address, and a table for keeping track of those pairings. A sample 

ARP table is shown in  Table   2.2   .  

 Table 2.2   An ARP Table Mapping from IP Address to MAC Address 

 IP Address  MAC Address 

 18.19.0.1  01:01:01:00:00:10 

 18.19.0.3  01:01:01:00:00:30 

 When the IP implementation needs to send a packet to a host using the link layer, it must first 

query the ARP table to fetch the MAC address associated with the destination IP address. If it 

finds the MAC address in the table, the IP module constructs a link layer frame using that MAC 

address and passes the frame to the link layer implementation for delivery. However, if the MAC 

address is not in the table, the ARP module attempts to determine the proper MAC address by 

sending out an ARP packet ( Figure   2.7   ) to all reachable hosts on the link layer network.  

Bytes

Hardware Type Protocol Type

Sender Hardware Address
Sender Protocol

Address…

… Sender Protocol
Address

Target Hardware Address

Target Protocol Address

Hardware
Address
Length

Protocol
Address
Length

Operation

0 4

0–7

8–15

16–23

24–31

  Figure 2.7  ARP packet structure       

  Hardware type  (16 bits) defines the type of hardware on which the link layer is hosted. For 

Ethernet, this is 1. 

  Protocol type  (16 bits) matches the EtherType value of the network layer protocol being used. 

For instance, IPv4 is 0×0800. 
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  Hardware address length  (8 bits) is the length in bytes of the link layer’s hardware address. In 

most cases, this would be the MAC address size of 6 bytes. 

  Protocol address length  (8 bits) is the length in bytes of the network layer’s logical address. 

For IPv4, this is the IP address size of 4 bytes. 

  Operation  (16 bits) is either 1 or 2, specifying whether this packet is a request for information 

(1) or a response (2). 

  Sender hardware address  (variable length) is the hardware address of the sender of this packet 

and  sender protocol address  (variable length) is the network layer address of the sender of this 

packet. The lengths of these addresses match the lengths specified earlier in the packet. 

  Target hardware address  (variable length) and  target protocol address  (variable length) are 

the corresponding addresses of the intended recipient of this packet. In the case of a request, 

the target hardware address is unknown and ignored by the receiver. 

 Continuing the previous example, if Host A doesn’t know the MAC address of Host B, it prepares 

an ARP request packet with 1 in the Operation field, 18.19.0.1 in the sender protocol address 

field, 01:01:01:00:00:10 in the sender hardware field, and 18.19.0.2 in the target protocol 

address field. It then wraps this ARP packet in an Ethernet frame, which it sends to the Ethernet 

broadcast address FF:FF:FF:FF:FF:FF. Recall that this address specifies that the Ethernet frame 

should be delivered to and examined by each host on the network. 

 When Host C receives the packet, it does not respond because its IP address does not match the 

target protocol address in the packet. However, when Host B receives the packet, its IP does, 

so it responds with its own ARP packet containing its own addresses as the source and Host 

A’s addresses as the target. When Host A receives the packet, it updates its ARP table with Host 

B’s MAC address, and then wraps the waiting IP packet in an Ethernet frame and sends it off to 

Host B’s MAC address. 

  note 

 When Host A broadcasts its initial ARP request to all hosts on the network, it 

includes both its MAC address and IP address. This gives all the other hosts on the 

network an opportunity to update their ARP tables with Host A’s information even 

though they don’t need it yet. This comes in handy if they ever have to talk to Host 

A, as they won’t have to send out an ARP request packet first. 

 You may notice this system creates an interesting security vulnerability! A malicious 

host can send out ARP packets claiming to be any IP at all. Without a way to verify 

the authenticity of the ARP information, a switch might unintentionally route 

packets intended for one host to the malicious host. This not only allows sniffing 

packets, but could prevent intercepted packets from ever arriving at their intended 

host, thoroughly disrupting traffic on the network.   
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  Subnets and Indirect Routing 

 Imagine two large companies, Company Alpha and Company Bravo. They each have their 

own large internal networks, Network Alpha and Network Bravo, respectively. Network Alpha 

contains 100 hosts, Host A1 to A100, and Network Bravo contains 100 hosts, Host B1 to B100. 

The two companies would like to connect their networks so they can send occasional messages 

back and forth, but simply connecting the networks with an Ethernet cable at the link layer 

presents a couple problems. Remember that an Ethernet packet must travel to each connected 

host on a network. Connecting Networks Alpha and Bravo at the link layer would cause each 

Ethernet packet to travel to 200 hosts instead of 100, effectively doubling the traffic on the 

entire network. It also presents a security risk, as it means all of Network Alpha’s packets travel 

to Network Bravo, not just the ones intended for Network Bravo’s hosts. 

 To allow Company Alpha and Company Bravo to connect their networks efficiently, the network 

layer introduces the ability to route packets between hosts on networks not directly connected 

at the link layer level. In fact, the Internet itself was originally conceived as a federation of such 

smaller networks throughout the country, joined by a few long-distance connections between 

them. The “inter” prefix on Internet, meaning, “between,” represents these connections. It is the 

network layer’s job to make this interaction between networks possible.  Figure   2.8    illustrates a 

network layer connection between Networks Alpha and Bravo.  

Host B1
IP: 18.19.200.2

Host B2
IP: 18.19.200.3

Host B3
IP: 18.19.200.4

Host A1
IP: 18.19.100.2

Host A2
IP: 18.19.100.3

Host A3
IP: 18.19.100.4

Host R
NIC 0 IP: 18.19.100.1
NIC 1 IP: 18.19.200.1

Network
Alpha

Network
Bravo

  Figure 2.8  Connected networks Alpha and Bravo       

 Host R is a special type of host known as a  router . A router has multiple NICs, each with its 

own IP address. In this case, one is connected to Network Alpha, and the other is connected 

to Network Bravo. Notice that all the IP addresses on Network Alpha share the prefix 18.19.100 

and all the addresses on Network Bravo share the prefix 18.19.200. To understand why this is 

useful to our cause, we must now explore the subnet in more detail and define the concept of a 

subnet mask. 
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 A  subnet mask  is a 32-bit number, usually written in the four-number, dotted notation typical 

of IP addresses. Hosts are said to be on the same subnet if their IP addresses, when bitwise 

ANDed with the subnet mask, yield the same result. For instance, if a subnet is defined as 

having a mask of 255.255.255.0, then 18.19.100.1 and 18.19.100.2 are both valid IP addresses 

on that subnet ( Table   2.3   ). However, 18.19.200.1 is not on the subnet because it yields a 

different result when bitwise ANDed with the subnet mask.  

 Table 2.3   IP Addresses and Subnet Masks 

 Host  IP Address  Subnet Mask  IP Address ANDed with Subnet Mask 

 A1  18.19.100.1  255.255.255.0  18.19.100.0 

 A2  18.19.100.2  255.255.255.0  18.19.100.0 

 B1  18.19.200.1  255.255.255.0  18.19.200.0 

 Table 2.4   Sample Subnet Masks 

 Subnet Mask  Subnet Mask Binary 
 Significant 
Bits 

 Potential 
Host Count 

 255.255.255.248  11111111111111111111111111111000  29  6 

 255.255.255.192  11111111111111111111111111000000  26  62 

 255.255.255.0  11111111111111111111111100000000  24  254 

 255.255.0.0  11111111111111110000000000000000  16  65534 

 255.0.0.0  11111111000000000000000000000000  8  16777214 

 In binary form, subnet masks are usually a string of 1s followed by a string of 0s, as this makes 

them easily human readable and human bitwise ANDable.  Table   2.4    lists typical subnet masks 

and the number of unique hosts possible on the subnet. Note that two addresses on a subnet 

are always reserved and not usable by hosts. One is the  network address , which is formed by 

bitwise ANDing the subnet mask with any IP address on the subnet. The other is the  broadcast 
address , which is formed by bitwise ORing the network address with the bitwise complement 

of the subnet mask. That is, every bit in the network address that does not define the subnet 

should be set to 1. Packets addressed to the broadcast address for a subnet should be delivered 

to every host on the subnet.  

 Because a subnet is, by definition, a group of hosts with IP addresses that yield the same result 

when bitwise ANDed with a subnet mask, a particular subnet can be defined simply by its 

subnet mask and network address. For instance, the subnet of Network Alpha is defined by 

network address 18.19.100.0 with subnet mask 255.255.255.0. 
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 There is a common way to abbreviate this information, and that is known as  classless 
inter-domain routing  ( CIDR ) notation. A subnet mask in binary form is typically  n  ones 

followed by (32– n ) zeroes. Therefore, a subnet can be notated as its network address followed 

by a forward slash and then the number of significant bits set in its subnet mask. For instance, 

the subnet of Network Alpha in  Figure   2.8    is written using CIDR notation as 18.19.100.0/24. 

  note 

 The “classless” term in CIDR comes from the fact that inter-domain routing and 

address block assignment used to be based on three specifically sized classes 

of network. Class A networks had a subnet mask of 255.0.0.0, Class B networks 

had a subnet mask of 255.255.0.0, and Class C networks had a subnet mask of 

255.255.255.0. For more on the evolution to CIDR, see RFC 1518 mentioned in the 

“Additional Reading” section.  

 With subnets defined, the IPv4 specification provides a way to move packets between hosts 

on different networks. This is made possible by the  routing table  present in the IP module of 

each host. Specifically, when the IPv4 module of a host is asked to send an IP packet to a remote 

host, it must decide whether to use the ARP table and direct routing, or some indirect route. To 

aid in this process, each IPv4 module contains a routing table. For each reachable destination 

subnet, the routing table contains a row with information on how packets should be delivered 

to that subnet. For the network in  Figure   2.8   , potential routing tables for Hosts A1, B1, and R are 

given in  Tables   2.5   ,    2.6   , and    2.7   .    

 Table 2.5   Host A1 Routing Table 

 Row  Destination Subnet  Gateway  NIC 

 1  18.19.100.0/24  NIC 0 (18.19.100.2) 

 2  18.19.200.0/24  18.19.100.1  NIC 0 (18.19.100.2) 

 Table 2.6   Host B1 Routing Table 

 Row  Destination Subnet  Gateway  NIC 

 1  18.19.200.0/24  NIC 0 (18.19.200.2) 

 2  18.19.100.0/24  18.19.200.1  NIC 0 (18.19.200.2) 

 Table 2.7   Host R Routing Table 

 Row  Destination Subnet  Gateway  NIC 

 1  18.19.100.0/24  NIC 0 (18.19.100.1) 

 2  18.19.200.0/24  NIC 1 (18.19.200.1) 
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 The destination subnet column refers to the subnet which contains the target IP address. 

The gateway column refers to the IP address of the next host, on the current subnet, which 

should be sent this packet via the link layer. It is required that this host be reachable through 

direct routing. If the gateway field is blank, it means the entire destination subnet is reachable 

through direct routing and the packet can be sent directly via the link layer. Finally, the NIC 

column identifies the NIC which should actually forward the packet. This is the mechanism by 

which a packet can be received from one link layer network and forwarded to another. 

 When Host A1 at 18.19.100.2 attempts to send a packet to Host B1 at 18.19.200.2, the following 

process occurs: 

1.   Host A1 builds an IP packet with source address 18.19.100.2 and destination address 

18.19.200.2.  

2.   Host A1’s IP module runs through the rows of its routing table from top to bottom, until 

it finds the first one with a destination subnet that contains the IP address 18.19.200.2. In 

this case, that is row 2. Note that the order of the rows is significant, as multiple rows might 

match a given address.   

3.   The gateway listed in row 2 is 18.19.100.1, so Host A1 uses ARP and its Ethernet module 

to wrap the packet in an Ethernet frame and send it to the MAC address that matches IP 

address 18.19.100.1. This arrives at Host R.  

4.   Host R’s Ethernet module, running for its NIC 0 with IP address 18.19.100.1, receives the 

packet, detects the payload is an IP packet, and passes it up to its IP module.  

5.   Host R’s IP module sees the packet is addressed to 18.19.200.1, so it attempts to forward 

the packet to 18.19.200.1.  

6.   Host R’s IP module runs through its routing table until it finds a row whose destination 

subnet contains 18.19.200.1. In this case that is row 2.  

7.   Row 2 has no gateway, which means the subnet is directly routable. However, the NIC 

column specifies the use of the NIC 1 with IP address 18.19.200.1. This is the NIC connected 

to Network Bravo.  

8.   Host R’s IP module passes the packet to the Ethernet module running for Host R’s NIC 1. It 

uses ARP and the Ethernet module to wrap the packet in an Ethernet frame and send it to 

the MAC address that matches IP 18.19.200.1.  

9.   Host B1’s Ethernet module receives the packet, detects the payload is an IP packet, and 

passes it up to its IP module.  

   10.     Host B1’s IP module sees that the destination IP address is its own. It sends the payload up 

to the next layer for more processing.   

 This example shows how two carefully configured networks communicate through indirect 

routing, but what if these networks need to send packets to the rest of the Internet? In that 

case, they first need a valid IP address and gateway from an  Internet Service Provider  ( ISP ). 
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For our purposes, assume they are assigned an IP address of 18.181.0.29 and a gateway of 

18.181.0.1 by the ISP. The network administrator must then install an additional NIC into Host 

R and configure it with the IP address assigned. Finally, she must update the routing tables 

on Host R and all hosts on the network.  Figure   2.9    shows the new network configuration and 

 Tables   2.8   ,    2.9   , and    2.10    show amended routing tables. 

  note 

 An ISP is not a special construct as far as the Internet is concerned. It’s just a 

large organization, with its own very large block of IP addresses. What makes it 

interesting is that its main job is to take those IP addresses, break them into subnets, 

and then lease the subnets out to other organizations for use.      

Host B1
IP: 18.19.200.2

Host B2
IP: 18.19.200.3

Host B3
IP: 18.19.200.4

Host A1
IP: 18.19.100.2

Host A2
IP: 18.19.100.3

Host A3
IP: 18.19.100.4

Host R
NIC 0 IP: 18.19.100.1
NIC 1 IP: 18.19.200.1
NIC 2 IP: 18.181.0.29

Network
Alpha

Network
Bravo

ISP

  Figure 2.9  Networks Alpha and Bravo connected to the Internet       

 Table 2.8   Host A1 Routing Table with Internet Access 

 Row  Destination Subnet  Gateway  NIC 

 1  18.19.100.0/24  NIC 0 (18.19.100.2) 

 2  18.19.200.0/24  18.19.100.1  NIC 0 (18.19.100.2) 

 3  0.0.0.0/0  18.19.100.1  NIC 0 (18.19.100.2) 
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 Table 2.9   Host B1 Routing Table with Internet Access 

 Row  Destination Subnet  Gateway  NIC 

 1  18.19.200.0/24  NIC 0 (18.19.200.2) 

 2  18.19.100.0/24  18.19.200.1  NIC 0 (18.19.200.2) 

 3  0.0.0.0/0  18.19.200.1  NIC 0 (18.19.200.2) 

 Table 2.10   Host R Routing Table with Internet Access 

 Row  Destination Subnet  Gateway  NIC 

 1  18.19.100.0/24  NIC 0 (18.19.100.1) 

 2  18.19.200.0/24  NIC 1 (18.19.200.1) 

 3  18.181.0.0/24  18.181.0.1  NIC 2 (18.181.0.29) 

 4  0.0.0.0/0  18.181.0.1  NIC 2 (18.181.0.29) 

 The destination 0.0.0.0/0 is known as the  default address , because it defines a subnet which 

contains all IP addresses. If Host R receives a packet for a destination which does not match 

any of the first three rows, the destination will definitely match the subnet in the final row. In 

that case, the packet will be forwarded, via the new NIC, to the ISP’s gateway, which should be 

able to set the packet on a path, from gateway to gateway, which will eventually terminate at 

the packet’s intended destination. Similarly, Hosts A1 and B1 have new entries with the default 

address as their destination so that they can route Internet packets to Host R, which can then 

route them to the ISP. 

 Each time a packet is sent to a gateway and forwarded, the TTL field in the IPv4 header is 

decreased. When the TTL reaches 0, the packet is dropped by whichever host’s IP module did 

the final decrementing. This prevents packets from circling the Internet forever if there happens 

to be cyclical routing information on the route. Changing the TTL requires recalculating the 

header checksum, which contributes to the time it takes hosts to process and forward a packet. 

 A TTL of 0 is not the only reason a packet might be dropped. For instance, if packets arrive 

at a router’s NIC too rapidly for the NIC to process them, the NIC might just ignore them. 

Alternatively if packets arrive at a router on several NICs, but all need to be forwarded through 

a single NIC which isn’t fast enough to handle them, some might be dropped. These are just 

some of the reasons an IP packet might be dropped on its journey from source to destination. 

As such, all protocols in the network layer, including IPv4, are unreliable. This means there is 

no guarantee that IPv4 packets, once sent, will arrive at their intended destination. Even if the 

packets do arrive, there is no guarantee they will arrive in their intended order, or that they 

will only arrive once. Network congestion may cause a router to route one packet onto one 

path and another packet with the same destination onto another path. These paths might be 
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different lengths and thus cause the latter packet to arrive first. Sometimes the same packet 

might get sent on multiple routes, causing it to arrive once and then arrive again a little later! 

Unreliability means no guarantee of delivery or delivery order.   

     IMPORTANT IP ADDRESSES 

 There are two special IP addresses worth mentioning. The first is the  loopback  or 

 localhost address , 127.0.0.1. If an IP module is asked to send a packet to 127.0.0.1, it 

doesn’t send it anywhere. It instead acts as if it just received the packet, and sends it up 

to the next layer for processing. Technically, the entire 127.0.0.0/8 address block should 

loopback, but some operating systems have firewall defaults which allow only packets 

addressed to 127.0.0.1 to do so completely. 

 The next is the  zero network broadcast address , 255.255.255.255. This indicates the 

packet should be broadcast to all hosts on the current local link layer network but should 

not be passed through any routers. This is usually implemented by wrapping the packet 

in a link layer frame and sending it to the broadcast MAC address FF:FF:FF:FF:FF:FF.   

  Fragmentation 

 As mentioned earlier, the MTU, or maximum payload size, of an Ethernet frame is 1500 bytes. 

However, as noted previously, the maximum size of an IPv4 packet is 65535 bytes. This raises 

a question: If an IP packet must be transmitted by wrapping it in a link layer frame, how can it 

ever be larger than the link layer’s MTU? The answer is  fragmentation . If an IP module is asked 

to transmit a packet larger than the MTU of the target link layer, it can break the packet up into 

as many MTU-sized fragments as necessary. 

 IP packet fragments are just like regular IP packets, but with some specific values set in their 

headers. They make use of the fragment identification, fragment flags, and fragment offset 

fields of the header. When an IP module breaks an IP packet into a group of fragments, it 

creates a new IP packet for each fragment and sets the fields accordingly. 

 The fragment identification field (16 bits) holds a number which identifies the originally 

fragmented packet. Each fragment in a group has the same number in this field. 

 The fragment offset field (13 bits) specifies the offset, in 8-byte blocks, from the start of the 

original packet to the location in which this fragment’s data belongs. This is necessarily a 

different number for each fragment within the group. The crazy numbering scheme is chosen 

so that any possible offset within a 65535-byte packet can be specified with only 13 bits. This 

requires that all offsets be even multiples of 8 bytes, because there is no ability to specify an 

offset with greater precision than that. 
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 The fragment flags field (3 bits) is set to 0x4 for every fragment but the final fragment. This 

number is called the  more fragments flag , representing that there are more fragments in the 

fragment group. If a host receives a packet with this flag set, it must wait until all fragments in 

the group are received before passing the reassembled packet up to a higher layer. This flag is 

not necessary on the final fragment, because it has a nonzero fragment offset field, similarly 

indicating that it is a member of a fragment group. In fact, the flag must be left off the final 

fragment to indicate that there are no further fragments in the original packet. 

  note 

 The fragment flags field has one other purpose. The original sender of an IP packet 

can set this to 0x2, a number known as the  do not fragment flag . This specifies 

that the packet should not be fragmented under any circumstances. Instead, if an 

IP module must forward the packet on a link with an MTU smaller than the packet 

size, the packet should be dropped instead of fragmented.  

  Table   2.11    shows the relevant header fields for a large IP packet and the three packets into 

which it must be fragmented in order to forward it over an Ethernet link.  

 Table 2.11   IPv4 Packet Which Must Be Fragmented 

 Field 
 Original Packet 
Values 

 Fragment 1 
Values 

 Fragment 2 
Values 

 Fragment 3 
Values 

 Version  4  4  4  4 

 Header length  20  20  20  20 

 Total length  3020  1500  1500  60 

 Identification  0  12  12  12 

 Fragment flags  0  0x4  0x4  0 

 Fragment offset  0  0  185  370 

 Time to live  64  64  64  64 

 Protocol  17  17  17  17 

 Source address  18.181.0.29  18.181.0.29  18.181.0.29  18.181.0.29 

 Destination 
address 

 181.10.19.2  181.10.19.2  181.10.19.2  181.10.19.2 

 Payload  3000 bytes  1480 bytes  1480 bytes  40 bytes 

 The fragment identification fields are all 12, indicating that the three fragments are all from the 

same packet. The number 12 is arbitrary, but it’s likely this is the 12th fragmented packet this 

host has sent. The first fragment has the more fragments flag set and a packet offset of 0, 
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indicating that it contains the initial data from the unfragmented packet. Note that the packet 

length field indicates a total length of 1500. The IP module usually chooses to create fragments 

as large as possible to limit the number of fragments. Because the IP header is 20 bytes, this 

leaves 1480 for the fragment data. That suggests the second fragment’s data should start at 

an offset of 1480. However, because the fragment offset field is represented in 8-byte blocks, 

and 1480/8 is 185, the actual number contained there is 185. The more fragments flag is also 

set on the second fragment. Finally, the third fragment has a data offset of 370 and does not 

have the more fragments flag set, indicating it is the final fragment. The total length of the third 

fragment is only 60, as the original packet had 3000 bytes of data inside its total length of 3020. 

Out of this 1480 bytes are in the first fragment, 1480 are in the second, and 40 are in the third. 

 After these fragment packets are sent out, it is conceivable that any or all of them could be 

further fragmented. This would happen if the route to the destination host involves traveling 

along a link layer with an even smaller MTU. 

 For the packet to be properly processed by the intended recipient, each of the packet 

fragments has to arrive at that final host and be reconstructed into the original, unfragmented 

packet. Because of network congestion, dynamically changing routing tables, or other reasons, 

it is possible that the packets arrive out of order, potentially interleaved with other packets 

from the same or other hosts. Whenever the first fragment arrives, the recipient’s IP module has 

enough information to establish that the fragment is indeed a fragment and not a complete 

packet: This is evident from either the more fragments flag being set or the nonzero packet 

offset field. At this point, the recipient’s IP module creates a 64-kB buffer (maximum packet 

size) and copies data from the fragment into the buffer at the appropriate offset. It tags the 

buffer with the sender’s IP address and the fragment identification number, so that when 

future fragments come in with a matching sender and fragment identification, the IP module 

can fetch the appropriate buffer and copy in the new data. When a fragment arrives without 

the more fragments flag set, the recipient calculates the total length of the original packet by 

adding that fragment’s data length to its packet offset. When all data for a packet has arrived, 

the IP module passes the fully reconstructed packet up to the next layer for further processing. 

  tip 

 Although IP packet fragmentation makes it possible to send giant packets, it 

introduces two large inefficiencies. First, it actually increases the amount of data 

which must be sent over the network.  Table   2.11    illustrates that a 3020-byte packet 

gets fragmented into two 1500-bytes packets and a 60-byte packet, for a total 

of 3060 bytes. This isn’t a terrible amount, but it can add up. Second, if a single 

fragment is lost in transit, the receiving host must drop the entire packet. This 

makes it more likely that larger packets with many fragments get dropped. For this 

reason, it is generally advisable to avoid fragmentation entirely by making sure all 

IP packets are smaller than the link layer MTU. This is not necessarily easy, because 
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there can be several different link layer protocols in between two hosts: Imagine 

a packet traveling from New York to Japan. It is very likely that at least one of the 

link layers between the two hosts will use Ethernet, so game developers make the 

approximation that the minimum MTU of the entire packet route will be 1500 bytes. 

This 1500 bytes must encapsulate the 20-byte IP header, the IP payload, and any 

additional data required by wrapper protocols like VPN or IPSec that may be in use. 

For this reason, it is wise to limit IP payloads to around 1300 bytes. 

 At first thought, it may seem better to limit packet size to something even smaller, 

like 100 bytes. After all, if a 1500-byte packet is unlikely to require fragmentation, 

a 100-byte packet is even less likely to require it, right? This may be true, but 

remember that each packet requires a header of 20 bytes. A game sending out 

packets that are only 100 bytes in length is spending 20% of its bandwidth on just 

IP headers, which is very inefficient. For this reason, once you’ve decided that there 

is a very good chance the minimum MTU is 1500, you want to send out packets 

that are as close to 1500 in size as possible. This would mean that only 1.3% of your 

bandwidth is wasted on IP headers, which is much better than 20%!    

  IPv6 

 IPv4, with its 32-bit addresses, allows for 4 billion unique IP addresses. Thanks to private 

networks and network address translation (discussed later in this chapter) it is possible for 

quite a few more hosts than that to actively communicate on the Internet. Nevertheless, due 

to the way IP addresses are allotted, and the proliferation of PCs, mobile devices, and the 

Internet of Things, the world is running out of 32-bit IP addresses. IPv6 was created to address 

both this problem, and some inefficiencies that have become evident throughout the long life 

of IPv4. 

 For the next few years, IPv6 will probably remain of low importance to game developers. As 

of July 2014, Google reports that roughly 4% of its users access its site through IPv6, which is 

probably a good indication of how many end users in general are using devices connecting to 

the Internet through IPv6. As such, games still have to handle all the idiosyncrasies and oddities 

of IPv4 that IPv6 was designed to fix. Nevertheless, as next gen platforms like the Xbox One 

gain in popularity, IPv6 will eventually replace IPv4, and it is worth briefly exploring what IPv6 is 

all about. 

 The most noticeable new feature of IPv6 is its new IP address length of 128 bits. IPv6 addresses 

are written as eight groups of 4-digit hex numbers, separated by colons.  Table   2.12    shows a 

typical IPv6 address in three accepted forms.  
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 When written, leading zeroes in each hextet may be dropped. Additionally, a single run of 

zeroes may be abbreviated with a double colon. Because the address is always 16 bytes, it is 

simple to reconstruct the original form by replacing all missing digits with zeroes. 

 The first 64 bits of an IPv6 address typically represent the network and are called the network 

 prefix , whereas the final 64 bits represent the individual host and are called the  interface 
identifier . When it is important for a host to have a consistent IP address, such as when acting 

as a server, a network administrator may manually assign the interface identifier, similar to how 

IP addresses are manually assigned for IPv4. A host that does not need to be easy to find by 

remote clients can also chose its interface identifier at random and announce it to the network, 

as chances of a collision in the 64-bit space are low. Most often, the interface identifier is 

automatically set to the NIC’s EUI-64, as this is already guaranteed to be unique. 

  Neighbor discovery protocol  ( NDP ) replaces ARP as well as some of the features of DHCP, as 

described later in this chapter. Using NDP, routers advertise their network prefixes and routing 

table information, and hosts query and announce their IP addresses and link layer addresses. 

More information on NDP can be found in RFC 4861, referenced in the “Additional Reading” 

section. 

 Another nice change from IPv4 is that IPv6 no longer supports packet fragmentation at the 

router level. This enables the removal of all the fragmentation-related fields from the IP header 

and saves some bandwidth on each packet. If an IPv6 packet reaches a router and is too big for 

the outgoing link layer, the router simply drops the packet and responds to the sender that the 

packet was too big. It is up to the sender to try again with a smaller packet. 

 More information on IPv6 can be found in RFC 2460, referenced in the “Additional Reading” 

section.   

  The Transport Layer 
 While the network layer’s job is to facilitate communication between distant hosts on remote 

networks, the  transport layer ’s job is to enable communication between individual processes 

on those hosts. Because multiple processes can be running on a single host, it is not always 

enough to know that Host A sent an IP packet to Host B: When Host B receives the IP packet, 

 Table 2.12   Typical IPv6 Address Forms 

 Form  Address 

 Unabbreviated  2001:4a60:0000:8f1:0000:0000:0000:1013 

 Leading zeroes dropped  2001:4a60:0:8f1:0:0:0:1013 

 Single run of zeroes removed  2001:4a60:0:8f1::1013 
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it needs to know which process should be passed the contents for further processing. To solve 

this, the transport layer introduces the concept of  ports . A port is a 16-bit, unsigned number 

representing a communication endpoint at a particular host. If the IP address is like a physical 

street address of a building, a port is a bit like a suite number inside that building. An individual 

process can then be thought of as a tenant who can fetch the mail from one or more suites 

inside that building. Using a transport layer module, a process can  bind  to a specific port, 

telling the transport layer module that it would like to be passed any communication addressed 

to that port. 

 As mentioned, all ports are 16-bit numbers. In theory, a process can bind to any port and use 

it for any communicative purpose it wants. However, problems arise if two processes on the 

same host attempt to bind to the same port. Imagine that both a webserver program and an 

email program bind to port 20. If the transport layer module receives data for port 20, should 

it deliver that data to both processes? If so, the webserver might interpret incoming email data 

as a web request, or the email program might interpret an incoming web request as email. 

This will end up making either a web surfer, or an emailer very confused. For this reason, most 

implementations require special flags for multiple processes to bind the same port. 

 To help avoid processes squabbling over ports, a department of the  Internet Corporation 
for Assigned Names and Numbers (ICANN)  known as the  Internet Assigned Numbers 
Authority  ( IANA ) maintains a port number registry with which various protocol and 

application developers can register the ports their applications use. There is only a single 

registrant per port number per transport layer protocol. Port numbers 1024-49151 are known 

as the  user ports  or  registered ports . Any protocol and application developer can formally 

request a port number from this range from IANA, and after a review process, the port 

registration may be granted. If a user port number is registered with the IANA for a certain 

application or protocol, then it is considered bad form for any other application or protocol 

implementation to bind to that port, although most transport layer implementations do not 

prevent it. 

 Ports 0 to 1023 are known as the  system ports  or  reserved ports . These ports are similar to 

the user ports, but their registration with IANA is more restricted and subject to more thorough 

review. These ports are special because most operating systems allow only root level processes 

to bind system ports, allowing them to be used for purposes requiring elevated levels of 

security. 

 Finally, ports 49152 to 65535 are known as  dynamic ports . These are never assigned by IANA 

and are fair game for any process to use. If a process attempts to bind to a dynamic port and 

finds that it is in use, it should handle that gracefully by attempting to bind to other dynamic 

ports until an available one is found. As a good Internet citizen, you should use only dynamic 

ports while building your multiplayer games, and then register with IANA for a user port 

assignment if necessary. 
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 Once an application has identified a port to use, it must employ a transport layer protocol to 

actually send data. Sample transport layer protocols, as well as their IP protocol number, are 

listed in  Table   2.13   . As game developers we deal primarily with UDP and TCP.  

 Table 2.13   Examples of Transport Layer Protocols 

 Name  Acronym  Protocol Number 

 Transmission control protocol  TCP  6 

 User datagram protocol  UDP  17 

 Datagram congestion control protocol  DCCP  33 

 Stream control transmission protocol  SCTP  132 

  tip 

 IP addresses and ports are often combined with a colon to indicate a complete 

source or destination address. So, a packet heading to IP 18.19.20.21 and port 80 

would have its destination written as 18.19.20.21:80.  

  UDP 

  User datagram protocol  ( UDP ) is a lightweight protocol for wrapping data and sending 

it from a port on one host to a port on another host. A UDP datagram consists of an 8-byte 

header followed by the payload data.  Figure   2.10    shows the format of a UDP header.  

Bits
Source Port Destination Port

ChecksumLength

0 16
0–31

32–63

  Figure 2.10  UDP header       

  Source port  (16 bits) identifies the port from which the datagram originated. This is useful if 

the recipient of the datagram wishes to respond. 

  Destination port  (16 bits) is the target port of the datagram. The UDP module delivers the 

datagram to whichever process has bound this port. 

  Length  (16 bits) is the length of the UDP header and payload. 
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  Checksum  (16 bits) is an optional checksum calculated based on the UDP header, payload, and 

certain fields of the IP header. If not calculated, this field is all zeroes. Often this field is ignored 

because lower layers validate the data. 

 UDP is very much a no-frills protocol. Each datagram is a self-contained entity, relying on no 

shared state between the two hosts. It can be thought of as a postcard, dropped in the mail, 

and then forgotten. UDP provides no effort to limit traffic on a clogged network, deliver data 

in order, or guarantee that data is delivered at all. This is all very much in contrast to the next 

transport layer we will explore, TCP.  

  TCP 

 Whereas UDP allows the transfer of discreet datagrams between hosts,  transmission 
control protocol  ( TCP ) enables the creation of a persistent connection between two hosts 

followed by the reliable transfer of a stream of data. The key word here is reliable. Unlike 

every protocol discussed so far, TCP does its best to ensure all data sent is received, in its 

intended order, at its intended recipient. To effect this, it requires a larger header than UDP, and 

nontrivial connection state tracking at each host participating in the connection. This enables 

recipients to acknowledge received data, and senders to resend any transmissions that are 

unacknowledged. 

 A TCP unit of data transmission is called a TCP  segment . This refers to the fact that TCP is built for 

transmitting a large stream of data and each lower layer packet wraps a single segment of that 

stream. A segment consists of a TCP header followed by the data for that segment.  Figure   2.11    

shows its structure.  

Bits
Source Port

Data
Offset

Checksum
Options

Urgent Pointer

Reserved Receive WindowControl Bits

Destination Port
Sequence Number

Acknowledgment Number

0 4 7 16
0–31

32–63

64–95

96–127

128–159

160–...

  Figure 2.11  TCP header       

  Source port  (16 bits) and  destination port  (16 bits) are transport layer port numbers. 

  Sequence number  (32-bits) is a monotonically increasing identifier. Each byte transferred via 

TCP has a consecutive sequence number which serves as a unique identifier of that byte. This 

way, the sender can label data being sent and the recipient can acknowledge it. The sequence 



ptg16606381

THE TRANSPORT LAYER 43

number of a segment is typically the sequence number of the first byte of data in that segment. 

There is an exception when establishing the initial connection, as explained in the “Three-Way 

Handshake” section. 

  Acknowledgment number  (32-bits) contains the sequence number of the next byte of data 

that the sender is expecting to receive. This acts as a de facto acknowledgment for all 

data with sequence numbers lower than this number: Because TCP guarantees all data is 

delivered in order, the sequence number of the next byte that a host expects to receive is 

always one more than the sequence number of the previous byte that it has received. Be 

careful to remember that the sender of this number is not actually acknowledging receipt 

of the sequence number with this value, but actually of all sequence numbers  lower  than 

this value. 

  Data offset  (4 bits) specifies the length of the header in 32-bit words. TCP allows for some 

optional header elements at the end of its header, so there can be from 20 to 64 bytes between 

the start of the header and the data of the segment. 

  Control bits  (9 bits) hold metadata about the header. They are discussed later where relevant. 

  Receive window  (16 bits) conveys the maximum amount of remaining buffer space the sender 

has for incoming data. This is useful for maintaining flow control, as discussed later. 

  Urgent pointer  (16 bits) holds the delta between the first byte of data in this segment and the 

first byte of urgent data. This is only relevant if the URG flag is set in the control bits. 

  note 

 Instead of using the loosely defined “byte” to refer to 8 bits, many RFCs, including 

those that define the major transport layer protocols, unambiguously refer to 8-bit 

sized chunks of data as  octets . Some legacy platforms used bytes that contained 

more or fewer than 8 bits, and the standardization around an octet of bits helped 

ensure compatibility between platforms. This is less of an issue these days, as all 

platforms relevant to game developers treat a byte as 8 bits.  

  Reliability 

  Figure   2.12    illustrates the general manner in which TCP brings about reliable data transfer 

between two hosts. In short, the source host sends a uniquely identified packet to the 

destination host. It then waits for a response packet from the destination host, acknowledging 

receipt of the packet. If it does not receive the expected acknowledgment within a certain 

amount of time, it resends the original packet. This continues until all data has been sent and 

acknowledged.  
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  Figure 2.12  TCP reliable data transfer flow chart       

 The exact details of this process are slightly more complicated, but worth understanding 

in depth, as they provide an excellent case study of a reliable data transfer system. Because 

the TCP strategy involves resending data and tracking expected sequence numbers, each 

host must maintain state for all active TCP connections.  Table   2.14    lists some of the state 

variables they must maintain and their standard abbreviations as defined by RFC 793. 

The process of initializing that state begins with a three-way handshake between the 

two hosts.   
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  Three-Way Handshake 

  Figure   2.13    illustrates a three-way handshake between Hosts A and B. In the figure, Host A 

initiates the connection by sending the first segment. This segment has the SYN flag set and a 

randomly chosen initial sequence number of 1000. This indicates to Host B that Host A would 

like to initiate a TCP connection starting at sequence number 1000, and that Host B should 

initialize resources necessary to maintain the connection state.  

 Table 2.14   TCP State Variables 

 Variable  Abbreviation  Definition 

 Send Next  SND.NXT  The sequence number of the next segment the 
host will send 

 Send 
Unacknowledged 

 SND.UNA  The sequence number of the oldest byte sent by 
the host that has not yet been acknowledged 

 Send Window  SND.WND  The current amount of data the host is allowed 
to send before receiving an acknowledgment for 
unacknowledged data 

 Receive Next  RCV.NXT  The next sequence number the host expects to 
receive 

 Receive Window  RCV.WND  The current amount of data the host is able to 
receive without overflowing its receive buffer 

Time Host A

SND.NXT RCV.NXT SND.UNA

1000

Send

1001 1000

Receive

1001 3001 1001

Send

1001 3001 1001

Seq #: 1000
SYN

Seq #: 3000
Ack #: 1001
SYN, ACK

Seq #: 1001
Ack #: 3001

ACK

Host B

SND.NXT RCV.NXT SND.UNA

Receive

3000 1001

Send

3001 1001 3000

Receive

3001 1001 3001

  Figure 2.13  TCP three-way handshake       

 Host B, if it is willing and able to open the connection, then responds with a packet with both 

the SYN flag, and the ACK flag set. It acknowledges Host A’s sequence number by setting the 

acknowledgment number on the segment to Host A’s initial sequence number plus 1. This 
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means the next segment Host B is expecting from Host A should have a sequence number one 

higher than the previous segment. In addition, Host B picks its own random sequence number, 

3000, to start its stream of data to Host A. It is important to note that Hosts A and B each picked 

their own random starting sequence numbers. There are two separate streams of data involved 

in the connection: One from Host A to Host B, which uses Host A’s numbering, and one from 

Host B to Host A which uses Host B’s numbering. The presence of the SYN flag in a segment 

means “Hey you! I’m going to start sending you a stream of data starting with a byte labeled 

one plus the sequence number mentioned in this segment.” The presence of the ACK flag and 

the acknowledgment number in the second segment means “Oh by the way, I received all data 

you sent up until this sequence number, so this sequence number is what I’m expecting in the 

next segment you send me.” When Host A receives this segment, all that’s left is for it to ACK 

Host B’s initial sequence number, so it sends out a segment with the ACK flag set and Host B’s 

sequence number plus 1, 3001, in the acknowledgment field. 

  note 

 When a TCP segment contains a SYN or FIN flag, the sequence number is incremented 

by an extra byte to represent the presence of the flag. This is sometimes known as the 

 TCP phantom byte .  

 Reliability is established through the careful sending and acknowledgment of data. If a timeout 

expires and Host A never receives the SYN-ACK segment, it knows that Host B either never 

received the SYN segment, or Host B’s response was lost. Either way, Host A can resend the 

initial segment. If Host B did indeed receive the SYN segment and therefore receives it for a 

second time, Host B knows it is because Host A did not receive its SYN-ACK response, so it can 

resend the SYN-ACK segment.  

  Data Transmission 

 To transmit data, hosts can include a payload in each outgoing segment. Each segment is tagged 

with the sequence number of the first byte of data in the sequence. Remember that each byte 

has a consecutive sequence number, so this effectively means that the sequence number of a 

segment should be the sequence number of the previous segment plus the amount of data in 

the previous segment. Meanwhile, each time an incoming data segment arrives at its destination, 

the receiver sends out an acknowledgment packet with the acknowledgment field set to the 

next sequence number it expects to receive. This would typically be the sequence number of the 

most recently received segment plus the amount of data in that segment.  Figure   2.14    shows a 

simple transmission with no dropped segments. Host A sends 100 bytes in its first segment, Host 

B acknowledges and sends 50 bytes of its own, Host A sends 200 bytes more, and then Host B 

acknowledges those 200 bytes without sending any additional data.  

 Things get slightly more complicated when a segment gets dropped or delivered out of order. 

In  Figure   2.15   , segment 1301 traveling from Host A to Host B is lost. Host A expects to receive 
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  Figure 2.14  TCP transmission with no packet loss       
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  Figure 2.15  TCP packet lost and retransmitted       

an ACK packet with 1301 in the acknowledgment field. When a certain time limit expires and 

Host A has not received the ACK, it knows something is wrong. Either segment 1301, or the ACK 

from Host B has been dropped. Either way, it knows it needs to redeliver segment 1301 until 

it receives an acknowledgment from Host B. To redeliver the segment, Host A needs to have a 
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copy of that segment’s data on hand, and this is a key component of TCP’s operation:  The TCP 

module must store every byte it sends out until that byte is acknowledged by the recipient. 

Only once an acknowledgment for a segment is received can the TCP module purge that 

segment’s data from its memory. 

 TCP guarantees that data is delivered in order, so if a host receives a packet with a sequence 

number it is not yet expecting, it has two options. The simple option is to just drop the packet 

and wait for it to be resent in order. An alternative option is to buffer it while neither ACKing 

it nor delivering it to the application layer for processing. Instead, the host copies it into its 

local stream buffer at the appropriate position based on the sequence number. Then, when 

all preceding sequence numbers have been delivered, the host can ACK the out of order 

packet and send it to the application layer for processing without requiring the sender to 

resend it. 

 In the preceding examples, Host A always waits for an acknowledgment before sending 

additional data. This is unusual and contrived just for the purpose of simplifying the examples. 

There is no requirement that Host A must stall its transmission, waiting for an acknowledgment 

after each segment it sends. In fact, if there were such a requirement, TCP would be a fairly 

unusable protocol over long distances. 

 Recall that the MTU for Ethernet is 1500 bytes. The IPv4 header takes up at least 20 of those 

bytes and the TCP header takes up at least another 20 bytes, which means the most data that 

can be sent in an unfragmented TCP segment that travels over Ethernet is 1460 bytes. This 

is known as the  maximum segment size  ( MSS ). If a TCP connection could only have one 

unacknowledged segment in flight at a time, then its bandwidth would be severely limited. 

In fact, it would be the MSS divided by the amount of time it takes for the segment to go 

from sender to receiver plus the time for the acknowledgment to return from receiver to 

sender ( round trip time  or  RTT ). Round trip times across the country can be on the order of 

30 ms. This means the maximum cross-country bandwidth achievable with TCP, regardless of 

intervening link layer speed, would be 1500 bytes/0.03 seconds, or 50 kbps. That might be a 

decent speed for 1993, but not for today! 

 To avoid this problem, a TCP connection is allowed to have multiple unacknowledged segments 

in flight at once. However, it cannot have an unlimited number of segments in flight, as this would 

present another problem. When transport layer data arrives at a host, it is held in a buffer until 

the process which has bound the corresponding port consumes it. At that point, it is removed 

from the buffer. No matter how much memory is available on the host, the buffer itself is of some 

fixed size. It is conceivable that a complex process on a slow CPU may not consume incoming data 

as fast as it arrives. Thus, the buffer will fill up and incoming data will be dropped. In the case of 

TCP, this means the data will not be acknowledged, and the rapidly transmitting sender will then 

begin rapidly resending the data. In all likelihood, most of this resent data will be dropped as 

well, because the receiving host still has the same slow CPU and is still running the same complex 

process. This causes a big traffic jam and is a colossal waste of Internet resources. 
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 To prevent this calamity, TCP implements a process known as  flow control . Flow control 

prevents a rapidly transmitting host from overwhelming a slowly consuming one. Each 

TCP header contains a receive window field which specifies how much receive buffer space 

the sender of the packet has available. This equates to telling the other host the maximum 

amount of data it should send before stopping to wait for an acknowledgment.  Figure   2.16    

illustrates an exchange of packets between a rapidly transmitting Host A and a slowly 

consuming Host B.  
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  Figure 2.16  TCP flow control       
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 For demonstration purposes, an MSS of 100 bytes is used. Host B’s initial SYN-ACK flag specifies 

a receive window of 300 bytes, so Host A only sends out three 100-byte segments before 

pausing to wait for an ACK from Host B. When Host B finally sends an ACK, it knows it now has 

100 bytes in its buffer which might not be consumed quickly, so it tells Host A to limit its receive 

window to 200 bytes. Host A knows 200 more bytes are already on their way to B, so it doesn’t 

send any more data in response. It must stall until it receives an ACK from Host B. By the time 

Host B ACKs the second packet, 50 bytes of data from its buffer have been consumed, so it has 

a total of 150 bytes remaining in its buffer and 150 bytes free. When it sends an ACK to Host A, 

it tells Host A to limit the receive window to only 150 bytes. Host A knows at this point there 

are still 100 unacknowledged bytes in flight, but the receive window is 150 bytes, so it sends an 

additional 50-byte segment off to Host B. 

 Flow control continues in this way, with Host B always alerting Host A to how much data it can 

hold so that Host A never sends out more data than Host B can buffer. With that in mind, the 

theoretical bandwidth limit for a TCP stream of data is given by this equation: 

BandwidthLimit × ReceiveWindow
   RoundTripTime   

 Having too small a receive window can create a bottleneck for TCP transmission. To avoid this, a 

large enough receive window should be chosen such that the theoretical bandwidth maximum 

is always greater than the maximum transmission rate of the link layer in between the hosts. 

 Notice that in  Figure   2.16   , Host B ends up sending two ACK packets in a row to Host A. This 

is not a very efficient use of bandwidth, as the acknowledgment number in the second ACK 

packet sufficiently acknowledges all the bytes that the first ACK packet acknowledges. Due 

to the IP and TCP headers alone, this wastes 40 bytes of bandwidth from Host B to Host A. 

When link layer frames are factored in, this wastes even more. To prevent this inefficiency, 

TCP rules allow for something called a  delayed acknowledgment . According to the 

specification, a host receiving a TCP segment does not have to immediately respond with 

an acknowledgment. Instead, it can wait up to 500 ms, or until the next segment is received, 

whichever occurs first. In the previous example, if Host B receives the segment with sequence 

number 1101 within 500 ms of the segment with sequence number 1001, Host B only has to 

send an acknowledgment for segment 1101. For heavy data streams, this effectively cuts in half 

the number of required ACKs, and always gives a receiving host time to consume some data 

from its buffer and therefore include a larger receive window in its acknowledgments. 

 Flow control helps TCP protect slow endpoint consumers from being overwhelmed with data, 

but it does nothing to prevent slow networks and routers from being overwhelmed. Traffic 

builds up on networks just like it does on highways, with jams getting especially bad at popular 

routers, much like at popular entrances, exits, and interchanges. To avoid cluttering up networks 

unnecessarily, TCP implements  congestion control , which is very similar to the stop light meters 

found at many highway entrances. To reduce congestion, the TCP module voluntarily limits the 
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amount of unacknowledged data it will allow in flight. This is similar to what it does for flow 

control, but instead of setting the limit to a window size dictated by the destination, it calculates 

the limit itself based on the number of packets that have been acknowledged or dropped. The 

exact algorithm is implementation dependent, but typically is some sort of additive increase, 

multiplicative decrease system. That is, when a connection is established, the TCP module sets 

the congestion avoidance limit to a low multiple of the MSS. Choosing two times the MSS is 

typical. Then, for every segment acknowledged, it increases the limit by an additional MSS. For 

an ideal connection, this means that a limit’s worth of packets are acknowledged every RTT 

period, which causes the limit to double in size. However, if a packet is ever dropped, the TCP 

module quickly cuts the limit in half, suspecting that the drop was due to network congestion. In 

this way, an equilibrium is eventually reached such that a sender is transmitting as fast as it can 

without causing so much traffic that packets begin to drop. 

 TCP can also reduce network congestion by sending out packets as close in size to the MSS as 

necessary. Because each packet requires a 40-byte header, sending several small segments 

is much less efficient than coalescing the segments into a larger chunk and sending it 

when ready. This means the TCP module needs to keep an outgoing buffer to accumulate 

data that higher layers attempt to send.  Nagle’s algorithm  is a set of rules that many TCP 

implementations use to decide when to accumulate data and when to finally send a segment. 

Traditionally, if there is already unacknowledged data in flight, it accumulates data until the 

amount is greater than the MSS or congestion control window, whichever is smaller. At that 

point it sends the largest segment allowed by those two limits. 

  tip 

 Nagle’s algorithm is the bane of players whose games use TCP as a transport layer 

protocol. Although it decreases bandwidth used, it can significantly increase the 

delay before data is sent. If a real-time game needs to send small updates to a 

server, it might be many frames of gameplay before enough updates accumulate 

to fill an MSS. This can leave players feeling the game is laggy even though it’s just 

Nagle’s algorithm at work. For this reason, most TCP implementations provide an 

option to disable this congestion control feature.   

  Disconnecting 

 Shutting down a TCP connection requires a termination request and acknowledgment from 

each end. When one host has no more data to send, it sends a FIN packet, indicating that it is 

ready to cease sending data. All data pending in the outdoing buffer, including the FIN packet, 

will be transmitted and retransmitted until acknowledged. However, the TCP module will 

accept no new outgoing data from a higher layer. Data can still be received from the other 

host, though, and all incoming data will be ACK’d. When the other side has no more data to 

send, it too can send a FIN packet. When a closing host has received a FIN packet from the other 
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host and an ACK packet in response to its own FIN packet, or a timeout for the ACK has been 

exceeded, then the TCP module fully shuts down and deletes its connection state.    

  The Application Layer 
 At the very top of the TCP/IP layer cake is the application layer, and this is where our multiplayer 

game code lives. The application layer is also home to many fundamental protocols of the 

Internet that rely on the transport layer for end-to-end communication, and we will explore 

some here. 

  DHCP 

 Assigning unique IPv4 addresses to each host on a private subnet can be an administrative 

challenge, especially when laptops and smart phones are introduced into the mix.  Dynamic 
host configuration protocol  ( DHCP ) solves this problem by allowing a host to request 

configuration information automatically when it attaches to the network. 

 Upon connecting to the network, the host creates a DHCPDISCOVER message containing its 

own MAC address and broadcasts it using UDP to 255.255.255.255:67. Because this goes to every 

host on the subnet, any DHCP server present will receive the message. The DHCP server, if it 

has an IP address to offer the client, prepares a DHCPOFFER packet. This packet contains both 

the offered IP address and the MAC address of the client to be sent the offer. At this point, the 

client has no IP address assigned, so the server can’t directly address a packet to it. Instead, 

the server broadcasts the packet to the entire subnet on UDP port 68. All DHCP clients receive 

the packet, and each checks the MAC address in the message to determine if it is the intended 

recipient. When the correct client receives the message, it reads the offered IP address and 

decides if it would like to accept the offer. If so, it responds, via broadcast, with a DHCPREQUEST 

message requesting the offered address. If the offer is still available, the server responds, again 

via broadcast, with a DHCPACK message. This message both confirms to the client that the IP 

address is assigned, and conveys any additional network information necessary, such as the 

subnet mask, router address, and any recommended DNS name servers to use. 

 The exact format of DHCP packets and extended information on DHCP can be found in RFC 

2131, referenced in the “Additional Reading” section.  

  DNS 

  Domain name system  ( DNS ) protocol enables the translation of domain and subdomain 

names into IP addresses. When an end user wants to perform a google search, she doesn’t 

need to type 74.125.224.112 into her web browser, but can instead just type  www.google.com . 

To translate the domain name into an IP address, her web browser sends a DNS query to the IP 

address of the name server which her computer has been configured to use. 

http://www.google.com
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 A  name server  stores mappings from domain names to IP addresses. For instance, one might 

store that  www.google.com  should resolve to the IP address 74.125.224.112. There are many 

thousands of name servers in use on the Internet, and most are only authoritative for a small 

subset of the Internet’s domains and subdomains. If a name server is queried about a domain 

for which it is not an authority, it usually has a pointer to a more authoritative name server 

which it queries in turn. The results of the second query are usually cached so that the next time 

the name server must answer a query for that domain, it has the answer on hand. 

 DNS queries and responses are usually sent via UDP on port 53. The format is defined in RFC 

1035, referenced in the “Additional Reading” section.   

  NAT 
 Until now, every IP address discussed has been publically routable. An IP address qualifies as 

 publically routable  if any properly configured router on the Internet can set a packet on a 

route such that the packet eventually arrives at the host with that IP address. This necessitates 

that any publically routable address be uniquely assigned to a single host. If two or more hosts 

shared the same IP address, then a packet addressed to one might end up at another. If one 

of the hosts made a request to a webserver, the response could end up at the alternate host, 

thoroughly confusing it. 

 To keep publically routable addresses unique, ICANN and its subsidiaries allocate distinct blocks 

of IPs to large institutions like megacorporations, universities, and Internet service providers, 

who can then hand out those addresses to members and customers, ensuring that each 

address is assigned uniquely. 

 Because IPv4 supports only a 32-bit address space, there are a mere 4,294,967,296 potential 

public IP addresses available. Due to the incredible number of networked devices in use today, 

and the way IP addresses are distributed by ICANN, they have grown scarce. Oftentimes, a 

network administrator or user may find herself allocated fewer public IP addresses than she has 

hosts. For instance, as video game developers, we probably each have at least a smartphone, 

laptop, and gaming console, yet only pay for a single public IP address from our ISP. How 

annoying would it be if each device required its own dedicated public IP address? Each time we 

connected a new gadget to the Internet, we would end up having to fight with other users for a 

new IP address from our ISP, and then probably pay more for it as well. 

 Luckily, it is possible to connect an entire subnet of hosts to the Internet through a single 

shared public IP address. This is made possible by  network address translation  or  NAT . To 

configure a network for NAT, each host on the network must be assigned a  privately routable  

IP address.  Table   2.15    lists some IP address blocks which IANA has reserved for private use, 

guaranteeing that no address from those blocks will ever be assigned as a public IP address. 

Thus, any user may set up their own private network using privately routable IP addresses, 

http://www.google.com
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without checking for uniqueness. Uniqueness between networks is not required because the 

addresses are not publically routable. That is, no public router on the Internet should have 

routing information regarding how to reach a private IP address, so it doesn’t matter if multiple 

private networks employ the same private IP addresses internally.  

 Table 2.15   Private IP Address Blocks 

 IP Address Range  Subnet 

 10.0.0.0–10.255.255.255  10.0.0.0/8 

 172.16.0.0–172.31.255.255  172.16.0.0/12 

 192.168.0.0–192.168.255.255  192.168.0.0/16 

 To understand how NAT works, consider the video gamer’s home network in  Figure   2.17   . The 

game console, smart phone, and laptop all have internally unique private IP addresses, assigned 

by the owner of the network, without the need to consult any outside service provider. The 

router also has a private IP address on its internal facing NIC, and it has a publically routable, ISP-

assigned IP address on its outward facing NIC. Because the privately addressed NIC is connected 

to the local network, it is called a  local area network  ( LAN ) port, and because the publically 

addressable NIC is connected worldwide, it is called the  wide area network  ( WAN ) port.  

Game Console
IP: 192.168.1.2

Smart Phone
IP: 192.168.1.3

Laptop
IP: 192.168.1.4

Router
WAN NIC IP: 18.19.20.21
LAN NIC IP: 192.168.1.1

Internet

  Figure 2.17  Private network behind a NAT       

 For this example, assume a host at the publically routable IP 12.5.3.2 is running a game server 

bound to port 200. The game console with private IP 192.168.1.2 is running a game bound to port 

100. The game console needs to send a message to the server via UDP, so it builds a datagram 

as shown in  Figure   2.18   , with 192.168.1.2:100 as the source, and 12.5.3.2:200 as the destination. 

Without NAT enabled on the router, the console sends the datagram to the LAN port of the 

router, which then forwards it from the WAN port to the Internet. The packet eventually arrives 

at the server. At this point, though, there is a problem. Because the source address on the IP 

packet is 192.168.1.2, the server is unable to send a packet back in response. Remember that 
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192.168.1.2 is a private IP address, and thus no public router on the Internet can route to that 

address. Even if some router did nonsensically have routing information for that IP address, it is 

unlikely the packet would end up at our game console, as there are many thousands of hosts on 

the Internet with the private IP address 192.168.1.2.  
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Dest:
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???
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NIC

12.5.3.2
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  Figure 2.18  Router without NAT       

 To prevent this issue, the NAT module of the router can actually rewrite the IP packet as it 

routes it, replacing the private IP address, 192.168.1.2 with the router’s own public IP address, 

18.19.20.21. That solves part of the problem but not all of it: Rewriting only the IP address 

creates the situation depicted in  Figure   2.19   . The server sees the datagram as coming directly 

from the router’s public IP address, so it can send a datagram back to the router successfully. 

However, the router has no record of who sent the original datagram, so it doesn’t know where 

to direct the response.  

Router

LAN NIC WAN NIC

192.168.1.2 18.19.20.21

Receive

Rewrite Src IP

Send

Receive

????

Server

NIC

12.5.3.2

Receive

Send

Game Console

NIC

192.168.1.2

Send
Src:

192.168.1.2:100
Dest:

12.5.3.2:200
Src:

18.19.20.21:100
Dest:

12.5.3.2:200

Src:
12.5.3.2:200

Dest:
18.19.20.21:100

  Figure 2.19  NAT router with address rewriting       

 To be able to return a reply to the proper internal host, the router needs some kind of 

mechanism to identify the intended internal recipient of an incoming packet. One naïve way 

is to build a table that records the source IP address of each outgoing packet. Then, when a 

response is received from an external IP address, the router could look up which internal host 
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sent a packet to that address and then rewrite the packet to use that internal host’s IP address. 

This would break down, though, if multiple internal hosts sent traffic to the same external host. 

The router would not be able to identify which incoming traffic is for which internal host. 

 The solution employed by all modern NAT routers is to violently break the abstraction barrier 

between the network layer and the transport layer. By rewriting not only the IP addresses in the 

IP header, but also the port numbers in the transport layer header, the router can create a much 

more precise mapping and tagging system. It keeps track of these mapping in a  NAT table . 

Consider  Figure   2.20   , which shows the traffic as a packet travels from the game console to the 

server and a reply returns successfully to the game console.  
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  Figure 2.20  NAT router with address and port rewriting       

 When the game console’s outgoing packet reaches the router, the NAT module records both 

the source IP address and the source port number into a new row in the NAT table. It then picks 

a random, previously unused port number that is used to identify that source address and 

source port combination, and writes that number into the same row. It rewrites the packet to 

use the router’s own public IP address and the newly chosen port number. The rewritten packet 

travels to the server, at which point the server sends a response back, addressed to the router’s 

public IP address and newly chosen port. The NAT module then uses that port number to look 

up the original source IP address and port. It rewrites the response packet and forwards it to the 

correct host. 
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  note 

 For extra security, many routers add the original destination IP address and port 

to the NAT table entry. This way, when a response packet comes into the router, 

the NAT module can first look up the table entry using the source port of the 

packet and it can then make sure the source IP address and port of the response 

match the destination IP address and port of the original outgoing packet. If they 

do not match, something fishy is going on, and the packet is dropped instead of 

forwarded.  

  NAT Traversal 

 NAT is a fantastic boon for Internet users, but it can be a terrible headache for multiplayer 

game developers. Considering how many users have their own private networks at home and 

use NAT to connect their computers and game consoles to the Internet, it is not uncommon 

that the situation in  Figure   2.21    arises. Player A owns Host A, behind NAT A. She wants to 

host a multiplayer game server on Host A. She wants her friend, Player B, to connect to her 

server. Player B uses Host B, behind NAT B. Because of the NAT, Player B has no way to initiate 

a connection with Host A. If Host B sends a packet to Host A’s router in an attempt to connect, 

there will be no entry in Host A’s NAT table, so the packet will simply be dropped.  

Host A
IP: 192.168.10.2:200

NAT A
WAN NIC IP: 18.19.20.21
LAN NIC IP: 192.168.1.1

Host B
IP: 192.168.20.2:200

NAT B
WAN NIC IP: 18.19.20.21
LAN NIC IP: 192.168.1.1

Internet

  Figure 2.21  Typical user gaming setup       

 There are a few ways around this problem. One is to require Player A to manually configure 

port forwarding on her router. This is something that requires a small amount of technical skill 

and confidence and is not something nice to force players to do. The second way around the 

problem is much more elegant and much more sneaky. It is known as  simple traversal of UDP 
through NAT  or  STUN . 

 When using STUN, hosts communicate with a third-party host, such as an Xbox Live or 

PlayStation Network server. That third party tells the hosts how to initiate connections with 

each other such that the required entries are made in their routers’ NAT tables, and they can 

proceed to communicate directly.  Figure   2.22    shows the flow of communication,  Figure   2.23    
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details the packets exchanged, and the NAT tables generated. Let us assume our game runs on 

UDP port 200 so all communication to and from non-router hosts will be on port 200. 

Host B
IP: 192.168.20.2

1

2

3

4

5

6

7

Host A
IP: 192.168.10.2

8

9

10

Host N
IP: 4.6.5.10

11

12

13

NAT A
WAN NIC IP: 18.19.20.21
LAN NIC IP: 192.168.1.1

NAT B
WAN NIC IP: 12.12.6.5

LAN NIC IP: 192.168.1.1

  Figure 2.22  STUN data flow       

Actions

Packet
Number

Packet
Sender

Source
Address

Destination
Address

Packet
Receiver

Result

1 Host A 192.168.10.2:200 4.6.5.10:200 NAT A Make row 1 in NAT A Table, NAT A rewrites packet

2 Host A 18.19.20.21:60000 4.6.5.10:200 Host N Host N register Host A as game server at 18.19.20.21:60000

3 Host B 192.168.20.2:200 4.6.5.10:200 NAT B Make row 1 in NAT B Table, NAT B rewrites packet,

4 Host B 12.12.6.5:62000 4.6.5.10:200 Host N Host N registers Host B as client at 12.12.6.5:62000

5 Host N 4.6.5.10:200 18.19.20.21:60000 NAT A Matches row 1 in NAT A Table, NAT A rewrites packet

6 NAT A 4.6.5.10:200 192.168.10.2:200 Host A Host A learns Host B’s public address and sends packet

7 Host A 192.168.10.2:200 12.12.6.5:62000 NAT A Make row 2 in NAT A Table, reusing port from row 1, NAT A rewrites packet

8 Host A 18.19.20.21:60000 12.12.6.5:62000 NAT B NAT B not expecting packet, Drops it

9 Host N 4.6.5.10:200 12.12.6.5:62000 NAT B Matches row 1 in NAT B Table, NAT B rewrites packet.

10 NAT B 4.6.5.10:200 192.168.20.2:200 Host B Host B learns Host A’s public address, sends packet

11 Host B 192.168.20.2:200 18.19.20.21:60000 NAT B Make row 2 in NAT B Table, reusing port from row 1, NAT B rewrites packet

12 NAT B 12.12.6.5:62000 18.19.20.21:60000 NAT A Matches row 2 in NAT A Table. NAT A rewrites packet.

13 NAT A 12.12.6.5:62000 192.168.10.2:200 Host A Successful transmission from Host B to Host A

NAT A Table

Row Source External Port Destination

1 192.168.10.2:200 60000 4.6.5.10:200

2 192.168.10.2:200 60000 12.12.6.5:62000

NAT B Table

Row Source External Port Destination

1 192.168.20.2:200 62000 4.6.5.10:200

2 192.168.20.2:200 62000 18.19.20.21:60000

  Figure 2.23  STUN packet detail and NAT tables       

 First, Host A sends a packet from port 200 to the negotiator service at IP 4.6.5.10 (Host N) 

announcing it would like to be a server. When the packet passes through Router A, Router A 

makes an entry in its NAT table and rewrites the packet to use its own public IP address as the 

source and the random number 60000 as a source port. Router A then forwards the packet to 

Host N. Host N receives the packet and makes note of the fact that Player A, playing on Host A, 

at address 18.19.20.21:60000 wants to register as a server of a multiplayer game. 



ptg16606381

NAT 59

 Host B then sends a packet to Host N, announcing that Player B would like to connect to Player 

A’s game. When the packet passes through Router B, the NAT table at Router B is updated and 

the packet is rewritten, similar to how NAT occurred at Router A. The rewritten packet is then 

forwarded to Host N, who learns from the packet that Host B at 12.12.6.5:62000 would like to 

connect to Host A. 

 At this point, Host N knows Router A’s public IP address, as well as the destination port which 

will result in Router A forwarding a packet to Host A. It could send this information to Host B in 

a reply packet, and request that Host B attempt to connect directly using it. However, recall that 

some routers check the origin of incoming packets to make sure they are expecting packets 

from that location. Router A is only expecting a packet from Host N. If Host B tries to connect 

to Host A at this point, Router A will block the packet because Router A is not expecting any 

response from Host B. 

 Luckily, Host N also knows Router B’s public IP address and the port number which will cause 

a packet to be forwarded to Host B. So, it sends this information to Host A. Router A lets this 

information pass, because its NAT table indicates that Host A is expecting a response from 

Host N. Host A then sends an outgoing packet to Host B using the connection info received 

from Host N. This may seem crazy, as it is the server attempting to contact the client, whereas 

we would expect the reverse. It may seem even crazier, because we know that Router B is 

not expecting any incoming packets from Host A and will thus not allow the packet through 

anyway. Why would we waste a packet like that? We do it just to force an entry into Router A’s 

NAT table! 

 As the packet travels from Host A to Host B, it passes through Router A. Router A sees in the 

NAT table that Host A’s address, 192.168.1.2:200, already maps to external port 60000, so 

it chooses this port for the outgoing packet. It then makes an additional entry stating that 

192.168.1.2:200 has sent traffic to 128.127.126.125:62000. This additional entry is the key. The 

packet will probably never arrive at Host B, but after this has happened, Host N can reply to 

Host B, telling it to connect directly to Host A at 18.19.20.21:51243. Host B does so, and when 

the packet arrives at Router A, Router A sees that it is indeed expecting an incoming packet 

from 128.127.126.125:62000. It rewrites the packet to be targeting 192.168.1.2:200 and sends it 

to Host A. From that point on, Hosts A and B can communicate directly by using the public IP 

address and port number they have exchanged. 

  note 

 There are a few more facts about NATs worth mentioning. First, the NAT traversal 

technique described earlier will not work for all NATs. There are some NATs which 

do not assign a consistent external port number to an internal host. These are 

known as  symmetric NATs . In a symmetric NAT, each outgoing request receives a 

unique external port, even if originating from a source IP address and port already 
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in the NAT table. This breaks STUN because Router A will pick a new external port 

to use when Host A sends its first packet to Host B. When Host B contacts Router A 

on the original external port that Host A used to reach Host N, it will not match in 

the NAT table and the packet will be dropped. 

 Sometimes, less secure symmetric NATs assign external ports in a deterministic 

order, so clever programs can use  port assignment prediction  to make STUN-like 

techniques work on symmetric NATs. More secure symmetric NATs use randomized 

port assignments that cannot easily be predicted. 

 The STUN method works only for UDP. As described in  Chapter   3   , “The Berkeley 

Sockets,”  TCP uses a different system of port assignment and necessarily transmits 

data on a port different from the one on which it listens for incoming connections. 

When TCP is in use, there is a technique called  TCP hole punching  which may 

work if the NAT router acts in a way which supports it. RFC 5128, referenced in 

“Additional Reading” gives a good survey of NAT traversal techniques, including 

TCP hole punching. 

 Finally, there is yet another popular way to enable traversal of a NAT router. It is 

called  Internet gateway device protocol  ( IGDP ). This is a protocol that some 

 Universal Plug and Play  ( UPnP ) routers employ to allow LAN hosts to manually 

set up mappings between external and internal ports. It is not always supported 

and less academically interesting so it is not explained here. Its specification is also 

referenced in the “Additional Reading” section.     

     Summary 
 This chapter provided an overview of the inner workings of the Internet. Packet switching 

allows multiple transmissions to be sent simultaneously over the same line, giving rise to 

ARPANET and eventually the Internet. The TCP/IP suite, the layer cake that powers the Internet, 

consists of five layers, each of which provides a data channel for the layer above it. 

 The physical layer provides the medium along which the signal travels, and is sometimes 

considered part of the link layer above it. The link layer provides a method of communication 

between connected hosts. It requires a hardware addressing system so that each host can be 

uniquely addressed, and determines the MTU, the maximum amount of data which can be 

transmitted in a single chunk. There are many protocols which can provide the primary link 

layer services, but this chapter explored Ethernet in great depth, as it is the one most important 

to game developers. 

 The network layer, which provides a logical addressing system on top of the link layer’s 

hardware addresses, allows hosts on different link layer networks to communicate. IPv4, the 
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primary network layer protocol of the day, provides direct and indirect routing systems, and 

fragments packets too large for the link layer. IPv6, rising in prominence, solves the problem 

of a limited address space and optimizes several of the biggest bottlenecks in IPv4 data 

transmission. 

 The transport layer and its ports provide end-to-end communication between processes on 

remote hosts. TCP and UDP are the primary protocols in the transport layer, and fundamentally 

different: UDP is lightweight, connectionless, and unreliable, whereas TCP has a heavier 

footprint, requires stateful connections, and guarantees reliable, in-order delivery of all data. 

TCP implements flow control and congestion control mechanisms to decrease packet loss. 

 At the top of the cake is the application layer, containing DHCP, DNS, and your game code. 

 To facilitate the creation of private networks with minimal oversight, NAT allows a single public 

IP address to be shared by an entire network. A drawback of NAT is that it blocks unsolicited 

incoming connections that a server might desire, but there are techniques such as STUN and 

TCP hole punching which provide workarounds for this. 

 This chapter has provided a theoretical basis for the workings of the Internet. This will prove 

useful in  Chapter   3   , which covers the functions and data structures used to write code that 

actually communicates between hosts.  

  Review Questions 
1.    List the five layers of the TCP/IP stack and briefly describe each. Which layer is not 

considered a separate layer in some models?   

2.    For what is ARP used? How does it work? 

3.    Explain how a host with multiple NICs (i.e., a router) routes packets between different 

subnets. Explain how a routing table works.   

4.    What does MTU stand for? What does it mean? What is the MTU of Ethernet?   

5.    Explain how packet fragmentation works. Assuming a link layer with an MTU of 400, give 

the header of a packet which would be fragmented into two fragments, and then give the 

headers of those fragments.   

6.    Why is it good to avoid IP fragmentation?   

7.    Why is it good to send packets that are as large as possible without fragmenting?   

8.    What is the difference between unreliable and reliable data transfer?   

9.    Describe the TCP handshake process to establish a connection. What important pieces of 

data are exchanged?   

  10.    Describe how TCP effects reliable data transfer. 

  11.    What is the difference between a publically routable IP address and a privately routable one?   
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  12.    What is NAT? What are some benefits of using a NAT? What are some costs?   

  13.    Explain how a client behind a NAT can send a packet to a publically routable server and 

receive a response.   

  14.    What is STUN? Why would you need it? How does it work?    
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    C H A P T E R  3 

 BERKELEY SOCKETS 

      This chapter introduces the most commonly 

used networking construct for multiplayer game 

development, the Berkeley Socket. It presents the 

most common functions for creating, manipulating, 

and disposing sockets, discusses differences 

between platforms, and explores a type-safe, C++ 

friendly wrapper for socket functionality.    
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     Creating Sockets 
 Originally released as part of BSD 4.2, the  Berkeley Sockets API  provides a standardized way 

for processes to interface with various levels of the TCP/IP stack. Since its release, the API has 

been ported to every major operating system and most popular programming languages, so it 

is the veritable standard in network programming. 

 Processes use the API by creating and initializing one or more  sockets , and then reading data 

from or writing data to those sockets. To create a socket, use the aptly named  socket  function: 

  SOCKET socket(int af, int type, int protocol);  

 The  af  parameter, standing for address family, indicates the network layer protocol which the 

socket should employ. Potential values are listed in  Table   3.1   .  

 Table 3.1   Address Family Values for Socket Creation 

 Macro  Meaning 

  AF_UNSPEC   Unspecified 

  AF_INET   Internet Protocol Version 4 

  AF_IPX   Internetwork Packet Exchange: An early network layer protocol popularized by 
Novell and MS-DOS 

  AF_APPLETALK   Appletalk: An early network suite popularized by apple computer for use with 
its Apple and Macintosh computers 

  AF_INET6   Internet Protocol Version 6 

 Table 3.2   Type Values for Socket Creation 

 Macro  Meaning 

  SOCK_STREAM   Packets represent segments of an ordered, reliable stream of data 

  SOCK_DGRAM   Packets represent discrete datagrams 

  SOCK_RAW   Packet headers may be custom crafted by the application layer 

  SOCK_SEQPACKET   Similar to  SOCK_STREAM  but packets may need to be read in their entirety 
upon receipt 

 Most games written these days support IPv4, so your code will most likely use  AF_INET . 

As more users switch to IPv6 Internet connections, it becomes more worthwhile to support 

 AF_INET6  sockets as well. 

 The  type  parameter indicates the meaning of packets sent and received through the socket. Each 

transport layer protocol that the socket can use has a corresponding way in which it groups and 

uses packets.  Table   3.2    lists the most commonly supported values for this parameter.  
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 Creating a socket of type  SOCK_STREAM  informs the operating system that the socket will require 

a stateful connection. It then allocates the necessary resources to support a reliable, ordered 

stream of data. This is the appropriate socket type to use when creating a TCP socket.  SOCK_

DGRAM , on the other hand, provides for no stateful connection and allocates only the minimal 

resources necessary to send and receive individual datagrams. The socket should make no effort 

to maintain reliability or ordering of packets. This is the appropriate socket type for a UDP socket. 

 The  protocol  parameter indicates the specific protocol that the socket should use to send 

data. This can include transport layer protocols, or various utility network layer protocols that 

are part of the Internet protocol suite. Typically, the value passed in as the protocol is copied 

directly into the protocol field of the IP header for each outgoing packet. This signifies to the 

receiving operating system how to interpret data wrapped by the packet.  Table   3.3    gives typical 

values for the  protocol  parameter.  

 Table 3.3   Protocol Values for Socket Creation 

 Macro  Required Type  Meaning 

  IPPROTO_UDP    SOCK_DGRAM   Packets wrap UDP datagrams 

  IPPROTO_TCP    SOCK_STREAM   Packets wrap TCP segments 

  IPPROTO_IP / 0   Any  Use the default protocol for the given type 

 Note that passing 0 as the protocol tells the OS to pick the default implemented protocol for 

the given socket type. This means you can create an IPv4 UDP socket by calling 

  SOCKET udpSocket = socket(AF_INET, SOCK_DGRAM, 0);  

 You can create a TCP socket by calling 

  SOCKET tcpSocket = socket(AF_INET, SOCK_STREAM, 0);  

 To close a socket, regardless of type, use the  closesocket  function: 

  int closesocket( SOCKET sock );  

 When disposing of a TCP socket, it is important to do so in a manner that ensures all outgoing 

and incoming data are transmitted and acknowledged. It is best to first cease transmitting on 

the socket, then wait for all data to be acknowledged and all incoming data to be read, and 

then to close the socket. 

 To cease transmitting or receiving before closing, use the shutdown function: 

  int shutdown(SOCKET sock, int how)  

 For  how , pass  SD_SEND  to cease sending,  SD_RECEIVE  to cease receiving, or  SD_BOTH  to 

cease sending and receiving. Passing  SD_SEND  will cause a  FIN  packet to transmit once all data 
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has been sent, which will notify the other end of the connection it can safely close its socket. 

That will result in a FIN packet being sent back in response. Once your game receives the FIN 

packet, it is safe to actually close the socket. 

 This closes the socket and returns any associated resources to the operating system. Make sure 

to close all sockets when they are no longer needed. 

  note 

 In most cases, the operating system creates the IP layer header and transport layer 

header for each packet sent out over a socket. However, by creating a socket of 

type SOCK_RAW and protocol 0, you can directly write each of the header values 

for those two layers. This allows you to set header fields directly which are not 

normally editable. For instance, you could easily specify a custom TTL for each 

outgoing packet: That is exactly what the Traceroute utility does. Manually writing 

the values for various header fields is often the only way to insert illegal values in 

those fields, which can be particularly useful when fuzz testing your servers, as 

mentioned in  Chapter   10   , “Security.” 

 Because raw sockets allow illegal values in header fields, they are a potential 

security risk, and most operating systems allow the creation of raw sockets only in 

programs with elevated security credentials.   

  API Operating System Differences 
 Although Berkeley Sockets are the standard low-level way to interface with the Internet on 

various platforms, the API is not perfectly uniform across all operating systems. There are 

several idiosyncrasies and differences worth understanding before jumping into cross-platform 

socket development. 

 The first of these is the data type used to represent the socket itself. The  socket  function as 

listed earlier returns a result of type  SOCKET , but this type actually exists only on Windows-

based platforms like Windows 10 and Xbox. A little digging into the Windows headers files 

shows that  SOCKET  is a  typedef  for a  UINT_PTR . That is, it points to an area of memory that 

holds state and data about the socket. 

 Contrariwise, on POSIX-based platforms like Linux, Mac OS X, and PlayStation, a socket is 

represented by a single  int . There is no socket data type per se: The socket function returns 

an integer. This integer represents an index into the operating system’s list of open files and 

sockets. In this way, a socket is very similar to a POSIX file descriptor, and in fact can be passed 

to many OS functions that take file descriptors. Using sockets in this way limits some of the 

flexibility provided by the dedicated socket functions, but in some cases provides an easy 
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path to porting a non-network based process to a network compatible one. One significant 

drawback of the socket function returning an  int  is the lack of type safety, as the compiler 

will not balk at code which passes any integral expression (e.g., 5 × 4) to a function that takes a 

socket parameter. Several code examples in this chapter address this problem, as it is a general 

weakness of the Berkeley Socket API on all platforms. 

 Regardless of whether your platform represents a socket as an  int  or a  SOCKET , it’s worth 

noting that sockets should always be passed by value to functions in the socket library. 

 The second major difference between platforms is the header file which contains the 

declarations for the library. The Windows version of the socket library is known as Winsock2, and 

thus files which use socket functionality must  #include  the file WinSock2.h. There is an older 

version of the Winsock library called Winsock, and this version is actually included by default 

in the overarching Windows.h file used in most Windows programs. The Winsock library is an 

earlier, limited, less optimized version of the WinSock2 library, but it does contain several basic 

library functions, such as the  socket  creation one discussed earlier. This creates a name conflict 

when both Windows.h and WinSock2.h are included in the same translation unit: Multiple 

declarations for the same functions cause the compiler to choke and spew errors confusing to 

those who are unaware of this conflict. To avoid this, you must make sure to either  #include  

WinSocket2.h before Windows.h, or to  #define  the macro  WIN32_LEAN_AND_MEAN  before 

including Windows.h. The macro causes the preprocesser to omit, among other things, the 

inclusion of Winsock from the list of files contained in Windows.h, thus preventing the conflict. 

 WinSock2.h only contains declarations for the functions and data types directly related to 

sockets. For tangential functionality, you will have to include other files. For instance, to 

use address conversion functionality discussed in this chapter, you will also need to include 

Ws2tcpip.h. 

 On POSIX platforms, there is only one version of the socket library and it is usually accessed by 

including the file sys/socket.h. To use IPv4-specific functionality you may also have to include 

netinet/in.h. To use address conversion functionality, include arpa/inet.h. To perform name 

resolution you may have to include netdb.h. 

 Initialization and shutdown of the socket library also differ between platforms. On POSIX 

platforms, the library is active by default and nothing is required to enable socket functionality. 

Winsock2, however, requires explicit startup and cleanup and allows the user to specify what 

version of the library to use. To activate the socket library on Windows, use  WSAStartup : 

  int WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData);  

  wVersionRequested  is a 2-byte word in which the low-order byte specifies the major version 

and the high-order byte specifies the minor version of the Winsock implementation desired. 

The highest version supported as of this printing is 2.2, so typically you will pass  MAKEWORD(2, 2)  

for this parameter. 
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  lpWSAData  points to a Windows-specific data structure which the  WSAStartup  function fills 

in with data about the activated library, including the version of the implementation provided. 

Typically this will match the version requested and you will not usually need to check this data. 

  WSAStartup  returns either a 0, indicating success, or an error code, indicating why the library 

could not be started up. Note that no Winsock2 functions will work properly unless your 

process first invokes  WSAStartup  successfully. 

 To shut down the library, call  WSACleanup : 

  int WSACleanup();  

  WSACleanup  takes no parameters and returns an error code. When a process invokes  WSACleanup , 

all pending socket operations are terminated and all socket resources are deallocated, so it is a 

good idea to make sure all sockets are closed and truly unused before shutting down Winsock. 

 WSAStartup  is reference counted, so you must call  WSACleanup  exactly as many times you called 

 WSAStartup  to make sure that anything is actually cleaned up. 

 Error reporting is handled slightly differently between platforms. Most functions on all 

platforms return −1 in the case of an error. On Windows, you can use the macro  SOCKET_ERROR  

instead of the magic number −1. A single −1 does little to reveal the source of the error, though, 

so Winsock2 provides the function  WSAGetLastError  to fetch an additional code that 

expands on the cause of the error: 

  int WSAGetLastError();  

 This function returns only the latest error code generated on the currently running thread, so 

it is important to check it immediately after any socket library function returns a −1. Calling a 

successive socket function after an error could cause a secondary error due to the initial one. 

This would change the result returned by  WSAGetLastError  and mask the true cause of the 

problem. 

 POSIX-compatible libraries similarly provide a method to retrieve specific error information. 

However, these use the C standard library global variable  errno  to report specific error codes. 

To check the value of  errno  from code, you must include the file errno.h. After that, you can 

read from  errno  like any other variable. Just like the result returned by  WSAGetLastError, 

errno  can change after every function call, so it is important to check it at the first sign of error. 

  tip 

 Most platform-independent functions in the socket library use purely lowercase  letters, 

like  socket . Most Windows-specific Winsock2 functions, however, begin with 

capital letters, and sometimes the WSA prefix, to mark them as nonstandard. When 

developing for Windows, try to keep capital letter Winsock2 functions isolated from 

the cross-platform ones so that porting to POSIX platforms will be simpler.  
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 There are additional Winsock2-specific functions that are not supported by the POSIX version of 

the Berkeley Socket library, just like most POSIX-compatible operating systems have their own 

platform-specific networking functions in addition to the POSIX standard ones. The standard 

socket functions provide adequate functionality for a typical multiplayer networked game, 

so for the rest of this chapter, we will explore only the standard, cross-platform functions. The 

sample code for this book targets the Windows Operating System but uses Winsock2-specific 

functions only when necessary, to start up, shut down, and check for errors. The text will call 

out multiple versions whenever a function differs across platforms.  

  Socket Address 
 Every network layer packet requires a source address and a destination address. If the packet 

wraps transport layer data, it also requires a source port and a destination port. To pass this 

address information in and out of the socket library, the API provides the  sockaddr  data type: 

  struct sockaddr { 
    uint16_t  sa_family; 
    char    sa_data[14]; 
 };  

  sa_family  holds a constant identifying the type of the address. When using this socket 

address with a socket, the  sa_family  field should match the  af  parameter used to create the 

socket.  sa_data  is 14 bytes which hold the actual address. The  sa_data  field is a necessarily 

generic array of bytes because it must be able to hold the address format appropriate for 

whatever address family is specified. Technically, you could fill in the bytes manually, but this 

would require knowing the memory layout for various address families. To remedy this, the 

API provides dedicated data types to help initialize addresses for common address families. 

Because there were no classes or polymorphic inheritance at the time of the socket API’s 

creation, these data types must be manually cast to the  sockaddr  type when passed into any 

socket API function that requires an address. To create an address for an IPv4 packet, use the 

 sockaddr_in  type: 

  struct sockaddr_in { 
    short    sin_family; 
    uint16_t sin_port; 
    struct   in_addr sin_addr; 
    char     sin_zero[8]; 
 };  

  sin_family  overlaps sockaddr’s  sa_family  and thus has the same meaning. 

  sin_port  holds the 16-bit port section of the address. 

  sin_addr  holds the 4-byte IPv4 address. The  in_addr  type varies between socket libraries. 

On some platforms, it is a simple 4-byte integer. IPv4 addresses are not usually written as 

4-byte integers, but instead as 4 individual bytes separated with dots. For this reason, other 
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platforms provide a structure that wraps a union of structs that can be used to set the address 

in different formats: 

  struct in_addr { 
  union { 
    struct { 

uint8_t s_b1,s_b2,s_b3,s_b4; 
    } S_un_b; 
    struct { 

uint16_t s_w1,s_w2; 
    } S_un_w; 
    uint32_t S_addr; 
  } S_un; 
 };  

 By setting the  s_b1 ,  s_b2 ,  s_b3,  and  s_b4  fields of the  S_un_b  struct inside the  S_un  union, 

you can enter the address in a human readable form. 

  sin_zero  is unused and merely exists to pad the size of  sockaddr_in  to match the size of 

 sockaddr . For consistency, it should be set to all zeroes. 

  tip 

 In general, when instancing any BSD socket struct, it is a wise idea to use   memset  

to zero out all its members. This can help prevent cross-platform errors from 

uninitialized fields that arise when one platform uses fields that another platform 

ignores.  

 When setting the IP address as a 4-byte integer, or when setting the port number, it is 

important to account for that fact the TCP/IP suite and the host computer may use different 

standards for the ordering of bytes within multibyte numbers.  Chapter   4   , “Object Serialization,” 

provides an in-depth look at platform-dependent byte ordering, but for now, it is sufficient to 

know that any multibyte numbers set in a socket address structure must be converted from 

host byte order to network byte order. To facilitate this, the socket API provides the functions 

 htons  and  htonl : 

  uint16_t htons( uint16_t hostshort ); 
 uint32_t htonl( uint32_t hostlong );  

 The  htons  function takes any unsigned, 16-bit integer in the host’s native byte order and 

converts it to the same integer represented in the network’s native byte order. The  htonl  

function performs the same operation on 32-bit integers. 

 On platforms where the host byte order and network byte order are the same, these functions 

will do nothing. When optimizations are turned on, the compiler will recognize this fact and 
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omit the function calls without generating any extra code. On platforms where the host byte 

order does not match the network byte order, the returned values will have the same bytes 

as the input parameters, but their order will be swapped. This means that if you are on such 

a platform, and you use the debugger to examine the  sa_port  field of a properly initialized 

 sockaddr_in , the decimal value represented there will not match that of your intended port. 

Instead it will be the decimal value of a byte-swapped version of your port. 

 Sometimes, as in the case of receiving a packet, the socket library fills in the  sockaddr_in  

structure for you. When this happens, the  sockadd_in  fields will still be in network byte order, 

so if you wish to extract them and make sense of them, you should use the functions  ntohs  

and  ntohl  to convert the values from network byte order to host byte order: 

  uint16_t ntohs(uint16_t networkshort); 
 uint32_t ntohl(uint32_t networklong);  

 These two functions work the same way as their host-to-network counterparts. 

 Putting all these techniques together, Listing 3.1 shows how to create a socket address that 

represents port 80 at IP address 65.254.248.180. 

  Listing 3.1 Initializing a sockaddr_in 

 sockaddr_in myAddr; 
 memset(myAddr.sin_zero, 0, sizeof(myAddr.sin_zero)); 
 myAddr.sin_family = AF_INET; 
 myAddr.sin_port = htons(80); 
 myAddr.sin_addr.S_un.S_un_b.s_b1 = 65; 
 myAddr.sin_addr.S_un.S_un_b.s_b2 = 254; 
 myAddr.sin_addr.S_un.S_un_b.s_b3 = 248; 
 myAddr.sin_addr.S_un.S_un_b.s_b4 = 180;  

  note 

 Some platforms add an extra field in the  sockaddr  to store the length of the 

structure used. This is to enable longer-length  sockaddr  structures in the 

future. On these platforms, just set the length to the  sizeof  the structure used. 

For instance, on Mac OS X, initialize a  sockaddr_in  named myAddr by setting 

 myAddr.sa_len = sizeof(sockaddr_in) .  

  Type Safety 

 Because there was very little consideration for type safety when the initial socket library was 

created, it can be useful to wrap the basic socket data types and functions with custom object-

oriented ones, implemented at the application level. This also helps isolate the socket API from 
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your game, in case you decide to change out the socket library for some alternative networking 

library at a later date. In this book, we will be wrapping many structs and functions both as a way 

to demonstrate proper use of the underlying API and to provide a more type-safe framework on 

which you can build your own code. Listing 3.2 presents a wrapper for the  sockaddr  structure. 

  Listing 3.2 Type-Safe SocketAddress Class 

 class SocketAddress 
 { 
 public: 
    SocketAddress(uint32_t inAddress, uint16_t inPort) 
    { 

GetAsSockAddrIn()->sin_family = AF_INET; 
GetAsSockAddrIn()->sin_addr.S_un.S_addr = htonl(inAddress); 
GetAsSockAddrIn()->sin_port = htons(inPort); 

    } 
    SocketAddress(const sockaddr& inSockAddr) 
    { 

memcpy(&mSockAddr, &inSockAddr, sizeof( sockaddr) ); 
    } 

    size_t GetSize() const {return sizeof( sockaddr );} 

 private: 
    sockaddr mSockAddr; 

    sockaddr_in* GetAsSockAddrIn() 
{return reinterpret_cast<sockaddr_in*>( &mSockAddr );} 

 }; 
 typedef shared_ptr<SocketAddress> SocketAddressPtr;  

  SocketAddress  has two constructors. The first takes a 4-byte IPv4 address and port and 

assigns the value to an internal  sockaddr . The constructor automatically sets the address 

family to  AF_INET  because the parameters are only sensible for an IPv4 address. To support 

IPv6, you could extend this class with another constructor. 

 The second constructor takes a native  sockaddr  and copies it into the internal  mSockAddr  

field. This is useful when the network API returns a  sockaddr  and you wish to wrap it with a 

 SocketAddress . 

 The  GetSize  helper method of  SocketAddress  keeps the code clean when dealing with 

functions that need the size of the  sockaddr . 

 Finally, the shared pointer type to a socket address ensures there is an easy way to share 

socket addresses without having to worry about cleaning up the memory. At the moment, 

 SocketAddress  wraps very little, but it provides a good base on which to add more 

functionality as future examples require it.  
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  Initializing  sockaddr  from a String 

 It takes a bit of work just to feed an IP address and port into a socket address, especially 

considering that the address information will probably be passed to your program as a string in 

a config file or on a commandline. If you do have a string to turn into a  sockaddr , you can skip 

this work by using the  inet_pton  function on POSIX-compatible systems or the  InetPton  

function on Windows. 

  int inet_pton(int af, const char* src, void* dst); 
 int InetPton(int af, const PCTSTR src  void* dst);  

 Both functions take an address family, either  AF_INET  or  AF_INET6 , and convert a string 

representation of an IP address into an  in_addr  representation.  src  should point to a null 

terminated character string containing the address in dotted notation and  dst  should point 

to the  sin_addr  field of the  sockaddr  to be set. The functions return 1 on success, 0 if the 

source string is malformed, or −1 if some other system error occurred. Listing 3.3 shows how to 

initialize a  sockaddr  using one of these presentation-to-network functions. 

  Listing 3.3 Initializing sockaddr with InetPton 

 sockaddr_in myAddr; 
 myAddr.sin_family = AF_INET; 
 myAddr.sin_port = htons( 80 ); 
 InetPton(AF_INET, "65.254.248.180", &myAddr.sin_addr);  

 Although  inet_pton  converts a human readable string to a binary IP address, the string must 

be an IP address. It cannot be a domain name, as no DNS lookup is performed. If you wish to 

perform a simple DNS query to translate a domain name into an IP address, use  getaddrinfo : 

  int getaddrinfo(const char *hostname, const char *servname, const addrinfo 
*hints, addrinfo **res);

  hostname  should be a null terminated string holding the name of the domain to look up. For 

instance, “ live-shore-986.herokuapp.com .” 

  servname  should be a null terminated string containing either a port number, or the name of a 

service which maps to a port number. For instance, you can send either “80” or “http” to request 

a  sockaddr_in  containing port 80. 

  hints  should be a pointer to an  addrinfo  structure containing information about the results 

you wish to receive. You can specify a desired address family or other requirement using this 

parameter, or you can just pass  nullptr  to get all matching results. 

 Finally,  res  should be a pointer to a variable that the function will set to point to the head of a 

linked list of newly allocated  addrinfo  structures. Each  addrinfo  represents a section of the 

response from the DNS server: 
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  struct addrinfo { 
  int ai_flags; 
  int ai_family; 
  int ai_socktype; 
  int ai_protocol; 
  size_t ai_addrlen; 
  char          *ai_canonname;
  sockaddr      *ai_addr;
  addrinfo      *ai_next;
 }  

  ai_flags ,  ai_socktype,  and  ai_protocol  are used to request certain types of responses 

when you pass an  addrinfo  into  getaddrinfo  as a hint. They can be ignored in the 

response. 

  ai_family  identifies the address family to which this  addrinfo  pertains. A value of  AF_INET  

indicates an IPv4 address and a value of  AF_INET6  indicates an IPv6 address. 

  ai_addrlen  gives the size of the  sockaddr  pointed to by  ai_addr.  

  ai_canonname  holds the canonical name of the resolved hostname, if the  AI_CANONNAME  

flag is set in the  ai_flags  field of the  addrinfo  passed as  hints  in the original call. 

  ai_addr  contains a  sockaddr  of the given address family, which addresses the host specified 

by the  hostname  and the port specified by the  servname  parameters of the original call. 

  ai_next  points to the next  addrinfo  in the linked list. Because a domain name can map 

to multiple IPv4 and IPv6 addresses, you should iterate through the linked list until you find 

a  sockaddr  that suits your needs. Alternatively, you can specify the  ai_family  in the 

 addrinfo  passed as a hint and you will receive results for only the desired family. The final 

 addrinfo  in the list will have  nullptr  as its  ai_next  to indicate it is the tail. 

 Because  getaddrinfo  allocates one or more  addrinfo  structures, you should call 

 freeaddrinfo  to release the memory once you have copied the desired  sockaddr  out of the 

linked list: 

  void freeaddrinfo(addrinfo* ai);  

 In  ai , pass only the very first  addrinfo  returned by  getaddrinfo . The function will walk the 

linked list freeing up all  addrinfo  nodes and all associated buffers. 

 To resolve a host name into an IP address,  getaddrinfo  creates a DNS protocol packet and 

sends it using either UDP or TCP to one of the DNS servers configured in the operating system. 

It then waits for a response, parses the response, constructs the linked list of  addrinfo  

structures, and returns this to the caller. Because this process is dependent on sending 

information to and receiving information from a remote host, it can take a significant amount 

of time. Sometimes this is on the order of milliseconds, but more often it is on the order of 
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seconds.  getaddrinfo  has no provisions for asynchronous operation built in, so it will block 

the calling thread until it receives a response. This can cause an undesirable experience for 

the user, so if you need to resolve hostnames into IP addresses, you should consider calling 

 getaddrinfo  on a thread other than the main thread of your game. On Windows, you can 

alternatively call the Windows-specific  GetAddrInfoEx  function, which does allow for 

asynchronous operation without manually creating a different thread. 

 You can encapsulate the functionality of  getaddrinfo  nicely in the  SocketAddressFactory  

given in Listing 3.4. 

  Listing 3.4 Name Resolution Using the SocketAddressFactory 

 class SocketAddressFactory 
 { 
 public: 
    static SocketAddressPtr CreateIPv4FromString(const string& inString) 
    { 

auto pos = inString.find_last_of(':'); 
string host, service; 
if(pos != string::npos) 
{ 

host = inString.substr(0, pos); 
service = inString.substr(pos + 1); 

} 
else 
{ 

host = inString; 
//use default port... 
service = "0"; 

} 
addrinfo hint; 
memset(&hint, 0, sizeof(hint)); 
hint.ai_family = AF_INET; 

addrinfo* result; 
int error = getaddrinfo(host.c_str(), service.c_str(), 

&hint, &result); 
if(error != 0 && result != nullptr) 
{ 

freeaddrinfo(result); 
return nullptr; 

} 

while(!result->ai_addr && result->ai_next) 
{ 

result = result->ai_next; 
} 
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if(!result->ai_addr) 
{ 

freeaddrinfo(result); 
return nullptr; 

} 
auto toRet = std::make_shared< SocketAddress >(*result->ai_addr); 

freeaddrinfo(result); 

return toRet; 
    } 
 };  

  SocketAddressFactory  has a single static method to create a  SocketAddress  from a 

string representing a host name and port. The function returns a  SocketAddressPtr  so that 

it has the option of returning  nullptr  if anything goes wrong with the name conversion. 

This is a nice alternative to making a  SocketAddress  constructor do the conversion because, 

without requiring exception handling, it makes sure there is never an incorrectly initialized 

 SocketAddress  in existence: If  CreateIPv4FromString  returns a non-null pointer, then it is 

guaranteed to be a valid  SocketAddress . 

 The method first separates the port from the name by searching for a colon. It then creates a 

hint  addrinfo  to ensure that only IPv4 results are returned. It feeds all this into  getaddrinfo  

and iterates through the resulting list until a non-null address is found. It copies this address 

into a new  SocketAddress  using the appropriate constructor and then frees the linked list. If 

anything goes wrong, it returns null.  

  Binding a Socket 

 The process of notifying the operating system that a socket will use a specific address and 

transport layer port is known as  binding . To manually bind a socket to an address and port, use 

the  bind  function: 

  int bind(SOCKET sock, const sockaddr *address, int address_len);  

  sock  is the socket to bind, previously created by the  socket  function. 

  address  is the address to which the socket should bind. Note that this has nothing to do with 

the address to which the socket will send packets. You can think of this as defining the return 

address of any packets sent from the socket. It may seem curious that you must specify a return 

address at all, since any packets sent from this host are clearly coming from this host’s address. 

However, remember that a host can have multiple network interfaces, and each interface can 

have its own IP address. 

 Passing a specific address to bind allows you to determine which interface the socket should 

use. This is especially useful for hosts that serve as routers or bridges between networks, 
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as their different interfaces may be connected to entirely different sets of computers. For 

multiplayer game purposes, it is usually not important to specify a network interface, and in 

fact often desirable to bind a given port for  all  available network interfaces and IP addresses 

that the host has. To do this, you can assign the macro  INADDR_ANY  to the  sin_addr  field of 

the  sockaddr_in  that you pass to bind. 

  address_len  should contain the size of the  sockaddr  passed as the  address . 

  bind  returns 0 on success, or −1 in case of an error. 

 Binding a socket to a  sockaddr  serves two functions. First, it tells the OS that this socket 

should be the target recipient for any incoming packet with a destination matching the socket’s 

bound address and port. Second, it dictates the source address and port that the socket library 

should use when creating network and transport layer headers for packets sent out from the 

socket. 

 Typically you can only bind a single socket to a given address and port.  bind  will return an 

error if you try to bind to an address and port already in use. In that case, you can repeatedly try 

binding different ports until you find one that is not in use. To automate this process, you can 

specify 0 for the port to bind. This tells the library to find an unused port and bind that. 

 A socket must be bound before it can be used to transmit or receive data. Because of this, if a 

process attempts to send data using an unbound socket, the network library will automatically 

bind that socket to an available port. Therefore, the only reason to manually call  bind  is to 

specify the bound address and port. This is necessary when building a server that must listen 

for packets on a publically announced address and port, but usually not necessary for a client. 

A client can automatically bind to any available port: When it sends its first packet to the server, 

the packet will contain the automatically chosen source address and port, and the server can 

use those to address any return packets correctly.   

  UDP Sockets 
 You can send data on a UDP socket as soon as the socket is created. If it is not bound, the 

network module will find a free port in the dynamic port range and automatically bind it. To 

send data, use the  sendto  function: 

  int sendto(SOCKET sock, const char *buf, int len, int flags, 
const sockaddr *to, int tolen);  

  sock  is the socket from which the datagram should send. If the socket is unbound, the library 

will automatically bind it to an available port. The socket’s bound address and port will be used 

as the source address in the headers of the outgoing packet. 

  buf  is a pointer to the starting address of the data to send. It does not have to be an actual 

 char* . It can be any type of data as long as it is cast appropriately to a  char* . Because of this, 
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 void * would have been a more appropriate data type for this parameter, so it is useful to think 

of it that way. 

  len  is the length of data to send. Technically the maximum length of a UDP datagram including 

its 8-byte header is 65535 bytes, because the length field in the header holds only 16 bits. 

However, remember that the link layer’s MTU determines the largest packet that can be sent 

without fragmentation. The MTU for Ethernet is 1500 bytes, but this must include not only 

the game’s payload data, but also multiple headers and potentially any packet wrappers. As a 

game programmer trying to avoid fragmentation, a good rule of thumb is to avoid sending 

datagrams with data larger than 1300 bytes. 

  flags  is a bitwise OR collection of flags controlling the sending of data. For most game play 

code, this should be 0. 

  to  is the  sockaddr  of the intended recipient. This  sockaddr ’s address family must match the 

one used to create the socket. The address and port from the  to  parameter are copied into the 

IP header and UDP header as the destination IP address and destination port. 

  len  is the length of the  sockaddr  passed as the  to  parameter. For IPv4, just pass 

 sizeof(sockaddr_in) . 

 If the operation is successful,  sendto  returns the length of the data queued to send. Otherwise 

it returns −1. Note that a nonzero return value doesn’t actually mean the datagram was sent, 

just that it was successfully queued to be sent. 

 Receiving data on a UDP socket is a simple matter of using the  recvfrom  function: 

  int recvfrom(SOCKET sock, char *buf, int len, int flags, sockaddr *from, 
int *fromlen);  

  sock  is the socket to query for data. By default, if no unread datagrams have been sent to the 

socket, the thread will block until a datagram arrives. 

  buf  is the buffer into which the received datagram should be copied. By default, once a 

datagram has been copied into a buffer through a  recvfrom  call, the socket library no longer 

keeps a copy of it. 

  len  should specify the maximum number of bytes the  buf  parameter can hold. To avoid a 

buffer overflow error,  recvfrom  will never copy more than this number of bytes into  buf . Any 

remaining bytes in the incoming datagram will be lost for good, so make sure to always use a 

receiving buffer as large as the largest datagram you expect to receive. 

  flags  is a bitwise OR collection of flags controlling the receiving of data. For most game play 

code, this should be 0. One occasionally useful flag is the  MSG_PEEK  flag. This will copy a received 

datagram into the  buf  parameter without removing any data from the input queue. That way, the 

next  recvfrom  call, potentially with a larger buffer, can refetch the same datagram. 
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  from  should be a pointer to a  sockaddr  structure that the  recvfrom  function can fill in 

with the sender’s address and port. Note that this structure does not need to be initialized 

ahead of time with any address information. It is a common misconception that one can 

specifically request a packet from a particular address by filling in this parameter, but no 

such thing is possible. Instead, datagrams are delivered to the  recvfrom  function in the 

order received, and the  from  variable is set to the corresponding source address for each 

datagram. 

  fromlen  should point to an integer holding the length of the  sockaddr  passed in as  from . 

 recvfrom  may reduce this value if it doesn’t need all the space to copy the source address. 

 After successful execution,  recvfrom  returns the number of bytes that were copied into  buf . If 

there was an error, it returns −1. 

  Type-Safe UDP Sockets 

 Listing 3.5 shows the type-safe  UDPSocket  class, capable of binding an address and sending 

and receiving datagrams. 

  Listing 3.5 Type-Safe UDPSocket Class 

 class UDPSocket 
 { 
 public: 
    ~UDPSocket(); 
    int Bind(const SocketAddress& inToAddress); 
    int SendTo(const void* inData, int inLen, const SocketAddress& inTo); 
    int ReceiveFrom(void* inBuffer, int inLen, SocketAddress& outFrom); 
 private: 
    friend class SocketUtil; 
    UDPSocket(SOCKET inSocket) : mSocket(inSocket) {} 
    SOCKET mSocket; 
 }; 
 typedef shared_ptr<UDPSocket> UDPSocketPtr; 

 int UDPSocket::Bind(const SocketAddress& inBindAddress) 
 { 
    int err = bind(mSocket, &inBindAddress.mSockAddr, 

inBindAddress.GetSize()); 
    if(err != 0) 
    { 

SocketUtil::ReportError(L"UDPSocket::Bind"); 
return SocketUtil::GetLastError(); 

    } 
    return NO_ERROR; 
 } 
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 int UDPSocket::SendTo(const void* inData, int inLen, 
const SocketAddress& inTo) 

 { 
    int byteSentCount = sendto( mSocket, 

static_cast<const char*>( inData), 
inLen, 
0, &inTo.mSockAddr, inTo.GetSize()); 

    if(byteSentCount >= 0) 
    { 

return byteSentCount; 
    } 
    else 
    { 

//return error as negative number 
SocketUtil::ReportError(L"UDPSocket::SendTo"); 
return -SocketUtil::GetLastError(); 

    } 
 } 

 int UDPSocket::ReceiveFrom(void* inBuffer, int inLen, 
   SocketAddress& outFrom) 

 { 
    int fromLength = outFromAddress.GetSize(); 
    int readByteCount = recvfrom(mSocket, 

static_cast<char*>(inBuffer), 
inMaxLength, 
0, &outFromAddress.mSockAddr, 
&fromLength); 

    if(readByteCount >= 0) 
    { 

return readByteCount; 
    } 
    else 
    { 

SocketUtil::ReportError(L"UDPSocket::ReceiveFrom"); 
return -SocketUtil::GetLastError(); 

    } 
 } 

 UDPSocket::~UDPSocket() 
 { 
    closesocket(mSocket); 
 }  

 The  UDPSocket  class has three main methods:  Bind ,  SendTo , and  ReceiveFrom . Each makes 

use of the  SocketAddress  class previously defined. To make this possible,  SocketAddress  must 

declare  UDPSocket  a friend class so that the methods can access the private  sockaddr  member 

variable. Treating  SocketAddress  this way makes sure no code outside of this socket wrapper 

module can edit  sockaddr  directly, which reduces dependencies and prevents potential errors. 
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 A nice benefit of the object-oriented wrapper is the ability to create destructors. In this case, 

 ~UDPSocket  automatically closes the internally wrapped socket to prevent sockets from 

leaking. 

 The  UDPSocket  code in Listing 3.5 introduces a dependency on the  SocketUtil  class 

for reporting errors. Isolating error reporting code this way makes it easy to change error 

handling behavior and cleanly wraps the fact that some platforms take their errors from 

 WASGetLastError  and some from  errno . 

 The code does not provide a way to create a  UDPSocket  from scratch. The only constructor 

on  UDPSocket  is private. Similarly to the  SocketAddressFactory  pattern, this is so 

that there is no way to create a  UDPSocket  with an invalid  mSocket  inside it. Instead, the 

 SocketUtil::CreateUDPSocket  function in Listing 3.6 will create a  UDPSocket  only after 

the underlying  socket  call succeeds. 

  Listing 3.6 Creating a UDP Socket 

 enum SocketAddressFamily 
 { 
    INET = AF_INET, 
    INET6 = AF_INET6 
 }; 
 UDPSocketPtr SocketUtil::CreateUDPSocket(SocketAddressFamily inFamily) 
 { 
    SOCKET s = socket(inFamily, SOCK_DGRAM, IPPROTO_UDP); 
    if(s != INVALID_SOCKET) 
    { 

return UDPSocketPtr(new UDPSocket(s)); 
    } 
    else 
    { 

ReportError(L"SocketUtil::CreateUDPSocket"); 
return nullptr; 

    } 
 }    

  TCP Sockets 
 UDP is stateless, connectionless, and unreliable, so it needs only a single socket per host to 

send and receive datagrams. TCP, on the other hand is reliable, and requires a connection to 

be established between two hosts before data transmission can take place. In addition, it must 

maintain state to resend dropped packets and it has to store that state somewhere. In the 

Berkeley Socket API, the socket itself stores the connection state. This means a host needs an 

additional, unique socket for each TCP connection it maintains. 
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 TCP requires a three-stage handshake to initiate a connection between a client and a server. For 

the server to receive the initial stage of the handshake, it must first create a socket, bind it to a 

designated port, and then listen for any incoming handshakes. Once it has created and bound 

the socket using  socket  and  bind , it begins listening using the  listen  function: 

  int listen(SOCKET sock, int backlog);  

  sock  is the socket to set into listen mode. Each time a socket in listen mode receives the first 

stage of a TCP handshake, it stores the request until the owning process makes a call to accept 

the connection and continue the handshake. 

  backlog  is the maximum number of incoming connections that should be allowed to queue 

up. Once the maximum number of handshakes are pending, any further incoming connection 

is dropped. Pass  SOMAXCONN  to use the default backlog value. 

 The function returns 0 on success, or −1 in case of error. 

 To accept an incoming connection and continue the TCP handshake, call  accept : 

  SOCKET accept(SOCKET sock, sockaddr* addr, int* addrlen);  

  sock  is the listening socket on which an incoming connection should be accepted. 

  addr  is a pointer to a  sockaddr  structure that will be filled in with the address of the remote 

host requesting the connection. Similarly to the address passed into  recvfrom , this  sockaddr  

does not need to be initialized and it does not control which connection is accepted. It merely 

receives the address of the accepted connection. 

  addrlen  should be a pointer to the size in bytes of the  addr  buffer. It will be updated by 

 accept  with the size of the address actually written. 

 If  accept  succeeds, it creates and returns a new socket which can be used to communicate 

with the remote host. This new socket is bound to the same port as the listening socket. When 

the OS receives a packet destined for the bound port, it uses the source address and source 

port to determine which socket should receive the packet: Remember that TCP requires a host 

to have a unique socket for each remote host to which it is connected. 

 The new socket returned by  accept  is associated with the remote host which initiated the 

connection. It stores the remote host’s address and port, and tracks all outgoing packets so 

they can be resent if dropped. It is also the only socket which can communicate with the remote 

host: A process should never attempt to send data to a remote host using the initial socket in 

listen mode. That will fail, as the listen socket is never connected to anything. It only acts as a 

dispatcher to help create new sockets in response to incoming connection requests. 

 By default, if there are no connections ready to accept,  accept  will block the calling thread 

until an incoming connection is received or the attempt times out. 



ptg16606381

TCP SOCKETS 85

 The process of listening for and accepting connections is an asymmetrical one. Only the passive 

server needs a listen socket. A client wishing to initiate a connection should instead create a 

socket and use the  connect  function to begin the handshake process with a remote server: 

  int connect(SOCKET sock, const sockaddr *addr, int addrlen);  

  sock  is the socket on which to connect. 

  addr  is a pointer to the address of the desired remote host. 

  addrlen  is the length of the  addr  parameter. 

 On success,  connect  returns 0. If there is an error, it returns −1. 

 Calling  connect  initiates the TCP handshake by sending the initial SYN packet to a target 

host. If that host has a listen socket bound to the appropriate port, it can proceed with the 

handshake by calling  accept . By default, a call to  connect  will block the calling thread until 

the connection is accepted or the attempt times out. 

  Sending and Receiving via Connected Sockets 

 A connected TCP socket stores the remote host’s address information. Because of this, a process 

does not need to pass an address with each call to transmit data. Instead of using  sendto , send 

data through a connected TCP socket using the  send  function: 

  int send(SOCKET sock, const char *buf, int len, int flags)  

  sock  is the socket on which the data should be sent. 

  buf  is a buffer of data to write to the stream. Note that unlike for UDP,  buf  is not a datagram 

and not guaranteed to be transferred as a single data unit. Instead, the data is just appended 

to the socket’s outgoing buffer, and transferred sometime in the future at the socket library’s 

whim. If the Nagle algorithm is active, as described in  Chapter   2   , this may not happen until an 

MSS worth of data has accumulated. 

  len  is the number of bytes to transmit. Unlike for UDP, there is no reason to keep this value 

below the expected MTU of the link layer. As long as there is room in the socket’s send buffer, 

the network library will append the data and then send it out in whatever chunk sizes it deems 

appropriate. 

  flags  is a bitwise OR collection of flags controlling the sending of data. For most game play 

code, this should be 0. 

 If the  send  call succeeds, it returns the amount of data sent. This may be less than the  len  

parameter, if the socket’s send buffer had some space free but not enough to hold the entire 

 buf . If there is no room at all, then by default the calling thread will block until the call times out, 
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or enough packets are sent for there to be room. If there is an error,  send  returns −1. Note that a 

nonzero return value does not imply any data was sent, just that data was queued to be sent. 

 To receive data on a connected TCP socket, call  recv : 

  int recv(SOCKET sock, char *buf, int len, int flags);  

  sock  is the socket to check for data. 

  buf  is the buffer into which the data should be copied. The copied data is removed from the 

socket’s receive buffer. 

  len  is the maximum amount of received data to copy into  buf . 

  flags  is a bitwise OR collection of flags controlling the receiving of data. Any flags usable with 

 recvfrom  are also usable with  recv . For most game play code, this should be 0. 

 If the  recv  call is successful, it returns the number of bytes received. This will be less than or 

equal to  len . It is not possible to predict the amount of data received based on remote calls to 

 send:  The network library on the remote host accumulates the data and sends out segments 

sized as it sees fit. If  recv  returns zero when  len  is nonzero, it means the other side of the 

connection has sent a  FIN  packet and promises to send no more data. If  recv  returns zero 

when  len  is zero, it means there is data on the socket ready to be read. With many sockets in 

use, this can be a handy way to check for the presence of data without having to dedicate a 

buffer to the task. Once  recv  has indicated there is data available, you can reserve a buffer and 

then call  recv  again, passing the buffer and a nonzero  len . 

 If there is an error,  recv  returns −1. 

 By default, if there is no data in the socket’s receive buffer,  recv  blocks the calling thread until 

the next segment in the stream arrives or the call times out. 

  note 

 You can actually use  sendto  and  recvfrom  on a connected socket if you want. 

However, the address parameters will be ignored and this can be confusing. 

 Similarly, on some platforms it is possible to call  connect  on a UDP socket to store 

a remote host’s address and port in the socket’s connection data. This doesn’t 

 establish a reliable connection, but it does allow the use of  send  to transmit data to 

the stored host without having to specify the address each time. It also causes the 

socket to discard incoming datagrams from any host other than the stored one.   

  Type-Safe TCP Sockets 

 The type-safe  TCPSocket  looks similar to  UDPSocket , but with additional connection-

oriented functionality wrapped. Listing 3.7 gives the implementation. 
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  Listing 3.7 Type-Safe TCPSocket Class 

 class TCPSocket 
 { 
 public: 
    ~TCPSocket(); 
    int Connect(const SocketAddress& inAddress); 
    int Bind(const SocktetAddress& inToAddress); 
    int Listen(int inBackLog = 32); 
    shared_ptr< TCPSocket > Accept(SocketAddress& inFromAddress); 
    int                     Send(const void* inData, int inLen); 
    int                     Receive(void* inBuffer, int inLen); 
 private: 
    friend class SocketUtil; 
    TCPSocket(SOCKET inSocket) : mSocket(inSocket) {} 
    SOCKET mSocket; 
 }; 
 typedef shared_ptr<TCPSocket> TCPSocketPtr; 

 int TCPSocket::Connect(const SocketAddress& inAddress) 
 { 
    int err = connect(mSocket, &inAddress.mSockAddr, inAddress.GetSize()); 
    if(err < 0) 
    { 

SocketUtil::ReportError(L"TCPSocket::Connect"); 
return -SocketUtil::GetLastError(); 

    } 
    return NO_ERROR; 
 } 
 int TCPSocket::Listen(int inBackLog) 
 { 
    int err = listen(mSocket, inBackLog); 
    if(err < 0) 
    { 

SocketUtil::ReportError(L"TCPSocket::Listen"); 
return -SocketUtil::GetLastError(); 

    } 
    return NO_ERROR; 
 } 

 TCPSocketPtr TCPSocket::Accept(SocketAddress& inFromAddress) 
 { 
    int length = inFromAddress.GetSize(); 
    SOCKET newSocket = accept(mSocket, &inFromAddress.mSockAddr, &length); 

    if(newSocket != INVALID_SOCKET) 
    { 

return TCPSocketPtr(new TCPSocket( newSocket)); 
    } 
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    else 
    { 

SocketUtil::ReportError(L"TCPSocket::Accept"); 
return nullptr; 

    } 
 } 

 int TCPSocket::Send(const void* inData, int inLen) 
 { 
    int bytesSentCount = send(mSocket, 

static_cast<const char*>(inData ), 
inLen, 0); 

    if(bytesSentCount < 0 ) 
    { 

SocketUtil::ReportError(L"TCPSocket::Send"); 
return -SocketUtil::GetLastError(); 

    } 
    return bytesSentCount; 
 } 

 int TCPSocket::Receive(void* inData, int inLen) 
 { 
    int bytesReceivedCount = recv(mSocket, 

static_cast<char*>(inData), inLen, 0); 
    if(bytesReceivedCount < 0) 
    { 

SocketUtil::ReportError(L"TCPSocket::Receive"); 
return -SocketUtil::GetLastError(); 

    } 
    return bytesReceivedCount; 
 }  

  TCPSocket  contains the TCP-specific methods:  Send ,  Receive ,  Connect ,  Listen,  and 

 Accept .  Bind  and the destructor are no different from the  UDPSocket  versions, so they are 

not shown.  Accept  returns a  TCPSocketPtr  to ensure the new socket closes automatically 

when no longer referenced.  Send  and  Receive  do not require addresses because they 

automatically use the address stored in the connected socket. 

 To enable creation of a  TCPSocket , you must add a  CreateTCPSocket  function to 

 SocketUtils .   

  Blocking and Non-Blocking I/O 
 Receiving from a socket is typically a blocking operation. If there is no data ready to be 

received, the thread will block until data comes in. This is undesirable if you are polling for 

packets on the main thread. Sending, accepting, and connecting can also block if the socket is 
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not ready to perform the operation. This raises issues for a real-time application, like a game, 

that needs to check for incoming data without reducing the frame rate. Imagine a game server 

with TCP connections to five clients. If the server calls  recv  on one of its sockets to check 

for new data from the corresponding client, the server’s thread will pause until that client 

sends some data. This prevents the server from checking on its other sockets, accepting new 

connections on its listen socket, and running the game simulation. Clearly a game cannot ship 

that way. Luckily there are three common ways to work around this issue: multithreading, 

non-blocking I/O, and the  select  function. 

  Multithreading 

 One way to work around the problem of blocking I/O is to put each potentially blocking call 

on its own thread. In the example mentioned earlier, the server would need at least seven 

threads total: one for each client connection, one for the listen socket, and one or more for the 

simulation.  Figure   3.1    shows the process.  
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  Figure 3.1  Multithreading process       

 At startup, the listen thread creates a socket, binds it, calls  listen,  and then calls  accept . 

The accept call blocks until a client tries to connect. When a client does connect, the  accept  

call returns a new socket. The server process spawns a new thread for this socket, which loops 
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calling  recv . The  recv  call blocks until the client sends data. When the client sends data, the 

 recv  call unblocks and the unblocked thread uses some callback mechanism to send the new 

client data to the main thread before looping back and calling  recv  again. Meanwhile, the 

listen socket keeps blocking while accepting new connections, and the main thread runs the 

simulation. 

 This works, but has the drawback of requiring one thread per client, which does not scale 

well as the number of clients grows. It also can get hard to manage, as all client data comes in 

on parallel threads and needs to be passed to the simulation in a safe manner. Finally, if the 

simulation thread tries to send data on a socket at the same time the receive thread is receiving 

on that socket, it will still block the simulation. These are not insurmountable problems, but 

there are simpler alternatives.  

  Non-Blocking I/O 

 By default, sockets operate in blocking mode, as previously mentioned. However, sockets also 

support  non-blocking  mode. When a socket in non-blocking mode is asked to perform an 

operation that would otherwise require blocking, it instead returns immediately, with a result 

of −1. It also sets the system error code,  errno  or  WSAGetLastError , to return a value of 

EAGAIN or WASEWOULDBLOCK, respectively. This code signifies that the previous socket action 

would have blocked and was aborted without taking place. The calling process can then react 

accordingly. 

 To set a socket into non-blocking mode on Windows, use the  ioctlsocket  function: 

  int ioctlsocket(SOCKET sock, long cmd, u_long *argp);  

  sock  is the socket to place in non-blocking mode. 

  cmd  is the socket parameter to control. In this case, pass  FIONBIO . 

  argp  is the value to set for the parameter. Any nonzero value will enable non-blocking mode, 

and zero will disable it. 

 On a POSIX-compatible operating system, use the  fcntl  function: 

  int fcntl(int sock, int cmd, . . .);  

  sock  is the socket to place in non-blocking mode. 

  cmd  is the command to issue to the socket. On newer POSIX systems, you must first use 

 F_GETFL  to fetch the flags currently associated with the socket, bitwise OR them with 

the constant  O_NONBLOCK , and then use the  F_SETFL  command to update the flags on 

the socket. Listing 3.8 shows how to add a method to enable non-blocking mode on the 

 UDPSocket . 
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  Listing 3.8 Enabling Non-Blocking Mode for a Type-Safe Socket 

 int UDPSocket::SetNonBlockingMode(bool inShouldBeNonBlocking) 
 { 
 #if _WIN32 
    u_long arg = inShouldBeNonBlocking ? 1 : 0; 
    int result = ioctlsocket(mSocket, FIONBIO, &arg); 
 #else 
    int flags = fcntl(mSocket, F_GETFL, 0); 
    flags = inShouldBeNonBlocking ? 

(flags | O_NONBLOCK):(flags & ~O_NONBLOCK); 
    fcntl(mSocket, F_SETFL, flags); 
 #endif 

    if(result == SOCKET_ERROR) 
    { 

SocketUtil::ReportError(L"UDPSocket::SetNonBlockingMode"); 
return SocketUtil::GetLastError(); 

    } 
    else 
    { 

return NO_ERROR; 
    } 
 }  

 When a socket is in non-blocking mode, it is safe to call any usually blocking function and know 

that it will return immediately if it cannot complete without blocking. A typical game loop 

using a non-blocking socket might look something like Listing 3.9. 

  Listing 3.9 Game Loop Using a Non-Blocking Socket 

 void  DoGameLoop() 
 { 
    UDPSocketPtr mySock = SocketUtil::CreateUDPSocket(INET); 
    mySock->SetNonBlockingMode(true); 

    while(gIsGameRunning) 
    { 

char data[1500]; 
SocketAddress socketAddress; 

int bytesReceived = mySock->ReceiveFrom(data, sizeof(data), 
socketAddress); 

if(bytesReceived> 0) 
{ 

ProcessReceivedData(data, bytesReceived, socketAddress); 
} 
DoGameFrame(); 

    } 
 }  
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 With the socket set to non-blocking mode, the game can check in each frame to see if any 

data is ready to be received. If there is data, the game processes the first pending datagram. If 

there is none, the game immediately moves on to the rest of the frame without waiting. If you 

want to process more than just the first datagram, you can add a loop which reads pending 

datagrams until it has read a maximum number, or there are no more present. It is important 

to limit the number of datagrams read per frame. If you do not, a malicious client could send a 

slew of single-byte datagrams faster than the server can process them, effectively halting the 

server from simulating the game.  

  Select 

 Polling non-blocking sockets each frame is a simple and straightforward way to check for 

incoming data without blocking a thread. However, when the number of sockets to poll is large, 

this can become inefficient. As an alternative, the socket library provides a way to check many 

sockets at once, and take action as soon as any one of them becomes ready. To do this, use the 

 select  function: 

  int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, 
const timeval *timeout);  

 On POSIX platforms,  nfds  should be the socket identifier of the highest numbered socket to 

check. On POSIX, each socket is just an integer, so this is simply the maximum of all sockets 

passed in to this function. On Windows, where sockets are represented by pointers instead of 

integers, this parameter does nothing and can be ignored. 

  readfds  is a pointer to a collection of sockets, known as an  fd_set,  which should contain 

sockets to check for readability. Information on how to construct an  fd_set  follows. When 

a packet arrives for a socket in the  readfds  set,  select  returns control to the calling thread 

as soon as it is able to. It first removes all sockets from the set that have not received a packet. 

Thus, when  select  returns, a read from any socket still in the  readfds  set is guaranteed not 

to block. Pass  nullptr  for  readfds  to skip checking any sockets for readability. 

  writefds  is a pointer to an  fd_set  filled with sockets to check for writability. When  select  

returns, any sockets that remain in the  writefds  are guaranteed to be writable without 

causing the calling thread to block. Pass  nullptr  for  writefds  to skip checking any sockets 

for writability. Typically a socket will block on writing only when its outgoing send buffer is too 

full of data. 

  exceptfds  is a pointer to an  fd_set  filled with sockets to check for errors. When  select  

returns, any sockets that remain in  exceptfds  have had errors occur. Pass  nullptr  for 

 exceptfds  to skip checking any sockets for errors. 

  timeout  is a pointer to the maximum time to wait before timing out. If the timeout expires 

before any socket in the  readfds  becomes readable, any socket in the  writefds  becomes 
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writable, or any socket in the  exceptfds  experiences an error, all the sets are emptied and 

 select  returns control to the calling thread. Pass  nullptr  for  timeout  to never time out. 

  select  returns the number of sockets which remain in  readfds ,  writefds,  and  exceptfds  

after its execution completes. In the case of a timeout, this value is 0. 

 To initialize an empty  fd_set , declare one on the stack and zero it out with the  FD_ZERO  macro: 

  fd_set myReadSet; 
 FD_ZERO(&myReadSet);  

 To add a socket to a set, use the  FD_SET  macro: 

  FD_SET(mySocket, &myReadSet);  

 To check if a socket is in a set after  select  returns, use the  FD_ISSET  macro: 

  FD_ISSET(mySocket, &myReadSet);  

  select  is not a function of a single socket, so it does not fit as a method of the type-safe 

socket. It belongs more correctly as a utility method in the  SocketUtils  class. Listing 3.10 

shows a  Select  function to work with the type-safe  TCPSocket . 

  Listing 3.10 Using select with a Type-Safe TCPSocket 

 fd_set* SocketUtil::FillSetFromVector(fd_set& outSet, 
const vector<TCPSocketPtr>* 
inSockets) 

 { 
 if(inSockets) 

    { 
FD_ZERO(&outSet); 
for(const TCPSocketPtr& socket : *inSockets) 
{ 

FD_SET(socket->mSocket, &outSet); 
} 
return &outSet; 

    } 
    else 
    { 

return nullptr; 
    } 
 } 

 void SocketUtil::FillVectorFromSet(vector<TCPSocketPtr>* outSockets, 
const vector<TCPSocketPtr>* 
inSockets, 
const fd_set& inSet) 

{ 
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    if(inSockets && outSockets) 
    { 

outSockets->clear(); 
for(const TCPSocketPtr& socket : *inSockets) 
{ 

if(FD_ISSET(socket->mSocket, &inSet)) 
{ 

outSockets->push_back(socket); 
} 

} 
    } 
 } 

 int SocketUtil::Select(const vector<TCPSocketPtr>* inReadSet, 
vector<TCPSocketPtr>* outReadSet, 
const vector<TCPSocketPtr>* inWriteSet, 
vector<TCPSocketPtr>* outWriteSet, 
const vector<TCPSocketPtr>* inExceptSet, 
vector<TCPSocketPtr>* outExceptSet) 

 { 
    //build up some sets from our vectors 
    fd_set read, write, except; 

    fd_set *readPtr = FillSetFromVector(read, inReadSet); 
    fd_set *writePtr = FillSetFromVector(read, inWriteSet); 
    fd_set *exceptPtr = FillSetFromVector(read, inExceptSet); 

    int toRet = select(0, readPtr, writePtr, exceptPtr, nullptr); 

    if(toRet > 0) 
    { 

FillVectorFromSet(outReadSet, inReadSet, read); 
FillVectorFromSet(outWriteSet, inWriteSet, write); 
FillVectorFromSet(outExceptSet, inExceptSet, except); 

    } 
    return toRet; 
 }  

 The helper functions  FillSetFromVector  and  FillVectorFromSet  convert between 

a vector of sockets and an  fd_set . They allow null to be passed for the vector to support 

cases where the user would pass null for the  fd_set . This can be mildly inefficient but is 

probably not an issue compared to the time required to block on sockets. For slightly better 

performance, wrap  fd_set  with a C++ data type that provides a good way of iterating through 

any sockets that remain after the  select  call returns. Keep all relevant sockets in an instance of 

that data type and remember to pass a duplicate of it to  select  so that  select  does not alter 

the original set. 
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 Using this  Select  function, Listing 3.11 shows how to set up a simple TCP server loop to listen 

for and accept new clients while receiving data from old clients. This could run either on the 

main thread or on a single dedicated thread. 

  Listing 3.11 Running a TCP Server Loop 

 void DoTCPLoop() 
 { 
    TCPSocketPtr listenSocket = SocketUtil::CreateTCPSocket(INET); 
    SocketAddress receivingAddres(INADDR_ANY, 48000); 
    if( listenSocket->Bind(receivingAddres ) != NO_ERROR) 
    { 

return; 
    } 
    vector<TCPSocketPtr> readBlockSockets; 
    readBlockSockets.push_back(listenSocket); 

    vector<TCPSocketPtr> readableSockets; 

    while(gIsGameRunning) 
    { 

if(SocketUtil::Select(&readBlockSockets, &readableSockets, 
nullptr, nullptr, 
nullptr, nullptr)) 

{ 
//we got a packet—loop through the set ones... 
for(const TCPSocketPtr& socket : readableSockets) 
{ 

if(socket == listenSocket) 
{ 

//it's the listen socket, accept a new connection 
SocketAddress newClientAddress; 
auto newSocket = listenSocket->Accept(newClientAddress); 
readBlockSockets.push_back(newSocket); 
ProcessNewClient(newSocket, newClientAddress); 

} 
else 
{ 

//it's a regular socket—process the data... 
char segment[GOOD_SEGMENT_SIZE]; 
int dataReceived = 

socket->Receive( segment,   GOOD_SEGMENT_SIZE ); 
if(dataReceived > 0) 
{ 

ProcessDataFromClient( socket, segment, 
dataReceived); 
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} 
} 

} 
} 

    } 
 }  

 The routine begins by creating a listen socket and adding it into the list of sockets to check for 

readability. Then it loops until the application requests it do otherwise. The loop uses  Select  

to block until a packet comes in on any socket in the  readBlockSockets  vector. When a 

packet does come in,  Select  ensures that  readableSockets  contains only sockets that have 

incoming data. The function then loops over each socket  Select  has identified as readable. 

If the socket is the listen socket, it means a remote host has called  Connect . The function 

accepts the connection, adds the new socket to  readBlockSockets  ,  and notifies the 

application via  ProcessNewClient . If the socket is not a listen socket, however, the function 

calls  Receive  to obtain a chunk of the newly arrived data and passes it to the application via 

 ProcessDataFromClient . 

  note 

 There are other ways to handle incoming data on multiple sockets, but they are 

platform specific and less commonly used. On Windows, I/O completion ports  

are a viable choice when supporting many thousands of concurrent connections. 

More on I/O completion ports can be found in the “Additional Reading” section.    

  Additional Socket Options 
 Various configuration options control the sending and receiving behavior of the sockets. To set 

these values for these options, call  setsockopt : 

  int setsockopt(SOCKET sock, int level, int optname, const char *optval, int 
optlen);  

  sock  is the socket to configure. 

  level  and  optname  describe the option to be set.  level  is an integer identifying the level at 

which the option is defined and  optname  defines the option. 

  optval  is a pointer to the value to set for the option. 

  optlen  is the length of the data. For instance, if the particular option takes an integer,  optlen  

should be 4. 

  setsockopt  returns 0 if successful or −1 if an error occurs. 
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  Table   3.4    lists some useful options available at the  SOL_SOCKET  level.  

 Table 3.4    SOL_SOCKET  Options 

 Macro 
 Value Type 
(Windows/POSIX)  Description 

  SO_RCVBUF    int   Specifies the buffer space this socket allocates for 
received packets. Incoming data accumulates in the 
receive buffer until the owning process calls  recv  
or  recvfrom  to receive it. Remember that TCP 
 bandwidth is limited by the receive window’s size, 
which can never be larger than the receive buffer of 
the receiving socket. Thus, controlling this value can 
have a significant impact on bandwidth. 

  SO_REUSEADDR    BOOL/int   Specifies that the network layer should allow this 
socket to bind an IP address and port already bound 
by another socket. This is useful for debugging 
or packet-sniffing applications. Some operating 
 systems require the calling process to have elevated 
 privileges. 

  SO_RECVTIMEO    DWORD/timeval   Specifies the time (in milliseconds on Windows) after 
which a blocking call to receive should time out and 
return. 

  SO_SNDBUF    int   Specifies the buffer space this socket allocates for 
outgoing packets. Outgoing bandwidth is limited 
based on the link layer. If the process sends data 
 faster than the link layer can accommodate, the 
socket stores it in its send buffer. Sockets using 
 reliable protocols, like TCP, also use the send buffer to 
store outgoing data until it is acknowledged by the 
receiver. When the send buffer is full, calls to  send  
and  sendto  block until there is room. 

  SO_SNDTIMEO    DWORD/timeval   Specifies the time (in milliseconds on Windows) after 
which a blocking call to send should time out and 
return. 

  SO_KEEPALIVE    BOOL/int   Valid only for sockets using connection-oriented 
protocols, like TCP; this option specifies that the 
socket should automatically send periodic keep alive 
packets to the other end of the connection. If these 
packets are not acknowledged, the socket raises an 
error state, and the next time the process attempts 
to send data using the socket, it is notified that the 
connection has been lost. This is not only useful for 
detecting dropped connections, but also for 
 maintaining connections through firewalls and 
NATs that might time out otherwise. 
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  Table   3.5    describes the  TCP_NODELAY  option available at the  IPPROTO_TCP  level. This option 

is only settable on TCP sockets.    

 Table 3.5    IPPROTO_TCP  Options 

 Macro 
 Value Type 
(Windows/POSIX)  Description 

  TCP_NODELAY    BOOL/int   Specifies whether the Nagle algorithm should be 
ignored for this socket. Setting this to true will decrease 
the delay between the process requesting data to be 
sent and the actual sending of that data. However, it 
may increase network congestion as a result. For more 
on the Nagle algorithm, see  Chapter   2   , “The Internet.” 

     Summary 
 The Berkeley Socket is the most commonly used construct for transmitting data over the Internet. 

While the library interface differs across platforms, the core fundamentals are the same. 

 The core address data type is the  sockaddr , and it can represent addresses for a variety of 

network layer protocols. Use it any time it is necessary to specify a destination or source address. 

 UDP sockets are connectionless and stateless. Create them with a call to  socket  and send 

datagrams on them with  sendto . To receive UDP packets on a UDP socket, you must first use 

 bind  to reserve a port from the operating system, and then  recvfrom  to retrieve incoming data. 

 TCP sockets are stateful and must connect before they can transmit data. To initiate a 

connection, call  connect . To listen for incoming connections, call  listen . When a connection 

comes in on a listening socket, call  accept  to create a new socket as the local endpoint of the 

connection. Send data on connected sockets using  send  and receive it using  recv . 

 Socket operations can block the calling thread, creating problems for real-time applications. 

To prevent this, either make potentially blocking calls on non–real-time threads, set sockets to 

non-blocking mode, or use the  select  function. 

 Configure socket options using  setsockopt  to customize socket behavior. Once created 

and configured, sockets provide the communication pathway that makes networked gaming 

possible.  Chapter   4   , “Object Serialization” will begin to deal with the challenge of making the 

best use of that pathway.  

  Review Questions 
1.    What are some differences between POSIX-compatible socket libraries and the Windows

implementation?   

2.    To what two TCP/IP layers does the socket enable access?   
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3.    Explain how and why a TCP server creates a unique socket for each connecting client.   

4.    Explain how to bind a socket to a port and what it signifies.   

5.    Update  SocketAddress  and  SocketAddressFactory  to support IPv6 addresses. 

6.    Update  SocketUtils  to support creation of a TCP socket.   

7.    Implement a chat server that uses TCP to allow a single host to connect and relays

messages back and forth.   

8.    Add support for multiple clients to the chat server. Use non-blocking sockets on the client 

and  select  on the server.   

9.    Explain how to adjust the maximum size of the TCP receive window. 

  Additional Readings 
 Information Sciences Institute. (1981, September).  Transmission Control Protocol.  Retrieved from 

 http://www.ietf.org/rfc/rfc793 . Accessed September 12, 2015. 

  I/O Completion Ports.  Retrieved from  https://msdn.microsoft.com/en-us/library/windows

/desktop/aa365198(v=vs.85).aspx . Accessed September 12, 2015. 

  Porting Socket Applications to WinSock.  Retrieved from  http://msdn.microsoft.com/en-us/library

/ms740096.aspx . Accessed September 12, 2015. 

 Stevens, W. Richard, Bill Fennerl, and Andrew Rudoff. (2003, November 24)  Unix Network 
Programming Volume 1: The Sockets Networking API, 3rd ed . Addison-Wesley. 

  WinSock2 Reference . Retrieved from  http://msdn.microsoft.com/en-us/library/windows

/desktop/ms740673%28v=vs.85%29.aspx . Accessed September 12, 2015.    
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    C H A P T E R  4 

 OBJECT SERIALIZATION 

      To transmit objects between networked instances 

of a multiplayer game, the game must format the 

data for those objects such that it can be sent by a 

transport layer protocol. This chapter discusses the 

need for and uses of a robust serialization system. It 

explores ways to handle the issues of self-referential 

data, compression, and easily maintainable code, 

while working within the runtime performance 

requirements of a real-time simulation.    
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     The Need for Serialization 
 Serialization refers to the act of converting an object from its random access format in memory 

into a linear series of bits. These bits can be stored on disk or sent across a network and later 

restored to their original format. Assume that in the  Robo Cat  game, a player’s  RoboCat  is 

represented by the following code: 

  class RoboCat: public GameObject 
 { 
 public: 
    RoboCat(): mHealth(10), mMeowCount(3) {} 

 private: 
    int32_t mHealth; 
    int32_t mMeowCount; 
 };  

 As mentioned in  Chapter   3   , “Berkeley Sockets,” the Berkeley Socket API uses the  send  and 

 sentdo  functions to send data from one host to another. Each of these functions takes 

a parameter which points to the data to transmit. Therefore, without writing any special 

serialization code, the naïve way to send and receive a  RoboCat  from one host to another 

would look something like this: 

  void NaivelySendRoboCat(int inSocket, const RoboCat* inRoboCat) 
 { 
    send(nSocket, 

reinterpret_cast<const char*>(inRoboCat), 
sizeof(RoboCat), 0 ); 

 } 

 void NaivelyReceiveRoboCat(int inSocket, RoboCat* outRoboCat) 
 { 
    recv(inSocket, 

reinterpret_cast<char*>(outRoboCat), 
sizeof(RoboCat), 0); 

 }  

  NaivelySendRoboCat  casts the  RoboCat  to a  char*  so that it can pass it to  send . For the 

length of the buffer, it sends the size of the  RoboCat  class, which in this case is eight. The 

receiving function again casts the  RoboCat  to a  char* , this time so that it can receive directly 

into the data structure. Assuming a TCP connection using the sockets exists between two hosts, 

the following process will send the state of a  RoboCat  between those hosts: 

1.   Call  NaivelySendRoboCat  on the source host, passing in the  RoboCat  to be sent.  

2.   On the destination host, create or find an existing  RoboCat  object that should receive the 

state.  

3.   On the destination host, call  NaivelyReceiveRoboCat , passing in a pointer to the 

 RoboCat  object chosen in Step 2.   
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  Chapter   5   , “Object Replication” deals in depth with Step 2, explaining how and when to find or 

create a destination  RoboCat . For now, assume that a system is in place to locate or spawn the 

target  RoboCat  on the receiving host. 

 Once the transfer procedure completes, assuming the hosts are running on identical hardware 

platforms, the state from the source  RoboCat  successfully copies into the destination 

 RoboCat . The memory layout for a sample  RoboCat , as displayed in  Table   4.1   , demonstrates 

why the naïve send and receive functions are effective for a class that is this simple. 

 The  RoboCat  on the destination host has an  mHealt  h  of 10 and an  mMeowCount  of 3, as set 

by the  RoboCat  constructor. The  RoboCat  on the source host has lost half its health, leaving 

it at 5, and has used up one of its meows, due to whatever game logic has run on that host. 

Because  mHealth  and  mMeowCoun  t  are primitive data types, the naïve send and receive works 

correctly, and the  RoboCat  on the destination host ends up with the proper values. 

 Table 4.1   Sample  RoboCat  in Memory 

 Address  Field  Source Value 
 Destination Initial 
Value 

 Destination Final 
Value 

 Bytes 0–3   mHealth   0x00000005  0x0000000A  0x00000005 

 Bytes 4–7   mMeowCount   0x00000002  0x00000003  0x00000002 

  However, objects representing key elements of a game are rarely as simple as the  RoboCat  in 

 Table   4.1   . Code for a more likely version of  RoboCat  presents challenges that cause the naïve 

process to break down, introducing the need for a more robust serialization system: 

  class RoboCat: public GameObject 
 { 
 public: 
    RoboCat(): mHealth(10), mMeowCount(3), 

mHomeBase(0) 
    { 

mName[0] = '\0'; 
    } 
    virtual void Update(); 

    void Write(OutputMemoryStream& inStream) const; 
    void Read(InputMemoryStream& inStream); 

 private: 
    int32_t mHealth; 
    int32_t mMeowCount; 
    GameObject* mHomeBase; 
    char mName[128]; 
    std::vector<int32_t>     mMiceIndices; 

 };  



ptg16606381

104 CHAPTER 4 OBJECT SERIALIZATION

 These additions to  RoboCat  create complications that must be considered when serializing. 

 Table   4.2    shows the memory layout before and then after the transfer. 

 Table 4.2   A Complicated  RoboCat  in Memory 

 Address  Field  Source Value 
 Destination 
Initial Value 

 Destination 
Final Value 

 Bytes 0–3   vTablePtr   0x0A131400  0x0B325080  0x0A131400 

 Bytes 4–7   mHealth   0x00000005  0x0000000A  0x00000005 

 Bytes 8–11   mMeowCount   0x00000002  0x00000003  0x00000002 

 Bytes 12–15   mHomeBase   0x0D124008  0x00000000  0x0D124008 

 Bytes 16–143   mName   “Fuzzy\0”  “\0”  “Fuzzy\0” 

 Bytes 144–167   mMiceIndices   ??????  ??????  ?????? 

 The first 4 bytes of  RoboCat  are now a virtual function table pointer. This assumes 

compilation for a 32-bit architecture—on a 64-bit system this would be the first 8 bytes. Now 

that  RoboCat  has the virtual method  RoboCat::Update() , each  RoboCat  instance needs to 

store a pointer to the table that contains the locations of the virtual method implementations 

for  RoboCat . This causes a problem for the naïve serialization implementation because 

the location of that table can be different for each instance of the process. In this case, 

receiving replicated state into the destination  RoboCat  replaces the correct virtual function 

table pointer with the value 0x0B325080. After that, invoking the  Update  method on the 

destination  RoboCat  would at best result in a memory access exception and at worst result in 

the invocation of random code. 

 The virtual function table pointer is not the only pointer overwritten in this instance. Copying 

the  mHomeBase  pointer from one process to another provides a similarly nonsensical result. 

Pointers, by their nature, refer to a location in a particular process’s memory space. It is not safe 

to blindly copy a pointer field from one process to another process and hope that the pointer 

references relevant data in the destination process. Robust replication code must either copy 

the referenced data and set the field to point to the copy or find an existing version of the data 

in the destination process and set the field to point there. The section “Referenced Data” later 

in this chapter discusses these techniques further. 

 Another issue evident in the naïve serialization of the  RoboCat  is the mandatory copying of all 

128 bytes of the  mName  field. Although the array holds up to 128 characters, it may sometimes 

hold fewer, as it does in the sample  RoboCat  with  mName  equal to “Fuzzy.” To fulfill the 

multiplayer game programmer’s mandate of optimized bandwidth usage, a good serialization 

system should avoid serializing unnecessary data when possible. In this case, that requires the 
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system to understand that the  mName  field is a null-terminated c string and to only serialize 

the characters up to and including the null termination. This is one of several techniques for 

compressing runtime data during serialization, more of which are discussed in detail later in this 

chapter in the section “Compression.” 

 The final serialization issue illustrated in the new version of  RoboCat  occurs when copying 

the  std::vector<int32_t> mMiceIndices . The internals of the STL’s  vector  class 

are not specified by the C++ standard, and thus it is not clear whether it is safe to naïvely 

copy the field’s memory from one process to another. In all likelihood, it is not: There are 

probably one or more pointers inside the  vector  data structure referencing the  vector ’s 

elements, and there may be initialization code that must be run once these pointers are set 

up. It is almost certain that naïve serialization would fail to copy the  vector  properly. In fact, 

it should be assumed that naïve serialization would fail when copying any black box data 

structure: Because it is not specified what’s inside the structure, it is not safe to copy it bit for 

bit. Properly handling the serialization of complex data structures is addressed throughout 

this chapter. 

 The three problems enumerated earlier suggest that instead of sending a single blob of 

 RoboCat  data to the socket, each field should be serialized individually to ensure correctness 

and efficiency. It is possible to create one packet per field, calling a unique send function for 

each field’s data, but this would cause chaos for the network connection, wasting scads of 

bandwidth for all the unnecessary packet headers. Instead, it is better to gather up all the 

relevant data into a buffer and then send that buffer as a representation of the object. To 

facilitate this process, we introduce the concept of the stream.  

  Streams 
 In computer science, a  stream  refers to a data structure that encapsulates an ordered set of 

data elements and allows the user to either read or write data into the set. 

 A stream can be an  output stream ,  input stream , or both. An output stream acts as an output 

sink for user data, allowing the user of the stream to insert elements sequentially, but not to 

read them back. Contrariwise, an input stream acts as a source of data, allowing the user to 

extract elements sequentially, but does not expose functionality for inserting them. When a 

stream is both an input and output stream, it exposes methods for inserting and extracting 

data elements, potentially concurrently. 

 Often, a stream is an interface to some other data structure or computing resource. For 

instance, a  file output stream  could wrap a file that has been opened for writing, providing 

a simple method of sequentially storing different data types to disk. A  network stream  could 

wrap a socket, providing a wrapper for the  send()  and  recv()  functions, tailored for specific 

data types relevant to the user. 
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  Memory Streams 

 A  memory stream  wraps a memory buffer. Typically, this is a buffer dynamically allocated on 

the heap. The  output memory stream  has methods for writing sequentially into the buffer, as 

well as an accessor that provides read access to the buffer itself. By calling the buffer accessor, a 

user can take all data written into the stream at once and pass it to another system, such as the 

 send  function of a socket. Listing 4.1 shows an implementation of an output memory stream. 

  Listing 4.1 Output Memory Stream 

 class OutputMemoryStream 
 { 
 public: 
    OutputMemoryStream(): 
    mBuffer(nullptr), mHead(0), mCapacity(0) 
    {ReallocBuffer(32);} 
    ~OutputMemoryStream()    {std::free(mBuffer);} 

    //get a pointer to the data in the stream 
    const     char*     GetBufferPtr()    const    {return mBuffer;} 

uint32_t  GetLength() const    {return mHead;} 

    void Write(const void* inData, size_t inByteCount); 
    void Write(uint32_t inData) {Write(&inData, sizeof( inData));} 
    void Write(int32_t inData) {Write(&inData, sizeof( inData));} 

 private: 
    void ReallocBuffer(uint32_t inNewLength); 

    char* mBuffer; 
    uint32_t    mHead; 
    uint32_t    mCapacity; 
 }; 

 void OutputMemoryStream::ReallocBuffer(uint32_t inNewLength) 
 { 
    mBuffer = static_cast<char*>(std::realloc( mBuffer, inNewLength)); 
    //handle realloc failure 
    //... 
    mCapacity = inNewLength; 
 } 

 void OutputMemoryStream::Write(const void* inData, 
size_t inByteCount) 

 { 
    //make sure we have space... 
    uint32_t resultHead = mHead + static_cast<uint32_t>(inByteCount); 
    if(resultHead > mCapacity) 
    { 
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ReallocBuffer(std::max( mCapacity * 2, resultHead)); 
    } 

    //copy into buffer at head 
    std::memcpy(mBuffer + mHead, inData, inByteCount); 

    //increment head for next write 
    mHead = resultHead; 
 }  

 The  Write(const void* inData, size_t inByteCount)  method is the primary 

way to send data to the stream. The overloads of the  Write  method take specific data types 

so that the byte count does not always need to be sent as a parameter. To be more complete, a 

templated  Write  method could allow all data types, but it would need to prevent nonprimitive 

types from being serialized: Remember that nonprimitive types require special serialization. A 

static assert with type traits provides one way to safely template the  Write  method: 

  template<typename T> void Write(T inData) 
 { 
    static_assert(std::is_arithmetic<T>::value || 

std::is_enum<T>::value, 
"Generic Write only supports primitive data types"); 

    Write(&inData, sizeof(inData)); 
 }  

 Regardless of the method chosen, building a helper function to automatically select byte count 

helps to prevent errors by reducing the chance that a user will pass the incorrect byte count for 

a data type. 

 Whenever there is not enough capacity in the  mBuffer  to hold new data being written, the 

buffer automatically expands to the maximum of either double the current capacity or to the 

amount necessary to contain the write. This is a common memory expansion technique, and 

the multiple can be adjusted to suit a specific purpose. 

  warning 

 Although the  GetBufferPtr  function provides a read-only pointer to the 

stream’s internal buffer, the stream retains ownership of the buffer. This means the 

pointer is invalid once the stream is deallocated. If a use case calls for the pointer 

returned by  GetBufferPtr  to persist once the stream is deallocated, the buffer 

could be implemented as  std::shared_ptr<std::vector<uint8_t> >,  but 

this is left as an exercise at the end of the chapter.  
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 Using the output memory stream, it is possible to implement more robust  RoboCat  send 

functions: 

  void RoboCat::Write(OutputMemoryStream& inStream) const 
 { 
    inStream.Write(mHealth); 
    inStream.Write(mMeowCount); 
    //no solution for mHomeBase yet 
    inStream.Write(mName, 128); 
    //no solution for mMiceIndices yet 
 } 

 void SendRoboCat(int inSocket, const RoboCat* inRoboCat) 
 { 
    OutputMemoryStream stream; 
    inRoboCat->Write(stream); 
    send(inSocket, stream.GetBufferPtr(), 

stream.GetLength(), 0); 
 }  

 Adding a  Write  method to the  RoboCat  itself allows access to private internal fields and 

abstracts the task of serialization away from the task of sending data over the network. It also 

allows a caller to write a  RoboCat  instance as one of many elements inserted into the stream. 

This proves useful when replicating multiple objects, as described in  Chapter   5   . 

 Receiving the  RoboCat  at the destination host requires a corresponding input memory stream 

and  RoboCat::Read  method, as shown in Listing 4.2. 

  Listing 4.2 Input Memory Stream 

 class InputMemoryStream 
 { 
 public: 
    InputMemoryStream(char* inBuffer, uint32_t inByteCount): 
    mCapacity(inByteCount), mHead(0), 
    {} 

    ~InputMemoryStream()    {std::free( mBuffer);} 

    uint32_t GetRemainingDataSize() const {return mCapacity - mHead;} 

    void     Read(void* outData, uint32_t inByteCount); 
    void     Read(uint32_t& outData) {Read(&outData, sizeof(outData));} 
    void     Read(int32_t& outData) {Read(&outData, sizeof(outData));} 

 private: 
    char* mBuffer; 
    uint32_t    mHead; 
    uint32_t    mCapacity; 
 }; 
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 void RoboCat::Read(InputMemoryStream& inStream) 
 { 
    inStream.Read(mHealth); 
    inStream.Read(mMeowCount); 
    //no solution for mHomeBase yet 
    inStream.Read(mName, 128); 
    //no solution for mMiceIndices 
 } 

 const uint32_t kMaxPacketSize = 1470; 

 void ReceiveRoboCat(int inSocket, RoboCat* outRoboCat) 
 { 
    char* temporaryBuffer = 

static_cast<char*>(std::malloc(kMaxPacketSize)); 
    size_t receivedByteCount = 

recv(inSocket, temporaryBuffer, kMaxPacketSize, 0); 

    if(receivedByteCount > 0) 
    { 

InputMemoryStream stream(temporaryBuffer, 
static_cast<uint32_t> (receivedByteCount)); 

outRoboCat->Read(stream); 
    } 
    else 
    { 

std::free(temporaryBuffer); 
    } 
 }  

 After  ReceiveRoboCat  creates a temporary buffer and fills it by calling  recv  to read pending 

data from the socket, it passes ownership of the buffer to the input memory stream. From 

there, the stream’s user can extract data elements in the order in which they were written. The 

 RoboCat::Read  method then does just this, setting the proper fields on the  RoboCat . 

  tip 

 When using this paradigm in a complete game, you would not want to allocate the 

memory for the stream each time a packet arrives, as memory allocation can be 

slow. Instead you would have a stream of maximum size preallocated. Each time a 

packet comes in, you would receive directly into that preallocated stream’s buffer, 

process the packet by reading out of the stream, and then reset the  mHead  to 0 so 

that the stream is ready to be received into when the next packet arrives. 

 In this case, it would also be useful to add functionality to the  MemoryInputStream  

to allow it to manage its own memory. A constructor that takes only a max capacity 

could allocate the stream’s  mBuffer , and then an accessor that returns the  mBuffer  

would allow the buffer to be passed directly to  recv .  
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 This stream functionality solves the first of the serialization issues: It provides a simple way 

to create a buffer, fill the buffer with values from individual fields of a source object, send 

that buffer to a remote host, extract the values in order, and insert them into the appropriate 

fields of a destination object. Additionally, the process does not interfere with any areas of the 

destination object that should not be changed, such as the virtual function table pointer.  

  Endian Compatibility 

 Not all CPUs store the bytes of a multibyte number in the same order. The order in which bytes 

are stored on a platform is referred to as the platform’s  endianness , with platforms being 

either  little-endian  or  big-endian . Little-endian platforms store multibyte numbers with their 

low-order bytes at the lowest memory address. For instance, an integer containing the value 

0x12345678 with an address of 0x01000000 would be stored in memory as shown in  Figure   4.1   . 

Value 0x78
0x01000000

0x56
0x01000001

0x34
0x01000002

0x12
0x01000003Address

  Figure 4.1  Little-endian 0x12345678       

  The least significant byte, the 0x78, is first in memory. This is the “littlest” part of the number, 

and why the arrangement strategy is called “little” endian. Platforms that use this strategy 

include Intel’s x86, x64, and Apple’s iOS hardware. 

 Big-endian, alternatively, stores the most significant byte in the lowest memory address. The 

same number would be stored at the same address as shown in  Figure   4.2   . 

Value 0x12
0x01000000

0x34
0x01000001

0x56
0x01000002

0x78
0x01000003Address

  Figure 4.2  Big-endian 0x12345678       

  Platforms that use this strategy include the Xbox 360, the PlayStation 3, and IBM’s PowerPC 

architecture. 

  tip 

 Endian order is usually irrelevant when programming a single-platform, single-player 

game, but when transferring data between platforms with different endianness, it 

becomes a factor which must be considered. A good strategy to use when transferring 

data using a stream is to decide on an endianness for the stream itself. Then, when 

writing a multibyte data type, if the platform endianness does not match the chosen 

stream endianness, the byte order of the data should be reversed when being written 

into the stream. Similarly, when data is read from the stream, if the platform endian-

ness differs from the stream endianness, the byte order should be reversed.  
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 Most platforms provide efficient byte swapping algorithms, and some even have intrinsics or 

assembly instructions. However if you need to roll your own, Listing 4.3 provides effective byte 

swapping functions. 

  Listing 4.3 Byte Swapping Functions 

 inline uint16_t ByteSwap2(uint16_t inData) 
 { 
    return (inData >> 8) | (inData << 8); 
 } 
 inline uint32_t ByteSwap4(uint32_t inData) 
 { 
    return ((inData >> 24) & 0x000000ff)| 

((inData >> 8) & 0x0000ff00)| 
((inData << 8) & 0x00ff0000)| 
((inData << 24) & 0xff000000); 

 } 

 inline uint64_t ByteSwap8(uint64_t inData) 
 { 
    return ((inData >> 56) & 0x00000000000000ff)| 

((inData >> 40) & 0x000000000000ff00)| 
((inData >> 24) & 0x0000000000ff0000)| 
((inData >> 8) & 0x00000000ff000000)| 
((inData << 8) & 0x000000ff00000000)| 
((inData << 24) & 0x0000ff0000000000)| 
((inData << 40) & 0x00ff000000000000)| 
((inData << 56) & 0xff00000000000000); 

 }  

 These functions handle basic unsigned integers of the given size, but not other data types that 

need to be byte swapped, such as floats, doubles, signed integers, large enums, and more. To 

do that, it takes some tricky type aliasing: 

  template <typename tFrom, typename tTo> 
 class TypeAliaser 
 { 
 public: 
    TypeAliaser(tFrom inFromValue): 

mAsFromType(inFromValue) {} 
    tTo& Get() {return mAsToType;} 

    union 
    { 

tFrom     mAsFromType; 
tTo mAsToType; 

    }; 
 };  
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 This class provides a method to take data of one type, such as a  float , and treat it as a type for 

which there is already a byte swap function implemented. Templating some helper functions 

as in Listing 4.4 then enables swapping any type of primitive data using the appropriate 

function. 

  Listing 4.4 Templated Byte Swapping Functions 

 template <typename T, size_t tSize> class ByteSwapper; 

 //specialize for 2... 
 template <typename T> 
 class ByteSwapper<T, 2> 
 { 
 public: 
    T Swap(T inData) const 
    { 

uint16_t result = 
ByteSwap2(TypeAliaser<T, uint16_t>(inData).Get()); 

return TypeAliaser<uint16_t, T>(result).Get(); 
    } 
 }; 

 //specialize for 4... 
 template <typename T> 
 class ByteSwapper<T, 4> 
 { 
 public: 
    T Swap(T inData) const 
    { 

uint32_t result = 
ByteSwap4(TypeAliaser<T, uint32_t>(inData).Get()); 

return TypeAliaser<uint32_t, T>(result).Get(); 
    } 
 }; 

 //specialize for 8... 
 template <typename T> 
 class ByteSwapper<T, 8> 
 { 
 public: 
    T Swap(T inData) const 
    { 

uint64_t result = 
ByteSwap8(TypeAliaser<T, uint64_t>(inData).Get()); 

return TypeAliaser<uint64_t, T>(result).Get(); 
    } 
 }; 
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 template <typename T> 
 T ByteSwap(T inData) 
 { 

    return ByteSwapper<T, sizeof(T) >().Swap(inData); 
 }  

 Calling the templated  ByteSwap  function creates an instance of  ByteSwapper , templated 

based on the size of the argument. This instance then uses the  TypeAliaser  to call 

the appropriate  ByteSwap  function. Ideally, the compiler optimizes the intermediate 

invocations away, leaving a few operations that just swap the order of some bytes in 

a register. 

  note 

 Not all data needs to be byte swapped just because the platform endianness 

doesn’t match the stream endianness. For instance, a string of single-byte 

characters doesn’t need to be byte swapped because even though the string is 

multiple bytes, the individual characters are only a single byte each. Only primitive 

data types should be byte swapped, and they should be swapped at a resolution 

that matches their size.  

 Using the  ByteSwapper , the generic  Write  and  Read  functions can now properly support a 

stream with endianness that differs from that of the runtime platform: 

  template<typename T> void Write(T inData) 
 { 
    static_assert( 

std::is_arithmetic<T>::value|| 
std::is_enum<T>::value, 
"Generic Write only supports primitive data types"); 

    if(STREAM_ENDIANNESS == PLATFORM_ENDIANNESS) 
    { 

Write(&inData, sizeof(inData)); 
    } 
    else 
    { 

T swappedData = ByteSwap(inData); 
Write(&swappedData, sizeof( swappedData)); 

    } 

 }   
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  Bit Streams 

 One limitation of the memory streams described in the previous section is that they can only 

read and write data that is an integral number of bytes. When writing networking code, it is 

often desirable to represent values with as few bits as possible, and this can require reading and 

writing with single-bit precision. To this end, it is helpful to implement a  memory bit stream , 

able to serialize data that is any number of bits. Listing 4.5 contains a declaration of an  output 
memory bit stream . 

  Listing 4.5 Declaration of an Output Memory Bit Stream 

 class OutputMemoryBitStream 
 { 
 public: 

    OutputMemoryBitStream()     {ReallocBuffer(256);} 
    ~OutputMemoryBitStream()    {std::free(mBuffer);} 

    void    WriteBits(uint8_t inData, size_t inBitCount); 
    void    WriteBits(const void* inData, size_t inBitCount); 

    const char* GetBufferPtr()    const    {return mBuffer;} 
    uint32_t    GetBitLength()    const    {return mBitHead;} 
    uint32_t    GetByteLength()   const    {return (mBitHead + 7) >> 3;} 

    void    WriteBytes(const void* inData, size_t inByteCount 
{WriteBits(inData, inByteCount << 3);} 

 private: 
    void ReallocBuffer(uint32_t inNewBitCapacity); 

    char* mBuffer; 
    uint32_t    mBitHead; 
    uint32_t    mBitCapacity; 
 };  

 The interface of the bit stream is similar to that of the byte stream, except it includes the ability 

to pass a number of bits to write instead of the number of bytes. The construction, destruction, 

and reallocation for expansion are similar as well. The new functionality lies in the two new 

 WriteBits  methods shown in Listing 4.6. 

  Listing 4.6 Implementation of an Output Memory Bit Stream 

 void OutputMemoryBitStream::WriteBits(uint8_t inData, 
size_t inBitCount) 

 { 
    uint32_t nextBitHead = mBitHead + static_cast<uint32_t>(inBitCount); 
    if(nextBitHead > mBitCapacity) 
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    { 
ReallocBuffer(std::max(mBitCapacity * 2, nextBitHead)); 

    } 

    //calculate the byteOffset into our buffer 
    //by dividing the head by 8 
    //and the bitOffset by taking the last 3 bits 
    uint32_t byteOffset = mBitHead >> 3; 
    uint32_t bitOffset = mBitHead & 0x7; 

    //calculate which bits of the current byte to preserve 
uint8_t currentMask = ˜(0xff << bitOffset);

    mBuffer[byteOffset] = (mBuffer[byteOffset] & currentMask) 
|(inData << bitOffset); 

    //calculate how many bits were not yet used in 
    //our target byte in the buffer 
    uint32_t bitsFreeThisByte = 8 - bitOffset; 

    //if we needed more than that, carry to the next byte 
    if(bitsFreeThisByte < inBitCount) 
    { 

//we need another byte 
mBuffer[byteOffset + 1] = inData >> bitsFreeThisByte; 

    } 

    mBitHead = nextBitHead; 
 } 

 void OutputMemoryBitStream::WriteBits(const void* inData, size_t inBitCount) 
 { 
    const char* srcByte = static_cast<const char*>(inData); 
    //write all the bytes 
    while(inBitCount > 8) 
    { 

WriteBits(*srcByte, 8); 
++srcByte; 
inBitCount -= 8; 

    } 
    //write anything left 
    if(inBitCount > 0) 
    { 

WriteBits(*srcByte, inBitCount); 
    } 
 }  

 The innermost task of writing bits to the stream is handled by the  WriteBits(uint8_t 

inData, size_t inBitCount)  method, which takes a single byte and writes a given 
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 Therefore, when the code is run, the memory pointed to by  mbs.mBuffer  should be left 

containing the two values, as in  Figure   4.4   .  

number of bits from that byte into the bit stream. To understand how this works, consider what 

happens when the following code is executed: 

  OutputMemoryBitStream mbs; 

 mbs.WriteBits(13, 5); 
 mbs.WriteBits(52, 6);  

 This should write the number 13 using 5 bits and then the number 52 using 6 bits.  Figure   4.3    

shows these numbers in binary.  
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  Figure 4.3  Binary representation of 13 and 52       
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  Figure 4.4  Stream buffer containing 5 bits of 13 and 6 bits of 52       

 Notice the 5 bits of the number 13 take up the first 5 bits of byte 0, and then the 6 bits of the 

number 52 take up the last 3 bits of byte 0 and the first 3 bits of byte 1. 

 Stepping through the code shows how the method achieves this. Assume the stream has been 

freshly constructed, so  mBitCapacity  is 256,  mBitHead  is 0, and there is enough room in 

the stream to avoid reallocation. First, the  mBitHead , which represents the index of the next 

bit in the stream to be written, is decomposed into a byte index and a bit index within that 

byte. Because a byte is 8 bits, the byte index can always be found by dividing by 8, which is 

the same as shifting right by 3. Similarly, the index of the bit within that byte can be found by 

examining those same 3 bits that were shifted away in the previous step. Because 0x7 is 111 in 

binary, bitwise ANDing the  mBitHead  with 0x7 yields just the 3 bits. In the first call to write the 

number 13,  mBitHead  is 0, so  byteOffset  and  bitOffset  are both 0 as well. 
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 At this point,  mBitHead  is 5. That means  byteOffset  is 0 and  bitOffset  is 5. 

 Shifting 52 left by 5 bits yields the result shown in  Figure   4.6   . 

 Once the method calculates the  byteOffset  and  bitOffset , it uses the  byteOffset  as 

an index into the  mBuffer  array to find the target byte. Then it shifts the data left by the bit 

offset and bitwise ORs it into the target byte. This is all elementary when writing the number 

13 because both offsets are 0. However, consider how the stream looks at the beginning of the 

 WriteBits(52, 6)  call, as shown in  Figure   4.5   . 
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  Figure 4.5  Stream buffer immediately before the second  WriteBits  call       
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  Figure 4.6  Binary representation of 52 

shifted left by 5 bits       

 Note the high-order bits are shifted out of range, and the low-order bits become the high bits. 

 Figure   4.7    shows the result of bitwise ORing those bits into byte 0 of the buffer. 
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Figure 4.7  52, shifted left by 5 bits, bitwise ORed into the stream buffer       

 Byte 0 is complete, but only three of the necessary 6 bits have been written to the stream due 

to the overflow when shifting left. The next lines of  WriteBits  detect and handle this issue. 

The method calculates how many bits were initially free in the target byte by subtracting the 

 bitOffset  from 8. In this case, that yields 3, which is the number of bits that were able to fit. 

If the number of bits free is less than the number of bits to be written, the overflow branch 

executes. 

 In the overflow branch, the next byte is targeted. To calculate what to OR into the next byte, the 

method shifts  inData  right by the number of bits that were free.  Figure   4.8    shows the result of 

shifting 52 to the right by 3 bits. 



ptg16606381

118 CHAPTER 4 OBJECT SERIALIZATION

 The high-order bits that overflowed when shifted left are now shifted to the right to become 

the low-order bits of the higher-order byte. When the method ORs the right-shifted bits into 

the byte at  mBuffer[byteOffset + 1] , it leaves the stream in the final state expected (see 

 Figure   4.9   ). 
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  Figure 4.8  52, Shifted to the right by 3 bits       
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  Figure 4.9  Proper final state of the stream’s buffer       

 With the hard work done by  WriteBits(uint8_t inData, uint32_t inBitCount) , all 

that remains is for  WriteBits(const void* inData, uint32_t inBitCount)  to break 

the data up into bytes and call the previous  WriteBits  method 1 byte at a time. 

 This output memory bit stream is functionally complete, but not ideal. It requires specifying 

a number of bits for every piece of data written into the stream. However, in most cases, 

the upper bound for the number of bits depends on the type of data being written. Only 

sometimes it is useful to use fewer than the upper bound. For this reason, it increases code 

clarity and maintainability to add some methods for basic data types: 

  void WriteBytes(const void* inData, size_t inByteCount) 
    {WriteBits(inData, inByteCount << 3);} 

 void Write(uint32_t inData, size_t inBitCount = sizeof(uint32_t) * 8) 
    {WriteBits(&inData, inBitCount);} 
 void Write(int inData, size_t inBitCount = sizeof(int) * 8) 
    {WriteBits(&inData, inBitCount);} 
 void Write(float inData) 
    {WriteBits(&inData, sizeof(float) * 8);} 

 void Write(uint16_t inData, size_t inBitCount = sizeof(uint16_t) * 8) 
    {WriteBits(&inData, inBitCount);} 
 void Write(int16_t inData, size_t inBitCount = sizeof(int16_t) * 8) 
    {WriteBits(&inData, inBitCount);} 

 void Write(uint8_t inData, size_t inBitCount = sizeof(uint8_t) * 8) 
    {WriteBits(&inData, inBitCount);} 
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 void Write(bool inData) 
    {WriteBits(&inData, 1);}  

 With these methods, most primitive types can be written by simply passing them to the  Write  

method. The default parameter takes care of supplying the corresponding number of bits. 

For cases where the caller desires a fewer number of bits, the methods accept an override 

parameter. A templated function and type traits again provide even more generality than 

multiple overloads: 

  template<typename T> 
 void Write(T inData, size_t inBitCount = sizeof(T) * 8) 
 { 
    static_assert(std::is_arithmetic<T>::value|| 

std::is_enum<T>::value, 
"Generic Write only supports primitive data types"); 

    WriteBits(&inData, inBitCount); 
 }  

 Even with the templated  Write  method, it is still useful to implement a specific overload 

for  bool  because its default bit count should be 1, not  sizeof(bool) *   8 , which 

would be 8. 

  warning 

 This implementation of the  Write  method works only on little-endian platforms 

due to the way it addresses individual bytes. If the method needs to operate on a 

big-endian platform, it should either byte swap the data in the templated  Write  

function before the data goes into  WriteBits , or it should address the bytes 

using a big-endian compatible method.  

 The  input memory bit stream , which reads bits back out of the stream, works in a similar 

manner to the output memory bit stream. Implementation is left as an exercise and can also be 

found at the companion website.   

  Referenced Data 
 The serialization code can now handle all kinds of primitive and POD data, but it falls apart 

when it needs to handle indirect references to data, through pointers or other containers. Recall 

the  RoboCat  class (as shown next): 
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  class RoboCat: public GameObject 
 { 
 public: 
    RoboCat() mHealth(10), mMeowCount(3), 

mHomeBase(0) 
    { 

mName[0] = '\0'; 
    } 
    virtual void Update(); 

    void Write(OutputMemoryStream& inStream) const; 
    void Read(InputMemoryStream& inStream); 

 private: 
    int32_t mHealth; 
    int32_t mMeowCount; 
    GameObject* mHomeBase; 
    char mName[128]; 
    std::vector<int32_t> mMiceIndices; 

    Vector3 mPosition; 
    Quaternion mRotation; 
 };  

 There are two complex member variables which the current memory stream implementation 

cannot yet serialize— mHomeBase  and  mMiceIndices . Each calls for a different serialization 

strategy, as discussed in the following sections. 

  Inlining or Embedding 

 Sometimes network code must serialize member variables that reference data not 

shared with any other object.  mMiceIndices  in  RoboCat  is a good example. It is 

a vector of integers tracking the indices of various mice in which the  RoboCat  is 

interested. Because the  std::vector<int>  is a black box, it is unsafe to use the 

standard  OutputMemoryStream::Write  function to copy from the address of the 

 std::vector<int>  into the stream. Doing so would serialize the values of any pointers that 

are in  std::vector , which when deserialized on a remote host would point to garbage. 

 Instead of serializing the vector itself, a custom serialization function should write only 

the data contained within the vector. That data in RAM may actually be far away from the 

data of the  RoboCat  itself. However, when the custom function serializes it, it does so into 

the stream inline, embedded right in the middle of the  RoboCat  data. For this reason, 

this process is known as  inlining  or  embedding . For instance, a function to serialize a 

 std::vector<int32_t>  would look like this: 

  void Write(const std::vector<int32_t>& inIntVector) 
 { 
    size_t elementCount = inIntVector.size(); 
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    Write(elementCount); 
    Write(inIntVector.data(), elementCount * sizeof(int32_t)); 
 }  

 First, the code serializes the length of the vector, and then all the data from the vector. Note 

that the  Write  method must serialize the length of the vector first so that the corresponding 

 Read  method can use it to allocate a vector of the appropriate length before deserializing the 

contents. Because the vector is just primitive integers, the method serializes it all in one straight 

 memcpy . To support more complex data types, a templated version of the  std::vector  

 Write  method serializes each element individually: 

  template<typename T> 
 void Write(const std::vector<T>& inVector) 
 { 
    size_t elementCount = inVector.size(); 
    Write(elementCount); 
    for(const T& element: inVector) 
    { 

Write(element); 
    } 
 }  

 Here, after serializing the length, the method individually embeds each element from the 

vector. This allows it to support vectors of vectors, or vectors of classes that contain vectors, and 

so on. Deserializing requires a similarly implemented  Read  function: 

  template<typename T> 
 void Read(std::vector<T>& outVector) 
 { 
    size_t elementCount; 
    Read(elementCount); 
    outVector.resize(elementCount); 
    for(const T& element: outVector) 
    { 

Read(element); 
    } 
 }  

 Additional specialized  Read  and  Write  functions can support other types of containers, or 

any data referenced by a pointer, as long as that data is wholly owned by the parent object 

being serialized. If the data needs to be shared with or pointed to by other objects, then a more 

complex solution, known as linking, is required.  

  Linking 

 Sometimes serialized data needs to be referenced by more than one pointer. For instance, 

consider the  GameObject* mHomeBase  in  RoboCat . If two  RoboCat s share the same home 

base, there is no way to represent that fact using the current toolbox. Embedding would just 
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embed a copy of the same home base in each  RoboCat  when serialized. During deserialization, 

this would result in the creation of two different home bases! 

 Other times, the data is structured in such a way that embedding is just impossible. Consider 

the  HomeBase  class: 

  class HomeBase: public GameObject 
 { 
    std::vector<RoboCat*> mRoboCats; 
 };  

 The  HomeBase  contains a list of all its active  RoboCat s. Consider a function to serialize a 

 RoboCat  using only embedding. While serializing a  RoboCat , the function would embed its 

 HomeBase , which would then embed all its active  RoboCats , including the  RoboCat  it was 

currently serializing. This is a recipe for stack overflow due to infinite recursion. Clearly another 

tool is necessary. 

 The solution is to give each multiply referenced object a unique identifier and then to serialize 

references to those objects by serializing just the identifier. Once all the objects are deserialized 

on the other end of the network, a fix-up routine can use the identifiers to find the referenced 

objects and plug them into the appropriate member variables. It is for this reason the process is 

commonly referred to as  linking . 

  Chapter   5    discusses how to assign unique IDs to each object sent over the network and how to 

maintain maps from IDs to objects and vice versa. For now, assume each stream has access to a 

 LinkingContext  (as shown in Listing 4.7) that contains an up-to-date map between network 

IDs and game objects. 

  Listing 4.7 Linking Context 

 class LinkingContext 
 { 
 public: 

    uint32_t GetNetworkId(GameObject* inGameObject) 
    { 

auto it = mGameObjectToNetworkIdMap.find(inGameObject); 
if(it != mGameObjectToNetworkIdMap.end()) 
{ 

return it->second; 
} 
else 
{ 

return 0; 
} 

    } 

    GameObject* GetGameObject(uint32_t inNetworkId) 
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    { 
auto it = mNetworkIdToGameObjectMap.find(inNetworkId); 
if(it != mNetworkIdToGameObjectMap.end()) 
{ 

return it->second; 
} 
else 
{ 

return nullptr; 
} 

    } 
 private: 
    std::unordered_map<uint32_t, GameObject*> 

mNetworkIdToGameObjectMap; 
    std::unordered_map<GameObject*, uint32_t> 

mGameObjectToNetworkIdMap; 
 };  

 The  LinkingContext  enables a simple linking system in the memory stream: 

  void Write(const GameObject* inGameObject) 
 { 
    uint32_t networkId = 

mLinkingContext->GetNetworkId(inGameObject); 
    Write(networkId); 
 } 

 void Read(GameObject*& outGameObject) 
 { 
    uint32_t networkId; 
    Read(networkId); 
    outGameObject = mLinkingContext->GetGameObject(networkId); 
 }  

  note 

 When fully implemented, a linking system, and the gameplay code that uses it, 

must be tolerant of receiving a network ID for which there is no object mapped. 

Because packets can be dropped, a game might receive an object with a member 

variable that refers to an object not yet sent. There are many different ways to 

handle this—the game could either ignore the entire object, or it could deserialize 

the object and link up whatever references are available, leaving the missing ones 

as null. A more complex system might keep track of the member variable with the 

null link so that when an object for the given network ID is received, it can link it in. 

The choice depends on the specifics of the game’s design.    
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  Compression 
 With the tools to serialize all types of data, it is possible to write code to send game objects 

back and forth across the network. However, it will not necessarily be efficient code that 

functions within the bandwidth limitations imposed by the network itself. In the early days 

of multiplayer gaming, games had to make do with 2400 bytes per second connections, or 

less. These days, game engineers are luckier to have high-speed connections many orders of 

magnitude faster, but they must still concern themselves with how to use that bandwidth as 

efficiently as possible. 

 A large game world can have hundreds of moving objects, and sending real-time exhaustive 

data about those objects to the potentially hundreds of connected players is enough to 

saturate even the highest bandwidth connection. This book examines many ways to make 

the most of the available bandwidth.  Chapter   9   , “Scalability,” looks at high-level algorithms 

which determine who should see what data and which object properties need to be updated 

for which clients. This section, however, starts at the lowest level by examining common 

techniques for compressing data at the bit and byte level. That is, once a game has determined 

that a particular piece of data needs to be sent, how can it send it using as few bits as possible? 

  Sparse Array Compression 

 The trick to compressing data is to remove any information that does not need to be sent over 

the network. A good place to look for this kind of information is in any sparse or incompletely 

filled data structures. Consider the  mName  field in  RoboCat . For whatever reason, the original 

 RoboCat  engineer decided that the best way to store the name of a  RoboCat  is with a 128-

byte character array in the middle of the data type. The stream method  WriteBytes(const 

void* inData, uint32_t inByteCount)  can already embed the character array, but if 

used judiciously, it can most likely serialize the necessary data without writing a full 128 bytes. 

 Much of compression strategy comes down to analyzing the average case and implementing 

algorithms to take advantage of it, and that is the approach to take here. Given typical names 

in the English language, and the game design of  Robo Cat , the odds are good that a user won’t 

need all 128 characters to name her  RoboCat . The same could be said about the array no 

matter what length it is: Just because it allows space for a worst case, serialization code doesn’t 

have to assume that every user will exploit that worst case. As such, a custom serializer can save 

space by looking at the  mName  field and counting how many characters are actually used by 

the name. If  mName  is null terminated, the task is made trivial by the  std :: strlen  function. For 

instance, a more efficient way to serialize the name is shown here: 

  void RoboCat::Write(OutputMemoryStream& inStream) const 
 { 
    ...//serialize other fields up here 

    uint8_t nameLength = 
static_cast<uint8_t>(strlen(mName)); 
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    inStream.Write(nameLength); 
    inStream.Write(mName, nameLength); 
    ... 
 }  

 Notice that, just as when serializing a vector, the method first writes the length of the serialized 

data before writing the data itself. This is so the receiving end knows how much data to read 

out of the stream. The method serializes the length of the string itself as a single byte. This is 

only safe because the entire array holds a maximum of 128 characters. 

 In truth, assuming the name is infrequently accessed compared to the rest of the  RoboCat ’s 

data, it is more efficient from a cache perspective to represent an object’s name with an 

 std::string , allowing the entire  RobotCat  data type to fit in fewer cache lines. In this case, 

a string serializing method similar to the vector method implemented in the previous section 

would handle the name serialization. That makes this particular  mName  example a bit contrived 

for clarity’s sake, but the lesson holds true, and sparse containers are a good low-hanging 

target for compression.  

  Entropy Encoding 

  Entropy encoding  is a subject of information theory which deals with compressing data based 

on how unexpected it is. According to information theory, there is less information or  entropy  

in a packet that contains expected values than in a packet that contains unexpected values. 

Therefore, code should require fewer bits to send expected values than to send unexpected ones. 

 In most cases, it is more important to spend CPU cycles simulating the actual game than to 

calculate the exact amount of entropy in a packet to achieve optimal compression. However, 

there is a very simple form of entropy encoding that is quite efficient. It is useful when 

serializing a member variable that has a particular value more frequently than any other value. 

 As an example, consider the  mPosition  field of  RoboCat . It’s a  Vector3  with an X, Y, and 

Z component. X and Z represent the cat’s position on the ground, and Y represents the cat’s 

height above ground. A naïve serialization of the position would look like so: 

  void OutputMemoryBitStream::Write(const Vector3& inVector) 
 { 
    Write(inVector.mX); 
    Write(inVector.mY); 
    Write(inVector.mZ); 
 }  

 As written, it requires 3 × 4 = 12 bytes to serialize a  RoboCat ’s  mPosition  over the network. 

However, the naïve code does not take advantage of the fact that cats can often be found on 

the ground. This means that the Y coordinate for most  mPosition  vectors is going to be 0. The 

method can use a single bit to indicate whether the  mPosition  has the common value of 0, or 

some other, less common value: 
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  void OutputMemoryBitStream::WritePos(const Vector3& inVector) 
 { 
    Write(inVector.mX); 
    Write(inVector.mZ); 

    if(inVector.mY == 0) 
    { 

Write(true); 
    } 
    else 
    { 

Write(false); 
Write(inVector.mY); 

    } 
 }  

 After writing the X and Y components, the method checks if the height off the ground is 0 or 

not. If it is 0, it writes a single true bit, indicating, “yes, this object has the usual height of 0.” 

If the Y component is not 0, it writes a single false bit, indicating, “the height is not 0, so the 

next 32 bits will represent the actual height.” Note that in the worst case, it now takes 33 bits 

to represent the height—the single flag to indicate whether this is a common or uncommon 

value, and then the 32 to represent the uncommon value. At first, this may seem inefficient, as 

serialization now may use more bits than ever before. However, calculating the true number 

of bits used in the average case requires factoring in exactly how common it is that a cat is on 

the ground. 

 In-game telemetry can log exactly how often a user’s cat is on the floor—either from testers 

playing on site or from actual users playing an earlier version of the game and submitting 

analytics over the Internet. Assume such an experiment determines that players are on the 

ground 90% of the time. Basic probability then dictates the expected number of bits required 

to represent the height: 

   POnGround *BitsOnGround + PInAir *BitsInAir + 0.9*1 + 0.1*33 + 4.2   

 The expected number of bits to serialize the Y component has dropped from 32 to 4.2: That 

saves over 3 bytes per position. With 32 players changing positions 30 times a second, this can 

add up to a significant savings from just this one member variable. 

 The compression can be even more efficient. Assume that analytics show that whenever the cat is 

not on the floor, it is usually hanging from the ceiling, which has a height of 100. The serialization 

code can then support a second common value to compress positions on the ceiling: 

  void OutputMemoryBitStream::WritePos(const Vector3& inVector) 
 { 
    Write(inVector.mX); 
    Write(inVector.mZ); 

    if(inVector.mY == 0) 



ptg16606381

COMPRESSION 127

    { 
Write(true); 
Write(true); 

    } 
    else if(inVector.mY == 100) 
    { 

Write(true); 
Write(false); 

    } 
    else 
    { 

Write(false); 
Write(inVector.mY); 

    } 
 }  

 The method still uses a single bit to indicate whether the height contains a common value or 

not, but then it adds a second bit to indicate which of the common values it’s using. Here the 

common values are hardcoded into the function, but with too many more values this technique 

can get quite messy. In that case, a simplified implementation of Huffman coding could use a 

lookup table of common values, with a few bits to a store an index into that lookup table. 

 The question remains, though, of whether this optimization is a good one—just because the 

ceiling is a second common location for a cat, it’s not necessarily an efficient optimization to 

make, so it is necessary to check the math. Assume that analytics show cats are on the ceiling 

7% of the time. In that case, the new expected number of bits used to represent a height can be 

calculated using this equation: 

POnGround *BitsOnGround + PInAir *BitsInAir + POnCeiling *BitsOnCeiling + 0.9 * 2 + 0.07 * 2 + 0.03 * 33 + 2.93   

 The expected number of bits is 2.93, which is 1.3 bits fewer than the first optimization. 

Therefore the optimization is worthwhile. 

 There are many forms of entropy encoding, ranging from the simple, hardcoded one described 

here, to the more complex and popular Huffman coding, arithmetic coding, gamma coding, run 

length encoding, and more. As for everything in game development, the amount of CPU power 

to allocate to entropy encoding versus the amount to allocate elsewhere is a design decision. 

Resources on other encoding methods can be found in the “Additional Readings” section.  

  Fixed Point 

 Lightning fast calculations on 32-bit floating point numbers are the boon and the benchmark 

of the modern computing era. However, just because the game simulation performs floating 

point computations doesn't mean it needs all 32 bits to represent the numbers when sent 

across the network. A common and useful technique is to examine the known range and 

precision requirements of the numbers being sent and convert them to a fixed point format so 

that the data can be sent with the minimum number of bits necessary. To do this, you have to 
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sit down with designers and gameplay engineers and figure out exactly what your game needs. 

Once you know, you can begin to build a system that provides that as efficiently as possible. 

 As an example, consider the  mLocation  field again. The serialization code already compresses 

the Y component quite a bit, but it does nothing for the X and Z components: They are still 

using a full 32 bits each. A talk with the designers reveals that the  Robo Cat  game world’s size is 

4000 game units by 4000 game units, and the world is centered at the origin. This means that 

the minimum value for an X or Z component is −2000, and the maximum value is 2000. Further 

discussion and gameplay testing reveal that client-side positions only need to be accurate to 

within 0.1 game units. That’s not to say that the authoritative server’s position doesn't have to 

be more accurate, but when sending a value to the client, it only needs to do so with 0.1 units of 

precision. 

 These limits provide all the information necessary to determine exactly how many bits should 

be necessary to serialize this value. The following formula provides the total number of possible 

values the X component might have: 

   (MaxValue + MinValue)/Precision + 1 + (2000 + +2000)/0.1 + 1 + 40001   

 This means there are 40001 potential values for the serialized component. If there is a mapping 

from an integer less than 40001 to a corresponding potential floating point value, the method 

can serialize the X and Z components simply by serializing the appropriate integers. 

 Luckily, this is a fairly simple task using something called  fixed point  numbers. A fixed point 

number is a number that looks like an integer, but actually represents a number equal to that 

integer divided by a previously decided upon constant. In this case, the constant is equal 

to the required level of precision needed. At that point, the method only needs to serialize 

the number of bits that is required to store an integer guaranteed to be less than 40001. 

Because log 
2
  40001 is 15.3, the routine should require only 16 bits each to serialize the X and Z 

components. Putting that all together results in the following code: 

  inline uint32_t ConvertToFixed( 
    float inNumber, float inMin, float inPrecision) 
 { 
    return static_cast<uint32_t> ( 

(inNumber - inMin)/inPrecision); 
 } 

 inline float ConvertFromFixed( 
    uint32_t inNumber, float inMin, float inPrecision ) 
 { 
    return static_cast<float>(inNumber) * 

inPrecision + inMin; 
 } 
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 void OutputMemoryBitStream::WritePosF(const Vector3& inVector) 
 { 
    Write(ConvertToFixed(inVector.mX, -2000.f, 0.1f), 16); 
    Write(ConvertToFixed(inVector.mZ, -2000.f, 0.1f), 16); 
    ... //write Y component here ... 
 }  

 The game stores the vector’s components as full floating point numbers, but when it needs 

to send them over the network, the serialization code converts them to fixed point numbers 

between 0 and 40000 and sends them using only 16 bits a piece. This saves another full 32 bits 

on the vector, cutting its expected size down to 35 bits from the original 96. 

  note 

 On some CPUs, such as the PowerPC in the Xbox 360 and PS3, it can be 

computationally expensive to convert from a floating point to an integer and back. 

However, it is often worth the cost, given the amount of bandwidth it conserves. 

As with most optimizations, it is a tradeoff which must be decided upon based on 

the specifics of the individual game being developed.   

  Geometry Compression 

 Fixed point compression takes advantage of game-specific information to serialize data with 

as few bits as possible. Interestingly, this is just information theory at work again: Because 

there are constraints on the possible values for a variable, it requires a smaller number of bits 

to represent that information. This technique applies when serializing any data structure with 

known constraints on its contents. 

 Many geometric data types fall under just this case. This section discusses the quaternion and 

the transformation matrix. A  quaternion  is a data structure containing four floating point 

numbers, useful for representing a rotation in three dimensions. The exact uses of the quaternion 

are beyond the scope of this text, but more information can be found in the references in the 

“Additional Readings” section. What is important for this discussion is that when representing a 

rotation, a quaternion is normalized, such that each component is between −1 and 1, and the sum 

of the squares of each component is 1. Because the sum of the squares of the components is fixed, 

serializing a quaternion requires serializing only three of the four components, as well as a single 

bit to represent the sign of the fourth component. Then the deserializing code can reconstruct 

the final component by subtracting the squares of the other components from 1. 

 In addition, because all components are between −1 and 1, fixed point representation can 

further improve compression of the components, if there is an acceptable precision loss that 

does not affect gameplay. Often, 16 bits of precision are enough, giving 65535 possible values 

to represent the range from −1 to 1. This means that a four-component quaternion, which takes 

128 bits in memory, can be serialized fairly accurately with as few as 49 bits: 
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  void OutputMemoryBitStream::Write(const Quaternion& inQuat) 
 { 
    float precision = (2.f / 65535.f); 
    Write(ConvertToFixed(inQuat.mX, -1.f, precision), 16); 
    Write(ConvertToFixed(inQuat.mY, -1.f, precision), 16); 
    Write(ConvertToFixed(inQuat.mZ, -1.f, precision), 16); 
    Write(inQuat.mW < 0); 
 } 

 void InputMemoryBitStream::Read(Quaternion& outQuat) 
 { 
    float precision = (2.f / 65535.f); 

    uint32_t f = 0; 

    Read(f, 16); 
    outQuat.mX = ConvertFromFixed(f, -1.f, precision); 
    Read( f, 16 ); 
    outQuat.mY = ConvertFromFixed(f, -1.f, precision); 
    Read(f, 16); 
    outQuat.mZ = ConvertFromFixed(f, -1.f, precision); 

    outQuat.mW = sqrtf(1.f - 
outQuat.mX * outQuat.mX + 
outQuat.mY * outQuat.mY + 
outQuat.mZ * outQuat.mZ ); 

    bool isNegative; 
    Read(isNegative); 

    if(isNegative) 
    { 

outQuat.mW *= -1; 
    } 
 }  

 Geometric compression can also help when serializing an affine transformation matrix. A 

transformation matrix is 16 floats, but to be affine, it must decompose into a 3-float translation, 

a quaternion rotation, and a 3-float scale, for a total of 10 floats. Entropy encoding can then 

help save even more bandwidth if there are more constraints on the typical matrix to serialize. 

For instance, if the matrix is usually unscaled, the routine can indicate this with a single bit. If 

the scale is uniform, the routine can indicate this with a different bit pattern and then serialize 

only one component of the scale instead of all three.   

  Maintainability 
 Focusing solely on bandwidth efficiency can yield some slightly ugly code in some places. 

There are a few tradeoffs worth considering, sacrificing a little efficiency for ease of 

maintainability. 
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  Abstracting Serialization Direction 

 Every new data structure or compression technique discussed in the previous sections has 

required both a read method and a write method. Not only does that mean implementing two 

methods for each new piece of functionality, but the methods must remain in sync with each 

other: If you change how a member variable is written, you must change how it’s read. Having 

two such tightly coupled methods for each data structure is a bit of a recipe for frustration. 

It would be much cleaner if it were possible somehow to have only one method per data 

structure that could handle both reading and writing. 

 Luckily, through the use of inheritance and virtual functions, it is indeed possible. One way to 

implement this is to make  OutputMemoryStream  and  InputMemoryStream  both derive 

from a base  MemoryStream  class with a  Serialize  method: 

  class MemoryStream 
 { 
     virtual void Serialize(void* ioData, 

uint32_t inByteCount) = 0; 
    virtual bool IsInput() const = 0; 
 }; 

 class InputMemoryStream: public MemoryStream 
 { 
    ...//other methods above here 
    virtual void Serialize(void* ioData, uint32_t inByteCount) 
    { 

Read(ioData, inByteCount); 
    } 
    virtual bool IsInput() const {return true;} 

 }; 

 class OutputMemoryStream: public MemoryStream 
 { 
    ...//other methods above here 
    virtual void Serialize(void* ioData, uint32_t inByteCount) 
    { 

Write(ioData, inByteCount); 
    } 

    virtual bool IsInput() const {return false;} 
 }  

 By implementing  Serialize , the two child classes can take a pointer to data and a size and 

then perform the appropriate action, either reading or writing. Using the  IsInput  method, 

a function can check whether it has been passed an input stream or output stream. Then, the 

base  MemoryStream  class can implement a templated  Serialize  method assuming that the 

non-templated version is properly implemented by a subclass: 
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  template<typename T> void Serialize(T& ioData) 
 { 
    static_assert(std::is_arithmetic<T>::value|| 

std::is_enum<T>::value, 
    "Generic Serialize only supports primitive data types"); 

    if(STREAM_ENDIANNESS == PLATFORM_ENDIANNESS) 
    { 

Serialize(&ioData, sizeof(ioData) ); 
    } 
    else 
    { 

if(IsInput()) 
{ 

T data; 
Serialize(&data, sizeof(T)); 
ioData = ByteSwap(data); 

} 
else 
{ 

T swappedData = ByteSwap(ioData); 
Serialize(&swappedData, sizeof(swappedData)); 

} 
    } 
 }  

 The templated  Serialize  method takes generic data as a parameter and will either read it 

or write it, depending on the child class’s non-templated  Serialize metho  d . This facilitates 

the replacement of each pair of custom  Read  and  Write  methods with a corresponding 

 Serialize  method. The custom  Serialize  method needs to take only a  MemoryStream  

as a parameter and it can read or write appropriately using the stream’s virtual  Serialize  

method. This way, a single method handles both reading and writing for a custom class, 

ensuring that input and output code never get out of sync. 

  warning 

 This implementation is slightly more inefficient than the previous one because 

of all the virtual function calls required. This system can be implemented using 

templates instead of virtual functions to regain some of the performance hit, but 

that is left as an exercise for you to try.   

  Data-Driven Serialization 

 Most object serialization code follows the same pattern: For each member variable in an 

object’s class, serialize that member variable’s value. There may be some optimizations, but the 

general structure of the code is usually the same. In fact, it is so similar that if a game somehow 
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had data at runtime about what member variables were in an object, it could use a single 

serialization method to handle most of serialization needs. 

 Some languages, like C# and Java, have built-in reflection systems that allow runtime 

access to class structure. In C++, however, reflecting class members at runtime requires 

a custom built system. Luckily, building a basic reflection system is not too complicated 

(see Listing 4.8). 

  Listing 4.8 Basic Reflection System 

 enum EPrimitiveType 
 { 
    EPT_Int, 
    EPT_String, 
    EPT_Float 
 }; 

 class MemberVariable 
 { 
 public: 
    MemberVariable(const char* inName, 

EPrimitiveType inPrimitiveType, uint32_t inOffset): 
    mName(inName), 
    mPrimitiveType(inPrimitiveType), 
    mOffset(inOffset) {} 

    EPrimitiveType     GetPrimitiveType() const {return mPrimitiveType;} 
    uint32_t GetOffset()        const {return mOffset;} 

 private: 
    std::string mName; 
    EPrimitiveType    mPrimitiveType; 
    uint32_t mOffset; 
 }; 

 class DataType 
 { 
 public: 
    DataType(std::initializer_list<const MemberVariable& > inMVs): 
    mMemberVariables(inMVs) 
    {} 

    const std::vector<MemberVariable>& GetMemberVariables() const 
    { 

return mMemberVariables; 
    } 
 private: 
    std::vector< MemberVariable >    mMemberVariables; 
 };  
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  EPrimitiveType  represents the primitive type of a member variable. This system supports 

only  int ,  float , and  string , but it is easy to extend with any primitive type desired. 

 The  MemberVariable  class represents a single member variable in a compound data type. 

It holds the member variable’s name (for debugging purposes), its primitive type, and its 

memory offset in its parent data type. Storing the offset is a critical: Serialization code can 

add the offset to the base address of a given object to find the location in memory of the 

member variable’s value for that particular object. This is how it will read and write the 

member variable’s data. 

 Finally, the  DataType  class holds all the member variables for a particular class. For each class 

that supports data-driven serialization, there is one corresponding instance of  DataType . 

With the reflection infrastructure in place, the following code loads up the reflection data for a 

sample class: 

  #define OffsetOf(c, mv) ((size_t) & (static_cast<c*>(nullptr)->mv))) 

 class MouseStatus 
 { 
 public: 
    std::string    mName; 
    int mLegCount, mHeadCount; 
    float mHealth; 

    static DataType* sDataType; 
    static void InitDataType() 
    { 

sDataType = new DataType( 
{ 

MemberVariable("mName", 
EPT_String, OffsetOf(MouseStatus,mName)), 

MemberVariable("mLegCount", 
EPT_Int, OffsetOf(MouseStatus, mLegCount)), 

MemberVariable("mHeadCount", 
EPT_Int, OffsetOf(MouseStatus, mHeadCount)), 

MemberVariable("mHealth", 
EPT_Float, OffsetOf(MouseStatus, mHealth)) 

}); 
    } 
 };  

 Here, a sample class tracks a  RoboMouse ’s status. The static  InitDataType  function must be 

called at some point to initialize the  sDataType  member variable. That function creates the 

 DataType  that represents the  MouseStatus  and fills in the  mMemberVariables  entries. 

Notice the use of a custom  OffsetOf  macro to calculate the proper offset of each member 

variable. The built-in C++  offsetof  macro has undefined behavior for non-POD classes. As 
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such, some compilers actually return compile errors when  offsetof  is used on classes with 

virtual functions or other non-POD types. As long as the class doesn't define a custom unary & 

operator, and the class hierarchy doesn't use virtual inheritance or have any member variables 

that are references, the custom macro will work. Ideally, instead of having to fill in the reflection 

data with handwritten code, a tool would analyze the C++ header files and automatically 

generate the reflection data for the classes. 

 From here, implementing a simple serialize function is just a matter of looping through the 

member variables in a data type: 

  void Serialize(MemoryStream* inMemoryStream, 
const DataType* inDataType, uint8_t* inData) 

 { 
    for(auto& mv: inDataType->GetMemberVariables()) 
    { 

void* mvData = inData + mv.GetOffset(); 
switch(mv.GetPrimitiveType()) 
{ 

EPT_Int: 
inMemoryStream->Serialize(*(int*) mvData); 
break; 

EPT_String: 
inMemoryStream->Serialize(*(std::string*) mvData); 
break; 

EPT_Float: 
inMemoryStream->Serialize(*(float*) mvData); 
break; 

} 
    } 
 }  

 The  GetOffset  method of each member variable calculates a pointer to the instance’s data for 

that member. Then the switch on  GetPrimitiveType  casts the data to the appropriate type 

and lets the typed  Serialize  function take care of the actual serialization. 

 This technique can be made more powerful by expanding the metadata tracked in the 

 MemberVariable  class. For instance, it could store the number of bits to use for each variable 

for automatic compression. Additionally, it could store potential common values for the 

member variable to support a procedural implementation of some entropy encoding. 

 As a whole, this method trades performance for maintainability: There are more branches 

that might cause pipeline flushes, but there is less code to write overall and, therefore, fewer 

chances for errors. As an extra benefit, a reflection system is useful for many things besides 

network serialization. It can be helpful when implementing serialization to disk, garbage 

collection, a GUI object editor, and more.    
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     Summary 
 Serialization is the process of taking a complex data structure and breaking it down into a 

linear array of bytes, which can be sent to another host across a network. The naïve approach 

of simply using  memcpy  to copy the structure into a byte buffer does not usually work. The 

stream, the basic workhorse for serialization makes it possible to serialize complex data 

structures, including those that reference other data structures and relink those references after 

deserialization. 

 There are several techniques for serializing data efficiently. Sparse data structures can be 

serialized into more compact forms. Expected values of member variables can be compressed 

losslessly using entropy encoding. Geometric or other similarly constrained data structures 

can also be compressed losslessly by making use of the constraints to send only the data that 

is necessary to reconstruct the data structure. When slightly lossy compression is acceptable, 

floating point numbers can be turned into fixed point numbers based on the known range and 

necessary precision of the value. 

 Efficiency often comes at the cost of maintainability, and sometimes it is worthwhile to reinject 

some maintainability into a serialization system.  Read  and  Write  methods for a data structure 

can be collapsed into a single  Serialize  method which reads or writes depending on the 

stream on which it is operating, and serialization can be data-driven, using auto- or hand-

generated metadata to serialize objects without requiring custom, per-data structure read and 

write functions. 

 With these tools, you have everything you need to package up an object and send it to a 

remote host. The next chapter discusses both how to frame this data so that the remote host 

can create or find the appropriate object to receive the data, and how to efficiently handle 

partial serialization when a game requires that only a subset of an object’s data be serialized.  

  Review Questions 
1.    Why is it not necessarily safe to simply  memcpy  an object into a byte buffer and send that 

buffer to a remote host?   

2.    What is endianness? Why is it a concern when serializing data? Explain how to handle 

endian issues when serializing data.   

3.    Describe how to efficiently compress a sparse data structure. 

4.    Give two ways to serialize an object with pointers in it. Give an example of when each way 

is appropriate.   

5.    What is entropy encoding? Give a basic example of how to use it.   

6.    Explain how to use fixed point numbers to save bandwidth when serializing floating point 

numbers.   
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7.    Explain thoroughly why the  WriteBits  function as implemented in this chapter only 

works properly on little-endian platforms. Implement a solution that will work on big-

endian platforms as well.   

8.    Implement  MemoryOutputStream :: Write(const unordered_map<int, int >&)  

that allows the writing of a map from integer to integer into the stream.   

9.    Write the corresponding  MemoryOutputStream::Read(unordered_map<int, int >&)  

method.   

10.    Template your implementation of  MemoryOutputStream::Read  from Question 9 so it 

works properly for  template   <tKey, tValue> unordered_map<tKey, tValue> .   

11.    Implement an efficient  Read  and  Write  for an affine transformation matrix, taking 

advantage of the fact that the scale is usually 1, and when not 1, is usually at least uniform.   

12.    Implement a serialization module with a generic serialize method that relies on templates 

instead of virtual functions.    

  Additional Readings 
 Bloom, Charles. (1996, August 1).  Compression: Algorithms: Statistical Coders . Retrieved from 

 http://www.cbloom.com/algs/statisti.html . Accessed September 12, 2015. 

 Blow, Jonathan. (2004, January 17).  Hacking Quaternions . Retrieved from  http://number-none

.com/product/Hacking%20Quaternions/ . Accessed September 12, 2015. 

 Ivancescu, Gabriel. (2007, December 21).  Fixed Point Arithmetic Tricks . Retrieved from 

 http://x86asm.net/articles/fixed-point-arithmetic-and-tricks/ . Accessed September 12, 2015.    
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    C H A P T E R  5 

 OBJECT REPLICATION 

      Serializing object data is only the first step in 

transmitting state between hosts. This chapter 

investigates a generalized replication framework 

which supports synchronization of world and object 

state between remote processes.    
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     The State of the World 
 To be successful, a multiplayer game must make concurrent players feel like they are playing 

in the same world. When one player opens a door or kills a zombie, all players in range need to 

see that door open, or that zombie explode. Multiplayer games provide this shared experience 

by constructing a  world state  at each host and exchanging any information necessary to 

maintain consistency between each host’s state. 

 Depending on the game’s network topology, discussed more in  Chapter   6   , “Network 

Topologies and Sample Games,” there are various ways to create and enforce consistency 

between remote hosts’ world states. One common method is to have a server transmit the state 

of the world to all connected clients. The clients receive this transmitted state and update their 

own world state accordingly. In this way, all players on client hosts eventually experience the 

same world state. 

 Assuming some kind of object-oriented game object model, the state of the world can be 

defined as the state of all game objects in that world. Thus, the task of transmitting the world 

state can be decomposed into the task of transmitting the state of each of those objects. 

 This chapter addresses the task of transmitting object state between hosts in an effort to 

maintain a consistent world state for multiple, remote players.  

  Replicating an Object 
 The act of transmitting an object’s state from one host to another is known as  replication . 

Replication requires more than just the serialization discussed in  Chapter   4   , “Object 

Serialization.” To successfully replicate an object, a host must take three preparatory steps 

before serializing the object’s internal state: 

1.   Mark the packet as a packet containing object state.  

2.   Uniquely identify the replicated object.  

3.   Indicate the class of the object being replicated.

 First the sending host marks the packet as one containing object state. Hosts may need to 

communicate in ways other than object replication, so it is not safe to assume that each 

incoming datagram contains object replication data. As such, it is useful to create an enum 

 PacketType  to identify the type of each packet. Listing 5.1 gives an example. 

  Listing 5.1 PacketType Enum 

 enum PacketType 
 { 
    PT_Hello, 
    PT_ReplicationData, 
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    PT_Disconnect, 
    PT_MAX 
 };  

 For every packet it sends, the host first serializes the corresponding  PacketType  into the 

packet’s  MemoryStream . This way, the receiving host can read the packet type immediately 

off each incoming datagram and then determine how to process it. Traditionally, the first 

packet exchanged between hosts is flagged as some kind of “hello” packet, used to initiate 

communication, allocate state, and potentially begin an authentication process. The presence 

of  PT_Hello  as the first byte in an incoming datagram signifies this type of packet. Similarly, 

 PT_Disconnect  as the first byte indicates a request to begin the disconnect process.  PT_MAX  

is used later by code that needs to know the maximum number of elements in the packet type 

enum. To replicate an object, a sending host serializes  PT_ReplicationData  as the first byte 

of a packet. 

 Next, the sending host needs to identify the serialized object to the receiving host. This is so 

the receiving host can determine if it already has a copy of the incoming object. If so, it can 

update the object with the serialized state instead of instantiating a new object. Remember 

that the  LinkingContext  described in  Chapter   4    already relies on objects having unique 

identifier tags. These tags can also identify objects for the purpose of state replication. In fact, 

the  LinkingContext  can be expanded, as shown in Listing 5.2, to assign unique network 

identifiers to objects that don’t currently have them. 

  Listing 5.2 Enhanced LinkingContext 

 class LinkingContext 
 { 
 public: 
    LinkingContext(): 
    mNextNetworkId(1) 
    {} 

    uint32_t GetNetworkId(const GameObject* inGameObject, 
bool inShouldCreateIfNotFound) 

    { 
auto it = mGameObjectToNetworkIdMap.find(inGameObject); 
if(it != mGameObjectToNetworkIdMap.end()) 
{ 

return it->second; 
} 

  else if(inShouldCreateIfNotFound) 
{ 

uint32_t newNetworkId = mNextNetworkId++; 
AddGameObject(inGameObject, newNetworkId); 
return newNetworkId; 

} 
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else 
{ 

return 0; 
} 

    } 

    void AddGameObject(GameObject* inGameObject, uint32_t inNetworkId) 
    { 

mNetworkIdToGameObjectMap[inNetworkId] = inGameObject; 
mGameObjectToNetworkIdMap[inGameObject] = inNetworkId; 

    } 

    void RemoveGameObject(GameObject *inGameObject) 
    { 

uint32_t networkId = mGameObjectToNetworkIdMap[inGameObject]; 
mGameObjectToNetworkIdMap.erase(inGameObject); 
mNetworkIdToGameObjectMap.erase(networkId); 

    } 

    //unchanged ... 
    GameObject* GetGameObject(uint32_t inNetworkId); 

 private: 
    std::unordered_map<uint32_t, GameObject*> mNetworkIdToGameObjectMap; 
    std:: unordered_map<const GameObject*, uint32_t> 

mGameObjectToNetworkIdMap; 

    uint32_t mNextNetworkId; 
 }  

 The new member variable  mNextNetworkId  keeps track of the next unused network 

identifier, and increments each time one is used. Because it is a 4-byte unsigned integer, it is 

usually safe to assume it will not overflow: In cases where more than 4 billion unique replicated 

objects might be necessary over the duration of a game, you will need to implement a more 

complex system. For now, assume that incrementing the counter safely provides unique 

network identifiers. 

 When a host is ready to write  inGameObject ’s identifier into an object state packet, it calls 

 mLinkingContext->GetNetworkId(inGameObject, true) , telling the linking context 

to generate a network identifier if necessary. It then writes this identifier into the packet after 

the  PacketType . When the remote host receives this packet, it reads the identifier and uses its 

own linking context to look up the referenced object. If the receiving host finds an object, it can 

deserialize the data into it directly. If it does not find the object, it needs to create it. 

 For a remote host to create an object, it needs information regarding what class of object to 

create. The sending host provides this by serializing some kind of class identifier after the object 
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identifier. One brute force way to achieve this is to select a hardcoded class identifier from a set 

using dynamic casts, as show in Listing 5.3. The receiver would then use a switch statement like 

the one shown in Listing 5.4 to instantiate the correct class based on the class identifier. 

  Listing 5.3 Hardcoded, Tightly Coupled Class Identification 

 void WriteClassType(OutputMemoryBitStream& inStream, 
const GameObject* inGameObject) 

 { 
    if(dynamic_cast<const RoboCat*>(inGameObject)) 
    { 

inStream.Write(static_cast<uint32_t>('RBCT')); 
    } 
    else if(dynamic_cast<const RoboMouse*>(inGameObject)) 
    { 

inStream.Write(static_cast<uint32_t>('RBMS')); 
    } 

 else if(dynamic_cast<const RoboCheese*>(inGameObject)) 
    { 

inStream.Write(static_cast<uint32_t>('RBCH')); 
    } 
 }  

Listing 5.4   Hardcoded, Tightly Coupled Object Instantiation 

 GameObject* CreateGameObjectFromStream(InputMemoryBitStream& inStream) 
 { 
    uint32_t classIdentifier; 
    inStream.Read(classIdentifier); 
    switch(classIdentifier) 
    { 

case 'RBCT': 
return new RoboCat(); 
break; 

case 'RBMS': 
return new RoboMouse(); 
break; 

case 'RBCH': 
return new RoboCheese(); 
break; 

    } 

 return nullptr; 
 }  

 Although this works, it is inadequate for several reasons. First, it uses a  dynamic_cast , which 

usually requires C++’s built-in RTTI to be enabled. RTTI is often disabled in games because it 
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requires extra memory for every polymorphic class type. More importantly, this approach is 

inferior because it couples the game object system with the replication system. Every time you 

add a new gameplay class that may be replicated, you have to edit both the  WriteClassType  

and  CreateGameObjectFromStream  functions in the networking code. This is easy to forget, 

and can cause the code to grow out of sync. Also, if you want to reuse your replication system 

in a new game, it requires completely rewriting these functions, which reference the gameplay 

code of your old game. Finally, the coupling makes unit testing more difficult, as tests cannot 

load the network unit without also loading the gameplay unit. In general, it is fine for gameplay 

code to depend on network code, but network code should almost never depend on gameplay. 

 One clean way to reduce the coupling between gameplay and network code is to abstract the 

object identification and creation routines from the replication system using an object creation 

registry. 

  Object Creation Registry 

 An  object creation registry  maps a class identifier to a function that creates an object of the 

given class. Using the registry, the network module can look up the creation function by id and 

then execute it to create the desired object. If your game has a reflection system, you probably 

already have such a system implemented, but if not, it is not difficult to create. 

 Each replicable class must be prepared for the object creation registry. First, assign each class a 

unique identifier and store it in a static constant named  kClassId . Each class could use a GUID 

to ensure no overlap between identifiers, though 128-bit identifiers can be unnecessarily heavy 

considering the small subset of classes that need to be replicated. A good alternative is to use a 

four-character literal based on the name of the class and then check for conflicting names when 

the classes are submitted to the registry. A final alternative is to create class ids at compile time 

using a build tool which autogenerates the code to ensure uniqueness. 

  warning 

 Four-character literals are implementation dependent. Specifying 32-bit values with 

a literal using four characters like ‘DXT5’ or ‘GOBJ’ can be a simple way to come up 

with well-differentiated identifiers. They are also nice because they stick out clearly 

when present in a memory dump of your packets. For this reason, many third-party 

engines, from  Unreal  to C4, use them as markers and identifiers. Unfortunately, they 

are classified as implementation dependent in the C++ standard, which means not 

all compilers handle the conversion of a string literal into an integer in the same 

way. Most compilers, including GCC and Visual Studio, use the same convention, 

but if you are using  multicharacter literals to communicate between processes 

compiled with different compilers, run some tests first to make sure both compilers 

translate the literals the same way.  
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 Once each class has a unique identifier, add a  GetClassId  virtual function to  GameObject . 

Override this function for each child class of  GameObject  so that it returns the identifier of the 

class. Finally, add a static function to each child class which creates and returns an instance of 

the class. Listing 5.5 shows how  GameObject  and two child classes should be prepared for the 

registry. 

  Listing 5.5 Classes Prepared for the Object Creation Registry 

 class GameObject 
 { 
 public: 
    //... 
    enum{kClassId = 'GOBJ'}; 
    virtual uint32_t GetClassId() const {return kClassId;} 
    static GameObject* CreateInstance() {return new GameObject();} 
    //... 
 }; 

 class RoboCat: public GameObject 
 { 
 public: 
    //... 
    enum{kClassId = 'RBCT'}; 
    virtual uint32_t GetClassId() const {return kClassId;} 
    static GameObject* CreateInstance() {return new RoboCat();} 
    //... 
 }; 

 class RoboMouse: public GameObject 
 { 
    //... 
    enum{kClassId = 'RBMS'}; 
    virtual uint32_t GetClassId() const {return kClassId;} 
    static GameObject* CreateInstance() {return new RoboMouse();} 
    //... 
 };  

 Note that each child class needs the  GetClassId  virtual function implemented. Even 

though the code looks identical, the value returned changes because the  kClassId  constant 

is different. Because the code is similar for each class, some developers prefer to use a 

preprocessor macro to generate it. Complex preprocessor macros are generally frowned on 

because modern debuggers do not handle them well, but they can lessen the chance of errors 

that come from copying and pasting code over and over. In addition, if the copied code needs 

to change, just changing the macro will propagate the changes through to all classes. Listing 

5.6 demonstrates how to use a macro in this case. 
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  Listing 5.6 Classes Prepared for the Object Creation Registry Using a Macro 

 #define CLASS_IDENTIFICATION(inCode, inClass)\ 
 enum{kClassId = inCode}; \ 
 virtual uint32_t GetClassId() const {return kClassId;} \ 
 static GameObject* CreateInstance() {return new inClass();} 

 class GameObject 
 { 
 public: 
    //... 
    CLASS_IDENTIFICATION('GOBJ', GameObject) 
    //... 
 }; 

 class RoboCat: public GameObject 
 { 
    //... 
    CLASS_IDENTIFICATION('RBCT', RoboCat) 
    //... 
 }; 
 class RoboMouse: public GameObject 
 { 
    //... 
    CLASS_IDENTIFICATION('RBMS', RoboMouse) 
    //... 
 };  

 The backslashes at the end of each line of the macro definition instruct the compiler that the 

definition continues to the following line. 

 With the class identification system in place, create an  ObjectCreationRegistry  to hold 

the map from class identifier to creation function. Gameplay code, completely independent 

from the replication system, can fill this in with replicable classes, as show in Listing 5.7. 

 ObjectCreationRegistry  doesn’t technically have to be a singleton as shown, it just needs 

to be accessible from both gameplay and network code. 

Listing 5.7   ObjectCreationRegistry Singleton and Mapping 

 typedef GameObject* (*GameObjectCreationFunc)(); 

 class ObjectCreationRegistry 
 { 
 public: 
    static ObjectCreationRegistry& Get() 
    { 

static ObjectCreationRegistry sInstance; 
return sInstance; 

    } 
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    template<class T> 
    void RegisterCreationFunction() 
    { 

//ensure no duplicate class id 
assert(mNameToGameObjectCreationFunctionMap.find(T::kClassId) == 

mNameToGameObjectCreationFunctionMap.end()); 
mNameToGameObjectCreationFunctionMap[T::kClassId] = 

T::CreateInstance; 
    } 

    GameObject* CreateGameObject(uint32_t inClassId) 
    { 

//add error checking if desired- for now crash if not found 
GameObjectCreationFunc creationFunc = 

mNameToGameObjectCreationFunctionMap[inClassId]; 
GameObject* gameObject = creationFunc(); 
return gameObject;    

    } 

 private: 
    ObjectCreationRegistry() {} 
    unordered_map<uint32_t, GameObjectCreationFunc> 

mNameToGameObjectCreationFunctionMap; 
 }; 

 void RegisterObjectCreation() 
 { 
    ObjectCreationRegistry::Get().RegisterCreationFunction<GameObject>(); 
    ObjectCreationRegistry::Get().RegisterCreationFunction<RoboCat>(); 
    ObjectCreationRegistry::Get().RegisterCreationFunction<RoboMouse>(); 
 }  

 The  GameObjectCreationFunc  type is a function pointer which matches the signature of the 

 CreateInstance  static member functions in each class. The  RegisterCreationFunction  

is a template used to prevent a mismatch between class identifier and creation function. 

Somewhere in the gameplay startup code, call  RegisterObjectCreation  to populate the 

object creation registry with class identifiers and instantiation functions. 

 With this system in place, when a sending host needs to write a class identifier for a 

 GameObject , it just calls its  GetClassId  method. When the receiving host needs to create an 

instance of a given class, it simply calls  Create  on the object creation registry and passes the 

class identifier. 

 In effect, this system represents a custom-built version of C++’s RTTI system. Because it is hand 

built for this purpose, you have more control over its memory use, its type identifier size, and its 

cross-compiler compatibility than you would just using C++’s  typeid  operator. 
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  tip 

 If your game uses a reflection system like the one described in the generalized 

serialization section of  Chapter   4   , you can augment that system instead of 

using the one described here. Just add a  GetDataType  virtual function to each 

 GameObject  which returns the object’s  DataType  instead of a class identifier. 

Then add a unique identifier to each  DataType , and an instantiation function. 

Instead of mapping from class identifier to creation function, the object creation 

registry becomes more of a  data type registry , mapping from data type 

identifier to  DataType . To replicate an object, get its  DataType  through the 

 GetDataType  method and serialize the  DataType ’s identifier. To Instantiate it, 

look up the  DataType  by identifier in the registry and then use the  DataType ’s 

instantiation function. This has the advantage of making the  DataType  available 

for generalized serialization on the receiving end of the replication.   

  Multiple Objects per Packet 

 Remember it is efficient to send packets as close in size to the MTU as possible. Not all objects 

are big, so there is an efficiency gain in sending multiple objects per packet. To do so, once a 

host has tagged a packet as a  PT_ReplicationData  packet, it merely repeats the following 

steps for each object: 

1.   Writes the object’s network identifier 

2.   Writes the object’s class identifier  

3.   Writes the object’s serialized data 

 When the receiving host finishes deserializing an object, any unused data left in the packet 

must be for another object. So, the host repeats the receiving process until there is no 

remaining unused data.   

  Naïve World State Replication 
 With multi-object replication code in place, it is straightforward to replicate the entire world 

state by replicating each object in the world. If you have a small enough game world, like that 

of the original  Quake , then the entire world state can fit entirely within a single packet. Listing 

5.8 introduces a replication manager that replicates the entire world in this manner. 

  Listing 5.8 Replicating World State 

 class ReplicationManager 
 { 
 public: 
    void ReplicateWorldState(OutputMemoryBitStream& inStream, 

const vector<GameObject*>& inAllObjects); 
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 private: 
    void ReplicateIntoStream(OutputMemoryBitStream& inStream, 

GameObject* inGameObject); 

    LinkingContext* mLinkingContext; 
 }; 

 void ReplicationManager::ReplicateIntoStream( 
    OutputMemoryBitStream& inStream, 
    GameObject* inGameObject) 
 { 
    //write game object id 
    inStream.Write(mLinkingContext->GetNetworkId(inGameObject, true)); 

    //write game object class 
    inStream.Write(inGameObject->GetClassId()); 

    //write game object data 
    inGameObject->Write(inStream); 
 } 

 void ReplicationManager::ReplicateWorldState( 
    OutputMemoryBitStream& inStream, 
    const vector<GameObject*>& inAllObjects) 
 { 
    //tag as replication data 
    inStream.WriteBits(PT_ReplicationData, GetRequiredBits<PT_MAX>::Value ); 

    //write each object 
    for(GameObject* go: inAllObjects) 
    { 

ReplicateIntoStream(inStream, go); 
    } 
 }  

  ReplicateWorldState  is a public function which a caller can use to write replication 

data for a collection of objects into an outgoing stream. It first tags the data as replication 

data and then uses the private  ReplicateIntoStream  to write each object individually. 

 ReplicateIntoStream  uses the linking context to write the network ID of each object and 

the virtual  GetClassId  to write the object’s class identifier. It then depends on a virtual  Write  

function on the game object to serialize the actual data.   

    GETTING THE REQUIRED BITS TO SERIALIZE A VALUE 

 Remember that the bit stream allows serialization of a field’s value using an arbitrary 

number of bits. The number of bits must be large enough to represent the maximum 

value possible for the field. When serializing an enum, the compiler can actually calculate 
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the best number of bits at compile time, removing the chance for error when elements 

are added or removed from the enum. The trick is to make sure that the final element 

of the enum is always suffixed as a _ MAX  element. For instance, for the  PacketType  

enum, it is named  PT_MAX . This way, the value of the _ MAX  element will always 

increment or decrement automatically when elements are added or removed, and you 

have an easy way to track the maximum value for the enum. 

 The  ReplicateWorldState  method passes this final enum value as a template 

argument to  GetRequiredBits  to calculate the number of bits required to represent 

the maximum packet type. To do so most efficiently, at compile time, it uses something 

known as  template metaprogramming , a somewhat dark art of C++ engineering. It 

turns out the language of C++ templates is so complex it is actually Turing universal, 

and a compiler can calculate any arbitrary function as long as the inputs are known 

at compile time. In this case, the code for calculating the number of bits required to 

represent a maximum value is as follows: 

  template<int tValue, int tBits> 
 struct GetRequiredBitsHelper 
 { 

    enum {Value = GetRequiredBitsHelper<(tValue >> 1), 
tBits + 1>::Value}; 

 }; 

 template<int tBits> 
 struct GetRequiredBitsHelper<0, tBits> 
 { 

    enum {Value = tBits}; 
 }; 

 template<int tValue> 
 struct GetRequiredBits 
 { 
    enum {Value = GetRequiredBitsHelper<tValue, 0>::Value}; 
 };  

 Template metaprogramming has no explicit loop functionality, so it must use recursion in lieu 

of iteration. Thus,  GetRequiredBits  relies on the recursive  GetRequiredBitsHelper  

to find the highest bit set in the argument value and thus calculate the number of bits 

necessary for representation. It does so by incrementing the  tBits  argument each time 

it shifts the  tValue  argument one bit to the right. When  tValue  is finally 0, the base case 

specialization is invoked, which simply returns the accumulated value in  tBits . 

 With the advent of C++11, the  constexpr  keyword allows some of the functionality 

of template metaprogramming with less complexity, but at the time of writing it is not 

currently supported by all modern compilers (i.e., Visual Studio 2013) so it is safer to go 

with templates for compatibility.  
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 When the receiving host detects a replication state packet, it passes it to the replication manager, 

which loops through each serialized game object in the packet. If a game object does not exist, 

the client creates it and deserializes the state. If a game object does exist, the client finds it and 

deserializes state into it. When the client is done processing the packet, it destroys any local 

game objects that did not have data in the packet, as the lack of data means the game object 

no longer exists in the world of the sending host. Listing 5.9 shows additions to the replication 

manager that allow it to process an incoming packet identified as containing replication state. 

  Listing 5.9 Replicating World State 

 class ReplicationManager 
 { 
 public: 
    void ReceiveReplicatedObjects(InputMemoryBitStream& inStream); 

 private: 
    GameObject* ReceiveReplicatedObject(InputMemoryBitStream& inStream); 

    unordered_set<GameObject*> mObjectsReplicatedToMe; 
 }; 

 void ReplicationManager::ReceiveReplicatedObjects( 
    InputMemoryBitStream& inStream) 
 { 
    unordered_set<GameObject*> receivedObjects; 

    while(inStream.GetRemainingBitCount() > 0) 
    { 

GameObject* receivedGameObject = ReceiveReplicatedObject(inStream); 
receivedObjects.insert(receivedGameObject); 

    } 

   //now run through mObjectsReplicatedToMe. 
    //if an object isn’t in the recently replicated set, 
    //destroy it 
    for(GameObject* go: mObjectsReplicatedToMe) 
    { 

if(receivedObjects.find(go)!= receivedObjects.end()) 
{ 

mLinkingContext->Remove(go); 
go->Destroy(); 

} 
    } 

    mObjectsReplicatedToMe = receivedObjects; 
 } 

 GameObject* ReplicationManager::ReceiveReplicatedObject( 
    InputMemoryBitStream& inStream) 
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 { 
    uint32_t networkId; 
    uint32_t classId; 
    inStream.Read(networkId); 
    inStream.Read(classId); 

    GameObject* go = mLinkingContext->GetGameObject(networkId); 
    if(!go) 
    { 

go = ObjectCreationRegistry::Get().CreateGameObject(classId); 
mLinkingContext->AddGameObject(go, networkId); 

    } 

    //now read update 
    go->Read(inStream); 

    //return gameobject so we can track it was received in packet 
    return go; 
 }  

 Once the packet receiving code reads the packet type and determines the packet 

is replication data, it can pass the stream to  ReceiveWorld .  ReceiveWorld  uses 

 ReceiveReplicatedObject  to receive each object and tracks each received object in a set. 

Once all objects are received, it checks for any objects that were received in the previous packet 

that were not received in this packet and destroys them to keep the world in sync. 

 Sending and receiving world state in this manner is simple, but is limited by the requirement 

that the entire world state must fit within each packet. To support larger worlds, you need an 

alternate method of replicating state.  

  Changes in World State 
 Because each host maintains its own copy of the world state, it is not necessary to replicate 

the entire world state in a single packet. Instead, the sender can create packets that represent 

changes in world state, and the receiver can then apply these changes to its own world state. 

This way, a sender can use multiple packets to synchronize a very large world with a remote host. 

 When replicating world state in this manner, each packet can be said to contain a  world state 
delta . Because the world state is composed of object states, a world state delta contains one 

 object state delta  for each object that needs to change. Each object state delta represents one 

of three replication actions: 

1.   Create game object  

2.   Update game object  

3.   Destroy game object   

 Replicating an object state delta is similar to replicating an entire object state, except the sender 

needs to write the object action into the packet. At this point, the prefix to serialized data is getting 
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so complex that it can be useful to create a  replication header  that incorporates the object’s 

network identifier, replication action, and class if necessary. Listing 5.10 shows an implementation. 

  Listing 5.10 Replication Header 

 enum ReplicationAction 
 { 
    RA_Create, 
    RA_Update, 
    RA_Destroy, 
    RA_MAX 
 }; 

 class ReplicationHeader 
 { 
 public: 
    ReplicationHeader() {} 

    ReplicationHeader(ReplicationAction inRA, uint32_t inNetworkId, 
uint32_t inClassId = 0): 

    mReplicationAction(inRA), 
    mNetworkId(inNetworkId), 
    mClassId(inClassId) 
    {} 

    ReplicationAction   mReplicationAction; 
    uint32_t mNetworkId; 
    uint32_t mClassId; 

    void Write(OutputMemoryBitStream& inStream); 
    void Read(InputMemoryBitStream& inStream); 
 }; 

 void ReplicationHeader::Write(OutputMemoryBitStream& inStream) 
 { 
    inStream.WriteBits(mReplicationAction, GetRequiredBits<RA_MAX>::Value ); 
    inStream.Write(mNetworkId); 
    if( mReplicationAction!= RA_Destroy) 
    { 

inStream.Write(mClassId); 
    } 
 } 

 void ReplicationHeader::Read(InputMemoryBitStream& inStream) 
 { 
    inStream.Read(mReplicationAction, GetRequiredBits<RA_MAX>::Value); 
    inStream.Read(mNetworkId); 
    if(mReplicationAction!= RA_Destroy) 
    { 

inStream.Read(mClassId); 
    } 
 };  
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 The  Read  and  Write  methods aid in serializing the header into a packet’s memory stream 

ahead of the object’s data. Note that it is not necessary to serialize the object’s class identifier in 

the case of object destruction. 

 When a sender needs to replicate a collection of object state deltas, it creates a memory stream, 

marks it as a  PT_ReplicationData  packet, and then serializes a  ReplicationHeader  

and appropriate object data for each change. The  ReplicationManager  should have three 

distinct methods to replicate creation, update, and destruction, as shown in Listing 5.11. These 

encapsulate the  ReplicationHeader  creation and serialization so that they aren’t exposed 

outside the  ReplicationManager . 

  Listing 5.11 Replicating Sample Object State Deltas 

 ReplicationManager::ReplicateCreate(OutputMemoryBitStream& inStream, 
GameObject* inGameObject) 

 { 
    ReplicationHeader rh(RA_Create, 

mLinkingContext->GetNetworkId(inGameObject, 
true), 

inGameObject->GetClassId()); 
    rh.Write(inStream); 
    inGameObject->Write(inStream); 
 } 

 void ReplicationManager::ReplicateUpdate(OutputMemoryBitStream& inStream, 
GameObject* inGameObject) 

 { 
    ReplicationHeader rh(RA_Update, 

mLinkingContext->GetNetworkId(inGameObject, 
false), 

inGameObject->GetClassId()); 
    rh.Write(inStream); 
    inGameObject->Write(inStream); 
 } 

 void ReplicationManager::ReplicateDestroy(OutputMemoryBitStream&inStream, 
GameObject* inGameObject) 

 { 
    ReplicationHeader rh(RA_Destroy, 

mLinkingContext->GetNetworkId( inGameObject, 
false)); 

    rh.Write(inStream); 
 }  

 When a receiving host processes a packet, it now must appropriately apply each action. Listing 

5.12 shows how. 
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  Listing 5.12 Processing Replication Actions 

 void ReplicationManager::ProcessReplicationAction( 
    InputMemoryBitStream& inStream) 
 { 
    ReplicationHeader rh; 
    rh.Read(inStream); 

    switch(rh.mReplicationAction) 
    { 

case RA_Create: 
{ 

GameObject* go = 
ObjectCreationRegistry::Get().CreateGameObject(rh.mClassId); 
mLinkingContext->AddGameObject(go, rh.mNetworkId); 
go->Read(inStream); 
break; 

} 
case RA_Update: 
{ 

GameObject* go = 
mLinkingContext->GetGameObject(rh.mNetworkId); 

 //we might have not received the create yet, 
//so serialize into a dummy to advance read head 
if(go) 
{ 

go->Read(inStream); 
} 
else 
{ 

uint32_t classId = rh.mClassId; 
go = 
ObjectCreationRegistry::Get().CreateGameObject(classId); 
go->Read(inStream); 
delete go; 

} 
break; 

} 
case RA_Destroy: 
{ 

GameObject* go = mLinkingContext->GetGameObject(rh.mNetworkId); 
mLinkingContext->RemoveGameObject(go); 
go->Destroy(); 
break; 

} 
default: 

//not handled by us 
break; 

    } 
 }  
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 After identifying a packet as one containing object state, the receiver loops through each 

header and chunk of serialized object data. If the header indicates creation, the receiver 

ensures that the object does not already exist. If it does not, it creates the object with the 

serialized data. 

 If the replication header indicates an object update, the receiver finds the object and 

deserializes the data into it. Due to any number of factors, including unreliability of the 

network, it is possible that the receiver might not find the target game object. In this case, the 

receiver still needs to process the rest of the packet, so it must advance the memory stream’s 

read head by an appropriate amount. It can do this by creating a temporary dummy object, 

serializing the object state into the dummy, and then deleting the dummy object. If this is too 

inefficient, or not possible due to the way in which objects are constructed, you can add a field 

to the object replication header indicating the size of the serialized data. Then, the receiver 

can look up the size of the serialized data for the unlocatable object and advance the memory 

stream’s current read head by that amount. 

  warning 

 Partial world and object state replication only work if the sender has an accurate 

representation of the receiver’s current world state. This accuracy helps the sender 

determine which changes it needs to replicate. Because the Internet is inherently 

unreliable, this is not as simple as assuming that the receiver’s world state is based 

on the latest packets transmitted by the sender. Either hosts need to send packets 

via TCP, so reliability is guaranteed, or they need to use an application level protocol 

designed on top of UDP to provide reliability.  Chapter   7   , “Latency, Jitter, and 

Reliability,” addresses this topic.  

  Partial Object State Replication 

 When sending an object update, the sender might not need to send every property in the object. 

The sender may want to serialize only the subset of properties that have changed since the last 

update. To enable this, you can use a bit-field to represent the serialized properties. Each bit can 

represent a property or group of properties to be serialized. For instance, the  MouseStatus  class 

from  Chapter   4    might use the enum in listing 5.13 to assign properties to bits. 

  Listing 5.13 MouseStatus Properties Enum 

 enum MouseStatusProperties 
 { 
    MSP_Name      = 1 << 0, 
    MSP_LegCount  = 1 << 1, 
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    MSP_HeadCount = 1 << 2, 
    MSP_Health    = 1 << 3, 
    MSP_MAX 
 };  

 These enum values can be bitwise ORed together to represent multiple properties. For 

instance, an object state delta containing values for  mHealth  and  mLegCount  would use 

 MSP_Health | MSP_LegCount . Note that a bit-field containing a 1 for each bit indicates that 

all properties should be serialized. 

 The  Write  method of a class should be amended to take a property bit-field indicating which 

properties to serialize into the stream. Listing 5.14 provides an example for the  MouseStatus  

class. 

  Listing 5.14 Using Property Bit-Fields to Write Properties 

 void MouseStatus::Write(OutputMemoryBitStream& inStream, 
uint32_t inProperties) 

 { 
    inStream.Write(inProperties, GetRequiredBits<MSP_MAX >::Value); 
    if((inProperties & MSP_Name) != 0) 
    { 

inStream.Write(mName); 
    } 
    if((inProperties & MSP_LegCount)!= 0) 
    { 

inStream.Write(mLegCount); 
    } 
    if((inProperties & MSP_HeadCount) != 0) 
    { 

inStream.Write(mHeadCount); 
    } 
    if((inProperties & MSP_Health)!= 0) 
    { 

inStream.Write(mHealth); 
    } 
 }  

 Before writing any properties, the method writes  inProperties  into the stream so that the 

deserialization procedure can read only the written properties. It then checks the individual 

bits of the bit-field to write the desired properties. Listing 5.15 demonstrates the deserialization 

process. 
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  Listing 5.15 Deserialization of Partial Object Update 

 void MouseStatus::Read(InputMemoryBitStream& instream) 
 { 
    uint32_t writtenProperties; 
    inStream.Read(writtenProperties, GetRequiredBits<MSP_MAX>::Value); 
    if((writtenProperties & MSP_Name) != 0) 
    { 

inStream.Read(mName ); 
    } 
    if((writtenProperties & MSP_LegCount) != 0) 
    { 

inStream.Read(mLegCount); 
    } 
    if((writtenProperties & MSP_HeadCount) != 0) 
    { 

inStream.Read(mHeadCount); 
    } 
    if((writtenProperties & MSP_Health) != 0) 
    { 

inStream.Read(mHealth); 
    } 
 }  

 The  Read  method first reads the  writtenProperties  field so it can use the value to 

deserialize only the correct properties. 

 This bit-field approach to partial object state replication also works with the more abstract, 

bidirectional, data-driven serialization routines given at the end of  Chapter   4   . Listing 5.16 

extends that chapter’s implementation of  Serialize  to support a bit-field for partial object 

state replication. 

Listing 5.16   Bidirectional, Data-Driven Partial Object Update 

 void Serialize(MemoryStream* inStream, const DataType* inDataType, 
uint8_t* inData, uint32_t inProperties) 

 { 
    inStream->Serialize(inProperties); 

    const auto& mvs = inDataType->GetMemberVariables(); 
    for(int mvIndex = 0, c = mvs.size(); mvIndex < c; ++mvIndex) 
    { 

if(((1 << mvIndex) & inProperties) != 0) 
{ 

const auto& mv = mvs[mvIndex]; 
void* mvData = inData + mv.GetOffset(); 
switch(mv.GetPrimitiveType()) 
{ 
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case EPT_Int: 
inStream->Serialize(*reinterpret_cast<int*>(mvData)); 
break; 

case EPT_String: 
inStream->Serialize(

*reinterpret_cast<string*>(mvData));
break; 

case EPT_Float: 
inStream->Serialize(

*reinterpret_cast<float*>(mvData));
break; 

} 
} 

    } 
 }  

 Instead of manually defining the meaning of each bit using an enum, the data-driven approach 

uses the index of the bit to represent the index of the member variable being serialized. Note 

that  Serialize  is called on the  inProperties  value right away. For an output stream, this 

will write the bit-field into the stream. However, for an input stream, this will read the written 

properties into the variable, overwriting anything that was passed in. This is correct behavior, 

as an input operation needs to use the serialized bit-field that corresponds to each of the 

serialized properties. If there are more than 32 potential properties to serialize, use a uint64_t 

for the properties. If there are more than 64 properties, consider grouping several properties 

under the same bit or splitting up the class.   

  RPCs as Serialized Objects 
 In a complex multiplayer game, a host might need to transmit something other than object 

state to another host. Consider the case of a host wanting to transmit the sound of an explosion 

to another host, or to flash another host’s screens. Actions like this are best transmitted using 

 remote procedure calls , or  RPCs . A remote procedure call is the act of one host causing a 

procedure to execute on one or more remote hosts. There are many application-level protocols 

available for this, ranging from text-based ones like XML-RPC to binary ones like ONC-RPC. 

However, if a game already supports the object replication system described in this chapter, it is 

a simple matter to add an RPC layer on top of it. 

 Each procedure invocation can be thought of as a unique object, with a member variable for 

each parameter. To invoke an RPC on a remote host, the invoking host replicates an object 

of the appropriate type, with the member variables filled in correctly, to the target host. For 

instance, for the function  PlaySound , 

  void PlaySound(const string& inSoundName, const Vector3& inLocation, 
float inVolume);  
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 The  PlaySoundRPCParams  struct would have three member variables: 

  struct PlaySoundRPCParams 
 { 
    string mSoundName; 
    Vector3 mLocation; 
    float mVolume; 
 };  

 To invoke  PlaySound  on a remote host, the invoker creates a  PlayerSoundRPCParams  object, 

sets the member variables, and then serializes the object into an object state packet. This can result 

in spaghetti code if many RPCs are used, as well as run through a lot of network object identifiers 

that aren’t really necessary, as RPC invocation objects don’t need to be uniquely identified. 

 A cleaner solution is to create a modular wrapper around the RPC system and then integrate it 

with the replication system. To do this, first add an additional replication action type,  RA_RPC . 

This replication action identifies the serialized data that follows it as an RPC invocation, 

and allows the receiving host to direct it to a dedicated RPC processing module. It also tells 

the  ReplicationHeader  serialization code that a network identifier is not necessary 

for this action and thus should not be serialized. When the  ReplicationManager’s  

 ProcessReplicationAction  detects an  RA_RPC  action, it should pass the packet to the RPC 

module for further processing. 

 The RPC module should contain a data structure that maps from each RPC identifier to an 

unwrapping glue function that can deserialize parameters for and then invoke the appropriate 

function. Listing 5.17 shows a sample  RPCManager . 

  Listing 5.17 An Example RPCManager 

 typedef void (*RPCUnwrapFunc)(InputMemoryBitStream&) 

 class RPCManager 
 { 
 public: 
    void RegisterUnwrapFunction(uint32_t inName, RPCUnwrapFunc inFunc) 
    { 

assert(mNameToRPCTable.find(inName) == mNameToRPCTable.end()); 
mNameToRPCTable[inName] = inFunc; 

    } 

    void ProcessRPC(InputMemoryBitStream& inStream) 
    { 

uint32_t name; 
inStream.Read(name); 
mNameToRPCTable[name](inStream); 

    } 
    unordered_map<uint32_t, RPCUnwrapFunc> mNameToRPCTable; 
 };  
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 In this example, each RPC is identified with a four-character code unsigned integer. If desired, 

the  RPCManager  can use full strings instead: While strings allow for more variety, they use 

more bandwidth. Note the similarity to the object creation registry. Registering functions 

through a hash map is a common way to decouple seemingly dependent systems. 

 When the  ReplicationManager  detects the  RA_RPC  action, it passes the received memory 

stream to the RPC module for processing, which then unwraps and calls the correct function 

locally. To support this, game code must register an unwrap function for each RPC. Listing 5.18 

shows how to register the  PlaySound  function. 

  Listing 5.18 Registering an RPC 

 void UnwrapPlaySound(InputMemoryBitStream& inStream) 
 { 
    string soundName; 
    Vector3 location; 
    float volume; 

    inStream.Read(soundName); 
    inStream.Read(location); 
    inStream.Read(volume); 
    PlaySound(soundName, location, volume); 
 } 

 void RegisterRPCs(RPCManager* inRPCManager) 
 { 
    inRPCManager->RegisterUnwrapFunction('PSND', UnwrapPlaySound); 
 }  

  UnwrapPlaySound  is a glue function which handles the task of deserializing the parameters 

and invoking  PlaySound  with them. Gameplay code should invoke the  RegisterRPCs  

function and pass it an appropriate  RPCManager . Other RPCs can be added to the 

 RegisterRPCs  function as desired. Presumably the  PlaySound  function is implemented 

elsewhere. 

 Finally, to invoke an RPC, the caller needs a function to write the appropriate 

 ObjectReplicationHeader  and parameters into an outgoing packet. Depending on the 

implementation, it can either create the packet and send it, or check with the gameplay code 

or the networking module to see if any packet is already pending to go out to the remote host. 

Listing 5.19 gives an example of a wrapper function that writes an RPC call into an outgoing 

packet. 
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  Listing 5.19 Writing PlaySoundRPC into a Pending Packet 

 void PlaySoundRPC(OutputMemoryBitStream& inStream, 
const string&inSoundName, 
const Vector3& inLocation, float inVolume) 

 { 
    ReplicationHeader rh(RA_RPC); 
    rh.Write(inStream); 
    inStream.Write( inSoundName); 
    inStream.Write(inLocation); 
    inStream.Write(inVolume); 
 }  

 It can be a lot of work to manually generate the wrapping and unwrapping glue functions, 

register them with the  RPCManager,  and keep their parameters in sync with the underlying 

functions. For this reason, most engines that support RPCs use build tools to autogenerate the 

glue functions and register them with an RPC module. 

  note 

 Sometimes, a host may wish to remotely invoke a method on a specific object instead 

of just calling a free function. While similar, this is technically known as a  Remote 
Method Invocation , or  RMI , as opposed to a remote procedural call. A game that 

supports these could use the network identifier in the  ObjectReplicationHeader  

to identify the target object of the RMI. An identifier of zero would indicate a free 

function RPC and a nonzero value would indicate an RMI on the specified game 

object. Alternatively, to conserve bandwidth at the expense of code size, a new 

replication action,  RA_RMI , could indicate the relevance of the network identifier 

field, whereas the  RA_RPC  action would continue to ignore it.   

  Custom Solutions 
 No matter how many general-purpose object replication or RPC invocation tools an engine 

includes, some games still call for custom replication and messaging code. Either some 

desired functionality is not available, or, for certain rapidly changing values, the framework of 

generalized object replication is just too bulky and bandwidth inefficient. In these cases, you 

can always add custom replication actions by extending the  ReplicationAction  enum and 

adding cases to the switch statement in the  ProcessReplicationFunction . By special 

casing the  ReplicationHeader  serialization for your object, you can include or omit the 

corresponding network identifier and class identifier as desired. 

 If your customization falls outside the purview of the  ReplicationManager  entirely, 

you can also extend the  PacketType  enum to create entirely new packet types and 



ptg16606381

REVIEW QUESTIONS 163

managers to handle them. Following the design pattern of the registration maps used in the 

 ObjectCreationRegistry  and  RPCManager , it is easy to inject higher-level code to handle 

these custom packets without polluting the lower-level networking system.   

     Summary 
 Replicating an object involves more than just sending its serialized data from one host to another. 

First, an application-level protocol must define all possible packet types, and the network module 

should tag packets containing object data as such. Each object needs a unique identifier, so that 

the receiving host can direct incoming state to the appropriate object. Finally, each class of object 

needs a unique identifier so that the receiving host can create an object of the correct class if one 

does not exist already. Networking code should not depend on gameplay classes, so use an indirect 

map of some sort to register replicable classes and creation functions with the network module. 

 Small-scale games can create a shared world between hosts by replicating each object in the 

world in each outgoing packet. Larger games cannot fit replication data for all objects in every 

packet, so they must employ a protocol that supports transmission of world state deltas. Each 

delta can contain replication actions to create an object, update an object, or destroy an object. 

For efficiency, update-object actions may send serialization data for only a subset of object 

properties. The appropriate subset depends on the overall network topology and reliability of 

the application-level protocol. 

 Sometimes, games need to replicate more than just object state data between hosts. Often, 

they need to invoke remote procedure calls on each other. One simple way to support RPC 

invocation is to introduce the RPC replication action and fold RPC data into replication 

packets. An RPC module can handle registration of RPC wrapping, unwrapping, and invocation 

functions, and the replication manager can channel any incoming RPC requests to this module. 

 Object replication is a key piece of the low-level multiplayer game tool chest, and will be a 

critical ingredient when implementing support for some of the higher-level network topologies 

described in  Chapter   6   .  

  Review Questions 
1.    What three key values should be in a packet replicating object state, other than the 

object’s serialized data?   

2.    Why is it undesirable for networking code to depend on gameplay code?   

3.    Explain how to support creation of replicated objects on the receiving host without giving 

the networking code a dependency on gameplay classes.   

4.    Implement a simple game with five moving game objects in it. Replicate those objects to a 

remote host by sending the remote host a world state packet 15 times a second.   
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5.    Regarding the game in Question 4, what problem develops as the number of game objects 

increase? What is a solution to this problem?   

6.    Implement a system which supports sending updates of only some of an object’s 

properties to a remote host.   

7.    What is an RPC? What is an RMI? How are they different?   

8.    Using the chapter’s framework, implement an RPC  SetPlayerName(const string&

inName)  which tells other hosts the local player’s name.   

9.    Implement a custom packet type that replicates which keys a player is currently holding 

down on the keyboard, using a reasonably efficient amount of bandwidth. Explain how to 

integrate this into this chapter’s replication framework.    

  Additional Readings 
 Carmack, J. (1996, August).  Here Is the New Plan . Retrieved from  http://fabiensanglard.net/

quakeSource/johnc-log.aug.htm . Accessed September 12, 2015. 

 Srinivasan, R. (1995, August).  RPC: Remote Procedure Call Protocol Specification Version 2 . 

Retrieved from  http://tools.ietf.org/html/rfc1831 . Accessed September 12, 2015. 

 Van Waveren, J. M. P. (2006, March 6).  The DOOM III Network Architecture . Retrieved from  http://

mrelusive.com/publications/papers/The-DOOM-III-Network-Architecture.pdf . Accessed 

September 12, 2015. 

 Winer, Dave (1999, June 15).  XML-RPC Specification . Retrieved from  http://xmlrpc.scripting.com/

spec.html . Accessed September 12, 2015.    

http://fabiensanglard.net/quakeSource/johnc-log.aug.htm
http://tools.ietf.org/html/rfc1831
http://mrelusive.com/publications/papers/The-DOOM-III-Network-Architecture.pdf
http://mrelusive.com/publications/papers/The-DOOM-III-Network-Architecture.pdf
http://xmlrpc.scripting.com/spec.html
http://fabiensanglard.net/quakeSource/johnc-log.aug.htm
http://xmlrpc.scripting.com/spec.html


ptg16606381

    C H A P T E R  6 

 NETWORK TOPOLOGIES 

AND SAMPLE GAMES 

      The first part of this chapter takes a look at the two 

main configurations that can be used when multiple 

computers must communicate in a networked game: 

client-server and peer-to-peer. The remainder of the 

chapter combines all the topics covered up to this 

point in the book, and creates initial versions of two 

sample games.    
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     Network Topologies 
 By and large,  Chapters   1    to    5    have focused specifically on the issue of two computers 

communicating over the Internet and sharing information in a manner that is conducive to 

networked games. Although there absolutely are networked two-player games, many of 

the more popular games feature higher player counts. But even with only two players, some 

important questions arise. How will the players send game updates to each other? Will there 

be object replication as in  Chapter   5   , or will only the input state be replicated? What happens 

if the computers disagree on the game state? These are all important questions that must be 

answered for any networked multiplayer game. 

 A  network topology  determines how the computers in a network are connected to each other. 

In the context of a game, the topology determines how the computers participating in the 

game will be organized in order to ensure all players can see an up-to-date version of the game 

state. As with the decision of network protocol, there are tradeoffs regardless of the selected 

topology. This section explores the two main types of topologies used by games, client-server 

and peer-to-peer, and the small variations that can also exist within these types. 

  Client-Server 

 In a  client-server  topology, one game instance is designated the server, and all of the other 

game instances are designated as clients. Each client only ever communicates with the server, 

while the server is responsible for communicating with all of the clients.  Figure   6.1    illustrates 

this topology.  

Client F

Client A

Client B

Client C

Client D

Client E

Server

  Figure 6.1  Client-server topology       

 In a client-server topology, given    n    clients there are a total of    O(2n)    connections. However, 

it is asymmetric in that the server will have    O(n)    connections (one to each client), while each 

client will only have one connection to the server. In terms of bandwidth, if there are    n    clients 

and each client sends    b    bytes per second of data, the server must have enough bandwidth to 
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handle    b ̇ n    incoming bytes per second. Similarly, if the server needs to send    c    bytes per second

of data to each client, the server must support    c ̇ n    outgoing bytes per second. However, each 

client need only support    c    bytes per second downstream and    b    bytes per second upstream. 

This means that as the number of clients increase, the bandwidth required for the server will 

increase linearly. In theory, the bandwidth requirements for the client will not change based on 

the number of clients. However, in practice, supporting more clients leads to more objects in 

the world to replicate, which may lead to a slight increase in bandwidth for each client. 

 Although by no means the only approach to client-server, most games that implement client-

server utilize an  authoritative  server. This means that the game server’s simulation of the 

game is considered to be correct. If the client ever finds itself in disagreement with the server, 

it should update its game state based on what the server says is the game state. For instance, 

in the sample  Robo Cat Action  game discussed later in this chapter, each player cat can throw 

a ball of yarn. But with an authoritative server model, the client is forbidden from making a 

determination of whether or not the yarn hits another player. Instead, the client must inform 

the server that it wants to throw a ball of yarn. The server then decides both if the client is even 

allowed to throw a ball of yarn and, if so, whether or not the other player is hit by the ball of yarn. 

 By placing the server as an authority, this means there is some amount of “lag” or delay in 

actions performed by the client. The topic of latency is discussed in great detail in  Chapter   7   , 

“Latency, Jitter, and Reliability,” but a brief discussion is in order. In the case of the ball throw, 

the server is the only game instance allowed to make a decision on what happens. But it will 

take some time to send a ball throw request to the server, which in turn will process it before 

sending the result to all of the clients. One contributing factor of this delay will be the  round 
trip time , or  RTT , which is the amount of time (typically expressed in milliseconds) that it 

takes for packets to travel to and back from a particular computer on the network. In an ideal 

scenario, this RTT is 100 ms or less, though even on modern Internet connections there are 

many factors that may not allow for such a low RTT. 

 Suppose there is a game with a server and two clients, Clients A and B. Because the server 

sends all game data to each client, this means that if Client A throws a ball of yarn, the packet 

containing the yarn throw request must first travel to the server. Then the server will process 

the throw before sending the result back to Clients A and B. In this scenario, the worst case 

network latency experienced by Client B would be equal to ½ Client A’s RTT, plus the server 

processing time, plus ½ Client B’s RTT. In fast network conditions, this may not be an issue, but 

realistically, most games must use a variety of techniques to hide this latency. This is covered in 

detail in  Chapter   8   , “Improved Latency Handling.” 

 There is also a subclassification of types of servers. Some servers are  dedicated , meaning 

they only run the game state and communicate with all of the clients. The dedicated server 

process is completely separate from any client processes running the game. This means that the 

dedicated server typically is headless and does not actually display any graphics. This type of 

server is often used by big-budget games such as  Battlefield , which allows the developer to run 

multiple dedicated server processes on a single powerful machine. 
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 The alternative to a dedicated server is a  listen server . In this configuration, the server is also 

an active participant in the game itself. One advantage of a listen server configuration is that 

it may reduce deployment costs, because it is not necessary to rent servers in a data center—

instead, one of the players can use their machine as both a server and a client. However, the 

disadvantage of a listen server is that a machine running as a listen server must be powerful 

enough and have a fast enough connection to handle this increased load. The listen server 

approach is sometimes erroneously referred to as a peer-to-peer connection, but a more 

precise term is peer hosted. There is still a server, it just so happens that the server is hosted by a 

player in the game. 

 One caution about a listen server is that assuming it is authoritative it will have a complete 

picture of the game state. This means that the player running the listen server could potentially 

use this information to cheat. Furthermore, in a client-server model typically only the server 

knows the network address of all of the active clients. This can be a huge issue in the event that 

the server disconnects—whether due to a network issue or perhaps an angry player deciding 

to exit their game. Some games that utilize a listen server implement the concept of  host 
migration , which means that if a listen server disconnects, one of the clients is promoted to 

be the new server. In order for this to be possible, however, there must be some amount of 

communication between the clients. This means that host migration requires a hybrid model 

where there are both a client-server  and  a peer-to-peer topology.  

  Peer-to-Peer 

 In a  peer-to-peer  topology, each individual participant is connected to every other participant. 

As is apparent from  Figure   6.2   , this means that there is a great deal of data transmitted back and 

forth between clients. The number of connections is a quadratic function, or in other words, 

Peer A

Peer C

Peer D Peer B

  Figure 6.2  Peer-to-peer topology       
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given    n    peers, each peer must have    O(n – 1)    connections, which leads to    O(n2)    connections 

across the network. This also means that the bandwidth requirements for each peer increases 

as more and more peers connect to the game. However, unlike in client-server, the bandwidth 

requirements are symmetric, so every peer will require the same amount of available 

bandwidth upstream and downstream. 

  The concept of authority is much more nebulous in a peer-to-peer game. One possible 

approach is that certain peers have authority over certain parts of the game, but in practice 

such a system can be difficult to implement. A more common approach in peer-to-peer games 

is to share all actions across every peer, and have every peer simulate these actions. This model 

is sometimes called an  input sharing  model. 

 One aspect of the peer-to-peer topology that makes input sharing more viable is the fact that 

there is less latency to be concerned about. As opposed to the client-server model, which has 

an intermediary between clients, in a peer-to-peer game all peers are communicating with 

each other directly. This means that at worst, the latency between peers is ½ RTT. However, 

there still is some latency, which can lead to what is the largest technical challenge in a peer-to-

peer game: ensuring that all peers remain synchronized with each other. 

 Recall that the discussion of the deterministic lockstep model in  Chapter   1    presented one 

such approach. To recap, in the  Age of Empires  implementation, the game was broken down 

into “turns” of 200 ms. All input commands during these 200 ms are queued up, and when the 

200 ms ends, the commands are sent to all of the peers. Furthermore, there is a one turn delay 

such that when each peer is displaying the results of turn 1, the commands are being queued 

to be executed on turn 3. Although this type of turn synchronization is conceptually simple, 

the actual implementation details can be far more complex. The  Robo Cat RTS  sample game, 

discussed later in this chapter, implements a very similar model. 

 Furthermore, it is important to ensure that the game state is consistent between all peers. This 

means that the game implementation needs to be fully deterministic. In other words, a given 

set of inputs must always result in the same outputs. A few important aspects of this include 

using checksums to verify consistency of the game state across peer and synchronizing random 

number generation across all peers, both topics that are covered in detail later in this chapter. 

 Another issue that arises in peer-to-peer is connecting new players. Since every peer must 

know the address of every other peer, in theory a new player could connect to any peer. 

However, matchmaking services that list available games typically only accept a single 

address—in this case, one peer may be selected as a so-called master peer, who is the only peer 

that greets new players. 

 Finally, the server disconnection problem that is a concern in server-client doesn’t really exist 

in peer-to-peer. Typically, if communication is lost with a peer, the game may pause for a 

few seconds before removing the peer from the game. Once the peer is disconnected, the 

remaining peers can continue simulating the game.   
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  Implementing Client-Server 
 Combining all of the concepts that have been covered to this point in the book, it is now 

possible to create an initial version of a networked game. This section discusses one such 

game,  Robo Cat Action , a top-down game featuring cats competing to collect as many mice as 

possible, all while throwing balls of yarn at each other. The game is shown in action in  Figure 

  6.3   . This first version of this game code is in the  Chapter6/RoboCatAction  directory of the 

online code repository.  

RTT 216 ms

Sanjay 5

Josh 3

Health 10

  Figure 6.3  The initial version of  Robo Cat Action        

 The controls for  Robo Cat Action  are not very complex. The D and A keys can be used to rotate the 

cat clockwise and counterclockwise, respectively. The W and S keys can be used to move the cat 

forward and back. The K key can be used to throw a ball of yarn that damages other cats. Mice can 

also be collected by moving over them. 

 This first version of the game code makes a large assumption: That there is little-to-no network 

latency, and that all packets will arrive at their destinations. This is clearly an unrealistic 

assumption for any networked game, and subsequent chapters, especially  Chapter   7   , “Latency, 

Jitter, and Reliability,” discuss how to remove these assumptions. But for now, it is useful to 

discuss the basics of a client-server game without worrying about the added complexity of 

handling latency or packet loss. 

  Separating Server and Client Code 

 One of the cornerstones of the client-server model with an authoritative server is that the code 

that executes on the server is different from the code that executes on each client. Take the 
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example of the main character, the robo-cat. One of the properties of the cat is the  mHealth  

variable that tracks its remaining health. The server needs to know about the health of the cat, 

because if the health hits zero, then the cat should go into its respawn state (cats have at least 

nine lives, after all). Similarly, the client needs to know how much health the cat has because it 

will display the remaining health in the top right corner. Even though the server’s instance of 

 mHealth  is the authoritative version of the variable, the client will need to cache the variable 

locally in order to display it in the user interface. 

 The same can be said about functions. There may be some member functions of the 

 RoboCat  class that are needed only for the server, some that are needed only for the client, 

and some that are needed for both. To account for this,  Robo Cat Action  takes advantage of 

inheritance and virtual functions. Thus, there is a  RoboCat  base class and two derived classes: 

 RoboCatServer  and  RoboCatClient , both of which override and implement new member 

functions as necessary. From a performance standpoint, using virtual functions in this manner 

may not give the highest possible performance, but from the perspective of ease-of-use, an 

inheritance hierarchy is perhaps the simplest. 

 The concept of splitting up the code into separate classes is taken a step further—inspecting 

the code will reveal that the code is separated into three separate targets. The first target 

is the RoboCat library that contains the shared code that is used by both the server and 

the client. This includes classes such as the  UDPSocket  class as implemented in  Chapter   3    

and the  OutputMemoryBitSteam  class as implemented in  Chapter   4   . Next, there are two 

executable targets—RoboCatServer for the server, and RoboCatClient for the client. 

  note 

 Because there are two separate executables for the server and client, in order to 

test  Robo Cat Action , you must run both executables separately. The server takes a 

single command line parameter to specify the port to accept connections on. For 

example: 

  RoboCatServer 45000  

 This specifies that the server should listen for connecting clients on port 45000. 

 The client executable takes in two command line parameters: the full address 

of the server (including the port) and the name of the connecting client. So for 

instance: 

  RoboCatClient 127.0.0.1:45000 John  

 This specifies that the client wants to connect to the server at localhost port 45000, 

with a player name of “John.” Naturally, multiple clients can connect to one server, 

and because the game does not use very many resources, multiple instances of the 

game can be run on one machine for the purposes of testing.  
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 For the example of the  RoboCat  class hierarchy, the three individual classes reside in different 

targets—the base  RoboCat  class is in the shared library, and the  RoboCatServer  and 

 RoboCatClient  classes are unsurprisingly in their corresponding executable. This approach 

leads to a very clean separation of the code, and it makes it clear which code is specific to only 

the server or the client. To help visualize the approach,  Figure   6.4    presents the class hierarchy 

for the  GameObject  class in  Robo Cat Action .   

MouseRoboCatYarn

Yarn 
Server

Yarn
Client

RoboCat
Server

RoboCat
Client

Mouse
Server

Mouse
Client

GameObject

  Figure 6.4  Hierarchy of the  GameObject  class in  Robo Cat Action  (items in gold are in the shared 

library, items in blue are in the client executable, and items in green are in the server executable)       

  Network Manager and Welcoming New Clients 

 The  NetworkManager  and the derived classes  NetworkManagerClient  and 

 NetworkManagerServer  do much of the heavy lifting in terms of interacting with the 

network. For example, all of the code that reads in available packets into a queue of 

packets to be processed is placed in the base  NetworkManager  class. The code to handle 

packets is very similar to what was covered in  Chapter   3   , “Berkeley Sockets,” so it won’t be 

covered again here. 

 One of the other responsibilities of the  NetworkManager  is to handle new clients joining the 

game.  Robo Cat Action  is designed for drop in/drop out multiplayer, so at any time a new client 

can try to join the match. As you might imagine, the responsibilities when welcoming new 

clients are different between the server and the client, and thus the functionality is split up 

between  NetworkManagerClient  and  NetworkManagerServer . 

 Before we dive into the code, it’s worthwhile to look at the connecting process at a high level. In 

essence, there are four steps to the procedure: 
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1.   When a client wants to join a game, it sends the server a “hello” packet. This packet only 

contains the literal  “HELO”  (to identify the type of packet) and the serialized string 

representing the player’s name. The client will keep sending these hello packets until it is 

acknowledged by the server.  

2.   Once the server receives the hello packet, it assigns a player ID to the new player, and also 

does some bookkeeping such as associating the incoming  SocketAddress  with the 

player ID. Then the server sends a “welcome” packet to the client. This packet contains the 

literal  “WLCM”  and the ID assigned to the player. 

3.   When the client receives the welcome packet, it saves its player ID, and starts sending and 

receiving replication information to the server.  

4.   At some point in the future, the server sends the information about any objects spawned 

for the new client to both the new client and all of the existing clients.   

 In this particular case, it is fairly straightforward to build redundancy into the system in 

the event of packet loss. If the client doesn’t receive the welcome packet, it will continue 

sending hello packets to the server. If the server receives a hello packet from a client whose 

 SocketAddress  is already on file, it will simply resend the welcome packet. 

 Looking at the code more closely, there are two literals used to identify the packets, and so 

these are initialized as constants in the base  NetworkManager  class: 

  static const uint32_t kHelloCC = 'HELO'; 
 static const uint32_t kWelcomeCC = 'WLCM';  

 Specifically on the client side of things, the  NetworkManagerClient  defines an enum to 

specify the current state of the client: 

  enum NetworkClientState 
 { 
   NCS_Uninitialized, 
   NCS_SayingHello, 
   NCS_Welcomed 
 };  

 When the  NetworkManagerClient  is initialized, it sets its  mState  member variable to 

 NCS_SayingHello . While in the  NCS_SayingHello  state, the client will keep sending hello 

packets to the server. On the other hand, if the client has been welcomed, then it needs to start 

sending updates to the server. In this case, the updates are input packets, which are covered shortly. 

 Furthermore, the client also knows the type of packets it is receiving based on the four-

character literals that identify the packet. In the case of  Robo Cat Action , there are only two 

types of packets it might receive: a welcome packet, and a state packet, which contains 

replication data. The code to handle sending and receiving packets is implemented in a manner 

similar to a state machine, as shown in Listing 6.1. 
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  Listing 6.1 Client Sending and Receiving Packets 

 void NetworkManagerClient::SendOutgoingPackets() 
 { 
   switch(mState) 
   { 
   case NCS_SayingHello: 

UpdateSayingHello(); 
break; 

   case NCS_Welcomed: 
UpdateSendingInputPacket(); 
break; 

   } 
 } 

 void NetworkManagerClient::ProcessPacket 
 ( 
   InputMemoryBitStream& inInputStream, 
   const SocketAddress& inFromAddress 
 ) 
 { 
   uint32_t packetType; 
   inInputStream.Read(packetType); 
   switch(packetType) 
   { 
   case kWelcomeCC: 

HandleWelcomePacket(inInputStream); 
break; 

   case kStateCC: 
HandleStatePacket(inInputStream); 
break; 

   } 
 }  

 In terms of sending the hello packets, the only wrinkle is that the client ensures that it 

does not send hello packets too frequently. It does this by checking the elapsed time since 

the last hello packet. The actual packet itself is very straightforward, as the client need 

only to write the    'HELO'  literal and its name. Similarly, the welcome packet only contains 

the player ID as a payload, so the client only needs to save this ID. This code is shown in 

Listing 6.2. Notice how  HandleWelcomePacket  tests to ensure that the client is in the 

expected state for a welcome packet. This is to ensure no bugs can result in the event that 

a welcome packet is received after the client has already been welcomed. A similar test is 

used in  HandleStatePacket . 
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  Listing 6.2 Client Sending Hello Packets and Reading Welcome Packets 

 void NetworkManagerClient::UpdateSayingHello() 
 { 
   float time = Timing::sInstance.GetTimef(); 

   if(time > mTimeOfLastHello + kTimeBetweenHellos) 
   { 

SendHelloPacket(); 
mTimeOfLastHello = time; 

   } 
 } 

 void NetworkManagerClient::SendHelloPacket() 
 { 
   OutputMemoryBitStream helloPacket; 

   helloPacket.Write(kHelloCC); 
   helloPacket.Write(mName); 

   SendPacket(helloPacket, mServerAddress); 
 } 

 void NetworkManagerClient::HandleWelcomePacket(InputMemoryBitStream& 
inInputStream) 

 { 
   if(mState == NCS_SayingHello) 
   { 

//if we received a player id, we’ve been welcomed! 
int playerId; 
inInputStream.Read(playerId); 
mPlayerId = playerId; 
mState = NCS_Welcomed; 
LOG(“‘%s’ was welcomed on client as player %d”, 

mName.c_str(), mPlayerId); 
   } 
 }  

 The server side of things is a bit more complex. First, the server has a hash map called 

 mAddressToClientMap  that it uses to track all known clients. The key for the map is the 

 SocketAddress , and the value is a pointer to a  ClientProxy . We’ll discuss client proxies in 

more detail later in this chapter, but for now, you can think of it as a class that the server uses to 

track the state of all known clients. Keep in mind that because we are using the socket address 

directly, there could potentially be NAT traversal issues as previously discussed in  Chapter   2   . We 

will not worry about handling the traversal in the code for  Robo Cat . 

 When the server first receives a packet, it performs a lookup into the address map to see 

whether or not the sender is known. If the sender is unknown, the server will then check to 

see if the packet is a hello packet. If the packet isn’t a hello packet, it will simply be ignored. 



ptg16606381

176 CHAPTER 6 NETWORK TOPOLOGIES AND SAMPLE GAMES

Otherwise, the server will create a client proxy for the new client and send it a welcome packet. 

This is shown in Listing 6.3, though the code for sending a welcome packet is omitted as it is as 

straightforward as sending the hello packet. 

  Listing 6.3 Server Handling New Clients 

 void NetworkManagerServer::ProcessPacket 
 ( 
   InputMemoryBitStream& inInputStream, 
   const SocketAddress& inFromAddress 
 ) 
 { 
   //do we know who this client is? 
   auto it = mAddressToClientMap.find(inFromAddress); 
   if(it == mAddressToClientMap.end()) 
   { 

HandlePacketFromNewClient(inInputStream, inFromAddress); 
   } 
   else 
   { 

ProcessPacket((*it).second, inInputStream); 
   } 
 } 

 void NetworkManagerServer::HandlePacketFromNewClient 
 ( 
   InputMemoryBitStream& inInputStream, 
   const SocketAddress& inFromAddress 
 ) 
 { 
   uint32_t packetType; 
   inInputStream.Read(packetType); 
   if(packetType == kHelloCC) 
   { 

string name; 
inInputStream.Read(name); 

//create a client proxy 
// ... 

//and welcome the client ... 
SendWelcomePacket(newClientProxy); 

//init replication manager for this client 
// ... 

   } 
   else 
   { 

LOG(“Bad incoming packet from unknown client at socket %s”, 
inFromAddress.ToString().c_str()); 

 }   
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  Input Sharing and Client Proxies 

 The implementation of replication for game objects in  Robo Cat Action  is very similar to the 

approach discussed in  Chapter   5   , “Object Replication.” There are three replication commands: 

create, update, and destroy. Furthermore, a partial object replication system is implemented 

to reduce the amount of information sent in an update packet. Since the game uses an 

authoritative server model, objects are only ever replicated from the server to the client—

thus the server is responsible for sending the replication update packets (assigned the literal 

 ‘STAT’ ), and the client is responsible for processing the replication commands as necessary. 

There’s a bit of work that needs to be done in order to ensure that the appropriate commands 

are sent to each of the clients, which will be covered later in this section. 

 For now, consider what the client needs to send to the server. Since the server is the authority, 

the client ideally should not be sending any replication commands for objects. However, in 

order for the server to accurately simulate each client, it needs to know what each client is 

trying to do. This leads to the concept of an input packet. In every frame, the client processes 

the input events. If any of these input events lead to something that needs to be processed 

server side—such as movement of the cat or throwing of a ball of yarn—the client will send the 

input events to the server. The server then accepts the input packet, and saves the input state 

into a  client proxy— an object used by the server to track a particular client. Finally, when the 

sever updates the simulation, it will take into account any input stored in a client proxy. 

 The  InputState  class tracks a snapshot of the client input on a particular frame. Every frame, 

the  InputManager  class updates the  InputState  based on the client’s input. What is stored 

in the  InputState  will vary from game to game. In this particular case, the only information 

stored is the desired movement offsets in each of the four cardinal directions, and whether 

or not the player pressed the button to throw a ball of yarn. This leads to a class with only a 

handful of members, as shown in Listing 6.4. 

  Listing 6.4 InputState Class Declaration 

 class InputState 
 { 
 public: 
   InputState(): 
   mDesiredRightAmount(0), 
   mDesiredLeftAmount(0), 
   mDesiredForwardAmount(0), 
   mDesiredBackAmount(0), 
   mIsShooting(false) 
   {} 

   float GetDesiredHorizontalDelta() const 
   {return mDesiredRightAmount - mDesiredLeftAmount;} 
   float GetDesiredVerticalDelta() const 
   {return mDesiredForwardAmount - mDesiredBackAmount;} 
   bool IsShooting() const 
   {return mIsShooting;} 
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   bool Write(OutputMemoryBitStream& inOutputStream) const; 
   bool Read(InputMemoryBitStream& inInputStream); 

 private: 
   friend class InputManager; 
   float mDesiredRightAmount, mDesiredLeftAmount; 
   float mDesiredForwardAmount, mDesiredBackAmount; 
   bool mIsShooting; 
 };  

 The  GetDesiredHorizontalDelta  and  GetDesiredVerticalDelta  functions are helper 

functions that determine the overall offset on each axis. So for example, if the player holds 

both the A and D keys, the overall horizontal delta should be zero. The code for the  Read  and 

 Write  functions is not included in Listing 6.4—these functions just read and write the member 

variables to the provided memory bit stream. 

 Keep in mind that the  InputState  is updated every single frame by the  InputManager . 

For most games, it would be impractical to send the  InputState  to the server at the same 

frequency. Ideally, the  InputState  over the course of several frames should be combined into 

a single move. To keep things simple,  Robo Cat Action  doesn’t combine the  InputState  in any 

way—instead, every  x  seconds, it will grab the current  InputState  and save this as a  Move . 

 The  Move  class is essentially a wrapper for the  InputState , with the addition of two floats: 

one to track the timestamp of the  Move , and one to track the amount of delta time between the 

current move and the previous move. This is shown in Listing 6.5. 

  Listing 6.5 Move Class 

 class Move 
 { 
 public: 
   Move() {} 
   Move(const InputState& inInputState, float inTimestamp, 

float inDeltaTime): 
mInputState(inInputState), 
mTimestamp(inTimestamp), 
mDeltaTime(inDeltaTime) 

   {} 

   const InputState& GetInputState() const {return mInputState;} 
   float GetTimestamp() const {return mTimestamp;} 
   float GetDeltaTime() const {return mDeltaTime;} 
   bool Write(OutputMemoryBitStream& inOutputStream) const; 
   bool Read(InputMemoryBitStream& inInputStream); 
 private: 
   InputState mInputState; 
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   float mTimestamp; 
   float mDeltaTime; 
 };  

 The  Read  and  Write  functions here will read and write both the input state and the timestamp 

from/to the provided stream. 

  note 

 Although the  Move  class is just a thin wrapper for  InputState  with additional 

time variables, the distinction is made in order to allow for cleaner code on a 

frame-to-frame basis. The  InputManager  polls the keyboard every frame, and 

saves the data into an  InputState . Only when the client actually needs to create 

a  Move  does the timestamp matter.  

 Next, a series of moves is stored in a  MoveList . This class contains, unsurprisingly, a list of 

moves, as well as the timestamp of the last move in the list. On the client side, when the 

client determines it should store a new move, it will add the move to the move list. Then the 

 NetworkManagerClient  will write out the sequence of moves into an input packet when it 

is time to do so. Note that the code for writing the sequence of moves optimizes the bit count 

by assuming that there will never be more than three moves to write at a time. It can make 

this assumption based on the constant factors that dictate the frequency of moves and input 

packets. The client code related to move lists is shown in Listing 6.6. 

  Listing 6.6 Client-Side Code for Move Lists 

 const Move& MoveList::AddMove(const InputState& inInputState, 
float inTimestamp) 

 { 
   //first move has 0 delta time 
   float deltaTime = mLastMoveTimestamp >= 0.f ? 

inTimestamp - mLastMoveTimestamp: 0.f; 

   mMoves.emplace_back(inInputState, inTimestamp, deltaTime); 
   mLastMoveTimestamp = inTimestamp; 
   return mMoves.back(); 
 } 

 void NetworkManagerClient::SendInputPacket() 
 { 
   //only send if there's any input to send! 
   MoveList& moveList = InputManager::sInstance->GetMoveList(); 

   if(moveList.HasMoves()) 
   { 

OutputMemoryBitStream inputPacket; 
inputPacket.Write(kInputCC); 
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//we only want to send the last three moves 
int moveCount = moveList.GetMoveCount(); 
int startIndex = moveCount > 3 ? moveCount - 3 - 1: 0; 
inputPacket.Write(moveCount - startIndex, 2); 
for(int i = startIndex; i < moveCount; ++i) 
{ 

moveList[i].Write(inputPacket); 
} 

SendPacket(inputPacket, mServerAddress); 
moveList.Clear(); 

   } 
 }  

 Note that the code for  SendInputPacket  uses the array indexing operator on the  MoveList . 

The  MoveList  internally uses a  deque  data structure, so this operation is constant time. In 

terms of redundancy,  SendInputPacket  really is not very fault tolerant. The client only ever 

sends the moves once. So for example, if an input packet contains a “throw” input command, 

but that packet never reaches the server, the client will never actually throw a ball of yarn. 

Clearly, this is not a tenable situation in a multiplayer game. 

 In  Chapter   7   , “Latency, Jitter, and Reliability,” you will see how some redundancy can be added 

to the input packets. In particular, each move will be sent three times in order to give the server 

three opportunities to recognize the move. This adds a bit of complexity on the server side of 

things, because the server needs to recognize whether or not it has already processed a move 

when it receives it. 

 As previously mentioned, the client proxy is what the server uses to track the state of each 

client. Among one of the client proxy’s most important responsibilities is that it contains a 

separate replication manager for each client. This allows the server to have a complete picture 

of what information it has or has not sent to each client. Since the server will most likely not 

send a replication packet to every client every frame, a separate replication manager for each 

client is necessary. This especially becomes important when redundancy is added, because it 

will allow the server to know the exact variables that need to be resent for a particular client. 

 Each client proxy also stores the socket address, name, and ID of each player. The client proxy 

is also where the move information for each client is stored. When an input packet is received, 

all of the moves associated with a client are added to the  ClientProxy  instance representing 

that client. Listing 6.7 shows a partial declaration of the  ClientProxy  class. 

  Listing 6.7 Partial Declaration of the ClientProxy Class 

 class ClientProxy 
 { 
 public: 
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   ClientProxy(const SocketAddress& inSocketAddress, const string& inName,
int inPlayerId); 

   // Functions omitted 
   // ... 
   MoveList& GetUnprocessedMoveList() {return mUnprocessedMoveList;} 
 private: 
   ReplicationManagerServer mReplicationManagerServer; 
   // Variables omitted 
   // ... 
   MoveList mUnprocessedMoveList; 
   bool mIsLastMoveTimestampDirty; 
 };  

 Finally, the  RoboCatServer  class will use the unprocessed move data in its  Update  function, 

as shown in Listing 6.8. It is important to note that the delta time passed to each call of 

 ProcessInput  and  SimulateMovement  is based on the delta time between the moves, as 

opposed to the delta time of the server’s frame. This is how the server can try to ensure the 

simulation stays as close to the client’s actions as possible, even if it receives multiple moves 

in one packet. It also allows for the server and client to run at different frame rates. This can 

potentially add some complications for physics objects that must be simulated at set time 

steps. If this is the case for your game, you will want to lock the physics frame rate separate from 

other frame rates. 

  Listing 6.8 Updating the RoboCatServer Class 

 void RoboCatServer::Update() 
 { 
   RoboCat::Update(); 
   // Code omitted 
   // ... 

   ClientProxyPtr client = NetworkManagerServer::sInstance->  
GetClientProxy(GetPlayerId()); 

   if( client ) 
   { 

MoveList& moveList = client->GetUnprocessedMoveList(); 
for( const Move& unprocessedMove: moveList) 
{ 

const InputState& currentState = unprocessedMove.GetInputState(); 
float deltaTime = unprocessedMove.GetDeltaTime(); 
ProcessInput(deltaTime, currentState); 
SimulateMovement(deltaTime); 

} 

moveList.Clear(); 
   } 
   HandleShooting(); 
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// Code omitted 
// ... 

 }    

  Implementing Peer-to-Peer 
Robo Cat RTS  is a real-time strategy game that supports up to four players. Each player is 

given a herd of three cats. Cats can be controlled by first left clicking to select a cat, and 

then right clicking on a target. If the target is a location, the cat will move to that location. 

If the target is an enemy cat, the cat will move into range of the enemy cat before beginning 

to attack. As in the action game, the cats attack each other by throwing balls of yarn.  Robo 
Cat RTS  is shown in action in  Figure   6.5   . The code for the initial version of the game is in 

Chapter6/RoboCatRTS .  

Turn 332:2

Sanjay 3

Josh 3

Zach 3

Figure 6.5   Robo Cat RTS  in action       

 Although both games utilize UDP, the network model used for  Robo Cat RTS  is very different 

from  Robo Cat Action . As with the action game, this initial version of the RTS assumes there is no 

packet loss. However, due to the nature of lockstep turns, the game will still function with some 

amount of latency—though there definitely is a degradation in the quality of the experience if 

the latency becomes too high. 

 Because  Robo Cat RTS  uses a peer-to-peer model, there is no need to separate the code into 

multiple projects. Each peer uses the same exact code. This reduces the number of files 

somewhat, and also means that the same executable is used by all players in the game. 
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  note 

 There are two different ways to launch  Robo Cat RTS , although both use the same 

executable. To initialize as a master peer, specify a port number and player name: 

  RoboCatRTS 45000 John  

 To initialize as a normal peer, specify the full address of the master peer (including 

the port number), as well as a player name: 

  RoboCatRTS 127.0.0.1:45000 Jane  

 Note that if the address specified is of a non-master peer, the player will still suc-

cessfully connect, though it is faster if the master peer is specified.  

 However,  Robo Cat RTS  does employ the idea of a  master peer . The primary purpose of 

the master peer is to provide a known IP address of a peer in the game. This is especially 

relevant when using a matchmaking service that maintains a list of known available games. 

Furthermore, the master peer is the only peer who is allowed to assign a player ID to a new 

player. This is mostly to avoid a race condition that could occur if multiple peers were contacted 

by two different new players simultaneously. Other than this one special case, the master 

peer behaves in the same manner as all of the other peers. Because each peer independently 

maintains the state of the entire game, the game can still continue if the master peer 

disconnects. 

  Welcoming New Peers and Game Start 

 The welcoming process for a peer-to-peer game is bit more complex than in a client-server 

game. As in  Robo Cat Action , the new peer first sends a “hello” packet with their player name. 

However, the hello packet ( 'HELO' ) can now have one of three responses: 

   1. Welcome (' WLCM' )— This means that the hello packet was received by the master peer, 

and the new peer is welcomed into the game. The welcome packet contains the new peer’s 

player ID, the player ID of the master peer, and the number of players in the game (not 

including the new peer). Furthermore, the packet contains the names and IP addresses of 

all of the peers.  

  2. Not joinable ( 'NOJN' )— This means that either the game is already in progress, or the 

game is full. If the new peer receives this packet, the game exits.  

  3. Not master peer ( 'NOMP' )— This happens if the hello packet was sent to a peer who is not 

the master peer. In this instance, the packet will contain the address of the master peer so 

that the new peer can send a hello packet to the master peer.   

 However, once a new peer receives the welcome packet, the process is not complete. It is also 

the responsibility of the new peer to send an introduction packet ( “INTR” ) to every other peer 

in the game. This packet contains the new peer’s player ID and name. This way, each peer in 
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the game is guaranteed to have the new peer stored in their data structures used to track the 

players in the game. 

 Because the addresses stored by each peer are based on addresses gleaned from 

incoming packets, there is potential for issue when one or more peer is connected on a 

local network. For example, suppose that Peer A is the master peer and Peer B is on the 

same local network as Peer A. This means that Peer A’s map of peers will include the local 

network address of Peer B. Now suppose a new peer, Peer C, connects to Peer A via an 

external IP address. Peer A will welcome Peer C to the game, and give Peer C the address 

of Peer B. However, the address of Peer B that is provided is not reachable by Peer C, 

because Peer C is not on the same local network as Peer A and Peer B. Thus Peer C will fail 

to communicate with Peer B, and will not be able to properly join the game. This problem 

is shown in  Figure   6.6   a. 

 Recall that  Chapter   2   , “The Internet,” described one such solution to this problem via NAT 

punchthrough. Other approaches involve the use of an external server in some way. In one 

approach, the external server, sometimes called a  rendezvous server , only facilitates the 

initial connection between peers. In this way, it is guaranteed that every peer connects 

to every other peer via an externally reachable IP address. Use of a rendezvous server is 

illustrated in  Figure   6.6   b.  

(a) (b)

Local Network Local Network

Peer A
Local: 192.x.x.x

Global: 128.5.3.2

Peer A
Local: 192.x.x.x

Global: 128.5.3.2

Peer B
Local: 192.x.x.x

Global: ??

Peer C
Local: ??

Global: 231.3.2.1

Peer C
Local: ??

Global: 231.3.2.1

Peer B
Local: 192.x.x.x

Global: 128.5.4.4

Rendezvous
Server

Global: 8.3.2.1

  Figure 6.6  (a) Peer C is unable to connect to Peer B; (b) A rendezvous server facilitates initial 

communication between peers       
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 Another approach used by some gaming services is to have a central server handle the entire 

packet routing between peers. What this means is that all peer traffic goes to the central server, 

and then is routed to the correct peer. Although this second approach requires a far more 

powerful server, it ensures that no peer will ever know the public IP address of any other peer. 

From a security standpoint, this may be preferred as it would, for instance, prevent one peer 

from trying to disconnect another peer via a distributed denial of service attack. 

 One other edge case worth considering is what should happen if a peer is only able to connect 

to some of the players in the game? This could happen even in the event of a rendezvous server 

or a central server routing packets. The simplest solution is to just not let this peer join the 

game, but you would need additional code to track this case. Since this chapter assumes that 

there are no connection issues to worry about, there is no code provided to handle this. But a 

commercial peer-to-peer game would absolutely need to include code to handle such a case. 

 When each peer is added to a game, their  NetworkManager  goes into a lobby state. When the 

master peer presses the return key, this will send a start packet ( ‘STRT’ ) to every peer in the 

game. This will signal all peers to enter a 3-second countdown. Once the countdown hits zero, 

the game officially begins. 

 Note that this starting approach is naïve in that the timer does not really compensate for any 

latency between the master peer and the other peers. Thus, the master peer will always end up 

starting the game before the other peers. This does not affect the synchronization of the game 

due to the lockstep model, but it may mean that the master peer’s game has to temporarily 

pause to allow the other peers to catch up. One way to solve this issue would be for each peer 

to subtract ½ RTT time from the timer duration. So if the master peer’s RTT to Peer A were 

100 ms, Peer A could subtract 50 ms from the total time duration, which should allow it to be 

better synchronized.  

  Command Sharing and Lockstep Turns 

 To simplify things,  Robo Cat RTS  runs at a locked 30 FPS, with a locked delta time of ~33 ms. This 

means that even if a particular peer takes greater than 33 ms to render a frame, the simulation 

still runs as if it were a 33-ms frame.  Robo Cat RTS  refers to each of these 33-ms ticks as a “sub-

turn.” There are three sub-turns per full turn. Thus, each full turn is 100 ms in length, or in other 

words, there are 10 turns per second. Ideally, the duration of sub-turns and full turns would 

be variable based on network and performance conditions. In fact, this is one of the topics of 

discussion in the Bettner and Terrano paper on  Age of Empires . However, to keep things simple 

 Robo Cat RTS  never adjusts the length of turns or sub-turns. 

 In terms of replication, each peer runs a full simulation of the game world. This means that 

objects are not replicated in any way whatsoever. Instead, during gameplay only “turn” packets 

are transmitted. These packets contain a list of the commands issued by each peer on a 

particular turn, along with a couple of other key pieces of data. 
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 It should be noted that there is a clear delineation between “commands” and input. For 

example, left clicking on a cat selects a particular cat. However, as this selection does not 

affect the game state in any way, it does not generate a command. On the other hand, if a cat 

is selected and the player right clicks, this means the player wants the cat to either move or 

attack. Since both of these actions would affect the game state, both will generate commands. 

 Furthermore, no command is executed the very instant it is issued. Rather, each peer queues 

up all commands issued on a particular turn. At the end of a turn, each peer will send its 

command list to every other peer. This command list is scheduled for execution on a  future  

turn. Specifically, a command issued by a peer on turn  x  is not executed until turn  x  + 2. This 

allows for roughly 100 ms for turn packets to be received and processed by every peer. What 

this means is that in normal conditions, there is a delay of up to 200 ms from when a command 

is issued to when it is executed. However, because the delay is consistent, this does not really 

negatively affect the game experience, at least in the case of an RTS. 

 The concept of commands lends itself naturally to an inheritance hierarchy. Specifically, there is 

a base  Command  class, which is declared in Listing 6.9. 

  Listing 6.9 Declaration of the Command Class 

 class Command 
 { 
 public: 
   enum ECommandType 
   { 

CM_INVALID,
CM_ATTACK, 
CM_MOVE 

   }; 

   Command(): 
   mCommandType(CM_INVALID), 
   mNetworkId(0), 
   mPlayerId(0) 
   {} 

 //given a buffer, will construct the appropriate command subclass 
   static shared_ptr<Command> StaticReadAndCreate( 

InputMemoryBitStream& inInputStream); 

   //getters/setters 
   // ... 

   virtual void Write(OutputMemoryBitStream& inOutputStream); 
    virtual void ProcessCommand() = 0; 
 protected: 
   virtual void Read(InputMemoryBitStream& inInputStream) = 0; 
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   ECommandType mCommandType; 
   uint32_t mNetworkId; 
   uint32_t mPlayerId; 
 };  

 The implementation of the  Command  class is mostly self-explanatory. There is an enum 

specifying the type of command, and an unsigned integer to store the network ID of the unit 

to whom the command was issued. The  ProcessCommand  pure virtual function is used when 

a command is actually executed. The  Read  and  Write  functions are used to read/write the 

commands to memory bit streams. The  StaticReadAndCreate  function first reads the 

command type enum from the memory bit stream. Then based on the value of the enum, it will 

construct an instance of an appropriate subclass and call the subclass’  Read  function. 

 There are only two subclasses in this case. The “move” command moves a cat to the targeted 

location. The “attack” command tells a cat to attack an enemy cat. In the case of the move 

command, it has an additional member variable that is a Vector3 containing the target of the 

move. Each subclass command also has a custom  StaticCreate  function that is used as 

a helper to create a  shared_ptr  to a command. The implementation  StaticCreate  and 

 ProcessCommand  for the move command is shown in Listing 6.10. 

  Listing 6.10 Select Functions from MoveCommand 

 MoveCommandPtr MoveCommand::StaticCreate(uint32_t inNetworkId, 
const Vector3& inTarget) 

 { 
   MoveCommandPtr retVal; 
   GameObjectPtr go = NetworkManager ::sInstance->

GetGameObject(inNetworkId); 
   uint32_t playerId = NetworkManager::sInstance->GetMyPlayerId(); 

 //can only issue commands to this unit if I own it, and it’s a cat 
   if (go && go->GetClassId() == RoboCat::kClassId && 

go->GetPlayerId() == playerId) 
   { 

retVal = std::make_shared<MoveCommand>(); 
retVal->mNetworkId = inNetworkId; 
retVal->mPlayerId = playerId; 
retVal->mTarget = inTarget; 

   } 
   return retVal; 
 } 

 void MoveCommand::ProcessCommand() 
 { 
   GameObjectPtr obj = NetworkManager ::sInstance->

GetGameObject(mNetworkId); 
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   if (obj && obj->GetClassId() == RoboCat::kClassId && 
obj->GetPlayerId() == mPlayerId) 

   { 
RoboCat* rc = obj->GetAsCat(); 
rc->EnterMovingState(mTarget); 

   } 
 }  

 The  StaticCreate  function takes in the network ID of the cat who is receiving the command, 

as well as the target location. It also does some validation to ensure that the command is only 

being issued to a game object that exists, that the object is a cat, and that it is controlled by the 

peer issuing the command. The  ProcessCommand  function does some basic validation to ensure 

that the network ID it receives is that of a cat, and that the player ID corresponds to the player 

controlling the cat. The call to  EnterMovingState  simply tells the cat to start executing its 

moving behavior, which will occur over the course of one or more sub-turns. The moving state is 

implemented much like it would be in a single-player game, so it is not explained in this text. 

 Commands are stored in a  CommandList . As with the  MoveList  class in the action game, the 

 CommandList  is just a wrapper for a  deque  of commands. It also has a  ProcessCommands  

function that calls  ProcessCommand  on each command in the list. 

 Each peer’s input manager has an instance of  CommandList . When a local peer either uses the 

keyboard or mouse to request a command, the input manager adds the command to its list. A 

class called  TurnData  is used to encapsulate a peer’s command list, as well as data related to 

synchronization, for each completed 100-ms turn. The network manager then has a  vector  

where the index corresponds to a turn number. At each index, the network manager stores 

a map where the key is the player ID, and the value is the  TurnData  for that player. This way, 

for each turn, each player’s turn data is separate. This is what allows the network manager to 

validate it has received data from each peer. 

 When each peer completes a sub-turn, it checks to see whether or not the full turn is over. If the 

turn is over, then it prepares turn packets to send to each peer. This function is a bit involved, 

and therefore is shown in Listing 6.11. 

  Listing 6.11 Sending Turn Packets to Each Peer 

 void NetworkManager::UpdateSendTurnPacket() 
 { 
   mSubTurnNumber++; 
   if (mSubTurnNumber == kSubTurnsPerTurn) 
   { 

 //create our turn data 
TurnData data(mPlayerId, 

RandGen::sInstance->GetRandomUInt32(0, UINT32_MAX), 
ComputeGlobalCRC(), 
InputManager::sInstance->GetCommandList()); 
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//we need to send a turn packet to all of our peers 
OutputMemoryBitStream packet; 
packet.Write(kTurnCC); 

 //we’re sending data for 2 turns from now 
packet.Write(mTurnNumber + 2); 
packet.Write(mPlayerId); 
data.Write(packet); 

for (auto &iter: mPlayerToSocketMap) 
{ 

SendPacket(packet, iter.second); 
} 

//save our turn data for turn + 2 
mTurnData[mTurnNumber + 2].emplace(mPlayerId, data); 
InputManager::sInstance->ClearCommandList(); 

if (mTurnNumber >= 0) 
{ 

TryAdvanceTurn(); 
} 
else 
{ 

//a negative turn means there’s no possible commands yet 
mTurnNumber++; 
mSubTurnNumber = 0; 

} 
   } 
 }  

 Two of the parameters passed to the  TurnData  constructor—the random value and the CRC—

are discussed in the next section. The main item to note for now is that the peer prepares a turn 

packet that includes a list of all the commands to be executed two turns from now. This turn 

packet is then sent to all of the peers. Furthermore, the peer locally keeps its own turn data 

before clearing the input manager’s command list. 

 Finally, there is code that checks for a negative turn number. When the game begins, the 

turn number is set to −2. This way, commands that are issued on turn −2 will be scheduled 

for execution on turn 0. This means that no commands are executed for the first 200 ms, 

but there is no way to avoid this initial delay—it is a property of the lockstep turn 

mechanism. 

 The  TryAdvanceTurn  function, shown in Listing 6.12, is named as such because it does not 

guarantee that the turn advances. This is because it is the responsibility of  TryAdvanceTurn  

to enforce the lockstep nature of the turns. In essence, if it is currently turn  x ,  TryAdvanceTurn  
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will only advance to turn  x  + 1 if all of the turn data for turn  x  + 1 has been received. If some turn 

data for turn  x  + 1 is still missing, the network manager will enter into a delay state. 

  Listing 6.12 TryAdvanceTurn Function 

 void NetworkManager::TryAdvanceTurn() 
 { 

 //only advance the turn IF we received the data for everyone 
   if (mTurnData[ mTurnNumber + 1].size() == mPlayerCount) 
   { 

if (mState == NMS_Delay) 
{ 

//throw away any input accrued during delay 
InputManager::sInstance->ClearCommandList(); 
mState = NMS_Playing; 
//wait 100ms to give the slow peer a chance to catch up 
SDL_Delay(100); 

} 

mTurnNumber++; 
mSubTurnNumber = 0; 

if (CheckSync(mTurnData[mTurnNumber])) 
{ 

//process all the moves for this turn 
for (auto& iter: mTurnData[mTurnNumber]) 
{ 

iter.second.GetCommandList().ProcessCommands(iter.first); 
} 

} 
else 
{ 

 //for simplicity, just end the game if it desyncs 
Engine::sInstance->SetShouldKeepRunning(false); 

} 
   } 
   else 
   { 

 //don’t have all player’s turn data, we have to delay:( 
mState = NMS_Delay; 

   } 
 }  

 While in the delay state, objects in the world are not updated. Instead, the network manager 

will wait for the turn packets it still needs to receive. Every time a new turn packet is received 

while in delay, the network manager will again call  TryAdvanceTurn , hoping that the new 

turn packet fills in the gap in turn data. This process will repeat until all necessary data is 

received. Similarly, if a connection is reset while in delay, the reset peer will be removed from 

the game and all other peers will attempt to continue. 



ptg16606381

IMPLEMENTING PEER-TO-PEER 191

 Don’t forget that this first version of  Robo Cat RTS  is assuming that all packets are eventually 

received. To account for packet loss, the delay state could be augmented so that while in delay, 

the peer determines whose command data is missing. It could then send a request to the peer 

in question to resend the command data. If several such resend requests are ignored, the peer 

would eventually be dropped. Furthermore, future turn packets could contain previous turn 

data, so in the event that a prior turn packet was dropped, a subsequent incoming turn packet 

may contain the required data.  

  Maintaining Synchronization 

 One of the largest challenges in designing a peer-to-peer game in which each peer simulates 

the game independently is ensuring that each instance of the game stays synchronized. Even 

minor discrepancies such as inconsistent positions can propagate into more serious issues in 

the future. If these discrepancies are allowed to persist, over time the simulations will diverge. 

At some point, the simulations may be so different that it seems like the peers are playing a 

different game! Clearly, this cannot be allowed, so ensuring and verifying synchronization is 

very important. 

  Synchronizing Pseudo-Random Number Generators 

 Some sources of desynchronization are more apparent than others. For example, using a 

 pseudo-random number generator  ( PRNG ) is the only way for a computer to acquire 

numbers that are seemingly random. Random elements are a cornerstone of many games, so 

eliminating random numbers altogether typically is not a viable option. However, in a peer-to-

peer game, it is necessary to guarantee that on any particular turn, two peers will always receive 

the same results from a random number generator. 

 If you have ever used random numbers in a C/C++ program, you are likely familiar with the 

 rand  and  srand  functions. The  rand  function generates a pseudo-random number, while 

the  srand  function  seeds  the PRNG. Given a particular seed, a particular PRNG guarantees to 

always produce the same sequence of numbers. A typical approach is to use the current time as 

a seed passed to  srand . In theory, this means that the numbers will be different every time. 

 In terms of keeping the peers in sync, this means there are two main things that need to be 

done in order to ensure each peer generates the same numbers: 

   ■   Each peer’s random number generator should be seeded to the same initial value. In the 

case of  Robo Cat RTS , the master peer selects a seed when it sends out the start packet. The 

seed is then included inside the start packet, so every peer will know what seed value to 

start the game with.  

■   It must be guaranteed that each peer will always make the same number of calls to the 

PRNG every turn, in the same order, and in the same location in the code. This means there 

cannot be different versions of the build that may use the PRNG more or less, such as for 

different hardware in cross-platform play.   
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 However, there is a third issue that may not be apparent at first. It turns out that  rand  

and  srand  are not particularly suitable for guaranteeing synchronization. The C standard 

does not specify which PRNG algorithm  rand  must use. This means that different 

implementations of the C library on different platforms (or even just in different compilers), 

are not guaranteed to use the same PRNG algorithm. If this is the case, it makes no 

difference whether or not the seeds are the same—different algorithms will give different 

results. Furthermore, because there are no guarantees regarding the PRNG algorithm used 

by  rand , this means that the quality of the random numbers, or  entropy  of the values, is 

dubious. 

 In the past, the poorly defined nature of rand meant that most games implemented their own 

PRNG. Thankfully, C++11 introduced standardized and higher-quality pseudo-random number 

generators. Though the provided PRNGs are not considered cryptographically secure—

meaning safe to use when random numbers are a part of security protocol—they are more 

than sufficient for the purposes of a game. Specifically, the code for  Robo Cat RTS  uses the 

C++11 implementation of the Mersenne Twister PRNG algorithm. The 32-bit Mersenne Twister, 

referred to as MT19937, has a period of 2 19937 , meaning that the sequence of numbers will 

realistically never repeat during the course of a given game. 

 The interface for the C++11 random number generators is slightly more complex than the 

old  rand  and  srand  functions, so  Robo Cat RTS  wraps this in a  RandGen  class, as declared in 

Listing 6.13. 

  Listing 6.13 Declaration of the RandGen Class 

 class RandGen 
 { 
 public: 
   static std::unique_ptr<RandGen> sInstance; 

   RandGen(); 
   static void StaticInit(); 
   void Seed(uint32_t inSeed); 
   std::mt19937& GetGeneratorRef() {return mGenerator;} 

   float GetRandomFloat(); 
   uint32_t GetRandomUInt32(uint32_t inMin, uint32_t inMax); 
   int32_t GetRandomInt(int32_t inMin, int32_t inMax); 
   Vector3 GetRandomVector(const Vector3& inMin, const Vector3& inMax); 
 private: 
   std::mt19937 mGenerator; 
   std::uniform_real_distribution<float> mFloatDistr; 
 };  

 The implementation of a handful of the  RandGen  functions is likewise shown in Listing 6.14. 
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  Listing 6.14 Select Functions from RandGen 

 void RandGen::StaticInit() 
 { 
   sInstance = std::make_unique<RandGen>(); 
  //just use a default random seed, we’ll reseed later 

   std::random_device rd; 
   sInstance->mGenerator.seed(rd()); 
 } 

 void RandGen::Seed(uint32_t inSeed) 
 { 
   mGenerator.seed(inSeed); 
 } 

 uint32_t RandGen::GetRandomUInt32(uint32_t inMin, uint32_t inMax) 
 { 
   std::uniform_int_distribution<uint32_t> dist(inMin, inMax); 
   return dist(mGenerator); 
 }  

 Note that when the  RandGen  is first initialized, it seeds using the  random_device  class. 

This will yield a platform-specific random value. Random devices are intended to be used for 

seeding a random number generator, but the device itself should not be used as a generator. 

The  uniform_int_distribution  class used in one of the functions simply is a way to 

specify a range of numbers, and receive a pseudo-random number within this range. This 

approach is preferable to the commonplace practice of taking an integer modulus of a random 

result. C++11 introduces several additional types of distributions. 

 To synchronize the random numbers, the master peer generates a random number to use as 

the new seed when the countdown begins. This random number is transmitted to all of the 

other peers to ensure that when turn −2 begins, all peers will have their generators seeded to 

the same value: 

  //select a seed value 
 uint32_t seed = RandGen::sInstance->GetRandomUInt32(0, UINT32_MAX); 
 RandGen::sInstance->Seed(seed);  

 Furthermore, when creating a turn packet at the end of a turn, each peer generates a random 

integer. This random integer is sent as part of the turn data inside the turn packet. This makes it 

easy for the peers to verify that all the random number generators remain in sync as the turns 

progress. 

 Keep in mind that if your game code requires random numbers that do not affect the game 

state in any way, it is possible to keep a different generator for these cases. One example is 

simulating random packet loss—this should not use the game’s generator, because it means 
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every peer would simulate packet loss at the same time. However, be very careful when having 

multiple generators. You must make sure that any other programmers working on your game 

understand when to use which PRNG.  

  Verifying Game Synchronization 

 Other sources of desynchronization may not be as readily apparent as a PRNG. For example, 

while floating point implementations are deterministic, there can be discrepancies depending 

on the hardware implementations. For example, faster SIMD instructions may yield different 

results than regular floating point instructions. There typically are also different flags that 

can be set on a processor to change floating point behavior, such as whether or not it strictly 

follows the IEEE 754 implementation. 

 Other issues in synchronization may just be the result of an unintended error by a programmer. 

Perhaps the programmer wasn’t aware how the synchronization worked, or perhaps they 

just made a mistake. Either way, it is important that the game has code that checks for 

synchronization on a regular basis. This way, desynchronization bugs can hopefully be caught 

soon after they are introduced. 

 A common approach is to utilize a  checksum , much like how network packets use checksums 

in order to validate integrity of packet data. In essence, at the end of each turn, a checksum 

of the game state is computed. This checksum is transmitted inside the turn packet so that 

every peer can validate that all game instances arrive compute the same checksum at the end 

of a turn. 

 In terms of selecting an algorithm for the checksum, there are many different choices.  Robo 
Cat RTS  uses the  cyclic redundancy check  ( CRC ), which yields a 32-bit checksum value. 

Rather than implement a CRC function from scratch, this game uses the  crc32  function from 

the open-source zlib library. This was a matter of convenience, because zlib was already a 

dependency due to use of PNG image files. Furthermore, because zlib is designed to handle 

large amounts of data at once, it stands to reason that the CRC implementation is both vetted 

and performant. 

 In the spirit of further code reuse, the code for  ComputeGlobalCRC , shown in Listing 6.15, 

uses the  OutputMemoryBitStream  class. Each game object in the world writes its relevant 

data into the provided bit stream via the  WriteForCRC  function. These objects are written 

in ascending order by network ID. Once every object has written its relevant data, the CRC is 

computed on the stream buffer as a whole. 

  Listing 6.15 ComputeGlobalCRC Function 

 uint32_t NetworkManager::ComputeGlobalCRC() 
 { 
   OutputMemoryBitStream crcStream; 

   uint32_t crc = crc32(0, Z_NULL, 0); 



ptg16606381

IMPLEMENTING PEER-TO-PEER 195

   for (auto& iter: mNetworkIdToGameObjectMap) 
   { 

iter.second->WriteForCRC(crcStream); 
   } 

   crc = crc32 (crc, reinterpret_cast<const Bytef*>
(crcStream.GetBufferPtr()), 
crcStream.GetByteLength()); 

   return crc; 
 }  

 There are a couple of additional items to consider regarding  ComputeGlobalCRC . First, not 

every value for every game object is written into the stream. In the case of the  RoboCat  class, 

the values written are the controlling player ID, network ID, location, health, state, and target 

network ID. Some of the other member variables, such as the variable that tracks the cooldown 

between yarn throws, are not synchronized. This selectivity reduces the amount of time spent 

computing the CRC. 

 Furthermore, because the CRC function can be computed partially, it is not actually necessary 

to write all the data to a stream prior to computing the CRC. In fact, copying the data may be 

less efficient than computing the CRC of every value on the fly. It even would be possible to 

write an interface similar to  OutputMemoryBitStream —essentially an instance of a class that 

only computes the CRC of values fed into it, but does not save it into a memory buffer. However, 

to keep the code simple, the existing  OutputMemoryBitStream  class was reused. 

 Back to the task at hand, recall that the  TryAdvanceTurn  function in Listing 6.12 makes a 

call to a  CheckSync  function when it advances the turn. This function loops through all of 

the random numbers and CRC values in every peer’s turn data, and ensures that every peer 

computed the same random number and same CRC value when the turn packet was sent out. 

 In the event that  CheckSync  detects a desynchronization,  Robo Cat RTS  simply ends the game 

immediately. A more robust system would be to utilize a form of voting. Suppose there are four 

players in the game. In the event that players 1 to 3 computed checksum value A and player 4 

computed checksum value B, this means that three of the players are still in sync. Thus it may 

be possible for the game to continue if player 4 is dropped from the game. 

  warning 

 When developing a peer-to-peer game with independent simulation, desynchro-

nization is the source of much angst. Desynchronization bugs often are the most 

difficult to troubleshoot. In order to help debug these bugs, it is important to 

implement a logging system that can be enabled in order to see the commands 

executed by each peer in excruciating detail. 
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 While developing the sample code for  Robo Cat RTS , a desynchronization would 

occur if a client went into the delay state while a cat was moving. It turned out 

that the cause was that when the delayed player resumed the game, they would 

skip a sub-turn. This was determined, thanks to a logging system that wrote when 

a peer was executing a sub-turn as well as the location of each cat at the end of 

each a sub-turn. This made it possible to see that one of the peers was skipping a 

sub-turn. Without the logging, it would have been much more time consuming to 

locate and fix this issue.  

 In the same scenario, a much more complex approach would be to actually replicate the entire 

game state back to player 4 in an effort to resynchronize them with the game. Depending on 

the amount of data in a game, this may be impractical. But it is something to keep in mind if it is 

important that players are not dropped from the game when they desync.     

     Summary 
 Selecting a network topology is one of the most important decisions made when creating a 

networked game. In the client-server topology, one game instance is denoted as the server, 

and it is generally the authority of the entire game. All other game instances are clients, and 

only communicate with the server. This usually means that object replication data is sent from 

the server to the client. In a peer-to-peer topology, each game instance is more or less on 

equal footing. One approach in a peer-to-peer game is to have each peer simulate the game 

independently. 

 The deep dive of the code for  Robo Cat Action  covered several different topics. To help 

modularize the code, the code was split up into three separate targets: a shared library, a 

server, and a client. The process of the server welcoming new clients involves transmission of 

a hello packet to the server, and a welcome packet back to the client. The input systems has 

the client sending input packets that contain “moves” executed by a client, including moving a 

cat around and throwing balls of yarn. The server maintains a client proxy for each client, both 

in order to track what replication data needs to be sent to each client and to have an object in 

which pending moves can be stored. 

 The section on  Robo Cat RTS  discussed many of the major challenges in designing a peer-

to-peer game with independent simulation. The use of a master peer allows for a known IP 

address to be associated with a particular game. Each peer maintains a list of the addresses 

of all the other peers in the game. The welcoming of new peers is a bit more complex than a 

client-server game, because the new peer needs to inform all other peers of their existence. 

The peers maintain a lockstep by transmitting turn packets at the end of each 100-ms turn. 

The commands in these turn packets are scheduled for execution two turns later. Each peer 

continues on to the next turn only after all of turn data for the next turn has been received. 
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Finally, synchronizing random number generation and using checksums of the game state are 

necessary to keep each peer’s game instance in sync.  

  Review Questions 
1.    In the client-server model, how do the responsibilities of a client differ from the 

responsibilities of the server?   

2.    What is the worst possible latency in a client-server game, and how does it compare to the 

worst possible latency in a peer-to-peer game?   

3.    How many connections does a peer-to-peer game require in comparison to a client-server 

game?   

4.    What is one approach to simulating the game state in a peer-to-peer game?   

5.    The current implementation of  Robo Cat Action  does not average the input state over 

several frames when creating a move. Implement this functionality.   

6.    In what manner could the start procedure be improved in  Robo Cat RTS ? Implement this 

improvement.    

  Additional Reading 
 Bettner, Paul and Mark Terrano.  1500 Archers on a 28.8: Network Programming in Age of Empires 
and Beyond.  Presented at the Game Developer’s Conference, San Francisco, CA, 2001.    
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    C H A P T E R  7 

 LATENCY, JITTER, 

AND RELIABILITY 

      Networked games live in a harsh environment, 

competing for bandwidth on aging networks, 

sending packets to servers and clients scattered 

throughout the world. This results in data loss and 

delay not typically experienced during development 

on a local network. This chapter explores some of 

the networking problems multiplayer games face 

and suggests workarounds and solutions for those 

problems, including how to build a custom reliability 

layer on top of the UDP transport protocol.    
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     Latency 
 Your game, once released into the wild, must contend with a few negative factors not present 

in the tightly controlled environment of your local network. The first of these factors is  latency . 

The word latency has different meanings in different situations. In the context of computer 

games, it refers to the amount of time between an observable cause and its observable effect. 

Depending on the type of game, this can be anything from the period between a mouse click 

and a unit responding to its orders in a real-time strategy (RTS) game, to the period between a 

user moving her head and a virtual reality (VR) display updating in response. 

 Some amount of latency is unavoidable, and different genres of games have different latency 

acceptability thresholds. VR games are typically the most sensitive to latency, because we as 

humans expect our eyes to see different things as soon as our heads swivel. In these cases, a 

latency of less than 20 ms is typically required for the user to remain present in the simulated 

reality. Fighting games, first-person shooters, and other twitchy action games are the next 

most sensitive to latency. Latency in these games can range from 16 to 150 ms before the user 

starts to feel, regardless of frame rate, that the game is sluggish and unresponsive. RTS games 

have the highest tolerance for latency, and this tolerance is often exploited to good effect, as 

described in  Chapter   6   , “Network Topologies and Sample Games.” Latency in these games can 

grow as high as 500 ms without being detrimental to the user experience. 

 As a game engineer, decreasing latency is one manner in which you can improve your users’ 

play experience. To do so, it helps to understand the many factors that contribute to this 

latency in the first place. 

  Non-Network Latency 

 It is a commonly held misconception that networking delay is the primary source for latency 

in gameplay. While packet exchange over the network is a significant source for latency, it is 

definitely not the only one. There are at least five other sources of latency, some of which are 

not under your control: 

   ■ Input sampling latency.  The time between when a user pushes a button and when the 

game detects that button press can be significant. Consider a game running at 60 frames 

per second that polls a gamepad for input at the beginning of each frame, then updates 

all objects accordingly before finally rendering the game world. As shown in  Figure   7.1   a, 

if a user presses the jump button 2 ms after the game checks for input, it will be almost an 

entire frame before the game updates anything based on that button press. For inputs that 

drive view rotation, it is possible to sample the input again at the end of a frame and mildly 

warp the rendered output based on altered rotation, but this is typically only done in the 

most latency-sensitive applications. That means that on average, there is half a frame of 

latency between a button press and the game’s response to that press.  

■ Render pipeline latency.  GPUs do not perform draw commands the moment the CPU 

batches those commands. Instead, the driver inserts the commands into a command 



ptg16606381

LATENCY 201

buffer, and the GPU executes those commands at some point in the future. If there is a lot 

of rendering to do, the GPU may lag an entire frame behind the CPU before it displays the 

rendered image to the user.  Figure   7.1   b shows such a timeline common in single-threaded 

games. This introduces another frame of latency.  

■ Multithreaded render pipeline latency.  Multithreaded games introduce even more 

latency into the render pipeline. Typically, one or more threads run the game simulation, 

updating a world that they pass to one or more render threads. These render threads then 

batch GPU commands while the simulation threads are already simulating the next frame. 

 Figure   7.1   c demonstrates how multithreaded rendering can add yet another frame of 

latency to the user experience.  

Game samples input

User presses button

2 ms 4 ms
a)

b)

c)

Frame 0

17 ms 33 ms 50 ms

17 ms

CPU Frame 0

Game Thread Frame 0 Game Thread Frame 1

Render Thread Frame 0

GPU Finishes Frame 0

Render Thread Frame 1

Game Thread Frame 2

CPU Frame 1

GPU Finishes Frame 0 GPU Finishes Frame 1

CPU Frame 2

33 ms 50 ms

17 ms 33 ms 50 ms

Game presents Frame 0 Game presents
Frame 1

Game presents
Frame 0

19 ms
Frame 1 Frame 2

Game samples input,
detecting button press

Game presents Frame 1
image showing result of
button press

  Figure 7.1  Latency timing diagrams       

■ VSync.  To avoid screen tearing, it is common practice to change the image displayed by 

a video card only during a monitor’s vertical blanking interval. This way, the monitor will 

never show part of one frame and part of the next frame at the same time. This means 

that a present call on the GPU must wait until the vertical blanking interval for the user’s 

monitor, which is typically once every 1/60 of a second. If your game’s frames take only 

16 ms, this is not a problem. However, if a frame takes even 1 ms longer to render, the 

rendering will not be complete by the time the video card is ready to update the display. 

In this case, the command to present the back buffer to the front will stall, waiting an extra 

15 ms until the next vertical blanking interval. When this happens, your user experiences 

an extra frame of latency. 
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  note 

 Screen tearing is what happens when a GPU presents a back buffer while the 

monitor is in the middle of refreshing the image on its screen. Monitors typically 

update the image on screen one horizontal row at a time, from top bottom. If the 

image being drawn to the screen changes in the middle of the update, the user 

observes the bottom half of the screen showing the new image while the top half 

still shows the previous image. If the camera is scrolling rapidly across the world, 

this can result in a shearing effect that makes it look as if the image were printed 

on a piece of paper, torn in half, and then one-half slightly shifted. 

 Most PC games give the user an option to disable vsync for enhanced perfor-

mance, and some newer LCD monitors, known as G-SYNC, actually have variable 

refresh rates that can adjust to match frame rate and avoid the potential latency of 

vsyncing.   

■ Display lag.  Most HDTVs and LCD monitors process their input to some extent before

actually displaying an image. This processing can include de-interlacing, HDCP as well as 

other DRM, and image effects like video scaling, noise cancellation, adaptive luminance, 

image filtering, and more. This processing comes at a cost, and can easily add tens of 

milliseconds to the latency users perceive. Some televisions have a “game” mode that 

decreases video processing to minimize latency, but you cannot count on this to be enabled. 

■ Pixel response time.  LCD displays have the additional problem that pixels just take time 

to change brightness. Typically this duration is in the single digits of milliseconds, but with 

older displays, this can easily add an extra half frame of latency. Luckily, the latency here 

presents more as image ghosting than absolute latency—the transition starts right away, 

but doesn’t complete for several milliseconds.   

 Non-network latency is a serious issue and can negatively impact a user’s perception of a game. 

John Carmack famously once tweeted “I can send an IP packet to Europe faster than I can 

send a pixel to the screen. How f’d up is that?” Given the amount of latency already present in 

a single-player game, there is strong pressure to mitigate any network-influenced latency as 

much as possible when introducing multiplayer functionality. To do that, it helps to understand 

the root causes of network latency.  

  Network Latency 

 Although there are many sources of latency, the delay experienced by a packet as it travels from 

a source host to its destination is usually the most significant cause of latency in multiplayer 

gaming. There are four main delays a packet experiences during its lifetime: 

   1. Processing delay.  Remember that a network router works by reading packets from a 

network interface, examining the destination IP address, figuring out the next machine 
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that should receive the packet, and then forwarding it out of an appropriate interface. The 

time spent examining the source address and determining an appropriate route is known 

as the processing delay. Processing delay can also include any extra functionality the router 

provides, such as NAT or encryption.  

  2. Transmission delay.  For a router to forward a packet, it must have a link layer interface 

that allows it to forward the packet along some physical medium. The link layer protocol 

controls the average rate at which bits can be written to the medium. For instance, a 1-MB 

Ethernet connection allows for roughly 1 million bits to be written to an Ethernet cable per 

second. Thus it takes about one millionth of a second (1 μs) to write a bit to a 1-MB Ethernet 

cable, and therefore 12.5 ms to write a whole 1500-byte packet. This time spent writing the 

bits to physical medium is known as the transmission delay.  

  3. Queuing delay.  A router can only process a limited number of packets at a time. If packets 

arrive at a rate faster than the router can process them, they go into a receive queue, wait-

ing to be processed. Similarly, a network interface can only output one packet at a time, 

so after a packet is processed, if the appropriate network interface is busy, it goes into a 

transmission queue. The time spent in these queues is known as the queuing delay.  

  4. Propagation delay.  For the most part, regardless of the physical medium, information can-

not travel faster than the speed of light. Thus, the latency when sending a packet is at least 

0.3-ns times the number of meters the packet must travel. This means, even under ideal 

conditions, it takes at least 12 ms for a packet to travel across the United States. This time 

spent traveling is known as the propagation delay.   

 You can optimize some of these delays, and some you cannot. Processing delay is typically a 

minor factor, as most router processors these days are very fast. 

 Transmission delay is usually dependent on the type of link layer connection the end user 

employs. Because bandwidth capability typically increases as the packet moves closer to the 

backbone of the Internet, it is at the edges of the Internet where transmission delay is greatest. 

Making sure your servers use high-bandwidth connections is most important. After that, you 

can best reduce transmission delay by encouraging end users to upgrade to fast Internet 

connections. Sending packets that are as large as possible will also help, since you reduce the 

amount of bytes spent on headers. If those headers are a significant portion of your packet size, 

they translate to a significant portion of your transmission delay. 

 Queuing delay is a result of packets backing up waiting to be transmitted or processed. 

Minimizing processing and transmission delay will help minimize queuing delay. It’s worth 

noting that because typical routing requires examining only the header of a packet, you can 

decrease the queuing delay for all your packets by sending few large packets instead of many 

small packets. For instance, a packet with a 1400-byte payload typically experiences as much 

processing delay as a packet with a 200-byte payload. If you send seven 200-byte packets, the 

final packet will have to sit in the queue during the processing of the six prior packets and thus 

will experience more cumulative network delay than a single large packet. 
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 Propagation delay is often a very good target for optimization. Because it is based on the 

length of wire between hosts exchanging data, the best way to optimize it is to move the 

hosts closer together. In peer-to-peer games, this means prioritizing geographical locality 

when match making. In client-server games, this means making sure game servers are 

available close to your players. Be aware that sometimes physical locality isn’t enough to 

ensure low-propagation delay: Direct connections between locations may not exist, requiring 

routers to route traffic in roundabout paths instead of via a straight line. It is important to 

take existing and future routes into account when planning the locations of your game 

servers. 

  note 

 In some cases, it is not feasible to disperse game servers throughout a geographi-

cal area, because you want all players on an entire continent to be able to play 

with each other. Riot games famously encountered such a situation with their 

title,  League of Legends . Because dispersing game servers throughout the country 

was not an option, they took the reverse approach and built their own network 

infrastructure, peering with ISPs across North America to ensure they could control 

traffic routes and reduce network latency as much as possible. This is a significant 

undertaking, but if you can afford it, it is a clear and reliable way to reduce all four 

network delays.  

 In the context of networking, engineers sometimes use the term latency to describe the 

combination of these four delays. Because latency is such an overloaded term though, game 

developers more commonly discuss  round trip time , or  RTT . RTT refers to the time it takes 

for a packet to travel from one host to another, and then for a response packet to travel all the 

way back. This ends up reflecting not only the two-way processing, queuing, transmission, 

and propagation delays, but also the frame rate of the remote host, as this contributes to how 

quickly it can send the response packet. Note that traffic does not necessarily travel the same 

speed in each direction. The RTT is rarely exactly double the time it takes for a packet to go 

from one host to another. Regardless, games do often approximate one-way travel time by 

cutting the RTT in half.   

  Jitter 
 Once you have a good estimation of the RTT, you can take steps, as explained in  Chapter   8   , 

“Improved Latency Handling,” to mitigate this delay and give clients the best experience 

possible for their given latency. However, when writing network code, you must be mindful 

that the RTT is not necessarily a constant value. For any two hosts, the RTT between them does 

typically hover around a certain value based on the average delays involved. However, any of 

these delays can change over time, leading to a deviation in RTT from the expected value. This 

deviation is known as  jitter . 
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 Any of the four network delays can contribute to jitter, although some are more likely to vary 

than others: 

■ Processing delay.  As the least significant component of network latency, processing 

delay is also the least significant contributor to jitter. Processing delays may vary as routers 

dynamically adjust packet pathways, but this is a minor concern.  

■ Transmission delay and propagation delay.  These two delays are both a function of the 

route a packet takes: Link layer protocols determine transmission delay and route length 

determines propagation delay. Thus these delays change when routers dynamically load 

balance traffic and alter routes to avoid heavily congested areas. This can fluctuate rapidly 

during times of heavy traffic and route changes can significantly alter round trip times.  

■ Queuing delay.  Queuing delay is a function of the number of packets a router must process.

Thus as the number of packets arriving at a router varies, the queuing delay will vary as well. 

Heavy traffic bursts can cause significant queuing delays and alter round trip times.   

 Jitter can negatively affect RTT mitigation algorithms, but even worse, it can cause packets to 

arrive completely out of order.  Figure   7.2    illustrates how this can happen. Host A dispatches 

Packet 1, Packet 2, and Packet 3, in order, 5 ms apart, bound for a remote Host B. Packet 1 takes 

45 ms to reach Host B, but due to a sudden influx of traffic on the route, Packet 2 takes 60 ms 

to reach Host B. Shortly after the traffic influx, the routers dynamically adjust the route causing 

Packet 3 to take only 30 ms to arrive at Host B. This results in Host B receiving Packet 3 first, then 

Packet 1, and then Packet 2.  

0 ms

0 ms 40 ms

Receive
Packet 3

Receive
Packet 1

Receive
Packet 2

45 ms 65 ms

Host A

Host B

Dispatch
Packet 1

Dispatch
Packet 2

Dispatch
Packet 3

5 ms 10 ms

  Figure 7.2  Jitter causing out of order packet delivery       

 To prevent errors due to packets arriving out of order, you must either use a reliable transport 

protocol, like TCP, that guarantees ordered packet delivery, or implement a custom system for 

ordering packets, as discussed in the latter half of this chapter. 

 Because of the problems jitter can cause, you should try to reduce it as much as possible to 

improve gameplay experience. Techniques that lower jitter are very similar to those that lower 

overall latency. Send as few packets as possible to keep traffic low. Locate servers near players to 

reduce the chance of encountering heavy traffic. Keep in mind that frame rate also affects RTT, so 

wild variations in frame rate will negatively impact clients. Make sure that complex operations are 

appropriately aggregated across multiple frames to prevent frame rate induced jitter.  
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  Packet Loss 
 More significant than latency and jitter, the largest problem facing network game developers is 

packet loss. It’s one thing if a packet takes a long time to get where it’s going, but quite another 

if the packet never gets there at all. 

 Packets may drop for a variety of reasons: 

■ Unreliable physical medium . At its root, data transfer is the transfer of electromagnetic

energy. Any external electromagnetic interference can cause corruption of this data. In the 

case of corrupted data, the link layer detects the corruption when validating checksums and 

discards the containing frames. Macroscale physical problems, such as a loose connection or

even a nearby microwave oven, can also cause signal corruption and data loss.  

■ Unreliable link layer . Link layers have rules about when they can and cannot send data. 

Sometimes a link layer channel is completely full and an outgoing frame must be dropped. 

Because the link layer makes no guarantee of reliability, this is a perfectly acceptable 

response.  

■ Unreliable network layer . Recall that when packets arrive at a router faster than they 

can be processed, they are placed in a receiving queue. This queue has a fixed number of 

packets it can hold. When the queue is full, the router starts dropping either queued or 

incoming packets.   

 Dropped packets are a fact of life, and you must design your networking architecture to 

account for them. Regardless of packet loss mitigation, gameplay experience will be better with 

fewer dropped packets. When architecting at a high level, try to reduce the potential for packet 

loss. Use a data center with servers as close to your players as possible, because fewer routers 

and wires means a lower chance that one of them drops your data. Also, send as few packets 

as you can: Many routers base queue capacity on packet count, not total data. In these cases 

your game has a higher chance of flooding routers and overflowing queues if it sends many 

small packets than fewer large ones. Sending seven 200-byte packets through a clogged router 

requires there be seven free slots in the queue to avoid packet loss. However, sending the same 

1400 bytes in a single packet only requires one free queue slot. 

  warning 

 Not all routers base queue slots on packet count—some allot queue space to 

individual sources based on incoming bandwidth, in which case smaller packets 

can actually be beneficial. If only one packet of the seven gets dropped due to 

bandwidth allocation instead of slot allocation, at least the other six get queued. 

It’s worthwhile to know the routers in your data center and along heavily trafficked 

routes, especially because small packets waste bandwidth from headers, as men-

tioned in earlier chapters.  
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 When its queues are full, a router does not necessarily drop each incoming packet. Instead, it 

may drop a previously queued packet. This happens when the router determines the incoming 

packet has higher priority or is more important than the queued one. Routers make priority 

decisions based on QoS data in the network layer header, and also sometimes on deeper 

information gleaned by inspecting the packet’s payload. Some routers are even configured to 

make greedy decisions intended to reduce the overall traffic they must handle: They sometimes 

drop UDP packets before TCP packets because they know dropped TCP packets will just 

automatically be resent. Understanding the router configurations around your data centers 

and around ISPs throughout your target market can help you tune your packet types and traffic 

patterns to reduce packet loss. Ultimately, the simplest way to reduce dropped packets is to 

make sure your servers are on fast, stable Internet connections and are as close to your clients 

as possible.  

  Reliability: TCP or UDP? 
 Given the need for some level of networking reliability in almost every multiplayer game, an 

important decision to make early during development is that between TCP and UDP. Should 

your game rely on the existing reliability system built into TCP, or should you attempt to 

develop your own, customized reliability system on top of UDP? To answer this question, you 

need to consider the benefits and costs of each transport protocol. 

 The primary advantage of TCP is that it provides a time-tested, robust, and stable 

implementation of reliability. With no extra engineering effort, it guarantees all data will not 

only be delivered, but delivered in order. Additionally, it provides complex congestion control 

features which limit packet loss by sending data at a rate that does not overwhelm intermediate 

routers. 

 The major drawback of TCP is that everything it sends must be sent reliably and processed in 

order. In a multiplayer game with rapidly changing state, there are three different scenarios in 

which this mandatory, universally reliable transmission can cause problems: 

   1. Loss of low-priority data interfering with the reception of high-priority data.  Consider 

a brief exchange between two players in a client-server first-person shooter. Player A on 

Client A and Player B on Client B are facing off against each other. Suddenly a rocket from 

some other source explodes in the distance, and the server sends a packet to Client A to 

play the distant explosion sound. Very shortly thereafter, Player B jumps in front of Player 

A and fires, and the server sends a packet containing this information to Client A. Due to 

fluctuating network traffic, the first packet gets dropped, but the second packet, containing 

Player B’s movement, does not. The explosion sound is of low priority to Player A, whereas 

an enemy shooting him in the face is of high priority. Player A would probably not mind 

if the lost packet remained lost, and he never found out about the explosion. However, 

because TCP processes all packets in order, the TCP module will not pass the movement 
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packet to the game when it is received. Instead, it will wait until the server retransmits the 

lower-priority dropped packet before allowing the application to process the high-priority 

movement packet. This may, understandably, make Player A upset.  

  2. Two separate streams of reliably ordered data interfering with each other.  Even in 

a game with no low-priority data, in which all data must be transmitted reliably, TCP’s 

ordering system can still cause problems. Consider the prior scenario, but instead of an 

explosion, the first packet contains a chat message directed at Player A. Chat messages 

can be of critical importance so should be sent in some way that guarantees their receipt. 

In addition, chat messages need to be processed in order, because out of order chat 

messages can be quite confusing. However, chat messages only need to be processed in 

order relative to other chat messages. Player A would likely find it undesirable if the loss 

of a chat message packet prevented the processing of a headshot packet. In a game using 

TCP, this is exactly what happens.  

  3. Retransmission of stale game state.  Imagine Player B runs all the way across the map 

to shoot Player A. She starts at position x = 0 and over the course of 5 seconds, runs 

to position x = 100. The server sends packets to Player A five times per second, each 

containing the latest x coordinate of Player B’s position. If the server discovers that any 

or all of those packets get dropped, it will resend them. This means that while Player B is 

approaching her final position of x = 100, the server may be retransmitting old state data 

that had Player B closer to x = 0. This leads to Player A viewing a very stale position of Player 

B, and getting shot before receiving any information that Player B is nearby. This is not an 

acceptable experience for Player A.   

 In addition to enforcing mandatory reliability, there are a few other drawbacks to using TCP. 

Although congestion control helps prevent lost packets, it is not uniformly configurable on all 

platforms, and at times may result in your game sending packets at a slower rate than you’d 

like. The Nagle algorithm is a particularly bad offender here, as it can delay packets up to half 

a second before sending them out. In fact, games that use TCP as a transport protocol usually 

disable the Nagle algorithm to avoid this exact problem, though at the same time, giving up 

the benefit of the reduced packet count it provides. 

 Finally, TCP allocates a lot of resources to manage connections and track all data that may have 

to be resent. These allocations are usually managed by the OS and can be difficult to track or 

route through a custom memory manager if desired. 

 UDP, on the other hand, offers none of the built-in reliability and flow control that TCP provides. 

It does, however, present a blank canvas onto which you can paint any sort of custom reliability 

system your game requires. You can allow for the sending of reliable and unreliable data, or the 

interweaving of separately ordered streams of reliable data. You can also build a system that 

sends only the newest information when replacing dropped packets, instead of retransmitting 

the exact data that was lost. You can manage your memory yourself and have fine-grained 

control over how data is grouped into network layer packets. 
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 All this comes at a cost of engineering and testing time. A custom spun implementation will 

naturally not be as mature and bug free as that of TCP. You can decrease some of this risk and 

cost by using a third-party UDP networking library, such as RakNet or Photon, though you may 

sacrifice some flexibility going that route. Additionally, UDP comes with an increased risk of 

packet loss, because routers may be configured to deprioritize UDP packets as described earlier. 

 Table   7.1    sums up the differences between the protocols.  

 Table 7.1   Comparison of TCP to UDP 

 Column Heading  TCP  UDP 

 Reliability  Native. Everything is delivered 
and processed in the order it 
was sent. 

 None. Requires custom 
implementation but allows 
fine-grained reliability. 

 Flow control  Will automatically slow down 
rate of transmission if packets 
are getting dropped. 

 None. Requires custom flow and 
congestion control if desired. 

 Memory 
requirements 

 OS must keep copies of all data 
sent until it is acknowledged. 

 Custom implementation must decide 
what data to keep around and what 
to discard immediately. Memory 
managed at application level. 

 Router 
prioritization 

 May be prioritized over UDP 
packets. 

 May be dropped before TCP packets. 

 In most cases, the choice of which transport protocol to use comes down to this question: Does 

every piece of data the game sends need to be received, and does it need to be processed in a 

totally ordered fashion? If the answer is yes, you should consider using TCP. This is often true for 

turn-based games. Every piece of input must be received by every host and processed in the 

same order, so TCP is the perfect fit. 

 If TCP is not the absolute perfect fit for your game, and for most games it is not, you should use 

UDP with an application layer reliability system on top of it. This means either using a third-

party middleware solution or building a custom system of your own. The rest of this chapter 

explores how you might go about building such a system.  

  Packet Delivery Notification 
 If UDP is the appropriate protocol for your game, you’ll need to implement a reliability system. 

The first requirement for reliability is the ability to know whether or not a packet arrives at its 

destination or not. To do this, you’ll need to build some kind of delivery notification module. 

The module’s job is to help higher-level dependent modules send packets to remote hosts, 

and then to notify those dependent modules about whether the packets were received 

or not. By not implementing retransmission itself, it allows each dependent module to 

retransmit only the data it decides should be retransmitted. This is the main source of the 
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flexibility that UDP-based reliability provides that TCP does not. This section explores the 

 DeliveryNotificationManager , which is one possible implementation of such a module, 

inspired by the  Starsiege: Tribes  connection manager. 

 The  DeliveryNotificationManager  needs to accomplish three things: 

   1.   When transmitting, it must uniquely identify and tag each packet it sends out, so that it can 

associate delivery status with each packet and deliver this status to dependent modules in 

a meaningful way.  

  2.   On the receiving end, it must examine incoming packets and send out an acknowledgment 

for each packet that it decides to process.  

  3.   Back on the transmitting host, it must process incoming acknowledgments and notify 

dependent modules about which packets were received and which were dropped.   

 As an added bonus, this particular UDP reliability system will also ensure packets are never 

processed out of order. That is, if an old packet arrives at a destination after newer packets, the 

 DeliveryNotificationManager  will pretend the packet was dropped and ignore it. This is 

very useful, as it prevents stale data contained in old packets from accidentally overriding fresh 

data in newer packets. It is a slight overloading of the  DeliveryNotificationManager ’s 

purpose, but it is common and efficient to implement the functionality at this level. 

  Tagging Outgoing Packets 

 The  DeliveryNotificationManager  has to identify each packet it transmits, so that the 

receiving host has a way to specify which packet it acknowledges. Borrowing a technique 

from TCP, it does this by assigning each packet a sequence number. Unlike in TCP, however, 

the sequence number does not represent the number of bytes in a stream. It simply serves to 

provide a unique identifier for each transmitted packet. 

 To transmit a packet using the  DeliveryNotificationManager  the application creates an 

 OutputMemoryBitStream  to hold the packet, and then passes it to the  DeliveryNotifica

tionManager::WriteSequenceNumber () method, shown in Listing 7.1. 

  Listing 7.1 Tagging a Packet with a Sequence Number 

 InFlightPacket* DeliveryNotificationManager::WriteSequenceNumber( 
    OutputMemoryBitStream& inPacket) 
 { 
    PacketSequenceNumber sequenceNumber = mNextOutgoingSequenceNumber++; 
    inPacket.Write(sequenceNumber); 

    ++mDispatchedPacketCount; 

    mInFlightPackets.emplace_back(sequenceNumber); 
    return &mInFlightPackets.back(); 
 }  
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 The  WriteSequenceNumber  method writes the  DeliveryNotificationManager ’s next 

outgoing sequence number into the packet, and then increments the number in preparation 

for the next packet. In this way, no two packets sent in close succession should have the same 

sequence number, and each has a unique identifier. 

 The method then constructs an  InFlightPacket  and adds it to the  mInFlightPackets  

container, which keeps track of all packets that have not yet been acknowledged. These 

 InFlightPacke  t  objects will be needed later when processing acknowledgments and 

reporting delivery status. After giving the  DeliveryNotificationManager  a chance to 

tag the packet with a sequence number, it is up to the application to write the payload of the 

packet and send it off to the destination host. 

  note 

  PacketSequenceNumber  is a  typedef  so you can easily change the number of 

bits in a sequence number. In this case, it is a  uint16_t , but depending on the 

number of packets you plan on sending, you might want to use more or fewer bits. 

The goal is to use as few bits as possible while minimizing the chance of wrapping 

the sequence number and then encountering a very old packet with a seemingly 

relevant sequence number from long before the wrap around. If you’re pushing 

the bit count as low as possible, it can be very useful to include an unwrapped 

32-bit sequence count during development for debugging and verification pur-

poses. You’d then remove the extra sequence count when making release builds. 

  Receiving Packets and Sending 
Acknowledgments 

 When the destination host receives a packet, it sends an  InputMemoryBitStream  containing 

the packet’s data to its own  DeliveryNotificationManager ’s  ProcessSequenceNumber()  

method, shown in Listing 7.2. 

  Listing 7.2 Processing an Incoming Sequence Number 

 bool DeliveryNotificationManager::ProcessSequenceNumber( 
    InputMemoryBitStream& inPacket) 
 { 
    PacketSequenceNumber    sequenceNumber; 

    inPacket.Read(sequenceNumber); 
    if(sequenceNumber == mNextExpectedSequenceNumber) 
    { 

//is this expected? add ack to the pending list and process packet 
mNextExpectedSequenceNumber = sequenceNumber + 1; 
AddPendingAck(sequenceNumber); 
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return true; 
    } 
    //is sequence number < current expected? Then silently drop old packet. 
    else if(sequenceNumber < mNextExpectedSequenceNumber) 
    { 

return false; 
    } 
    //otherwise, we missed some packets 
    else if(sequenceNumber > mNextExpectedSequenceNumber) 
    { 

//consider all skipped packets as dropped, so 
//our next expected packet comes after this one ... 
mNextExpectedSequenceNumber = sequenceNumber + 1; 

 //add an ack for the packet and process it 
//when the sender detects break it acks, it can resend 
AddPendingAck(sequenceNumber); 
return true; 

    } 
 }  

  ProcessSequenceNumber()  returns a  bool  indicating whether the packet should be processed 

by the application, or just completely ignored. This is how the  DeliveryNotificationManager  

prevents out of order processing. The  mNextExpectedSequenceNumber  member variable keeps 

track of the next sequence number the destination host should receive in a packet. Because each 

transmitted packet has a consecutively increasing sequence number, the receiving host can easily 

predict which sequence number should be present in an incoming packet. Given that, there are 

three cases that might occur when the method reads a sequence number: 

■ The incoming sequence number matches the expected sequence number.  In this 

case, the application should acknowledge the packet, and should process it. 

The  DeliveryNotificationManager  should increment its 

 mNextExpectedSequenceNumber  by 1.  

■ The incoming sequence number is less than the expected sequence number.
This probably means the packet is older than packets that have already arrived. To 

avoid out of order processing, the host should not process the packet. It should also 

not acknowledge the packet, because the host should only acknowledge packets 

that it processes. There is an edge case that you must consider here. If the current 

 mNextExpectedSequenceNumber  is close to the maximum number representable by a 

 PacketSequenceNumber  and the incoming sequence number is close to the minimum, 

the sequence numbers may have wrapped around. Based on the rate at which your game 

sends packets, and the number of bits used in  PacketSequenceNumber , this may or may 

not be possible. If it is possible, and the  mNextExpectedSequenceNumber  and incoming 

sequence number suggest it is likely, then you should handle this the same way as you 

would the following case.  



ptg16606381

PACKET DELIVERY NOTIFICATION 213

■ The incoming sequence number is greater than the expected sequence number.  
This is what happens when one or more packets get dropped or delayed. A different 

packet eventually gets through to the destination, but its sequence number is higher 

than expected. In this case, the application should still process the packet and should still 

acknowledge it. Unlike in TCP, the  DeliveryNotificationManager  does not promise 

to process every single packet sent in order. It only promises to process nothing out of 

order, and to report when packets are dropped. Thus it is perfectly safe to acknowledge 

and process packets that come in after previously transmitted packets were dropped. 

In addition, to prevent the processing of any old packets, should they arrive, the 

 DeliveryNotificationManager  should set its  mNextExpectedSequenceNumber  to

the most recently received packet’s sequence number plus one.   

  note 

 The first and third cases actually perform the exact same operation. They are 

called out separately in the code because they indicate different situations, but 

they could be collapsed into a single case by checking if  sequenceNumber ≥ 

mNextExpectedSequenceNumber .  

 The  ProcessSequenceNumber()  method does not send any acknowledgments directly. 

Instead, it calls  AddPendingAck()  to track that an acknowledgment should be sent. It does 

this for efficiency. If a host receives many packets from another host, it would be inefficient 

to send an acknowledgment for each incoming packet. Even TCP is allowed to acknowledge 

only every other packet. In the case of a multiplayer game, the server may need to send several 

MTU-sized packets to a client before the client has to send any data back to the server. In cases 

like this, it is best to just accumulate all necessary acknowledgments and piggy back them on to 

the next packet the client sends to the server. 

 The  DeliveryNotificationManager  may accumulate several nonconsecutive 

acknowledgments. To efficiently track and serialize them, it keeps a  vector  of  AckRanges  in its 

 mPendingAcks  variable. It adds to them using the  AddPendingAck()  code shown in Listing 7.3. 

  Listing 7.3 Adding a Pending Acknowledgment 

 void DeliveryNotificationManager::AddPendingAck( 
    PacketSequenceNumber inSequenceNumber) 
 { 
    if(mPendingAcks.size() == 0 || 

!mPendingAcks.back().ExtendIfShould(inSequenceNumber))
    { 

mPendingAcks.emplace_back(inSequenceNumber); 
    } 
 }  
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 An  AckRange  itself represents a collection of consecutive sequence numbers to acknowledge. 

It stores the first sequence number to acknowledge in its  mStart  member, and the count 

of how many sequence numbers to acknowledge in its  mCount  member. Thus, multiple 

 AckRange s are only necessary when there is a break in the sequence. The code for  AckRange  

is shown in Listing 7.4 

  Listing 7.4 Implementing AckRange 

 inli ne bool AckRange::ExtendIfShould
(PacketSequenceNumber inSequenceNumber) 

 { 
    if(inSequenceNumber == mStart + mCount) 
    { 

++mCount; 
return true; 

    } 
    else 
    { 

return false; 
    } 
 } 

 void AckRange::Write(OutputMemoryBitStream& inPacket) const 
 { 
    inPacket.Write(mStart); 
    bool hasCount = mCount > 1; 
    inPacket.Write(hasCount); 
    if(hasCount) 
    { 

//let's assume you want to ack max of 8 bits... 
 uint32_t countMinusOne = mCount - 1; 
uint8_t countToAck = countMinusOne > 255 ? 

255: static_cast<uint8_t>(countMinusOne); 
inPacket.Write(countToAck); 

    } 
 } 

 void AckRange::Read(InputMemoryBitStream& inPacket) 
 { 
    inPacket.Read(mStart); 
    bool hasCount; 
    inPacket.Read(hasCount); 
    if(hasCount) 
    { 

uint8_t countMinusOne; 
inPacket.Read(countMinusOne); 
mCount = countMinusOne + 1; 

    } 
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    else 
    { 

//default! 
mCount = 1; 

    } 
 }  

 The  ExtendIfShould()  method checks if the sequence number is consecutive. If so, it 

increases the count and tells the caller the range was extended. If not, it returns false so the 

caller knows to construct a new  AckRange  for the nonconsecutive sequence number. 

  Write()  and  Read()  work by first serializing the starting sequence number and then 

serializing the count. Instead of serializing the count directly, these methods take into account 

the fact that many games will typically only need to acknowledge a single packet at a time. 

Thus the methods use entropy encoding to efficiently serialize the count, with an expected 

value of 1. They also serialize the count as an 8-bit integer, assuming that more than 256 

acknowledgments should never be needed. In truth, even 8 bits are high for the count, so this 

could easily be fewer. 

 When the receiving host is ready to send a reply packet, it writes any accumulated 

acknowledgments into the outgoing packet by calling  WritePendingAcks()  right after it 

writes its own sequence number. Listing 7.5 shows  WritePendingAcks() . 

  Listing 7.5 Writing Pending Acknowledgments 

 void DeliveryNotificationManager::WritePendingAcks( 
    OutputMemoryBitStream& inPacket) 
 { 
    bool hasAcks = (mPendingAcks.size() > 0); 
    inPacket.Write(hasAcks); 
    if(hasAcks) 
    { 

mPendingAcks.front().Write(inPacket); 
mPendingAcks.pop_front(); 

    } 
 }  

 Because not every packet necessarily contains acknowledgments, the method first writes a 

single bit to signal their presence. It then writes a single  AckRange  into the packet. It does this 

because packet loss is the exception, not the rule, and there will usually be only one  AckRange  

pending. You could write all of the pending ranges, but this would require an extra indicator of 

how many  AckRanges  are present and could potentially bloat a packet. In the end, you want 

some flexibility, but not so much that it places an undue burden on your reply packet capacity. 

Studying the traffic pattern of your game will help you craft a system that is flexible enough 

for your edge cases but sufficiently efficient on average: For instance, if you feel confident that 
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your game will never need to acknowledge more than one packet at a time, you can remove 

the multi-acknowledgment system entirely and save a few bits per packet.  

  Receiving Acknowledgments 
and Delivering Status 

 Once a host sends out a data packet, it must listen for and process any acknowledgments 

accordingly. When the expected acknowledgments arrive, the  DeliveryNotificationManager  

deduces that the corresponding packets arrived correctly and notifies the appropriate 

dependent modules of delivery success. When the expected acknowledgments do not arrive, the 

 DeliveryNotificationManager  deduces that packets were lost, and notifies the appropriate 

dependent modules of failure. 

  warning 

 Beware that the lack of an acknowledgment does not truly indicate the loss of a 

data packet. The data could have arrived successfully, but the packet containing 

the acknowledgment itself might have been lost. There is no way for the originally 

transmitting host to distinguish between these cases. In TCP, this is not a problem, 

because a retransmitted packet uses the exact same sequence number it used 

when originally sent. If a TCP module receives a duplicate packet, it knows to just 

ignore it. 

 This is not the case for the  DeliveryNotificationManager . Because lost data 

is not necessarily resent, every packet is unique and sequence numbers are never 

reused. This means a client module may decide to resend some reliable data based 

on the absence of an acknowledgment, and the receiving host may already have 

the data. In this case, it is up to the dependent module to uniquely identify the 

data itself to prevent duplication. For instance, if an  ExplosionManager  relies 

on the  DeliveryNotificationManager  to reliably send explosions across the 

Internet, it should uniquely number the explosions to ensure no explosion acci-

dentally explodes twice on the receiving end.  

 To process acknowledgments and dispatch status notification, the host application uses the 

 ProcessAcks()  method, as shown in the Listing 7.6. 

  Listing 7.6 Processing the Acknowledgments 

 void DeliveryNotificationManager::ProcessAcks( 
    InputMemoryBitStream& inPacket) 
 { 
    bool hasAcks; 
    inPacket.Read(hasAcks); 
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    if(hasAcks) 
    { 

AckRange ackRange; 
ackRange.Read(inPacket); 
//for each InFlightPacket with seq# < start, handle failure... 
PacketSequenceNumber nextAckdSequenceNumber = 

ackRange.GetStart(); 
uint32_t onePastAckdSequenceNumber = 

nextAckdSequenceNumber + ackRange.GetCount(); 
while(nextAckdSequenceNumber < onePastAckdSequenceNumber && 

!mInFlightPackets.empty())
{ 

const auto& nextInFlightPacket = mInFlightPackets.front(); 
 //if the packet seq# < ack seq#, we didn't get an ack for it, 
//so it probably wasn't delivered 
PacketSequenceNumber nextInFlightPacketSequenceNumber = 

nextInFlightPacket.GetSequenceNumber(); 
if(nextInFlightPacketSequenceNumber < nextAckdSequenceNumber) 
{ 

//copy this so we can remove it before handling- 
//dependent modules shouldn't find it if seeing what's live 
auto copyOfInFlightPacket = nextInFlightPacket; 
mInFlightPackets.pop_front(); 
HandlePacketDeliveryFailure(copyOfInFlightPacket); 

} 
else if(nextInFlightPacketSequenceNumber==

nextAckdSequenceNumber) 
{ 

HandlePacketDeliverySuccess(nextInFlightPacket); 
//received! 
mInFlightPackets.pop_front(); 
++nextAckdSequenceNumber; 

} 
    else if(nextInFlightPacketSequenceNumber>

nextAckdSequenceNumber) 
{ 

//somehow part of this range was already removed 
//(maybe from timeout) check rest of range 
nextAckdSequenceNumber = nextInFlightPacketSequenceNumber; 

} 
} 

    } 
 }  

 To process an  AckRange , the  DeliveryNotificationManager  must determine which of 

its  InFlightPacket s lie within the range. Because acknowledgments should be received 

in order, the method assumes that any packets with sequence numbers lower than the 

given range were dropped, and it reports their delivery as failed. It then reports any packets 
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within the range as successfully delivered. There can be quite a few packets in flight at 

any one time, but luckily it is not necessary to examine every single  InFlightPacket . 

Because new  InFlightPacket s are appended to the  mInFlightPackets  deque, all the 

 InFlightPacket s are already ordered by sequence number. This means that when an 

 AckRange  comes in, the method can go through the  mInFlightPackets  in order, comparing 

each sequence number to the  AckRange . Until it finds its first packet in the range, it reports 

all packets as dropped. Then, once it finds the first packet in the range, it reports its delivery as 

successful. Finally it needs only report success for the rest of the packets in the  AckRange  and it 

can exit without examining any other  InFlightPacket s. 

 The final else-if clause handles the edge case in which the first known  InFlightPacket  is 

somewhere inside the  AckRange , but not at the front. This can happen if a packet recently 

acknowledged was previously reported as dropped. In this case,  ProcessAcks()  just jumps 

to the packet’s sequence number and reports all the remaining packets in range as successfully 

delivered. 

 You may wonder how a packet previously reported as dropped might later be acknowledged. 

This can happen if the acknowledgment took too long to arrive. Just as TCP resends packets 

when an acknowledgment is not prompt, the  DeliveryNotificationManager  should 

also be on the lookout for acknowledgments that have timed out. This is particularly useful 

when traffic is sparse, and there may not be a nonconsecutive acknowledgment to indicate 

a single dropped packet. To check for timed out packets, the host application should call the 

 ProcessTimedOutPackets()  method each frame, given in Listing 7.7. 

  Listing 7.7 Timing Out Packets 

 void DeliveryNotificationManager::ProcessTimedOutPackets() 
 { 
    uint64_t timeoutTime = Timing::sInstance.GetTimeMS() - kAckTimeout; 
    while( !mInFlightPackets.empty()) 
    { 

//packets are sorted, so all timed out packets must be at front 
const auto& nextInFlightPacket = mInFlightPackets.front(); 

if(nextInFlightPacket.GetTimeDispatched() < timeoutTime) 
{ 

HandlePacketDeliveryFailure(nextInFlightPacket); 
mInFlightPackets.pop_front(); 

} 
else 
{ 

//no packets beyond could be timed out 
break; 

} 
    } 
 }  
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 The  GetTimeDispatched()  method returns a timestamp set at creation time in the 

 InFlightPacket ’s constructor. Because the  InFlightPacket s are sorted, the method only 

has to check the front of the list until it has found a packet that has not timed out. After that 

point, it is guaranteed all successive packets in flight have not timed out. 

 To track and report delivered and dropped packets, the aforementioned methods call 

 HandlePacketDeliveryFailure()  and  HandlePacketDeliverySuccess()  as shown 

in Listing 7.8. 

  Listing 7.8 Tracking Status 

 void DeliveryNotificationManager::HandlePacketDeliveryFailure( 
    const InFlightPacket& inFlightPacket) 
 { 
    ++mDroppedPacketCount; 
    inFlightPacket.HandleDeliveryFailure(this); 

 } 

 void DeliveryNotificationManager::HandlePacketDeliverySuccess( 
    const InFlightPacket& inFlightPacket) 
 { 
    ++mDeliveredPacketCount; 
    inFlightPacket.HandleDeliverySuccess(this); 
 }  

 These methods increment  mDroppedPacketCount  and  mDeliveredPacketCount , 

accordingly. By doing so, the  DeliveryNotificationManager  can track packet 

delivery rates, and estimate packet loss rates for the future. If loss is too high, it can 

notify appropriate modules to decrease transmission rate, or the modules can notify the 

user directly that something might be wrong with the host’s network connection. The 

 DeliveryNotificationManager  can also sum these values with the  mInFlightPackets  

vector’s size and assert they equal the  mDispatchedPacketCount , incremented in 

 WriteSequenceNumber() . 

 The aforementioned methods make use of  InFlightPacket ’s  HandleDeliveryFailure()  

and  HandleDeliverySuccess()  methods to notify higher-level consumer modules about 

delivery status. To understand how they work, it’s worth looking at the  InFlightPacket  class 

in Listing 7.9. 

  Listing 7.9 The InFlightPacket Class 

 class InFlightPacket 
 { 
 public: 
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    .... 
    void SetTransmissionData(int inKey, 

TransmissionDataPtr inTransmissionData) 
    { 

mTransmissionDataMap[ inKey ] = inTransmissionData; 
    } 
    const TransmissionDataPtr GetTransmissionData(int inKey) const 
    { 

auto it = mTransmissionDataMap.find(inKey); 
return (it != mTransmissionDataMap.end()) ? it->second: nullptr; 

    } 

    void HandleDeliveryFailure( 
DeliveryNotificationManager* inDeliveryNotificationManager) const 

    { 
for(const auto& pair: mTransmissionDataMap) 
{ 

pair.second->HandleDeliveryFailure
(inDeliveryNotificationManager); 

} 
    } 
    void HandleDeliverySuccess( 

DeliveryNotificationManager* inDeliveryNotificationManager) const 
    { 

for(const auto& pair: mTransmissionDataMap) 
{ 

pair.second->HandleDeliverySuccess
(inDeliveryNotificationManager); 

} 
    } 
 private: 
    PacketSequenceNumber mSequenceNumber; 
    float mTimeDispatched; 
    unordered_map<int, TransmissionDataPtr>    mTransmissionDataMap; 
 };  

  tip 

 Keeping the transmission data map in an  unordered_map  is clear and useful 

for demonstrative purposes. Iterating through an  unordered_map  is not very 

efficient and can lead to many cache misses. In production, if you have a small 

number of transmission data types, it can be better to just make a dedicated mem-

ber variable for each type, or to store them in a fixed array with a dedicated index 

per type. If you need more than a few transmission data types, it might be worth it 

to keep them in a sorted vector.  
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 Each  InFlightPacket  holds a container of  TransmissionData  pointers.  TransmissionData  

is an abstract class with its own  HandleDeliverySucess()  and  HandleDeliveryFailure()  

methods. Each dependent module that sends data via the  DeliveryNotificationManager  

can create its own subclass of  TransmissionData . Then, when a module writes reliable data 

into a packet’s memory stream, it creates an instance of its customized  TransmissionData  

subclass and uses  SetTransmissionData()  to add it to the  InFlightPacket . When the 

 DeliveryNotificationManager  notifies the dependent module about a packet’s success 

or failure, the module has a record of exactly what it stored in the given packet, allowing it to 

figure out how best to proceed. If the module needs to resend some of the data, it can. If it needs 

to send a newer version of the data, it can. If it needs to update custom variables elsewhere in 

the application, it can. In this way, the  DeliveryNotificationManager  provides a solid 

foundation on which to build a UDP-based reliability system. 

  note 

 Each pair of communicating hosts requires its own pair of 

 DeliveryNotificationManager s. So in a client-server topology, if the server is 

talking to 10 clients, it needs 10  DeliveryNotificationManager s, one for each 

client. Then each client host uses its own  DeliveryNotificationManager  to 

communicate with the server.    

  Object Replication Reliability 
 You can use a  DeliveryNotificationManager  to send data reliably by resending 

any data that fails to reach its intended host. Simply extend  TransmissionData  with a 

 ReliableTransmissionData  class that contains all data sent in the packet. Then, inside 

the  HandleDeliveryFailed()  method, create a new packet and resend all the data. This 

is very close to how TCP implements reliability, however, and doesn’t take full advantage 

of the  DeliveryNotificationManager ’s potential. To improve upon the TCP version of 

reliability, you do not have to resend the exact data that dropped. Instead, you can send only 

the latest version of the data that was dropped. This section will explore how to extend the 

 ReplicationManager  from  Chapter   5    to support reliably resending the most recent data, 

inspired by the  Starsiege: Tribes  ghost manager. 

 The  ReplicationManager  of  Chapter   5    has a very simple interface. Dependent 

modules create an output stream, prepare a packet, and then call  ReplicateCreate() , 

 ReplicateUpdate(),  or  ReplicateDestroy()  to create, update, or destroy a remote 

object, accordingly. The problem with this methodology is that the  ReplicationManager  

neither controls what data goes in which packets, nor keeps a record of that data. This does not 

lend itself well to supporting reliability. 

 To send data reliably, the  ReplicationManager  needs to be able to resend data whenever 

it learns that a packet carrying reliable data has dropped. To support this, the host application 
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needs to poll the  ReplicationManager  regularly, offering it a primed packet and asking if it 

has data it would like to write into the packet. This way, whenever the  ReplicationManager  

knows about lost reliable data, it can write whatever it needs to into the provided packet. The 

host can pick the frequency at which it offers packets to the  ReplicationManager  based on 

estimated bandwidth, packet loss rate, or any other heuristic. 

 It’s worthwhile to extend this mechanism further and consider how things could work if the only 

time the  ReplicationManager  wrote data into packets were when the client periodically 

offered it an outgoing packet to fill. This would mean that instead of gameplay systems creating 

a packet whenever they have changed data to replicate, they can instead just notify the 

 ReplicationManager  about the data, and the  ReplicationManager  can take care of writing 

the data at the next opportunity. This nicely creates a further layer of abstraction between gameplay 

systems and network code. The gameplay code no longer needs to create packets or care about 

the network. Instead, it just notifies the  ReplicationManager  about important changes, and the 

 ReplicationManager  takes care of writing those changes into packets periodically. 

 This also happens to create the perfect pathway for up-to-date reliability. Consider the three 

basic commands: create, update, and destroy. When the gameplay system sends a replication 

command for a target object to the  ReplicationManager , the  ReplicationManager  can 

use that command and object to write the appropriate state into a future packet. It can then 

store the replication command, target object pointer, and written state bits as transmission 

data in the corresponding  InFlightPacket  record. If the  ReplicationManager  learns 

that a packet dropped, it can find the matching  InFlightPacket , look up the command and 

object that it used when writing the packet originally, and then write fresh data to a new packet 

using the same command, object, and state bits. This is a vast improvement over TCP, because 

the  ReplicationManager  does not use the original, potentially stale data to write the new 

packet. It instead uses only the current state of the target object, which could be a 1/2 second 

newer than the original packet by this point. 

 To support such a system, the  ReplicationManager  needs to offer an interface that allows 

gameplay systems to batch replication requests. For each game object, a gameplay system 

can batch creation, a set of property updates, or destruction. The  ReplicationManager  

keeps track of the latest replication command for each object, so it can write the appropriate 

replication data into a packet whenever it is offered one. It stores these  ReplicationCommand s 

in  mNetworkReplicationCommand , a member variable mapping from an object’s network 

identifier to the latest command for that object. Listing 7.10 shows the interface for batching 

commands, as well as the inner workings of the  ReplicationCommand  itself. 

  Listing 7.10 Batching Replication Commands 

 void ReplicationManager::BatchCreate( 
    int inNetworkId, uint32_t inInitialDirtyState) 
 { 
    mNetworkIdToReplicationCommand[inNetworkId] = 
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ReplicationCommand(inInitialDirtyState); 
 } 

 void ReplicationManager::BatchDestroy(int inNetworkId) 
 { 
    mNetworkIdToReplicationCommand[inNetworkId].SetDestroy(); 
 } 

 void ReplicationManager::BatchStateDirty( 
    int inNetworkId, uint32_t inDirtyState) 
 { 
    mNetworkIdToReplicationCommand[inNetworkId]. 

AddDirtyState(inDirtyState); 
 } 

 ReplicationCommand::ReplicationCommand(uint32_t inInitialDirtyState): 
    mAction(RA_Create), mDirtyState(inInitialDirtyState) {} 

 void ReplicationCommand::AddDirtyState(uint32_t inState) 
 { 
    mDirtyState |= inState; 
 } 

 void ReplicationCommand::SetDestroy() 
 { 
    mAction = RA_Destroy; 
 }  

 Batching a create command maps an object’s network identifier to a  ReplicationCommand  

containing a create action, and state bits specifying all the properties that should be replicated, 

as described in  Chapter   5   . Batching an update command binary ORs additional state bits as 

dirty so that the  ReplicationManager  knows to replicate the changed data. Game systems 

should batch update commands whenever they change data that needs to be replicated. 

Finally, batching a destroy command finds the  ReplicationCommand  for the object’s network 

identifier and changes its action to destroy. Note that if destruction is batched for an object, it 

supersedes any previously batched instructions, since in the latest state methodology, it makes 

no sense to send state updates for an object that has already been destroyed. Once commands 

have been batched, the  ReplicationManager  fills the next packet it is offered using the 

 WriteBatchedCommands()  method shown in Listing 7.11. 

  Listing 7.11 Writing Batched Commands 

 void ReplicationManager::WriteBatchedCommands( 
    OutputMemoryBitStream& inStream, InFlightPacket* inFlightPacket) 
 { 
    ReplicationManagerTransmissionDataPtr repTransData = nullptr; 
    //run through each replication command and rep if necessary 
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    for(auto& pair: mNetworkIdToReplicationCommand) 
    { 

ReplicationCommand& replicationCommand = pair.second; 
if(replicationCommand.HasDirtyState()) 
{ 

int networkId = pair.first; 
GameObject* gameObj = 

mLinkingContext->GetGameObject(networkId); 
if(gameObj) 
{ 

ReplicationAction action = 
replicationCommand.GetAction(); 

ReplicationHeader rh(action, networkId, 
gameObj->GetClassId()); 

rh.Write(inStream); 

uint32_t dirtyState = 
replicationCommand.GetDirtyState(); 

if(action == RA_Create || action == RA_Update) 
{ 

gameObj->Write(inStream, dirtyState); 
} 
//create transmission data if we haven't yet 
if(!repTransData) 
{ 

repTransData = 
std::make_shared<ReplicationManagerTransmissionData>( 

this); 
inFlightPacket->SetTransmissionData

('RPLM',repTransData); 
} 
//now store what we put in this packet and clear state 
repTransData->AddReplication( networkId, action, 

dirtyState); 
replicationCommand.ClearDirtyState(dirtyState); 

} 
} 

    } 
 } 
 void ReplicationCommand::ClearDirtyState(uint32_t inStateToClear) 
 { 
    mDirtyState &= ~inStateToClear; 
    if(mAction == RA_Destroy) 
    { 

mAction = RA_Update; 
    } 
 } 
 bool ReplicationCommand::HasDirtyState() const 
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 { 
    return (mAction == RA_Destroy) || (mDirtyState != 0); 
 }  

  WriteBatchedCommand()  starts by iterating over the replication command map. If it finds a 

network identifier with a batched command, defined as having either nonzero dirty state or a 

destroy action, it writes the  ReplicationHeader  and state, just as it did in  Chapter   5   . Then, if 

it has not yet created a  ReplicationTransmissionData  instance, it creates one and adds 

it to the  InFlightPacket . Instead of doing this at the top of the method, it does this only 

once it has determined that it has state to replicate. It then appends the network identifier, 

replication action, and dirty state bits to the transmission data so that it has a complete record 

of what it wrote into the packet. Finally, it clears the dirty state in the replication command, so 

that it will not attempt to replicate the data again until it changes. By the end of the call, the 

packet contains all the replication data that higher-level game systems have batched, and the 

 InFlightPacket  contains a record of the information used during replication. 

 When the  ReplicationManager  learns of the packet’s fate from the 

 DeliveryNotificationManager , it responds with one of the two methods in Listing 7.12. 

  Listing 7.12 Responding to Packet Delivery Status Notification 

 void ReplicationManagerTransmissionData::HandleDeliveryFailure( 
    DeliveryNotificationManager* inDeliveryNotificationManager) const 
 { 
    for(const ReplicationTransmission& rt: mReplications) 
    { 

int networkId = rt.GetNetworkId(); 
GameObject* go; 
switch(rt.GetAction()) 
{ 

case RA_Create: 
{ 

//recreate if not destroyed 
go = mReplicationManager->GetLinkingContext() 

->GetGameObject(networkId); 
if( go ) 
{ 

mReplicationManager->BatchCreate(networkId, 
rt.GetState()); 

} 
} 
break; 

case RA_Update: 
go = mReplicationManager->GetLinkingContext() 

->GetGameObject(networkId); 
if(go) 
{ 
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mReplicationManager->BatchStateDirty(networkId, 
rt.GetState()); 

} 
break; 

case RA_Destroy: 
mReplicationManager->BatchDestroy(networkId); 
break; 

} 
    } 
 } 

 void ReplicationManagerTransmissionData::HandleDeliverySuccess
   (DeliveryNotificationManager* inDeliveryNotificationManager) const 
 { 
    for(const ReplicationTransmission& rt: mReplications) 
    { 

int networkId = rt.GetNetworkId(); 
switch(rt.GetAction()) 
{ 

case RA_Create: 
//once ackd, can send as update instead of create 
mReplicationManager->HandleCreateAckd(networkId); 
break; 

case RA_Destroy: 
mReplicationManager->RemoveFromReplication(networkId); 
break; 

} 
    } 
 }  

  HandleDeliveryFailure()  implements the real magic of up-to-date reliability. If a dropped 

packet contains a creation command, it rebatches the creation command. If it contains a state 

update command, it marks the corresponding state as dirty so that the new state values will be 

sent at the next opportunity. Finally, if it contains a destroy command, it rebatches the destroy 

command. In the event of successful delivery,  HandleDeliverySuccess()  takes care of some 

housekeeping tasks. If the packet contained a creation command, it changes the creation command 

to an update command so that the object will not be replicated as a creation the next time a game 

system marks its state as dirty. If the packet contained a destroy command, the method removes the 

corresponding network identifier from the  mNetworkIdToReplicationCommandMap  because 

there should be no more replication commands batched by the game. 

  Optimizing from In-Flight Packets 

 There is a significant optimization worth making to the  ReplicationManager , again 

taking a lead from the  Starsiege: Tribes  ghost manager. Consider the case of a car driving 

through the game world for 1 second. If a server sends state reliably to a client 20 times a 
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second, each packet will contain a different position of the car as it travels. If the packet sent 

at 0.9-second drops, it might be 200 ms later before the server’s  ReplicationManager  

realizes and attempts to resend new data. By that point, the car would have stopped. 

Because the server was sending constant updates while the car was driving, there would 

already be new packets on their way to the client, containing updated positions of the 

car. It would be wasteful for the server to resend the car’s current position when a packet 

containing that very data was already in flight to the client. If there were some way for the 

 ReplicationManager  to know about the in-flight data, it could avoid sending redundant 

state. Luckily, there is! When the  ReplicationManager  first learns of the dropped data, 

it can search through the  DeliveryNotificationManager ’s list of  InFlightPackets  

and check the  ReplicationTransmissionData  stored in each one. If it sees state data 

in flight for the given object and property, then it knows it does not need to resend that 

data: It’s already on the way! Listing 7.13 contains an updated  RA_Update  case for the 

 HandleDeliveryFailure()  method that does just this. 

  Listing 7.13 Avoiding Redundant Retransmission 

 void ReplicationManagerTransmissionData::HandleDeliveryFailure( 
    DeliveryNotificationManager* inDeliveryNotificationManager) const 
 { 
    ... 
    case RA_Update: 

go = mReplicationManager->GetLinkingContext() 
->GetGameObject(networkId); 

if(go) 
{ 

//look in all in flight packets, 
//remove written state from dirty state 
uint32_t state = rt.GetState(); 
for(const auto& inFlightPacket: 

inDeliveryNotificationManager->GetInFlightPackets()) 
{ 

ReplicationManagerTransmissionDataPtr rmtdp = 
 std::static_pointer_cast
    <ReplicationManagerTransmissionData>( 

inFlightPacket.GetTransmissionData('RPLM')); 
if(rmtdp) 
{ 

for(const ReplicationTransmission& otherRT: 
rmtdp->mReplications ) 

{ 
if(otherRT.GetNetworkId() == networkId) 
{ 

state &= ~otherRT.GetState(); 
} 

} 
} 
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} 
//if there's still any dirty state, rebatch it 
if( state ) 
{ 

mReplicationManager->BatchStateDirty(networkId, state); 
} 

} 
break; 

    ... 
 }  

 The update case first captures the state that was dirty in the original replication. Then, it iterates 

through each of the  InFlightPacket s stored by the  DeliveryNotificationManager . In 

each packet, it tries to find the  ReplicationManager ’s transmission data entry. If it finds one, 

it searches through the contained  ReplicationTransmission s. For each replication, if the 

network identifier matches the identifier in the original dropped replication, it unsets any bits 

in the original state that are set in the found state. This way, the  ReplicationManager  avoids 

resending any state already in flight. If no bits are still set in the state by the time the method 

finishes checking all packets, it doesn’t need to rebatch any state at all. 

 The aforementioned “optimization” can require quite a bit of processing each time a full 

packet drops. However, given the typically low frequency of dropped packets, and the fact 

that bandwidth is often more dear than processing power, it can still be beneficial. As always, 

consider the tradeoffs in the specific context of your game.   

  Simulating Real-World Conditions 
 Given the hazards that await your game in the real world, it is important to create a test 

environment that can properly simulate latency, jitter, and packet loss. You can engineer a testing 

module to sit between a socket and the rest of your game and simulate real-world conditions. To 

simulate loss, decide the probability of a packet dropping that you’d like to simulate. Then, each 

time a packet comes in, use a random number to decide whether to drop the packet, or pass it on 

to the application. To simulate latency and jitter, decide the average latency and jitter distribution 

for the test. When a packet arrives, calculate the timestamp at which it would have arrived in the 

real world by adding its latency and jitter to the time at which it actually arrived. Then, instead of 

sending the packet to your game to be processed right away, stamp it with the simulated arrival 

time and insert it into a sorted list of packets. Finally, each frame of your game, examine the sorted 

list and only process those packets whose simulated arrival times are lower than the current time. 

Listing 7.14 gives an example of how to do so. 

  Listing 7.14 Simulating Loss, Latency, and Jitter 

 void RLSimulator::ReadIncomingPacketsIntoQueue() 
 { 
    char packetMem[1500]; 
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    int packetSize = sizeof(packetMem); 
    InputMemoryBitStream inputStream(packetMem, packetSize * 8); 
    SocketAddress fromAddress; 

    while(receivedPackedCount < kMaxPacketsPerFrameCount) 
    { 

int cnt = mSocket->ReceiveFrom(packetMem, packetSize, fromAddress); 
if(cnt == 0) 
{ 

break; 
} 
else if(cnt < 0) 
{ 

//handle error 
} 
else 
{ 

//now, should we process the packet? 
if(RoboMath::GetRandomFloat() >= mDropPacketChance) 
{ 

//we made it, queue packet for later processing 
float simulatedReceivedTime = 

Timing::sInstance.GetTimef() + 
mSimulatedLatency + 
(RoboMath::GetRandomFloat() - 0.5f) * 
mDoubleSimulatedMaxJitter; 

//keep list sorted by simulated receive time 
auto it = mPacketList.end(); 
while(it != mPacketList.begin()) 
{ 

--it; 
if(it->GetReceivedTime() < simulatedReceivedTime) 
{ 

//time comes after this element, so inc and break 
++it; 
break; 

} 
} 
mPacketList.emplace(it, simulatedReceivedTime, 

inputStream, fromAddress); 
} 

} 
    } 
 } 

 void RLSimulator::ProcessQueuedPackets() 
 { 
    float currentTime = Timing::sInstance.GetTimef(); 
    //look at the front packet... 
    while(!mPacketList.empty()) 
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    { 
ReceivedPacket& packet = mPacketList.front(); 
//is it time to process this packet? 
if(currentTime > packet.GetReceivedTime()) 
{ 

ProcessPacket(packet.GetInputStream(), 
packet.GetFromAddress()); 

mPacketList.pop_front(); 
} 
else 
{ 

break; 
} 

    } 
 }  

  tip 

 For an even more accurate simulation, consider incorporating the fact that packets 

are usually dropped or delayed in groups of sequential packets. When a random 

check indicates packets should be dropped, you can use another random number 

to determine how many packets in a row should be affected.    

     Summary 
 The real world is a scary place for multiplayer games. Players want immediate feedback from 

their inputs, and the forces of nature act to prevent that. Even without a network component, 

video games have to deal with many sources of latency, including input sampling latency, 

rendering latency, and display-based latency. With physical networking added to the mix, 

multiplayer games must also deal with latency from propagation delay, transmission delay, 

processing delay, and queuing delay. As a game developer, there are actions you can take to 

reduce these delays, but they may be very expensive and out of scope for your game. 

 Fluctuating network conditions lead to packets arriving late, out of order, or not at all. To 

build an enjoyable game experience, you need some level of reliable transmission to mitigate 

these issues. One way to guarantee reliable transmission is to use the TCP transport protocol. 

Although TCP is a well-tested, turn-key reliability solution, it has a few disadvantages. It works 

for games that need absolutely all their data transported reliably, but is not suitable for typical 

games that care more about up-to-date data than perfectly reliable data. For these games, UDP 

is the best choice because of the flexibility it offers. 
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 When using UDP you have the ability and requirement to build your own custom reliability 

layer. The foundation of this is usually a notification system that alerts your game when packets 

arrive successfully and when they drop. By keeping a record of the data in each packet, the 

game can then decide how to act when notified about a packet’s fate. 

 You can build a variety of reliability modules on top of a delivery notification system. A very 

common module provides for redelivery of up-to-date object state in the event of packet loss, 

similar to the  Starsiege: Tribes  ghost manager. It does this by tracking the state sent in each 

packet, and then resending the latest version of any appropriate state not already in flight 

when notified of a lost packet. 

 It is important to test your reliability system in a controlled environment before exposing it 

to the harsh conditions of the real world. Using random-number generators and a buffer of 

incoming packets, you can build a system that simulates packet loss, latency, and jitter. You 

can then see how both your reliability system and your entire game perform under various 

simulated network conditions. 

 Once you have dealt with the low-level problems of the real world, you can begin to think 

about addressing latency on a higher level.  Chapter   8   , “Improved Latency Handling,” addresses 

the challenge of giving networked players as close to a lag-free experience as possible.  

  Review Questions 
1.    What are five processes which contribute to non-network latency?   

2.    What are the four delays which contribute to network latency?   

3.    Give one manner to reduce each network delay.

4.    For what does RTT stand and what does it mean?   

5.    What is jitter? What are some causes of jitter?   

6.    Extend the  DeliveryNotificationManager::ProcessSequenceNumber()  to

function properly in the case of sequence numbers wrapping back to 0.   

7.    Expand the  DeliveryNotificationManager  so that all packets received on the same 

frame are buffered and then sorted before the  DeliveryNotificationManager  

decides which packets are stale and should be dropped.   

8.    Explain how a  ReplicationManager  can use the  DeliveryNotificationManager  

to provide improved reliability over TCP, and send up-to-date data to recover from 

dropped packets.   

9.    Use the  DeliveryNotificationManager  and  ReplicationManager  to implement 

a two-player tag game. Simulate real-life conditions to see how tolerant your logic is of 

packet loss, latency, and jitter.    
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 C H A P T E R  8 

 IMPROVED LATENCY 

HANDLING 

      As a multiplayer game programmer, latency is your 

enemy. Your job is to make your players feel like 

they're playing on a server across the street, when 

it may really be across the country. This chapter 

explores some of the ways to make that happen.    
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     The Dumb Terminal Client 
 On the topic of client-server network topology, Tim Sweeney famously once wrote, “The 

server is the man!” He was referring to the fact that in  Unreal’s  networking system, the server 

itself is the only host that necessarily has a true and correct game state. This is a traditional 

requirement of any cheat-resistant client-server setup: The server is the only host running 

a simulation that matters. That means there is always some delay between the time when 

a player takes an action and the time when the player can observe the true game state that 

results from that action.  Figure   8.1    illustrates this by showing the round trip of a packet. 
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  Figure 8.1  Packet round trip       

  In this example, the round trip time (RTT) between Client A and the server is 100 ms. At time 

0, Player A’s avatar on Client A is at rest, with a Z position of 0. Player A then pushes the jump 

button. Assuming roughly symmetric latency, it takes about 50 ms, or 1/2 RTT, for the packet 

carrying Player A’s input to reach the server. When it receives the input, the server begins the 

player’s jump, and sets her avatar’s Z position to 1. It sends out new state, which reaches Client 

A another 50 ms, or 1/2 RTT, later. Client A updates Player A’s avatar’s Z position based on 

the state sent from the server and displays the results on screen. So finally, a full 100 ms after 

pushing the jump button, Player A gets to see the effect of the jump action. 

 From this demonstration, you can extract a useful conclusion: The true simulation running 

on the server is always 1/2 RTT ahead of the true simulation a remote player perceives. Put 

another way, if a player observes only the true simulation state replicated to the client, the 

player’s perception of the state of the world is always at least 1/2 RTT older than the current true 

world state on the server. Depending on network traffic, physical distance and intermediate 

hardware, this can be as high as 100 ms or more. 

 Despite the noticeable lag between input and response, there were early multiplayer games 

that shipped with just this implementation. The original  Quake  was one game that endured 

despite its input latency. In  Quake , and many of the other client-server games of the time, 

clients sent input to the server, and then the server ran the simulation and sent results back 
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to the client for display. Clients in these games were referred to as  dumb terminals  because 

they didn’t need to understand anything about the simulation; their only purpose was to 

transmit input, receive the resulting state, and display it to the user. Because they showed only 

the state the server dictated, they never showed the user incorrect state. Although it might 

be delayed, whatever state a dumb terminal showed to a user was definitely a correct state at 

some recent point in time. Because the state throughout the system was always consistent and 

never incorrect, this method of networking can be classified as a  conservative algorithm . At 

the expense of subjecting the user to noticeable latency, the conservative algorithm is at least 

never incorrect. 

 Besides just a feeling of latency, there is another problem with a pure dumb terminal.  Figure   8.2    

continues the example of Player A’s jump. 
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  Figure 8.2  Jumping with 15 packets per second       

  Due to a high-powered GPU, Client A can run at 60 frames per second. The server can also run 

at 60 frames per second. However, due to bandwidth constraints on the connection between 

the server and Client A, the server can only send state updates 15 times per second. Assuming 

the player travels upward at 60 units per second at the start of her jump, the server smoothly 

increases her Z position by 1 unit each frame. However, it only sends state to the client every four 

frames. When Client A receives the state, it updates Player A’s avatar’s Z location, but then must 

render her at that Z location for four frames until new state from the server arrives. This means 

Player A sees the same picture on screen four frames in a row. Even though she spent good 



ptg16606381

236 CHAPTER 8 IMPROVED LATENCY HANDLING

money on a GPU that can render at 60 frames per second, she only gets the experience of playing 

at 15 frames per second due to network limitations. This would probably make her unhappy. 

 There is a third problem. Besides just causing a general feeling of unresponsiveness, this type of 

latency in a first-person shooter makes it difficult to aim at other players. Without an up-to-date 

representation of where players are, it can become an unpleasant challenge to figure out where 

to aim. It can be frustrating for players to think they are pulling off headshots, only to miss 

because their enemies were actually 100 ms ahead of where they were rendered. Too many 

experiences like that can cause players to switch to another game. 

 When building a client-server game, you cannot escape the issue of latency. However, you can 

reduce its impact on the player experience, and the following sections explore some common 

methods that multiplayer games use to handle latency.  

  Client Side Interpolation 
 The jumpiness brought on by infrequent state updates from the server can make players 

feel like their game is running slower than it actually is. One way to alleviate this is through 

 client side interpolation . When using client side interpolation, the client game does not 

automatically teleport objects to their new positions sent by the server. Instead whenever the 

client receives new state for an object, it smoothly interpolates to that state over time using 

what’s known as a  local perception filter .  Figure   8.3    illustrates the timing. 
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  Figure 8.3  Timing of client side interpolation       
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  Let IP represent the  interpolation period  in milliseconds, or how long the client takes to 

interpolate from old state to new state. Let PP represent the  packet period  in milliseconds, 

or how long the server waits between sending packets. The client finishes interpolating to a 

packet’s state IP milliseconds after the packet arrives. Thus if IP is less than PP, the client will 

stop interpolating before a new packet has arrived, and the player may still experience a stutter. 

To make sure that the client state is changing smoothly each frame and the interpolation never 

stops, IP should be no less than PP. That way, whenever the client finishes interpolating to a 

given state, it will have already received the next state and can begin the process again. 

 Remember that a dumb terminal with no interpolation is always 1/2 RTT behind the server. If 

state arrives but the client does not display it right away, then the player’s view of the world 

lags even further behind. Games using client side interpolation display state to players that is 

approximately 1/2 RTT + IP milliseconds behind the true state on the server. Thus, to minimize 

latency, IP should be as small as possible. This desire, combined with the fact IP must be greater 

than or equal to PP to prevent stutter, means it should be exactly equal to the PP. 

 The server can either notify the client how frequently it intends to send packets, or the client 

can compute the PP empirically by noting how rapidly packets arrive. Note that the server 

should set the packet period based on bandwidth, not latency. The server can send packets 

as frequently as it believes the network between the client and server can transmit them. 

This means that the latency perceived by players of games that use this type of client side 

interpolation is a factor of not only network latency, but also of network bandwidth. 

 Continuing the previous example, if the server sends 15 packets per second, the packet period 

is 66.7 ms. This means adding 66.7 ms of latency to 1/2 RTT that is already 50 ms. However, the 

game will look much smoother with interpolation than without, and it can make the experience 

more pleasant for the player such that latency is less of a concern. 

 Games that allow the player to manipulate the camera have a potential advantage here that can 

help reduce the feeling of extra latency. If the camera pose is not critical to the simulation, the 

game can handle it all client side. Walking around or shooting should require a trip to the server 

and back because they affect the simulation directly. Just aiming a camera might not affect the 

simulation in any manner, and if so, the client can update the renderer’s view transform without 

waiting for a response from the server. Locally handling camera interaction gives the player 

instant feedback when she moves the camera. This combined with the smooth interpolation 

can help alleviate a lot of the unpleasant feelings associated with increased latency. 

 Client side interpolation still is considered a conservative algorithm: Although it may 

sometimes represent a state that the server did not replicate exactly, it only represents 

states that are between two states that the server did simulate. The client smoothens out the 

transition from state to state, but never guesses at what the server is doing, and therefore 

never ends up at a wildly incorrect state. This is not true about all methodologies, as the next 

section shows.  
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  Client Side Prediction 
 Client side interpolation can smooth out your players’ gameplay experiences, but it still won’t 

bring them closer to what’s actually happening on the server. Even with a tiny interpolation 

period, state is still at least 1/2 RTT old by the time the player sees it. To show game state 

that is any more current, your game needs to switch from interpolation to extrapolation. 

Through extrapolation, your client can take slightly old state received by the client and bring it 

approximately up to date before displaying it to the player. Techniques that perform this sort of 

extrapolation are often referred to as  client side prediction . 

 To extrapolate the current state, the client must be able to run the same simulation code that 

the server runs. When the client receives a state update, it knows the update is 1/2 RTT ms 

old. To make the state more current, the client simply runs the simulation for an extra 1/2 RTT. 

Then, when the client displays the result to the player, it is a much closer approximation of 

the true game state currently simulating on the server. To maintain this approximation, the 

client continues running the simulation each frame and displaying the results to the player. 

Eventually, the client receives the next state packet from the server and internally simulates 

it for 1/2 RTT ms, at which point it ideally matches the exact state that the client has already 

calculated based on the previous received state! 

 To perform extrapolation by 1/2 RTT, the client must first be able to approximate the RTT. 

Because the clocks on the server and client are not necessarily in sync, the naïve approach of 

having the server timestamp a packet and then having the client check the age of the stamp 

will not work. Instead, the client must calculate the entire RTT and cut it in half.  Figure   8.4    

illustrates how to do so. 
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  Figure 8.4  RTT calculation       

  The client sends a packet to the server containing a timestamp based on the client’s own 

local clock. Upon receiving this packet, the server copies that timestamp into a new packet 

and sends it back to the client. When the client receives this new packet, it subtracts the old 
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timestamp, based on its clock, from the current time on its clock. This yields the exact amount 

of time between when the client first sent the packet and when it received the response—the 

definition of RTT. With this information, the client knows approximately how old the rest of the 

data in the packet is, and can use that information to extrapolate the contained state. 

  warning 

 Remember that 1/2 RTT is only an approximation of how old the data is. Traffic 

does not necessarily flow with the same speed in both directions, and thus the 

actual travel time from server to client may be more or less than 1/2 RTT. Regardless, 

1/2 RTT is a good enough approximation for most real-time game purposes.  

 In  Robo Cat Action , discussed in  Chapter   6   , the client already sends timestamped moves to the 

server, so the server just needs to send the timestamp from the most recent move back to the 

client when it sends state. Listing 8.1 shows the changes to the  NetworkManagerServer  

which handle this. 

  Listing 8.1 Returning Client Timestamp to Client 

 void NetworkManagerServer::HandleInputPacket( 
  ClientProxyPtr inClientProxy, 
  InputMemoryBitStream& inInputStream) 
 { 
  uint32_t moveCount = 0; 
  Move move; 
  inInputStream.Read(moveCount, 2); 
  for(; moveCount > 0; –moveCount) 
  { 
    if(move.Read(inInputStream)) 
    { 

if(inClientProxy->GetUnprocessedMoveList().AddMoveIfNew(move)) 
{ 

inClientProxy->SetIsLastMoveTimestampDirty(true); 
} 

    } 
  } 
 } 

 bool MoveList::AddMoveIfNew(const Move& inMove) 
 { 
  float timeStamp = inMove.GetTimestamp(); 
  if(timeStamp > mLastMoveTimestamp) 
  { 
    float deltaTime = mLastMoveTimestamp >= 0.f? 

timeStamp - mLastMoveTimestamp: 0.f; 
    mLastMoveTimestamp = timeStamp; 
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    mMoves.emplace_back(inMove.GetInputState(), timeStamp, deltaTime); 
    return true; 
  } 
  return false; 
 } 

 void NetworkManagerServer::WriteLastMoveTimestampIfDirty( 
  OutputMemoryBitStream& inOutputStream, 
  ClientProxyPtr inClientProxy) 
 { 
  bool isTimestampDirty = inClientProxy->IsLastMoveTimestampDirty(); 
  inOutputStream.Write(isTimestampDirty); 
  if(isTimestampDirty) 
  { 
    inOutputStream.Write( 

inClientProxy->GetUnprocessedMoveList().GetLastMoveTimestamp()); 
    inClientProxy->SetIsLastMoveTimestampDirty(false); 
  } 
 }  

 For each incoming input packet, the server calls  HandleInputPacket , which calls the move 

lists’s  AddMoveIfNew  on each move in the packet.  AddMoveIfNew  checks each move’s 

timestamp to see if it is newer than the most recently received move. If so, it adds the move 

to the move list and updates the list’s most recent timestamp. If  AddMoveIfNew  added 

any moves,  HandleInputPacket  marks the most recent timestamp as dirty so that the 

 NetworkManager  will know the client should be sent this timestamp. When it is finally time for 

the  NetworkManager  to send a packet to the client, it checks to see if the timestamp for the 

client is dirty. If it is, it writes the cached timestamp from the move list into the packet. When 

the client receives this timestamp on the other end, it subtracts the timestamp from its current 

time, giving it an exact measure of how much time passed between when it sent its input to the 

server and when it received a corresponding response. 

  Dead Reckoning 

 Most aspects of a game simulation are deterministic, so the client can simulate them simply 

by executing a copy of the server’s simulation code. Bullets fly through the air in the same way 

on both the server and the client. Balls bounce off walls and floors and obey the same laws 

of gravity. If the client has a copy of the AI code, it can even simulate AI-driven game objects 

to keep them in sync with the server. However, there is one class of objects that is completely 

nondeterministic and impossible to simulate perfectly: human players. There is no way the 

client can know what remote players are thinking, what actions they will initiate, or where they 

will move. This puts a kink in the extrapolation plan. In this scenario, the best solution is for the 

client to make an educated guess, and then correct this guess as necessary when an update 

arrives from the server. 
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 In a networked game,  dead reckoning  is the process of predicting an entity’s behavior based 

on the assumption that it will keep doing whatever it’s currently doing. If this is a running 

player, it means assuming the player will keep running in the same direction. If it’s a banking 

plane, it means assuming it will keep banking. 

 When the simulated object is controlled by a player, dead reckoning requires running the 

same simulation that the server is running, but in the absence of changing player input. This 

means that in addition to replicating the pose of player-controlled objects, the server must 

replicate any variables used by the simulation to calculate future poses. This includes velocity, 

acceleration, jump state, or more, depending on the specifics of your game. 

 As long as remote players continue doing exactly what they're doing, dead reckoning allows 

clients’ games to accurately predict the current true world state on the server. However, when 

remote players take unexpected actions, the client simulation diverges from the true state, 

and must be corrected. Given that dead reckoning makes assumptions about behavior on the 

server before having all the facts, dead reckoning is not considered a conservative algorithm. 

It is instead known as an  optimistic algorithm . It hopes for the best, guesses right most of the 

time, but sometimes is completely wrong and must adjust.  Figure   8.5    illustrates this. 
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of Avatar B

50 ms
Pos: (50, 0)
Vel: (1, 0)

0 ms
Pos: (0, 0)
Vel: (1, 0)

117 ms
Pos: (117, 0)
Vel: (1, 0)

67 ms
Pos: (67, 0)
Vel: (1, 0)

117 ms
Pos: (134, 0)
Vel: (0, 1)

184 ms
Pos: (134, 50)
Vel: (0, 1)

184 ms
Pos: (134, 50)
Vel: (0, 1)

  Figure 8.5  Dead reckoning misprediction       

  Assume an RTT of 100 ms and a frame rate of 60 frames per second. At time 50 ms, Client A 

receives information that Player B is at position (0, 0), running in the positive X direction at 1 

unit per millisecond. Because this state is behind by 1/2 RTT, it simulates Player B’s continued 

running at a constant speed for 50 ms before displaying Player B’s position as (50, 0). Then, 

while waiting four frames for another state packet, it continues to simulate Player B’s run each 

frame. By the fourth frame, at time 117 ms, it has predicted that Player B should be at (117, 0). 

It then receives a packet from the server replicating Player B’s velocity as (1, 0) and pose as 

(67, 0). The client again simulates ahead for 1/2 RTT and finds that the position matches what it 

expected. 
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 All is well. It continues the simulation for another four frames at which point it predicts Player 

B to be at (184, 0). However, at that point, it receives new state from the server dictating that 

Player B’s position is (134, 0) but that his velocity has changed to (0, 1). Player B most likely 

stopped running forward and started strafing. Simulating ahead by 1/2 RTT yields a position 

of (134, 50), not at all what dead reckoning on the client previously predicted. Player B took an 

unexpected, unpredictable action, and as such, Client A’s local simulation diverged from the 

true state of the world. 

 When a client detects that its local simulation has grown inaccurate, there are three ways it can 

remedy the situation: 

■ Instant state update.  Simply update to the new state immediately. The player may notice 

the object jumping around, but that might be preferable to having inaccurate data. 

Remember that even after the immediate update, the state from the server is still 1/2 RTT 

old, so the client should use dead reckoning and the latest state to simulate it another 

1/2 RTT.  

■ Interpolation.  Taking a page from the client side interpolation method, your game can

smoothly interpolate to the new state over a set number of frames. This could mean 

calculating and storing a delta to each incorrect state variable (position, rotation, etc.)

that should be applied in each frame. Alternatively, you could just move the object part 

way to the corrected position and wait for future state from the server to continue the

correction. One popular method is to use cubic spline interpolation to create a path that

matches both position and velocity to transition smoothly from the predicted state to the

corrected state. There is more in-depth information on this technique in the “Additional

Readings” section. 

■ Second-order state adjustment.  Even interpolation may be jarring if it suddenly ramps up 

the velocity of a near-stationary object. To be more subtle, your game can adjust second-

order parameters like acceleration to very gently ease the simulation back in sync. This can 

be mathematically complex, but can provide the least noticeable corrections.   

 Typically, games will use a combination of these methods, based on the magnitude of the 

divergence and on the specifics of the game. A fast-paced shooter will usually interpolate for a 

small error and teleport for a large. A slower-paced game like a flight simulator or giant robot 

mech title might use second-order state adjustment for all but the largest errors. 

 Dead reckoning works well for remote players, because the local player doesn’t actually know 

exactly what remote players are doing. When Player A watches Player B’s avatar run across the 

screen, the simulation diverges every time Player B changes direction, but that’s very hard for 

Player A to determine; without being in the same room as Player B, Player A doesn’t actually 

know when Player B is changing input. For the most part, she sees the simulation as consistent, 

even though the client application is always guessing at least 1/2 RTT ahead of whatever the 

server has told it.  
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  Client Move Prediction and Replay 

 Dead reckoning cannot hide latency for a local player. Consider the case of Player A, on Client 

A, starting to run forward. Dead reckoning uses state sent by the server to simulate, so from the 

time she pushes forward, it takes 1/2 RTT for the input to get to server, at which point the server 

adjusts her velocity. Then it takes 1/2 RTT for the velocity to get back to Client A, at which point 

the game can use dead reckoning. There’s still a lag of RTT between when a player presses a 

button and when that player sees results. 

 There is a better alternative. Player A enters all her input directly into Client A, so the game on 

Client A can just use that input to simulate her avatar. As soon as Player A pushes a button to 

run forward, the client can start simulating her run. When the input packet reaches the server, 

it can begin the simulation as well, updating Player A’s state accordingly. Not everything is so 

simple though. 

 A problem arises when the server sends a packet back to Client A containing Player A’s 

replication state. Remember that when using client side prediction, all incoming state should 

be simulated an additional 1/2 RTT to catch up to the true state of the world. When simulating 

remote players, the client can just use dead reckoning and update assuming no change in 

input. Typically the updated incoming state will match the exact state the client has already 

predicted—if it doesn’t, the client can smoothly interpolate the remote player into place. 

This won’t work for local players. Local players know exactly where they are and will notice 

interpolation. They should not experience drifting or smoothing whenever they change their 

input. Ideally, moving around should feel to a local player like she is playing a single player, non-

networked game. 

 One possible solution to this problem is to completely ignore the server’s state for the local 

player. Client A can derive Player A’s state solely from its local simulation, and Player A will have 

a smooth movement experience, with no latency. Unfortunately, this can cause Player A’s state 

to diverge from the server’s true state. If Player B bumps into Player A, there is no way for Client 

A to accurately predict the server’s resolution of the collision. Only the server knows Player 

B’s true position. Client A has a dead reckoned approximation of Player B’s position, so cannot 

resolve the collision in exactly the same way the server would. Player A might end up in a pit of 

fire on the server, yet free and clear on the client, which can lead to much confusion. Because 

Client A ignores all incoming Player A state, there would be no way for the client and server to 

ever sync up again. 

 Luckily, there is a better solution. When Client A receives Player A’s state from the server, 

Client A can use Player A’s inputs to resimulate any state changes Player A instigated since the 

server calculated the incoming state. Instead of simulating the 1/2 RTT using dead reckoning, 

the client can simulate the 1/2 RTT using the exact input Player A used when the client side 

simulation originally ran. By introducing the concept of a  move , input state tied to a timestamp, 

the client can keep track of what Player A was doing at all times. Whenever incoming state 
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arrives for a local player, the client can figure out which moves the server did not yet receive 

when calculating that state, and then apply those moves locally. Unless there was an encounter 

with an unexpected, remote player initiated event, this should end up with the same state the 

client had already locally predicted. 

 To extend  Robo Cat Action  with support for move replay, the first step is for the client to hold 

on to moves in the move list until the server has incorporated them into its simulation of state. 

Listing 8.2 shows the necessary changes to do so. 

  Listing 8.2 Retaining Moves 

 void NetworkManagerClient::SendInputPacket() 
 { 
  const MoveList& moveList = InputManager::sInstance->GetMoveList(); 
  if(moveList.HasMoves()) 
  { 

    OutputMemoryBitStream inputPacket; 
    inputPacket.Write(kInputCC); 
    mDeliveryNotificationManager.WriteState(inputPacket); 
    //write the 3 latest moves for added reliability! 
    int moveCount = moveList.GetMoveCount(); 
    int firstMoveIndex = moveCount - 3; 
    if(firstMoveIndex < 3) 
    { 

firstMoveIndex = 0; 
    } 
    auto move = moveList.begin() + firstMoveIndex; 
    inputPacket.Write(moveCount - firstMoveIndex, 2); 
    for(; firstMoveIndex < moveCount; ++firstMoveIndex, ++move) 
    { 

move->Write(inputPacket); 
    } 
    SendPacket(inputPacket, mServerAddress); 
  } 
 } 
 void 
NetworkManagerClient::ReadLastMoveProcessedOnServerTimestamp(
  InputMemoryBitStream& inInputStream) 
 { 
  bool isTimestampDirty; 
  inInputStream.Read(isTimestampDirty); 
  if(isTimestampDirty) 
  { 
    inPacketBuffer.Read(mLastMoveProcessedByServerTimestamp); 
    mLastRoundTripTime = Timing::sInstance.GetFrameStartTime() 

- mLastMoveProcessedByServerTimestamp;
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    InputManager::sInstance->GetMoveList(). 
RemovedProcessedMoves(mLastMoveProcessedByServerTimestamp); 

  } 
 } 

 void MoveList::RemovedProcessedMoves( 
  float inLastMoveProcessedOnServerTimestamp) 
 { 
  while(!mMoves.empty() && 

mMoves.front().GetTimestamp() <= 
inLastMoveProcessedOnServerTimestamp) 

  { 
    mMoves.pop_front(); 
  } 
 }  

 Notice how  SendInputPacket  no longer clears the move list as soon as it sends the packet. 

Instead, it holds on to the moves so it can use them for move replay after receiving server state. 

As an added bonus, because moves now persist for more than a packet, the client sends the 

three most recent moves in the list. That way, if any input packets are dropped on the way to 

the server, the moves will have two more chances to make it through. This doesn’t guarantee 

reliability but it significantly increases the chances. 

 When the client receives a state packet, it uses  ReadLastMoveProcessedOnServerTimestamp  

to process any move timestamp the server might have returned. If it finds one, it subtracts the 

timestamp from the current time to measure RTT, which is useful for dead reckoning. It then calls 

 RemovedProcessedMoves  to remove any moves marked as at or before that timestamp. That 

means that after  ReadLastMoveProcessedOnServerTimestamp  completes, the client’s local 

move list contains only moves which the server has not yet seen, and thus should be applied to 

any incoming state from the server. Listing 8.3 details the additions to the  RoboCat::Read () 

method. 

  Listing 8.3 Replaying Moves 

 void RoboCatClient::Read(InputMemoryBitStream& inInputStream) 
 { 
  float oldRotation = GetRotation(); 
  Vector3 oldLocation = GetLocation(); 
  Vector3 oldVelocity = GetVelocity(); 

  //... Read State Code Omitted ... 
  bool isLocalPlayer = 
    (GetPlayerId() == NetworkManagerClient::sInstance->GetPlayerId()); 
  if(isLocalPlayer) 
  { 
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    DoClientSidePredictionAfterReplicationForLocalCat(readState); 
  } 
  else 
  { 
    DoClientSidePredictionAfterReplicationForRemoteCat(readState); 
  } 
  //if this is not a create packet, smooth out any jumps 
  if(!IsCreatePacket(readState)) 
  { 
    InterpolateClientSidePrediction( 

oldRotation, oldLocation, oldVelocity, !isLocalPlayer); 
  } 
 } 

 void RoboCatClient::DoClientSidePredictionAfterReplicationForLocalCat( 
  uint32_t inReadState) 
 { 
  //replay moves only if we received new pose 
  if((inReadState & ECRS_Pose) != 0) 
  { 
    const MoveList& moveList = InputManager::sInstance->GetMoveList(); 

    for(const Move& move : moveList) 
    { 

float deltaTime = move.GetDeltaTime(); 
ProcessInput(deltaTime, move.GetInputState()); 

SimulateMovement(deltaTime); 
    } 
  } 
 } 

 void RoboCatClient::DoClientSidePredictionAfterReplicationForRemoteCat( 
  uint32_t inReadState) 
 { 
  if((inReadState & ECRS_Pose) != 0) 
  { 
    //simulate movement for an additional RTT 
    float rtt = NetworkManagerClient::sInstance->GetRoundTripTime(); 

    //split into framelength sized chunks so we don’t run through walls 
    //and do crazy things... 
    float deltaTime = 1.f / 30.f; 
    while(true) 
    { 

if(rtt < deltaTime) 
{ 

SimulateMovement(rtt); 
break; 

} 
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else 
{ 

SimulateMovement(deltaTime); 
rtt -= deltaTime; 

} 
    } 
  } 
 }  

 The  Read  method begins by storing the current state of the object, so that the method can know 

later if any adjustments requiring smoothing occurred. It then updates state by reading it in from 

the packet as described in earlier chapters. After the update, it applies client side prediction to 

advance the replicated state by 1/2 RTT. If the replicated object is controlled by a local player, 

it calls  DoClientSidePredictionAfterReplicationForLocalCat  to run move replay. 

Otherwise, it calls  DoClientSidePredictionAfterReplicationForRemoteCat  to run 

dead reckoning. 

  DoClientSidePredictionAfterReplicationForLocalCat  first checks to make sure 

that a pose was replicated. If not, there is no need to advance the simulation. If there was a pose, 

the method iterates through all remaining moves in the move list and applies them to the local 

 RoboCat . This simulates all player actions that the server has not factored into its simulation yet. 

If nothing unexpected happened on the server, this function should leave the local cat’s state 

exactly how it was before the  Read  method processed the packet in the first place. 

 If the cat being replicated is remote, the 

 DoClientSidePredictionAfterReplicationForRemoteCat  method advances the 

simulation using the latest known state for the cat. This consists of calling  SimulateMovement  

for the appropriate amount of time without any associated  ProcessInput  calls. Again, if 

nothing unexpected happened on the server, this should also result in state that matches 

the state before the  Read  method began. However, unlike for local cats, it is very likely that 

something unexpected happened; remote players are always performing actions such as 

changing direction, speeding up or slowing down, and so on. 

 After performing client side prediction, the  Read()  method finally calls 

 InterpolateClientSidePrediction()  to handle any state that may have changed. By 

passing in old state, the interpolation method can decide how much, if at all, it should smooth 

out the change from old state to new state.  

  Hiding Latency through Tricks and Optimism 

 Delayed movement is not the only indication of latency to a player. When a player presses the 

button to shoot a gun, she expects her gun to fire immediately. When she tries to cast an attack 

spell, she expects her avatar to throw a big ball of fire. Move replay does not handle a situation 
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like this, so something else is necessary. It’s usually too complicated for the client to create 

projectiles in a way that the server can take over replicating their state once it creates them 

itself—there is a simpler solution. 

 Almost all video game actions have tells, or visual cues that indicate something is happening. 

Muzzle flashes precede plasma blasts, and mages wave their hands and mumble before 

spraying fire. These tells usually last at least as long as a round trip to the server and back. This 

means that, optimistically, the client application can give a local player instant feedback to 

any input by playing the appropriate animation and effects locally, while waiting for the true 

simulation to be updated on the server. This doesn’t mean that the client spawns projectiles, 

but it does start playing the spell casting animation and sound. If all is well, during the spell 

casting, the server receives the input packet, spawns the fire ball, and replicates it to the client, 

in time to show up as a result of the spell casting. Dead reckoning code advances the projectile 

forward by 1/2 RTT and it looks to the player as if she threw a fireball with no latency. If there is 

a problem, for instance, if the server knows that the player was recently silenced but hasn’t yet 

replicated that to the player, the optimism proves unwarranted and the spell casting animation 

fires without a projectile appearing. This is a rare case though, and well worth the benefit 

typically provided.   

  Server Side Rewind 
 Using these various client side prediction techniques, your game can provide a fairly responsive 

experience to players, even in the presence of moderate latency. However, there is still one 

common type of game action which client side prediction does not handle perfectly: the 

long range, instant-hit weapon. When a player equips a sniper rifle, perfectly positions the 

reticle over another player, and pulls the trigger, she expects a perfect hit. However, due to the 

inaccuracies of dead reckoning, it is possible that a perfectly lined up shot on the client is not 

a perfectly lined up shot on the server. This can be a problem for games that rely on realistic, 

instant-hit weapons. 

 There is a solution to this, made popular by Valve’s Source Engine, and responsible for the 

accuracy players feel when firing weapons in games like  Counter-Strike . At its core, it works by 

rewinding state on the server to exactly the state the player perceived when lining up a shot 

and firing. That way, if the player perceived that she aimed perfectly, her shot will hit 100% of 

the time. 

 To accomplish this feat, the game must make a few adjustments to the client side prediction 

methods discussed earlier: 

■ Use client side interpolation without dead reckoning for remote players.  The server 

needs to have accurate knowledge of exactly what client players see at any time. Because 

dead reckoning relies on the client advancing the simulation based on its assumptions, it 
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would cause extra complexity for the server, and thus should be turned off. To prevent any 

jerkiness or stuttering between packets, the client instead uses client side interpolation as 

described earlier in this chapter. The interpolation period should be exactly equal to the 

packet period, which is tightly controlled by the server. Client side interpolation introduces 

additional latency, but it turns out this is not significantly noticed by the player because of 

move replay and the server side rewind algorithm.  

■ Use local client move prediction and move replay.  Although client side prediction is 

disabled for remote players, it must remain on for the local player. Without local move 

prediction and move replay, the local player would instantly notice both the latency from 

network traffic and the increased latency from the client side interpolation. However, by 

simulating player moves immediately, the local player never feels lagged, regardless of how 

much latency there is.  

■ Record the client’s view in each move packet sent to the server.  The client should stamp 

every input packet sent with the IDs of the frames between which the client is currently 

interpolating, and the percentage of the interpolation that is complete. This gives the 

server an exact indication of the client’s perception of the world at the time.  

■ On the server, store the poses of every relevant object for the last several frames.
When a client input packet comes in containing a shot, look up the two stored frames 

between which the client was interpolating at the time of the shot. Use the interpolation 

percentage in the packet to rewind all relevant objects to exactly where they were when 

the client pulled the trigger. Then perform a ray cast from the client’s position to determine 

if the shot landed.   

 Server side rewind guarantees that if the client player lined up a shot correctly, it will land 

on the server. This gives a very satisfying feeling to the shooting player. However, it does not 

come without drawbacks. Because it rewinds server time by an amount based on the latency 

between server and client, it can end up causing some unexpected and frustrating experiences 

for the victims of the shots. Player A may think she has safely ducked around a corner, taking 

refuge from Player B. However, if Player B is on a particularly laggy network connection, he 

might have a view of the world that is 300 ms behind that of Player A. Thus on his computer, 

Player A may not have ducked behind the corner yet. If he lines up the shot and fires, the server 

will credit a hit to him and alert Player A that she was shot, even though she believed she was 

safely around a corner. As for all things in game development, it is a tradeoff. Only use these 

techniques if it is appropriate based on the specifics of your game.   

     Summary 
 Although stuttering and lag can ruin a multiplayer game experience, there are several 

strategies which help mitigate the problems. These days, it is practically required that a 

multiplayer game make use of one or more of these techniques. 
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 Client side interpolation with a local perception filter smoothens out incoming state updates 

by interpolating to them instead of immediately presenting them to the client. An interpolation 

period equal to the period between state updates will provide the player with a consistently 

updating state, but will increase the player’s perception of latency. It will never show the user 

an incorrect state. 

 Client side prediction uses extrapolation instead of interpolation to mask latency and keeps 

the client’s game state in sync with the server’s true game state. State updates are at least 1/2 

RTT old by the time they reach the client, so the client can approximate the true game state by 

extrapolating the simulation for a duration of 1/2 RTT past the incoming state. 

 Through dead reckoning, a client uses the last known state of an object to extrapolate future 

state. It optimistically assumes remote players have not changed their input. Inputs change 

often, though, so the server does frequently send state to the client that differs from its 

approximation. When this happens, the client has many ways to factor this changed state into 

its own simulation, and update what it shows to the player. 

 Through move prediction and replay, a client can instantly simulate the results of local player 

input. When receiving local player state from the server, the client advances the state 1/2 RTT 

by replaying any move the player has made that the server has not yet processed. In most 

cases, this brings the replicated state into sync with the simulated client state. In the case of 

unexpected, server side events, like collisions with other players, the client can smooth the 

replicated, corrected state back into its local simulation. 

 For the ultimate in lag compensation when dealing with instant-hit weapons, games can 

employ server side rewind. The server buffers object positions for several frames and actually 

rewinds state to match the client’s view when processing instant-hit weapon fire. This gives an 

increased feeling of precision to the shooter, but can result in targeted players taking damage 

even after they perceive they have safely taken cover.  

  Review Questions 
1.    What is meant by the term dumb client? What is the main benefit of a game which uses 

dumb clients?   

2.    What is the main advantage of client side interpolation? What is the main drawback?   

3.    On a dumb client, the state presented to the user is at least how much older than the true 

state running on the server?   

4.    What is the difference between a conservative algorithm and an optimistic algorithm? 

Give an example of each.   

5.    When is dead reckoning useful? How does it predict the positions of objects?   

6.    Give three ways to correct predicted state when it turns out to be incorrect. 
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7.    Explain a system which allows a local player to experience no lag at all regarding their own 

movement.   

8.    What problem does server side rewind solve? What is its main advantage? What is its main 

disadvantage?   

9.    Expand  Robo Cat Action  with an optional instant-hit yarn ball and implement server side 

rewind hit detection.    
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 SCALABILITY 

      Scaling up a networked game introduces a host 

of new challenges that don’t exist for a game of 

a smaller scale. This chapter takes a look at some 

of the issues that crop up as the scale of a game 

increases, and some solutions to these issues.    
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     Object Scope and Relevancy 
 Recall that the discussion of the  Tribes  model in  Chapter   1    mentioned the concept of the  scope  

or  relevancy  of an object. In this context, an object is considered  in scope  or  relevant  for a 

particular client when that client should be informed about updates to the object in question. For 

a smaller game, it may be viable to have all objects always be in scope or relevant to all clients in 

the game. This naturally means that all updates to objects on the server will be replicated to all 

clients. However, such an approach is not realistic for a larger game, both in terms of bandwidth 

and in terms of processing time for the client. In a game with 64 players, it may not be important 

to know about a player several kilometers away. In this case, sending information about this far 

away player would be a waste of resources. It therefore makes sense that if the server deems that 

Client A is too far away from object J, there is no need to send any updates to Client regarding the 

object. An additional benefit of reducing the replication data sent to each client is that it reduces 

the potential for cheating, a topic that is discussed in detail in  Chapter   10   , “Security.” 

 However, object relevancy is rarely a binary proposition. For example, suppose object J is 

actually the avatar representing another player in the game. Suppose the game in question has 

a scoreboard that displays the health of every player in the game, regardless of the distance. 

In this scenario, the health of every player object is always relevant, even if other information 

regarding the player object is not. Thus it makes sense that the server will always send the 

health of other players, even if the rest of their object data may not be relevant. Furthermore, 

different objects could have different update frequencies based on their priority, which 

adds further complexity. In the interest of simplification, this section will consider relevancy 

of objects on a binary basis. But one should remain cognizant of the fact that relevancy in a 

commercial game rarely will be entirely binary in nature for every object in the game. 

 Returning to the example of the game with 64 players, the idea of deeming objects far away 

as out of scope is considered a  spatial  approach. Although simple distance checking is a very 

quick way to determine relevancy, typically it is not robust enough to be the sole mechanism of 

relevancy. To understand why this is the case, consider the example of a player in a first-person 

shooter. Suppose that the initial design of the game supports two different weapons: a pistol 

and an assault rifle. The network programmer thus decides to scope objects based on their 

distance—anything further than the assault rifle’s range is deemed out of scope. In testing, the 

amount of bandwidth consumption is right at an acceptable limit. However, if the designers 

later decide to add a sniper rifle with a scope, with twice the range of the assault rifle, the 

number of relevant objects will increase greatly. 

 There are other issues related to only using distance to eliminating objects. A player in the 

middle of a level is more likely to be in range of objects than a player on the outskirts of the 

level. Furthermore, considering only distances assigns equal weight to objects in front of and 

behind a player, which is counterintuitive. Although a distance-based approach to object scope 

is simple, all objects around the player are deemed relevant, even those that may be behind a 

wall. These issues are shown in  Figure   9.1   . 
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  The remainder of this section focuses on approaches more complex than simple distance 

checking. Many of these techniques are also commonly used in  visibility culling , a category 

of rendering optimizations that try, as early as possible in the rendering process, to eliminate 

objects that are not visible. However, given the nature of latency in a networked game, some 

modifications are typically necessary to make a visibility culling approach suitable for object 

relevancy. 

  Static Zones 

 One approach to reducing the number of objects that are relevant is to break the world up into 

 static zones . Only objects in the same static zone as the player are considered relevant. This 

kind of approach is often used in shared world games such as MMORPGs. For example, a town 

where players can meet with each other to trade goods might be one zone, whereas a forest 

where the players can fight monsters might be another zone. In this case, it makes no sense for 

players in the forest to be sent replication information about the players trading in town. 

 There are a couple of different ways to handle transitions over zone boundaries. One approach 

is to invoke a loading screen when traveling between zones. This provides enough time for the 

client to receive replication information regarding all of the objects in the new zone. For a more 

seamless transition, it may be more desirable to have objects fade in and out as their relevancy 

changes upon a zone transition. Assuming that the terrain for a zone never changes, the terrain 

could simply be stored on the client so that the zone behind a player doesn’t completely 

x

  Figure 9.1  The player, designated by the X, in relation to relevant objects       
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disappear upon crossing a zone boundary. However, keep in mind that storing terrain on the 

client may present some security issues. One solution would be to encrypt the data, a topic 

covered in  Chapter   10   , “Security.” 

 One drawback of static zones is they are designed around the premise that players will 

be roughly evenly distributed between the zones in the game. This can be very tough 

to guarantee in most MMORPGs. Meeting places such as towns will always have a higher 

concentration of players than an out-of-the-way zone for high-level characters. This problem 

can be exasperated by in-game events that encourage a large number of players to gather at 

one specific location—such as in order to fight an especially tough enemy creature. With a 

high concentration of players in one zone, the experience may be degraded for all the players 

in the zone. 

 Solutions to an overcrowded zone may vary by the game. In the MMORPG  Asheron's Call , if a 

player attempts to enter a zone with too many players, they are teleported to a neighboring 

zone. Although perhaps not ideal, this approach is superior to the game crashing due to too 

many players in one zone. Other games may actually split the zone into multiple instances, a 

topic discussed later in this chapter. 

 While viable for shared world games, static zones typically are not used for action games for 

two main reasons. First, most action games feature combat in a much smaller area than might 

be seen in an MMO game, though there are some notable exceptions, such as  PlanetSide . 

Second, and perhaps more importantly, the pace of most action games means that the delay 

caused by traversing a zone boundary may be considered unacceptable.  

  Using the View Frustum 

 Recall that for a 3D game, the  view frustum  is a trapezoidal prism representing the area of 

the world that is projected into a 2D image for display. The view frustum is described in terms 

of an angle representing the horizontal field of view, an aspect ratio, and the distances to the 

near and far planes. When the projection transform is applied, objects fully enclosed by or 

intersecting the frustum are visible, whereas all other objects are not. 

 The view frustum is commonly used in visibility culling. Specifically, if an object is outside the 

frustum, it is not visible, so no time should be spent sending the object’s triangles to the vertex 

shader. One way to implement frustum culling is to represent the view frustum as the six planes 

comprising the sides of the frustum. Then a simplified representation of an object, such as a 

sphere, can be tested against the frustum planes to determine whether or not the object in 

question is inside or outside the frustum. A detailed discussion of the math behind frustum 

culling is found in (Ericson 2004). 

 While visibility culling based on the view frustum makes a great deal of sense, using only the 

frustum for object scoping in a network game presents some issues when taking into account 
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latency. For example, if only the frustum is used, objects immediately behind the player would 

be considered out of scope. This may be problematic if the player quickly turns 180 degrees. 

It will take some time for a quick turn to be propagated to the server, and for the server to 

correspondingly send replication updates for objects that would suddenly scope in. One could 

imagine this would create some unacceptable latency, especially if the object behind the player 

happens to be an enemy player character. Furthermore, walls are still ignored in this approach. 

This issue is shown in  Figure   9.2   . 

x

  Figure 9.2  An out-of-scope object directly behind the player, X       

  One solution is to use both the view frustum  and  a distance-based system. Specifically, a 

distance closer than the far plane could be combined with the frustum. Then any objects 

that are either within the distance or within the frustum would be considered in scope, and 

everything else would be out of scope. This means that on a quick turn, far away objects would 

still go in and out of scope and walls would be ignored, but the scoping of closer objects would 

not change. An illustration of this approach is shown in  Figure   9.3   . 
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    Other Visibility Techniques 

 Consider a networked racing game that features a track winding through a city. As would be 

apparent to anyone who has rode in a car, the amount of road that is visible can vary greatly. 

On a straight road with flat elevation, it is possible to see far into the distance. However, if the 

car is turning, the visibility is greatly reduced. Similarly, traveling uphill has lower visibility than 

traveling downhill. This idea of road visibility can be directly translated into the networked 

racing game. Specifically, if the server knows the position of a player’s car, it can know how 

far ahead on the track the player can see. This area will likely be much smaller than the area 

intersecting the view frustum, which will ideally lead to a reduction in the number of objects 

in scope. 

 This leads to the concept of a  potentially visible set  ( PVS ). Using a PVS answers the following 

question: From each location in the world, what is the set of regions that are potentially visible? 

While this may seem similar to the static zone approach, the region sizes in PVS are typically 

much smaller than separate zones. A static zone might be a town of several buildings, while 

a PVS region would be an individual room inside of a building. Furthermore, in a static zone 

x

  Figure 9.3  Combining a view frustum with a smaller radius to determine relevancy of objects       
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approach, only objects within the same static zone are considered relevant. This is in contrast to 

PVS, where neighboring regions that are deemed potentially visible will contain relevant objects. 

 In a typical implementation of PVS, the world can be divided into a set of convex polygons (or 

if necessary, a 3D convex hull). An offline process then computes, for each convex polygon, the 

set of the other convex polygons that are potentially visible. At runtime, the server determines 

which convex polygon a player is located in. From this convex polygon, the pregenerated sets 

can be used to determine the set of all objects that are potentially visible. These objects can 

then be flagged as relevant to the player in question. 

  Figure   9.4    illustrates what the PVS for the hypothetical racing game might look like. Given 

the player’s location marked by an  X , the shaded region represents the area that is potentially 

visible. In an actual implementation, it would be advisable to add a bit of slack in both 

directions. This way, objects a little bit beyond the potentially visible area would also be marked 

as in scope. Especially in a racing game where the cars are moving quickly, making sure to 

account for the latency in the server updating the scoped objects is important. 

x

  Figure 9.4  A sample PVS in a racing game       

  The PVS system also works well for a corridor-based first-person shooter, in the vein of  Doom  or 

 Quake . For this type of game, it may also be desirable to use a related technique called  portals . 

In a portal culling system, each room is a region and each door or window is considered a 

portal. The frustums created by the portals can be combined with the view frustum to greatly 

reduce the number of relevant objects. This system requires a greater amount of runtime 

processing than a PVS, but if your game is already using portals to reduce overdraw on the 

client, it may not be too difficult to extend the code to work for server-side object scoping. 

 In a similar vein, some games may merit consideration of hierarchical culling approaches such 

as BSP, quadtree, or octree. Each of these hierarchical culling techniques partition the objects 
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in the world using tree data structure. An in-depth discussion of these techniques can be found 

in (Ericson 2004). Keep in mind that using any of these more advanced techniques for object 

scoping will significantly increase the amount of time it takes. This is especially true given that 

the scoping process must be run separately for each client connected to the server. Unless you 

find your game really struggling to keep up with the volume of object replication, it probably is 

extreme to use these hierarchical culling systems for object scoping. A well-implemented PVS 

system should be more than sufficient for most action-oriented games, and many games may 

not even require the level of detail a PVS system provides.  

  Relevancy When Not Visible 

 It is important to note that visibility may not, in all instances, directly correlate with the 

relevancy of a particular object. Take the example of an FPS where players can throw a grenade. 

If a grenade explodes in a nearby room, it is important that the grenade be replicated to all 

clients nearby, even if it is not visible. This is because the client expects to hear the sound of a 

grenade explosion, even if the grenade is not visible at the moment of explosion. 

 One approach to solving this issue is to treat grenades differently from other objects. For 

example, they could be replicated by radius rather than by visibility. Another option is to 

replicate the explosion effect via RPC to the clients to whom the grenade itself is not relevant. 

This second approach may reduce the amount of data sent to the clients that need to know 

about the explosion sound (and potentially the particle effect), but don’t need to replicate the 

actual grenade. This may mean that the grenade explosion information will be replicated to 

clients that can’t actually hear it, but as long as this is a special case and not abused for a large 

amount of objects, it should not significantly increase bandwidth usage. 

 If the game is very much audio-based, it may even be possible to compute sound occlusion 

information on the server in order to determine relevancy. However, realistically such 

computation is generally done on the client side—it’s unlikely a commercial game would 

actually need to compute audio relevancy with such a degree of accuracy on the server. A radial 

or RPC-based approach should be fine for most games.   

  Server Partitioning 
  Server partitioning  or  sharding  is the concept of running multiple server processes 

simultaneously. Most action games inherently use this approach because each active game has 

a cap on the number of active players—often within the range of 8 to 16 players. The number of 

players supported per game is largely a game design decision, but there is also an undeniable 

technical benefit to such a system. The idea is that by having separate servers, the load on any 

one particular server should not be overwhelming. 

 Examples of games that use server partitioning include  Call of Duty ,  League of Legends , and 

 Battlefield . Since each server runs a separate game, there is no gameplay interaction between 
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the players of two separate games. However, many of these games still have statistics, 

experience, levels, or other information that is written to a shared database. This means that 

each server process will have access to some backend database, which can be considered part 

of the gamer services, a concept covered in more detail in  Chapter   12   , “Gamer Services.” 

 In a server partitioning approach, it is a common occurrence that one machine is actually 

capable of running several server processes simultaneously. In many big-budget games, the 

developer provisions machines in a data center for the purpose of running several server 

processes. For these games, part of the game’s architecture needs to handle distribution 

of processes to each machine. One approach is to have a master process that decides when 

server processes should be created, and on which machine. When a game ends, the server 

process can write any persistent data before exiting. Then when players decide to start a new 

match, the master process can determine which machine is under the least load, and have a new 

server process be created on that machine. It is also possible for developers to use cloud hosting 

for their servers, a configuration discussed in  Chapter   13   , “Cloud Hosting Dedicated Servers.” 

 Server partitioning is also used as an extension to the static zone approach used in MMOs. 

Specifically, each static zone, or a collection of static zones, can be run as a separate server 

process. For example, the popular MMORPG  World of Warcraft  features multiple continents. 

Each continent runs on a separate server process. When a player transitions from one content to 

another, the client displays a loading screen while their character state is transferred to the server 

process for the new continent. Every continent is composed of several different static zones. 

Unlike changing continents, crossing the boundary between two zones is seamless, because all of 

the zones on the continent are still running on the same server process.  Figure   9.5    illustrates what 

Europa
(Server One)

Io
(Server Two)

  Figure 9.5  Use of server partitioning for separate continents, but not zones, in a hypothetical MMORPG       
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this type of configuration might look like for a hypothetical MMORPG. Each hexagon represents a 

static zone, and the dotted lines represent travel points between the two continents. 

  As with static zones, server partitioning only works well if the players are roughly evenly 

distributed between each server. If there are too many players on one server, the server can still 

encounter performance issues. This is not an issue in a game with a fixed player cap, but it can 

certainly be an issue in an MMO. Depending on the game, there are many different potential 

solutions to this problem. Some games simply have a server cap and force players to wait in a 

queue if a server becomes too full. In the case of  Eve Online , the server slows down the game’s 

time step. This slow-motion mode, called  time dilation , allows the server to keep all players 

connected in a situation that it otherwise would not be able to maintain.  

  Instancing 
 In  instancing , one shared game supports several separate instances at once. This term is 

usually applied to shared world games where all the characters reside on the same server, but 

may not be playing in the same instance at the same time. For example, many MMORPGs use 

instancing for dungeon content designed for a fixed number of players. This way, groups of 

players can experience highly scripted content, free from the interference of other players. In 

most games that implement this sort of instancing, there is a portal or similar construct that 

transitions the players from a shared zone into an instance. 

 Sometimes instancing is also used as a solution for overcrowded zones. For example,  Star Wars: 
The Old Republic  sets a cap on the number of players that can be in one particular zone. If the 

player count becomes too high, a second instance of the zone will be forked from the original 

instance. This does introduce some complexity for players. If two players try to meet in one 

zone, they might actually end up in two different instances of the zone. In the case of  The Old 
Republic , the solution is to allow a player to teleport into a group member’s instance, in the 

event it is different. 

 From a design perspective, instancing allows for content more in line with single-player or 

smaller multiplayer games, all while still having characters tied to a shared world. Some games 

even use instancing as a way to allow for a zone to evolve throughout the course of a quest line. 

However, the counterargument is that instancing makes the world feel less shared than it might 

otherwise. 

 From a performance standpoint, as long as the cost of spinning up an instance is properly 

managed, instancing can be beneficial. Instancing can guarantee that no more than  X  players 

are ever relevant at one point in time, especially if the zones can spawn separate instances. It is 

even possible to combine instancing with server partitioning in order to further decrease the 

load on specific server processes. Because entering an instance will almost always involve a 

loading screen for the client, there is no reason the client could not be transferred to a separate 

server, much how the continents in  World of Warcraft  run on separate server processes.  
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  Prioritization and Frequency 
 For some games, the performance of the server is not the main bottleneck. Instead, the issue is 

the amount of data transmitted over the network to the clients. This may especially be an issue 

for mobile games that need to support a plethora of network conditions.  Chapter   5    discussed 

some ways to solve this problem, such as using partial object replication. However, if testing 

determines that the amount of bandwidth the game is using is still too high, then there are 

some additional techniques to consider. 

 One approach is to assign a priority to different objects. Objects with a higher priority can be 

replicated first, and lower-priority objects are only replicated if there are no higher-priority 

objects left to replicate. This can be thought of as a way to ration bandwidth—there is only a 

limited amount of bandwidth available, so it may as well be used for the most important objects. 

 When using prioritization, it generally is important to still allow lower-priority objects through 

on occasion. Otherwise, lower-priority objects will never be updated on clients. This can be 

accomplished by allowing different objects to have different replication frequencies. For 

example, important objects might be updated a couple of times per second, but less important 

objects might only be updated every couple of seconds. The frequency could also be combined 

with base priority to compute some sort of dynamic priority—in essence, increasing the priority 

of a lower-priority object if it has been too long since the previous update. 

 This same sort of prioritization can also be applied to remote procedure calls. If certain RPCs 

are ultimately irrelevant to the game state, they can be dropped from transmission if there 

is not enough bandwidth to send them. This is similar to how packets can be sent reliably or 

unreliably, as discussed in  Chapter   2   .   

     Summary 
 Reducing the volume of data sent to any one client is important as a networked game scales up 

in size. One way to achieve this is to reduce the total number of objects in scope to a particular 

client. A simple approach is to deem objects too far away from a client as out of scope, though 

this one-size-fits-all approach may not work well in all scenarios. Another approach, especially 

popular in shared world games, is to partition the world into static zones. This way, only players 

in the same zone are relevant to each other. 

 It is also possible to leverage visibility culling techniques to reduce the number of relevant 

objects. While relying solely on the view frustum is not recommended, combining it with a 

smaller radius can work well. Other games that have clear sectioning of levels, such as corridor-

based shooters or racing games might use PVS. With PVS, it is possible to determine which 

regions are visible from any location in the level. Still other visibility techniques such as portals 

may see some use on a case-by-case basis. Finally, there are instances where visibility should 

not be the only criteria for relevancy, such as when a grenade explodes. 
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 Server partitioning can be used to reduce the load on any one server. This can be done both 

for action games with fixed player caps, and for large shared world games where zones can be 

placed on separate server processes. Similarly, instancing is a method that forks a shared world 

into areas that are more manageable from a performance or design standpoint. 

 There are other techniques, not related to object relevancy, that can be used to limit bandwidth 

usage of a networked game. One is to assign priority to different objects or RPCs so that the 

most important information is prioritized first. Another approach is to reduce the frequency 

that replication updates are sent for all but the most important objects.  

  Review Questions 
1.    What are the drawbacks of using only distances to determine object relevancy? 

2.    What is a static zone, and what are its potential benefits?   

3.    How can the view frustum be represented for the purposes of culling? What happens if 

only the frustum is used to determine object relevancy?   

4.    What is a potentially visible set, and how does this approach differ from static zones? 

5.    If a shared world game suffers from zone overcrowding, what are some potential solutions 

to this problem?   

6.    What are some approaches, other than reducing the number of relevant objects, to reduce 

the bandwidth requirements of a networked game?    

  Additional Readings 
 Ericson, Christer.  Real-Time Collision Detection . San Francisco: Morgan Kaufmann, 2004. 

 Fannar, Hallidor. “The Server Technology of EVE Online: How to Cope With 300,000 Players on 

One Server.” Presented at the Game Developer’s Conference, Austin, TX, 2008.   



ptg16606381

    C H A P T E R  10 

 SECURITY 

      Since the first networked games, players have 

devised ways to gain an unfair advantage. As 

networked games have become increasingly 

popular, combating security vulnerabilities has 

become an important part of providing a safe and 

fun environment for all players. This chapter takes 

a look at some of the most common vulnerabilities 

and the preventative measures that can be taken 

against them.    
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     Packet Sniffing 
 In normal network operation, packets are routed through several different computers on their 

path from the source to destination IP address. At the very least, the routers along the way need to 

read the header information in the packets in order to determine where to send the packet. And 

as covered in  Chapter   2   , sometimes the header addresses may be rewritten for network address 

translation. However, given the open nature of the data that is transmitted, there is nothing that 

prevents any of the machines on the route from inspecting all of the data in a particular packet. 

 Sometimes inspecting the payload contained in a packet might be done in the name of normal 

network operation. For example, some consumer routers employ  deep packet inspection  in 

order to implement  quality of service— a system that prioritizes some packets over others. 

Quality of service needs to read the packets to determine what it contains. This way, if a packet 

can be determined to contain peer-to-peer file sharing data, it may be given a lower priority 

than a packet containing data for a voice-over IP (VoIP) call. 

 But there also is a form of inspecting these packets that is not necessarily as benign.  Packet 
sniffing  is a term generally used for the reading of packet data for a purpose other than normal 

network operation. This can be done for many different purposes including attempting to steal 

login information or cheating in networked games. The remainder of this section focuses on 

the specific ways various types of packet sniffing can be combatted in networked games. 

  Man-in-the-Middle Attack 

 In a  man-in-the-middle attack , a computer somewhere on the route from source to 

destination is sniffing packets, without the knowledge of the source and destination 

computers. This is shown in  Figure   10.1   . Practically speaking, there are a few different ways 

this can occur. Any computer using an unsecured or public Wi-Fi network could have all of its 

packet information read by another machine on that network. (This is why it is generally a good 

idea to use an encrypted VPN when on a Wi-Fi network at the local coffee shop). If on a wired 

Clive

BobAlice

Figure 10.1  A man-in-the-middle attack, with a message between Alice and Bob being read by Clive       
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network, it could be that a gateway machine is sniffing packets—either because of some sort 

of malware, or due to a nosy system administrator. And if, for some reason, government agents 

are targeting your game, it is also possible that software installed at an ISP is attempting to gain 

access to the data. 

  Technically, a player could intentionally set up a man-in-the-middle for the purposes of sniffing 

the game. This may be a concern on a closed platform such as a console, but at least on PC or 

Mac, you should assume that the player always has access to all of the data transmitted over the 

network, anyway. So for the rest of this discussion of man-in-the-middle, we will assume that 

the “man” is a third party unknown to both the source and destination computer. 

 The general approach to combatting the man-in-the-middle is to encrypt all transmitted data. 

In the case of a networked game, prior to implementing any sort of encryption system, one 

should consider whether the game in question contains any sensitive data that needs to be 

encrypted. If your game contains any microtransactions where a player can purchase in-game 

items, it absolutely needs to encrypt any data related to purchases. If you are storing or even 

just processing credit card information, the Payment Card Industry Data Security Standard 

(PCI DSS) may be a legal requirement. However, even if there are no in-game purchases, any 

game where a player logs in to an account that saves progress, such as a MOBA or MMO, should 

encrypt data related to the login process. In both of these cases, there is a monetary incentive 

for a third party to steal information—whether credit card or login. So it is imperative that your 

game protects player’s valuable data from a man-in-the-middle. 

 On the other hand, if the only data your game transmits over the network is replication data (or 

the like), it doesn’t really matter if the man-in-the-middle intercepts this data. Thus, you could 

leave the data unencrypted and it wouldn’t be a big issue. That being said, there may still be 

some value in encrypting the data to prevent host packet sniffing, which is discussed shortly. 

 If you come to the conclusion that your game does send sensitive data that needs to be 

protected from outside parties, then using a proven encryption system is the recommended 

course of action. Specifically, you will want to use  public key cryptography , a type of 

cryptography well suited for transmitting secure information. Suppose that Alice and Bob 

want to transmit encrypted messages to each other. First, before they begin talking to each 

other, Alice and Bob both generate different private and public keys. The private keys remain 

private to whoever generated the key—they should never be shared with anyone else. When 

Alice and Bob first handshake with each other, they will exchange their public keys. Then 

when Alice sends a message to Bob, she will encrypt the message using Bob’s public key. This 

message can then only be decrypted using Bob’s private key. In essence, this means that Alice 

can send messages to Bob that only he can read, and Bob can send messages to Alice that only 

she can read. This is the essence of public key cryptography, and is illustrated in  Figure   10.2   . 

  In the case of a networked game where there’s a login server, the client would have access to 

the server’s public key. When the client wishes to log in to the server, their login and password 
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are encrypted using the server’s public key. This login packet can then only be decrypted by the 

server’s private key, which hopefully only the server knows! 

 Arguably the most popular public key cryptography system in use today is the RSA system 

designed in 1977 by Rivest, Shamir, and Adelman. In RSA, the public key is based on a very large 

number that is a  semiprime , meaning it is the product of two prime numbers. The private key 

is then based on the prime number factorization of the semiprime. The system works because 

no known polynomial-time algorithm exists for integer factorization, and brute-forcing the 

factorization of a 1024- or 2048-bit number that is the product of two large prime numbers, at 

this time, is likely impossible even on the most powerful supercomputer in the world.   

     BREAKING RSA 

 There are a few scenarios where RSA could be broken, and any of these would be 

disastrous in the near-term. The first scenario would be the creation of a sufficiently 

powerful quantum computer. Shor’s algorithm is a quantum computer algorithm that 

can factor integers in quantum polynomial time. However, at time of writing, the most 

powerful quantum computer in the world can only handle factorization of 21 into 7 and 

3, so it may be a few years before a quantum computer factors a 1024-bit number. The 

other scenario is that a polynomial-time algorithm for integer factorization for standard 

computers is devised. 

 The reason why this would be disastrous is because a great deal of secure 

communication on the Internet relies on RSA or related algorithms. If RSA is broken, 

this means that many keys used for HTTPS, SSH, and similar protocols would no longer 

be secure. Most cryptographers are resigned to the fact that RSA will eventually be 

broken, which is why there is active cryptography research today on systems that even a 

quantum computer would not be able to solve in polynomial time.  

Encrypt

Alice

Hi, Bob!

EADCFFB0
08372145

DecryptHi, Bob!

Bob

Bob’s Public
Key

Bob’s Private
Key

  Figure 10.2  Alice and Bob communicate via public key cryptography       
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 Since RSA is such a well-established cryptography system, it would be a waste of resources to 

attempt to implement it on your own. Instead, use a trusted open-source implementation of 

RSA such as the implementation provided in OpenSSL. Because OpenSSL is released under a 

free software license, even commercial projects should have no issue with using it.  

  Packet Sniffing on a Host Machine 

 While only games that transmit sensitive data need to worry about a man-in-the-middle 

attack, every networked game is susceptible to a host machine intentionally sniffing packets. 

In this case, encrypting the data is a deterrent but is not a foolproof measure. The reason for 

this is a game executable on any platform can always be hacked, so encrypting the game data 

won’t prevent someone from learning how to decrypt the data. Somewhere, there must be 

code within the executable that knows how to decrypt the data the executable is to receive. 

Once the decryption scheme is determined, the packet data can be read as if it weren’t 

encrypted. 

 That being said, reverse engineering the decryption code and finding the private key stored 

in the client does take some time. So one way to make it more difficult for potential cheaters 

is to still encrypt the data, but change the encryption keys and memory offsets to those keys 

on a regular basis. This will then require someone to repeat the reverse engineering process 

every time your game is updated. Similarly, if your game changes the format and ordering of 

packets on a regular basis, this renders cheats that rely on a specific-packet format obsolete. 

Once again, this makes players spend time to learn the new format and get the cheats to work 

again. So, changing the encryption or packet format regularly will make developing cheats for 

your game more annoying. Hopefully, this means most players give up in developing cheats. 

But either way, you still have to accept the fact that you will never be able to prevent dedicated 

individuals from sniffing all of the packets on a host machine. 

 It’s worthwhile to consider what exactly a player packet sniffing on the host machine seeks to 

accomplish. The player on the host machine is generally trying to utilize an  information cheat , 

meaning he or she is trying to glean information that he or she should not know. A common 

refrain to prevent cheating in this case is to limit the amount of information transmitted to each 

host. In a client-server game, it is very much possible for the server to limit the data it sends to 

each client. For example, suppose a networked game supports players moving undetected in 

stealth mode. If the server still sends replication updates on a character in stealth, then a player 

could absolutely glean the position of these stealth players from the packets. On the other 

hand, if replication updates for position pause while a character is in stealth, there will be no 

way for the client to know the current position of the character. 

 In general, you should assume any data sent to each host can be examined by a player trying 

to cheat. Thus if the game ensures that only the critical information relevant to each host is 

transmitted, then it will minimize the potential for cheating. This will be much easier to enforce 

in a client-server topology than on a peer-to-peer topology, since peer-to-peer can only work if 
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all data relevant to the game is sent to every peer. Thus a peer-to-peer game needs to use other 

approaches to combat cheating.   

  Input Validation 
 In contrast to the packet sniffing techniques just covered,  input validation  strives to ensure 

that no player performs an action that is invalid. This method of cheat prevention can work 

equally as well for both client-server games and peer-to-peer games. The implementation of 

input validation boils down to the simple premise that the game should never blindly execute 

an action from a packet sent over the network. Instead, the action should first be validated to 

ensure that it is valid at the point in time in question. 

 For example, suppose that a packet is sent over the network requesting that Player A fire their 

gun. The receiving machine should never assume that it is valid for Player A to fire. It should first 

be confirmed that Player A has a weapon, the weapon has bullets, and the weapon is not on a 

cool down. If any of these conditions are not met, the fire request should be rejected. 

 It should further be confirmed that when receiving an action for Player A, it is being sent 

from the client who is responsible for Player A. Recall that the code for both versions of  Robo 
Cat  in  Chapter   6    performed this validation. In the case of the client-server action game, each 

host address was associated with a client proxy. This way, when moves are received over the 

network, the server only allows those moves to be applied to that host’s corresponding proxy. 

For the peer-to-peer RTS game, each command is issued by a specific player. When command 

packets are received over the network, they are associated with that specific peer. When it is 

time to execute the commands, the peers will reject any commands for units not owned by the 

peer issuing the commands. 

 If invalid actions are detected, it may be tempting to boot the offending player. However, you 

should consider the possibility that the invalid input was accidental, perhaps due to latency 

or packet loss. For example, suppose that players can cast spells in a particular game. In said 

game, let’s suppose that it is also possible for players to “silence” other players, meaning they 

cannot cast spells for the duration of the silence. Now suppose that Player A is silenced, which 

means the server will send an update packet to Player A. It is possible that in the interval prior 

to receiving the silence packet, Player A transmits a spell cast action. Thus Player A would be 

transmitting an invalid action, but not due to any nefarious reason. Because of this, it would be 

a mistake to boot Player A. In general, a more conservative approach of simply rejecting the 

invalid input will be the proper course of action. 

 While input validation works well for the server validating a client and a peer validating 

another peer, it is not particularly easy for the client to validate commands from the server. This 

wouldn’t be an issue for games that run on developer-hosted servers, but it could be an issue 

for servers that are hosted by players. 
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 In an authoritative server model, only the server has a complete picture of the game state. So 

if the server tells a client that the client should take damage, the client will have a difficult time 

validating whether or not this damage is legitimate. This is doubly the case because in a typical 

configuration, the client has no way to directly communicate with the other clients. Thus, Client 

A has no way of verifying whether a command actually came from Client B—it has to trust that 

the server is sending it valid information. 

 The simplest and only foolproof solution to the problem of bad data from the server is to not 

allow players to host games. With the advent of cloud hosting, it is viable for even lower budget 

games to host servers in the cloud. Though there still is a cost, it is substantially less than it 

would be to run physical servers in a data center.  Chapter   13    covers an approach to using cloud 

hosting for dedicated servers. 

 However, if your game either does not have the budget for this, or you simply want to give 

players the option to run their own servers, the solutions become more complex. One approach 

that has limited success is to maintain peer-to-peer connections between clients. This will 

increase the complexity of the code base and the runtime bandwidth requirements, but it 

would allow for some validation of the server’s information. 

 To see how this would work, consider a hypothetical multiplayer dodge ball game. In the 

standard client-server model, if Client B throws a dodge ball at Client A, this information is first 

sent from Client B to the server, and then from the server to Client A. To add an additional layer 

of validation, when Client B throws the dodge ball, it could also send a packet to all of the other 

clients, notifying the other clients that it is throwing a dodge ball. Then when Client A receives 

a packet from the server regarding the ball throw, it can validate against the packet it should 

have received from Client B. 

 Unfortunately, there is no guarantee such a peer-to-peer validation system for the server will 

always work. For one, just because each client is able to reach the server does not necessarily 

mean that each client will be able to reach each other client. This is especially the case when 

dealing with NAT traversals, firewalls, and so on. Second, even if all clients are reachable to each 

other, there is no guarantee that the peer-to-peer packets will arrive faster than the packets 

from the server. So if Client A has to make a decision on whether or not the server’s information 

is correct, it may be possible that the packet from Client B has yet to arrive. This means that 

either Client A has to wait for Client B’s packet, which will delay the updating of the game, or 

return to square one and accept the server at its word.  

  Software Cheat Detection 
 The approaches used to combat both man-in-the-middle attacks and invalid input are both 

relatively defensive in nature. In the case of man-in-the-middle attacks, the data is encrypted 

so that it cannot be read. In the case of invalid input, validation code is added to disallow bad 
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commands. However, there is a much more aggressive approach to combatting players who 

attempt to cheat. 

 In  software cheat detection , software that runs either as part of or external to the game 

process actively monitors the integrity of the game. Most methods of cheating involve 

running cheat software on the same machine as the game. Some cheats hook into the game 

process, other cheats overwrite memory in the game process, still other cheats are third-party 

applications used for automation, and some cheats even modify data files used by the game. 

All these different types of cheats can be detected using software cheat detection, which 

makes it a very powerful method to combat cheaters. 

 Furthermore, software cheat detection can detect cheats that would otherwise be 

undetectable. Take the example of a real-time strategy game that’s using lockstep peer-to-

peer. Most real-time strategy games implement fog of war, which allows each player to only 

see areas of the map that are near that player’s units. However, recall from  Chapter   6    that in 

the lockstep peer-to-peer model, each peer is simulating the entire game state. Thus each 

peer has, in memory, a complete picture of where all of the units in the game are located. This 

means that the fog of war is implemented entirely in the local executable, and so the fog of 

war can be removed by writing a cheat program. This type of cheat is commonly referred to as 

 map hacking , and while it is popular in real-time strategy games, any game that uses fog of 

war can be susceptible to map hacks. What makes this difficult to detect is there likely is very 

little other peers can do to detect the map hack—the other peers would just see data being 

transmitted as normal. However, software cheat detection can successfully detect if a map 

hack is being used. 

 Another popular cheat is a  bot  that either plays the game in lieu of a player, or assists the player 

in some way. For example, bots have been used for years in MMOs by players wanting to level 

up or gain money even while they are sleeping or otherwise away from their computer. In FPS 

games, some players use aim bots in order to help give them perfect accuracy with every shot. 

Both of these types of bots can compromise the integrity of the game in major ways, and both 

can only be detected by software cheat detection. 

 Ultimately, any multiplayer game that wants to foster a strong community will need to 

consider using software cheat detection. There are several different software cheat solutions 

in use today. Some are proprietary and only used by specific game companies, while others 

are available for use either for free or with a license. The remainder of this section discusses 

two software cheat detection solutions: Valve Anti-Cheat and Warden. For obvious reasons, 

the amount of public information available for software cheat detection platforms is fairly 

limited, so it will be presented in broad strokes. In the event you decide to implement your own 

software cheat detection, be forewarned that it requires a great deal of understanding of low-

level software and reverse engineering. It’s also worth noting that even the best software cheat 

detection platforms can be circumvented. So it is imperative to continuously update the cheat 

detection in order to stay ahead of those writing cheat programs. 
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  Valve Anti-Cheat 

 Valve Anti-Cheat (VAC) is a software cheat detection platform that is available to games that 

utilize the Steamworks SDK.  Chapter   12   , “Gamer Services” contains an in-depth discussion of 

the Steamworks SDK as a whole. For now, we will focus the discussion on VAC. At a high level, 

Valve Anti-Cheat maintains a list of banned users for each game. When a banned user tries to 

connect to a server that uses VAC, the user is denied access to join the server. Some games 

will even ban across multiple games—for example, if a player is banned from one game using 

Valve’s Source engine, they are likely banned from all games using the Source engine. This 

provides an extra amount of deterrence to the system. 

 At a high level, VAC detects cheaters at runtime by scanning for known cheat programs. There 

are likely several methods used by VAC to detect a cheat program, but at least one of these 

methods is to scan the memory of the game process. If a user is detected using a cheat, they 

typically are not banned immediately. The reason for this is an immediate ban would make it 

apparent that the cheat is no longer safe to use. Instead, VAC simply creates a list of users to 

ban at some point in the future. This allows the system to catch as many players as possible 

who are using the cheat and then ban all of them at once. Players use the term  ban wave  

for this practice of delayed bans, and it is commonly used by many software cheat detection 

platforms. 

 There is also a related functionality, called  pure servers , implemented in Valve’s Source engine 

(and thus, can only be used in Source engine games). A pure server validates the content of 

users upon connection. The server has expected checksums of all of the files that should exist 

on the client. Upon joining the game, the client must send its file checksums to the server, and 

if there is a mismatch, the client is booted. This process also happens when a map transition 

occurs in which the level changes. To account for the fact that some games allow customization 

to, for example, change the looks of characters, it is also possible to whitelist some files and 

paths so they are not checked for consistency. Although this system is specifically in Source 

engine, it would be possible to implement a similar system in your own game.  

  Warden 

 Warden is the software cheat detection program created and used by Blizzard Entertainment 

for all of their games. The functionality of Warden is a bit less transparent than VAC. However, 

much like VAC, while the game is running Warden scans the computer’s memory (among other 

locations) for known cheat programs. If a cheat is detected, that information is sent back to the 

Warden server, and the user will be banned at some point in a future ban wave. 

 One especially powerful aspect of Warden is that updates to its functionality can occur while 

the game is running. This provides an important tactical advantage—typically cheat users are 

knowledgeable enough to not use a cheat immediately after a new game patch is released. 

This is both because the cheat may not even work anymore, and even if it does, it will almost 
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certainly be detected. However, when Warden updates dynamically, it is possible to catch 

users that did not realize that Warden has been updated. That being said, some cheat program 

authors claim that their software is able to detect when Warden is updating, and in this event 

actually unload the cheat program before Warden finishes its update.   

  Securing the Server 
 Another important aspect of security for networked games is protecting the server against 

attack. This is particularly important for shared world games with central servers, but any game 

server can be susceptible to attack. So you should plan for certain types of attacks, and make 

sure you have contingencies in place in the event these attacks occur. 

  Distributed Denial-of-Service Attack 

 The goal of a  distributed denial-of-service attack  (DDoS) is to overwhelm the server with 

requests that it cannot successfully fulfill, ultimately causing the server to be unreachable or 

otherwise unusable for legitimate users. The reason this works is because too much incoming 

data will either saturate the server’s network connection, or use up so much processing power 

that the server cannot keep up with actual requests. Pretty much every major networked game 

or online gamer service has been affected by a DDoS at one time or another. 

 If you are using your own hardware for game servers, it can be difficult and stressful to mitigate 

against DDoS attacks. It involves working closely with your ISP, as well as potentially upgrading 

the hardware and distributing the traffic across different servers. On the other hand, if you 

use a cloud hosting solution for your servers, as covered in  Chapter   13   , some of the work to 

prevent the DDoS attacks is done by the cloud provider. The major cloud hosting platforms all 

have some level of DDoS prevention built in, and there also are specialized cloud-based DDoS 

mitigation services that can be purchased. That being said, you should never assume that the 

cloud hosting provider will completely prevent the potential for DDoS—it is prudent to still 

invest time in planning for and testing different mitigation strategies.  

  Bad Data 

 You should also consider that a malicious user may attempt to send malformed or improper 

packets to the server. This can be done for a number of reasons, but the simplest reason is the 

user is attempting to crash the server. However, a more insidious user may be trying to cause 

the server to execute malicious code through a packet buffer overflow or similar attack. 

 One of the best ways to secure your game against bad data is to utilize a type of automated 

testing called  fuzz testing . In general, fuzz testing is used to discover errors in code that 

normal unit or quality assurance testing is not likely to discover. For a networked game, you 

would use fuzz testing to send large amounts of unstructured data to the server. The goal is to 
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see whether or not sending this data to the server will crash it, and fix any bugs discovered by 

the process. 

 In order to find the most bugs, it’s recommended to use both fully randomized data as well as 

more structured data—such as packets that contain expected signatures even if the rest of the 

payload is random and unstructured. With many iterations of fuzz testing and fixing the bugs 

caught by fuzz testing, you can try to minimize the possibility of your game being vulnerable to 

bad data.  

  Timing Attacks 

 Any code that compares an expected byte signature or hash versus the received signature is 

potentially susceptible to a  timing attack . In this type of attack, information can be learned 

about the implementation of a particular hashing algorithm or cryptography system based on 

the amount of time data takes invalid data to be rejected. 

 Suppose you are comparing two arrays of eight 32-bit integers to determine whether or not 

they are equal to each other. One array,  a , represents the expected certificate. The other array, 

 b , represents the user’s provided certificate. Your first thought might be to write a function as 

follows: 

  bool Compare(int a[8], int b[8]) 
 { 
   for (int i = 0; i < 8; ++i) 
   { 

if (a[i] != b[i]) 
{ 

return false; 
} 

   } 
   return true; 
 }  

 The  return false  statement seems like an innocuous performance optimization—if a 

particular index is a mismatch, there’s no reason to continue to compare the remainder of 

the arrays. However, this code is vulnerable to a timing attack  because  of this early return. For 

incorrect values of  b[0] , the  Compare  function will return faster than for correct values of 

 b[0] . So if a user tried every possible value of  b[0] , they could actually determine which value 

is correct by testing which value causes  Compare  to take longer to return. This process could 

be repeated for every index, and eventually the user would be able to determine the entire 

certificate. 

 The solution to this is to rewrite  Compare  such that it always takes the exact same amount of 

time to execute, regardless of whether  b[0]  or  b[7]  is a mismatch. One can take advantage of 

the fact that a bitwise exclusive-or (XOR) yields zero if two values are equivalent. Thus, you can 
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perform a bitwise XOR between every index of  a  and  b , and bitwise OR those results together, 

as in the following rewritten  Compare  function: 

  bool Compare(int a[8], int b[8]) 
 { 
   int retVal = 0; 
   for (int i = 0; i < 8; ++i) 
   { 

retVal |= a[i] ^ b[i]; 
   } 
   return retVal == 0; 
 }   

  Intrusions 

 One big concern for server security is a malicious user attempting to break into the server, 

particularly for shared world games. The goal might be to steal user data, credit card numbers, 

and passwords. Or even worse, the attacker might try to wipe the entire database for the game, 

effectively erasing the game from existence. Out of all the server security concerns, intrusions 

have the most possible nightmare outcomes, and should be taken very seriously. 

 There are several preventative measures that can be taken to limit potential for intrusion. The 

biggest step you can take is to make sure all of the software on your servers is kept up-to-date. 

This includes everything from the operating system, the databases, any software used for 

automation, web apps, and so on. The reason for this is that old versions may contain critical 

vulnerabilities that are fixed in newer versions. Staying on top of updates will help limit the 

options that an attacker will have to infiltrate your game’s server. Similarly, limiting the number 

of services the server machine will reduce the number of potential infiltration points. 

 The same goes for machines used by developers on your project. A common route for many 

intrusions is to first break into a personal machine that has access to the central server, and then 

use this personal machine to springboard into the server system. This is referred to as a  spear 
phishing attack . So at a minimum, the operating systems as well as any software that accesses 

the Internet or network, such as web browsers, should always be updated on all of your 

developer’s machines. Another route to combating the springboard to the server is by greatly 

limiting how accessible your critical server and data machines are to personal machines. It may 

be worthwhile to enforce two-factor authentication on your servers, so that simply knowing 

someone’s password is not enough to gain access. 

 But despite your best efforts to prevent intrusions, you should still make the assumption that 

your server is vulnerable to a skilled hacker. Thus you want to ensure that any sensitive data you 

store on your server is as secure as possible. This way, in the event of a breach you can still limit 

the amount of damage done to your game and the players of your game. For example, user 

passwords should never be stored as plain text, because someone with access to the database 
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would then instantly have access to all your user’s passwords, which can be particularly bad 

given how often users reuse passwords across several accounts. The passwords should instead 

be hashed using an appropriate password-hashing algorithm, such as the Blowfish-derived 

algorithm bcrypt. Do not use a simpler hashing algorithm such as SHA-256, MD5, or DES to 

secure your passwords, because these older systems can all be easily broken on modern 

machines. Similar to encrypting passwords, you should also ensure billing information such 

as credit cards is stored in a cryptographically secure manner consistent with industry best 

practices. 

 As evidenced by the widely publicized intelligence leaks in recent years, often the biggest 

threat to your server’s security may not be an external user. Instead, the greatest threat to your 

security systems might be a rogue or disgruntled employee. Such an employee may attempt 

to access or disseminate data that they should not. To combat this, having a comprehensive 

logging and auditing system is important. This can act both a deterrent, and in the event that 

something does happen, can provide evidence of criminal wrongdoing. 

 Finally, you should make certain that any important data is backed up regularly to off-site and 

physical backups. This way, even in the worst case where your entire database is wiped by a 

malicious attacker or some other calamity, you still have recourse and can restore to a recent 

version of the data. Having to restore from a backup is never ideal, but it is still much better 

than the alternative of permanently losing all of your game’s data.    

     Summary 
 Most multiplayer game engineers need to be concerned with security on some level. The first 

thing to consider is the security of data transmissions. Since packets can be intercepted by a 

man-in-the-middle attack, it is important that sensitive information such as passwords and 

billing information is encrypted. The recommended approach is to use some form of public 

key cryptography such as RSA to encrypt the data. For data only relevant to the game state, it is 

useful to minimize the amount of data that is sent. This is particularly helpful to reduce cheating 

in client-server games, because it gives clients less information to work with. 

 Input validation is also important to ensure that no user is performing an action when it is not 

allowed. Bad input may not always be tied to cheating—it is possible in a client-server game 

that a client simply has not received the latest updates when it sends out the command. That 

being said, it is important that all commands that are sent over the network are verified. This 

can work both for the server validating a client’s input and for a peer validating another peer’s 

input. For the case of validating data from the server, the foolproof choice is to disallow players 

from hosting their own servers. 

 Although it is a more aggressive approach, software cheat detection can be the best tool to 

eliminate cheating in a game. A typical cheat detection software will actively scan the memory 
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of a computer running the game in order to determine if any known cheat programs are also 

running. If a cheat program is detected, the user in question is banned from the game, usually 

during a future ban wave. 

 Finally, it is important to protect your servers from a variety of attacks. Distributed denial-of-

service attacks seek to overwhelm servers, and can be combatted in part by using cloud hosted 

servers. Bulletproofing your server code against bad packets can be accomplished by utilizing 

fuzz testing. Finally, it is important to take measures such as keeping your server software 

up-to-date and encrypting sensitive data stored on the server in order to mitigate the risk and 

damage from a server intrusion.  

  Review Questions 
1.    Describe two different ways a man-in-the-middle attack might be executed.   

2.    What is public key cryptography? How can this be useful to minimize the risk of a man-in-

the-middle attack?   

3.    Give an example of when input validation may result in a false positive, meaning that the 

input validation thinks the user was trying to cheat even if they were not.   

4.    How might a game that allows players to host their own servers validate data sent from 

the server?   

5.    Why is map hacking in a lockstep peer-to-peer game undetectable without usage of 

software cheat detection?   

6.    Briefly describe how the Valve Anti-Cheat system works to combat players who are 

cheating.   

7.    Describe two different ways to secure a server from potential intrusions.    
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 REAL-WORLD ENGINES 

While larger game studios still largely develop 

their own internal game engines, for smaller studios 

it is increasingly common to utilize an off-the-shelf 

engine. For most genres of networked games, it can 

be much more time- and cost-effective for a smaller 

studio to utilize an existing engine. In this case, the 

code the network engineer will write is at a much 

higher-level than the majority of this book.  

  This chapter takes a look at two very popular 

engines used in many games today,   Unreal 4   and  

Unity  , and investigates how networked multiplayer 

functionality can be implemented in both of these 

engines.    
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     Unreal Engine 4 
 The Unreal Engine has existed in one form or another since the 1998 release of the video game 

 Unreal . However, over the years the engine has changed in many different ways. This section 

specifically discusses Unreal Engine 4, which was released in 2014. For the remainder of this 

chapter, “Unreal” will be used in reference to the engine, not the video game that shares its 

name. A developer using Unreal generally does not have to worry about lower-level networking 

details. Instead, the developer is concerned with higher-level gameplay code and making sure 

that it works correctly in a networked environment. This is analogous to the game simulation 

layer of the  Tribes  networking model. 

 Because of this, the majority of this section looks at the higher-level aspects of adding 

networking to an Unreal Engine game. However, in the interest of completeness, it’s worthwhile 

to look at the lower-level details and how they correspond to many of the topics covered in 

 Chapters   1    to    10   . A reader more interested in the lower-level aspects of networking in Unreal 

Engine can also create a developer account for free at  www.unrealengine.com  in order to gain 

full access to the source code. 

  Sockets and Basic Networking 

 In order to provide support for a large number of platforms, it is necessary for Unreal to abstract 

the implementation details of the underlying socket implementation. An interface class called 

 ISocketSubsystem  has implementations for the different platforms that Unreal supports. 

This is in some ways analogous to the Berkeley Sockets code presented in  Chapter   3   . Recall that 

there are slight differences between the socket API on Windows versus Mac or Linux, so the 

socket subsystem in Unreal needs to take this into account. 

 The socket subsystem is responsible for creating sockets as well as addresses. The  Create  

function of the socket subsystem returns a pointer to the created  FSocket  class, which can 

then have data sent and received using standard functions with names such as  Send ,  Recv , 

and so on. Unlike the code implemented in  Chapter   3   , TCP and UDP socket functionality is not 

provided in separate classes. 

 Similarly, there is a  UNetDriver  class that is responsible for receiving, filtering, processing, and 

sending packets. This can be thought as similar to the  NetworkManager  class implemented 

in  Chapter   6   , though it is a bit lower level. As is the case with the socket subsystem, there are 

different implementations based on the underlying transport whether it is IP or a gamer service 

transport such as that used by Steam which is covered in  Chapter   12   , “Gamer Services.” 

 There is quite a bit of other lower-level code related to transmitting messages. There is a large 

set of classes related to transport-agnostic messaging. The details of this are fairly complex, so 

if you are interested, you should consult the Unreal documentation on this particular feature at 

 https://docs.unrealengine.com/latest/INT/API/Runtime/Messaging/index.html .  

http://www.unrealengine.com
https://docs.unrealengine.com/latest/INT/API/Runtime/Messaging/index.html
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  Game Objects and Topology 

 Unreal uses some fairly specific terms to reference the key gameplay classes in the engine, so 

before diving in deeper it’s worthwhile to discuss this terminology. An  Actor  is more or less the 

base game object class. Every object that exists in the game world, whether static or dynamic, 

visible or not, is a subclass of  Actor . One important subclass of  Actor  is  Pawn , which is an 

 Actor  that can be  controlled  by something. Specifically, this means that  Pawn  has a member 

pointing to an instance of a  Controller  class.  Controller  also is a subclass of  Actor , 

which is due to the fact that a  Controller  is still a game object that needs to be updated. 

A  Controller  could be a  PlayerController  or an  AIController , among other things, 

depending on what is controlling the  Pawn  in question. A very small subset of the Unreal class 

hierarchy is illustrated in  Figure   11.1   . 

Actor

ControllerPawn

Player
Controller

AIController

  Figure 11.1  Highlights of the Unreal class hierarchy       

  To solidify how all these classes work together, consider a simple example of a single-player 

dodgeball game. Suppose a player presses the spacebar to throw a dodgeball. The spacebar 

input event might be passed to a  PlayerController . The  PlayerController  will then 

notify the  PlayerPawn  that it should throw a dodgeball. This will cause the  PlayerPawn  to 

spawn a  DodgeBall , which is a subclass of  Actor . Although there is more happening behind 

the scenes in the engine, this should provide a basic understanding of how these key classes 

interact with each other. 

 For networked games, Unreal only supports the client-server model. There are two different 

modes the server can run in: dedicated server and listen server. In a  dedicated server , the 
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server runs as a process separate from any and all clients. Usually, a dedicated server is run on a 

separate machine entirely, though that is not a requirement. In the  listen server  mode, one of 

the game instances is both the server  and  one of the clients. There are some subtle differences 

between games running in dedicated server mode as opposed to listen server, but that is 

beyond the scope of this section.  

  Actor Replication 

 Given that Unreal uses a client-server model, it follows that there needs to be a way for the 

server to transmit updates on actors to all of the clients. This is appropriately referred to as 

 actor replication . Unreal does a few different things to try to reduce the number of actors 

that need to be replicated at any one time. As with the  Tribes  model, Unreal tries to determine 

the set of actors that are relevant to any one client. Furthermore, if there is an actor that will 

only ever be relevant to one particular client, it is possible to spawn the actor on that client, 

rather than on the server. An example where this second approach might be utilized is for an 

actor that is a wrapper for a temporary particle effect. It is also possible to further tweak the 

relevancy of an actor with a few different flags. For example,  bAlwaysRelevant  will greatly 

increase the likelihood an actor will be relevant (though contrary to name of the variable, it 

does not actually  guarantee  the actor will always be relevant). 

 Relevancy leads to the next important concept of  roles . In a networked multiplayer game, 

there will be several separate instances of the game running at once. Each of these instances 

can query the role for each actor in order to determine who has the authority over the actor. 

It’s important to understand that the role for a particular actor  can be different  depending 

on the game instance which is querying the role. If we return to the dodgeball example, in a 

networked multiplayer version of dodgeball, the ball would be spawned on the server. Thus, 

if the server asked about the role of the dodgeball, it would see that it has role “authority” 

meaning the server is the final authority for the dodgeball actor. However, every other client 

would see a role of “simulated proxy,” meaning that they are simply simulating the ball and are 

not the authority of the ball’s behavior. The three roles are as follows: 

   ■ Authority.  The game instance is the authority for the actor.

  ■ Simulated proxy.  When on a client, this means that the server is the authority for the actor.

A simulated proxy means that the client may simulate some aspects of the actor, such as 

movement.  

■ Autonomous proxy.  An autonomous proxy is very similar to a simulated proxy, though 

it implies that it is a proxy that is receiving input events directly from the current game 

instance, so the player’s input should be taken into account when the proxy is simulated.

 This does not mean that in a multiplayer game the server is always the authority for every actor. 

In the case of the local particle effect actor, it may make sense for the client to spawn the actor, 

in which case the client would see role “authority” and the server would not even know the 

particle effect actor existed. 
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 However, every actor that the server has role “authority” on will be replicated to all clients, when 

relevant. Inside of these actors, it is possible to specify which properties should or should not 

replicate. In this way, bandwidth can be conserved by only replicating properties that are critical to 

properly simulating the actor. Actor replication in Unreal is  only  ever from the server to the client—

there is no way for the client to create an actor and then replicate it to the server (or other clients). 

 It is also possible for more advanced replication configuration beyond just copying properties. 

For example, it is possible to only replicate a property based on particular conditions. It is also 

possible to have a custom function be executed on the client whenever a particular property 

is replicated from the server. As gameplay code in Unreal Engine 4 is written in C++, the engine 

uses a complex set of macros to track all of the different replication properties. So when adding 

a variable in a class’ header file, you can also tag the variable with appropriate replication 

information via the macros. Unreal also has a fairly powerful flowchart-based scripting system 

called  Blueprint— surprisingly, much of the multiplayer functionality is also accessible via this 

scripting system. 

 Conveniently, Unreal already implements client prediction for actor movement. Specifically, 

if the  bReplicateMovement  flag is set on an actor, it will replicate and predict movement 

of simulated proxies based on replicated velocity information. If necessary, it is also possible 

to override the method by which client prediction is implemented for character movement. 

However, the default implementation is a good starting point for most games.  

  Remote Procedure Calls 

 As in discussed in  Chapter   5   , “Object Replication,” remote procedure calls are instrumental in 

making replication work. So it should not be a surprise that Unreal has a fairly powerful system 

for remote procedure calls. There are three types of RPCs in Unreal: server, client, and multicast. 

 A  server function  is a function that is called on a client, and executed on the server, with 

one big caveat: The server does not let any client call a server RPC on any actor in the world. 

This would too easily lead to potential cheating, among other issues. Instead, only the 

client that is the  owner  of the actor can successfully execute a server RPC on the actor. Note 

that the owner is  not  the same thing as the game instance that is role authority. Rather, 

the owner is the  PlayerController  that is associated with the actor in question. For 

example, if  PlayerController  A controls  PlayerPawn  A, then the client that is driving 

 PlayerController  A is considered the owner of  PlayerPawn  A. If we return to the 

dodgeball game example, this means that only Client A can call the  ThrowDodgeBall  server 

RPC on  PlayerPawn  A—any calls to  ThrowDodgeBall  that Client A might try to invoke on 

any other  PlayerPawn  would be ignored. 

 A  client function  is the inverse of a server function. When the server calls a client function, the 

procedure call is sent to the client who is the owner of the actor in question. For example, when 

the server determines in the dodgeball game that player C is eliminated, it might invoke a client 
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function on player C so that the owning client of player C can display the “Eliminated!” message 

on screen. 

 As the name implies, a  multicast function  will be sent to multiple game instances. In particular, 

a multicast function is a function that is called on the server, but executed on the server  and  all 

of the clients. Multicast functions are used to notify every client about a particular event—for 

example, a multicast function might be used when the server wants every client to locally 

spawn a particle effect actor. 

 Combined, these three different types of RPCs allow for a great deal of flexibility. It’s also 

notable that Unreal provides a choice on whether or not an RPC is reliable. This means that low-

priority events could have their RPCs marked as unreliable, which could improve performance 

when packet loss occurs.   

  Unity 
 The Unity game engine was first released in 2005. In the last few years, it has become a very 

popular game engine used by many developers. As with Unreal, the engine provides some 

synchronization and RPC functionality built-in, though there are some distinct differences from 

the approach used by Unreal. Unity 5.1 introduced a new networking library called UNET, and 

as such this section focuses on this newer library. In UNET, there are two different APIs: a higher-

level API that can handle most networked game usage cases, as well as a lower-level transport 

API that can be used for custom communication over the Internet, as required. The majority of 

this section will focus on the higher-level API. 

 While the core Unity game engine is largely written in C++, Unity developers are not provided 

access to this C++ code. Developers using Unity will typically write the bulk of their code in C#, 

though it is also possible to use a version of JavaScript, as well. Most serious Unity developers 

will go with the C# option. Programming gameplay logic in C# instead of C++ presents both 

advantages and disadvantages, though this is irrelevant to the task at hand. 

  Transport Layer API 

 The transport layer API provided by UNET is a wrapper for platform-specific sockets. As one 

might expect, there are functions for creating connections with other hosts, and this can be used 

to send and receive data. One of the decisions that can be made when creating a connection is 

the reliability of the connection. Rather than specifically requesting a UDP or TCP connection, 

you can instead specify how you wish to use the connection. You can create a communication 

channel and request one of many values from the  QosType  enum. Possible values include: 

■ Unreliable  .  Send messages without any guarantees.  

■ UnreliableSequenced  .  Messages are not guaranteed to arrive, but out-of-order 

messages are dropped. This is useful for voice communication.  
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■ Reliable  .   The message is guaranteed to arrive as long as the connection is not disconnected.  

■ ReliableFragmented  .  A reliable message that can be fragmented into several 

packets. This is useful when wanting to transmit large files over the network, as it can be 

reassembled on the receiving end.   

 Connections can be established via the  NetworkTransport.Connect  function call. This will 

return a connection ID, which can then be used as a parameter for other  NetworkTransport  

functions such as  Send ,  Receive , and  Disconnect . On a  Receive  call, the returned 

value is a  NetworkEventType , which can either encapsulate the data or an event such as a 

disconnection.  

  Game Objects and Topology 

 One big difference from Unreal is the way that game objects are set up in Unity. While Unreal 

has a relatively monolithic hierarchy when it comes to the game objects and actors, Unity takes 

a more modular approach. The  GameObject  class in Unity is largely a container for  Component  

classes. All behaviors are delegated to the components that are contained in the  GameObject  

in question. This can allow for a much better delineation between different aspects of a game 

object’s behavior, though it can sometimes make programming systems more difficult when 

there are dependencies between multiple components. Normally, a  GameObject  has one 

or more components that inherit from  MonoBehaviour  that drive any custom functionality 

for that  GameObject . So for example, rather than having a  PlayerCat  class that directly 

inherits from  GameObject , you would have a  PlayerCat  component that inherits from 

 MonoBehaviour . Then the  PlayerCat  component could be attached to any game objects 

that should behave like a  PlayerCat . 

 In the higher-level networking API, Unity uses a  NetworkManager  class to encapsulate the 

state of a networked game. The  NetworkManager  can run in three different modes: as a 

standalone client, a standalone (dedicated) server, or a combined “host” that is both a client 

and a server. This means that Unity essentially supports the same dedicated server or listen 

server modes that are supported by Unreal.  

  Spawning Objects and Replication 

 Because Unity uses a client-server topology, it means that spawning objects in a networked 

Unity game is very different from spawning them in a single-player game. Specifically, when 

a game object is spawned on the server via the  NetworkServer.Spawn  function, it means 

that this game object will be tracked by the server with a generated network instance ID. 

Furthermore, a game object spawned in this manner should be replicated and spawned to all 

of the clients as well. In order for the correct game object to be spawned on the client, you are 

required to register the correct  prefab  for the game object. A prefab in Unity can be thought 

of as a collection of components, data, and scripts that the game object uses—this can include 

things like the 3D model, sound effects, and behavior scripts used by the game object. By 
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registering the prefab on the client, it ensures that all of the object’s data is ready for use in the 

event that the server notifies the client to spawn an instance of that game object. 

 Once an object is spawned on the server, the properties in its behavior can be replicated to 

the client via a few different methods. In order for this to work, however, the behavior must 

inherit from  NetworkBehaviour  instead of the usual  MonoBehaviour . Once this is done, 

the simplest way to replicate variables is to flag each variable you wish to replicate with 

the  [SyncVar]  attribute. This will work on built-in types as well as Unity types such as 

 Vector3 . Any variables that are marked as  SyncVar s will automatically have value changes 

replicated to the clients. There is no need for you to mark the value as dirty. However, keep 

in mind that while  SyncVar  can also be used for a user-defined struct, the entire contents of 

the struct will be copied as one set of data. So if you have a struct with 10 members, but only 

one member changes, it would transmit all 10 members over the network, which may waste 

bandwidth. 

 In the event you require more fine-grained control over how variables replicate, you can 

override the  OnSerialize  and  OnDeserialize  member functions to manually read and 

write the variables you wish to synchronize. This can allow for customized functionality, but it 

cannot be combined with  SyncVar— so you have to choose one or the other.  

  Remote Procedure Calls 

 Unity also has support for remote procedure calls, though the terminology is slightly different 

than the terms used in this book. In Unity, a  command  is an action sent from a client to the 

server, and only works for objects controlled by that player. In contrast, a  client RPC  function 

is an action sent from the server to a client. As with  SyncVar , these types of RPC functions are 

only supported in subclasses of  NetworkBehaviour . 

 The system for flagging functions as either type of remote procedure call is fairly similar to 

synchronizing variables. To flag a function as a command, it should have the  [Command]  

attribute and additionally the function should begin with a prefix  Cmd , such as  CmdFireWeapon . 

Similarly, a function can be flagged with the  [ClientRpc]  attribute and should begin with 

 Rpc  in the event that it’s a client RPC. In either case, the function can be called like a standard 

function call in C# and it will automatically create the network data and execute it remotely.  

  Matchmaking 

 The UNET library also provides some matchmaking functionality that is typically associated 

with a gamer service, a topic covered in much greater detail in  Chapter   12   , “Gamer Services.” 

This is in contrast to Unreal, which instead provides wrappers for established gamer services 

based on the platform in question. The matchmaker in Unity can be used to request and list 

the current game sessions. Once a suitable session is found, it is then possible to join the 
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game. This functionality can be added to a  MonoBehaviour  subclass via the  NetworkMatch  

class. This will then trigger callbacks such as  OnMatchCreate ,  OnMatchList , and 

 OnMatchJoined .    

     Summary 
 For smaller game development studios, using an off-the-shelf game engine can be a reasonable 

decision. In such a case, the responsibility of the network engineer is at a higher level than 

the majority of this book. Rather than worrying about how to implement sockets or basic 

data serialization, the engineer must know how to allow for game functionality to run on a 

networked game in their engine of choice. 

 The Unreal Engine has existed for nearly 20 years. The fourth version of the engine, released 

in 2014, provides full source code in C++. Although there are platform-specific wrappers for 

functionality such as sockets and addresses, the expectation is generally that the developer will 

not directly utilize these classes. 

 Unreal’s networking model supports a client-server topology, which can either use a dedicated 

server or a listen server. The Unreal version of a game object,  Actor , has a hierarchy that 

includes many different subclasses. An important aspect of this functionality is the idea of 

a network role. Authority means the game instance is the authority over an object, whereas 

simulated and autonomous proxies are used when a client simply is mirroring an object 

from the server. The  Actor  class also has built-in support for replication of objects. Some 

functionality, such as movement, can be replicated by setting a Boolean, while custom 

parameters can also be marked to replicate. Furthermore, there is support for a variety of 

remote procedure calls. 

 Unity has existed since 2005, and over the last few years has become a popular game engine. 

Developers using Unity generally will write all of their gameplay code in C#. In Unity 5.1, a 

new network library called UNET was introduced, which provides a great deal of high-level 

networking functionality, though there is also a low-level transport layer that is available. 

 The transport layer abstracts the creation of sockets and instead allows the developer to 

transmit data in several modes including reliable and unreliable, but most games implemented 

in Unity will likely not directly access this. Instead, most developers will use the higher-level 

API which, as with Unreal, supports both dedicated server and a listen server. All behaviors 

that need networking support should inherit from the  NetworkBehaviour  class. This adds 

functionality for replication, which can be handled either via the  [SyncVar]  attribute or 

custom serialization functions. A similar approach is also utilized for remote procedure calls, 

both from the server to the client, and the client to the server. Finally, Unity provides some 

built-in matchmaking functionality that can be used as a lighter-weight option to using a full 

gamer service.  
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  Review Questions 
1.    Both Unreal and Unity only provide built-in support for a client-server topology, and not a 

peer-to-peer topology. Why do you think this is the case?   

2.    In Unreal, what are the different roles that actors can have in a networked game, and what 

is their importance?   

3.    Describe the different usage cases for remote procedure calls in Unreal. 

4.    Describe how the game object and component model function in Unity. What might be 

the advantages and disadvantages of such a system?   

5.    How does Unity implement variable synchronization and remote procedure calls?    

  Additional Readings 
 Epic Games. “Networking & Multiplayer.” Unreal Engine.  https://docs.unrealengine.com/latest

/INT/Gameplay/Networking/ . Accessed September 14, 2015. 

 Unity Technologies. “Multiplayer and Networking.”  Unity Manual .  http://docs.unity3d.com

/Manual/UNet.html . Accessed September 14, 2015.    

https://docs.unrealengine.com/latest/INT/Gameplay/Networking/
http://docs.unity3d.com/Manual/UNet.html
https://docs.unrealengine.com/latest/INT/Gameplay/Networking/
http://docs.unity3d.com/Manual/UNet.html
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 GAMER SERVICES 

      Most players today have profiles on services such 

as Steam, Xbox Live, or PlayStation Network. These 

services provide many features, to both the players 

and the games, including matchmaking, stats, 

achievements, leaderboards, cloud-based saves, 

and more. Because the use of these aptly named 

gamer services has become so prevalent, players 

expect that every game, even single-player ones, 

be integrated with one of these services in some 

meaningful way. This chapter takes a look at how 

such services can be integrated into your game.    
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     Choosing a Gamer Service 
 With so many options, it is worthwhile to consider which gamer service you want to 

integrate into your game. In some cases, the choice is made for you based on the platform 

the game is released on. For example, all Xbox One games must be integrated with the Xbox 

Live gamer service—it’s simply not possible to integrate an Xbox One game with PlayStation 

Network. For PC, Mac, and Linux, however, there are several potential options. Without a 

doubt, the most popular service on these platforms today is Valve Software’s service, Steam. 

In existence for over 10 years, the Steam platform has a large install base with thousands of 

available games. Given that  RoboCat RTS  is a PC/Mac game, it made sense to integrate Steam 

into it. 

 There are a few prerequisites in order to integrate Steam into your game. First, you must agree 

to the terms of the Steamworks SDK Access Agreement. This agreement is available online at 

 https://partner.steamgames.com/documentation/sdk_access_agreement . Next, you must 

register as a Steamworks partner, which involves signing further nondisclosure agreements as 

well as providing relevant information. Finally, you must get an app ID for your game. An app ID 

is only provided once you sign up to become a Steamworks partner and your game is greenlit 

to be offered on Steam. 

 However, when you complete the first step, agreeing to the Steamworks SDK Access 

Agreement, you are given access to the SDK files, documentation, and a sample game project 

(called  SpaceWar! ) that has its own app ID. For demonstration purposes, the code samples 

provided in this chapter utilize the app ID for  SpaceWar . This is more than sufficient to 

understand how to integrate Steamworks into your game once you do complete all of the other 

steps and receive your own unique app ID.  

  Basic Setup 
 Before writing any code specific to a gamer service, consider how you want to integrate the 

code into your game. A quick option would be to directly add calls to the gamer service code 

wherever it is needed. So in our case, we would directly call the Steamworks SDK functions 

in all the files that need to use the gamer service. However, this is discouraged for a couple 

of reasons. First, this means that every developer on your team may need to have some 

level of familiarity with Steamworks, because the code using it will be spread throughout 

your codebase. Second, and more importantly, this makes it far more difficult to integrate 

a different gamer service into your game. This is particularly a concern for cross-platform 

games, because, as discussed, different platforms have different restrictions on which gamer 

service can be used. So even if we know that  RoboCat RTS  is only on PC and Mac for now, if we 

ever wanted to port it to PlayStation 4, we’d want to make the transition from Steamworks to 

PlayStation Network as seamless as possible. Having Steamworks code everywhere is counter 

to this goal. 

https://partner.steamgames.com/documentation/sdk_access_agreement
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 This leads to a major design decision for the implementation of gamer services in 

this chapter. The code in the  GamerServices.h  header makes no references to any 

Steamworks functions or objects, and thus does not need to include the  steam_api.h  

header. One of the mechanisms used to accomplish this is the  pointer to implementation  

construct, a C++ idiom used to hide the implementation details of a class. When using 

pointer to implementation, you have a class that contains both a forward declaration of 

an implementation class  and  a pointer to this implementation class. In this manner, the 

implementation details of the class are separated from its declaration. The basic components 

of pointer to implementation that are used in the  GamerServices  class is shown in Listing 

12.1. Notice that the class uses a  unique_ptr  rather than a raw pointer, as this is the 

recommended approach in modern C++. 

  Listing 12.1 Pointer to Implementation in  GamerServices.h  

 class GamerServices 
 { 
 public: 
  //lots of other stuff omitted 
  //... 

  //forward declaration 
   struct Impl; 
 private: 
  //pointer to implementation 
  std::unique_ptr<Impl> mImpl; 
 };  

 It’s important to note that the implementation class itself is never fully declared in the header. 

Instead, the details of the implementation class are declared in the object file—in this case 

 GamerServicesSteam.cpp , and this is also where the  mImpl  pointer is initialized. This 

means that the only place any Steamworks API calls are made is in this single C++ file. In this 

way, if at any point we wanted to integrate Xbox Live, it would be possible to create another 

implementation of the  GamerServices  class in  GamerServicesXbox.cpp . We would then 

add this new file to our project instead of the Steam implementation, and in theory no other 

code should have to change. 

 Although pointer to implementation is a powerful way to abstract away platform-specific 

details, there is a performance concern that bears mentioning, particularly for games. When 

using a pointer to implementation, it means that the vast majority of member function calls 

for the object will require an additional pointer dereference. Pointer dereferences have a cost 

associated with them. For a class that will have a very high number of member function calls, 

such as the render device, the performance decrease would be noticeable. However, in the case 

of the  GamerServices  object, we should not be making a particularly high number of calls 

per frame. So in this case, trading performance for flexibility is acceptable. 
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 It should also be noted that the available functionality in the  GamerServices  object is a 

small subset of the overall Steamworks functionality. This is because it only includes wrappers 

for the functionality that was desired for  RoboCat RTS— it would certainly be possible to add 

more to it. However, if you are adding significantly more features, it probably would be a good 

idea to separate the gamer services code into multiple files. For example, rather than having 

the handful of peer-to-peer networking functions directly in  GamerServices , it might make 

sense to create a  GamerServiceSocket  class that has functionality similar to  TCPSocket  or 

 UDPSocket . 

  Initialization, Running, and Shutdown 

 Steamworks is initialized by calling  SteamAPI_Init . This function takes no parameters 

and returns a Boolean based on the success of the initialization. The code for this is in 

 GamerServices::StaticInit . It’s noteworthy that the gamer services are initialized in 

 Engine::StaticInit   before  the renderer is initialized. This is because one of the features 

Steam provides is an overlay. The overlay allows for the player to perform actions such as 

chat with friends or use a web browser without leaving their current game. The way this 

overlay works is by hooking into OpenGL functionality. This means that in order for the 

overlay rendering to work correctly,  SteamAPI_Init  must be called before any rendering 

initialization. If  SteamAPI_Init  succeeds, it will populate a series of global interface pointers. 

These pointers can then be accessed via global functions such as  SteamUser ,  SteamUtils , 

and  SteamFriends . 

 Normally, a game on Steam is launched through the Steam client. This is how Steamworks 

knows the app ID of the game being run. However, during development you won’t be 

launching your game through the Steam client—typically you will be launching through the 

debugger or as a standalone executable. In order to let Steamworks know the app ID during 

development, a  steam_appid.txt  file that contains the app ID is placed in the same directory 

as the executable. However, even though this removes the requirement of launching the game 

via the Steam client, an instance of the Steam client with a logged-in user must still be running. 

If you do not have the Steam client, you can get it from the Steam website at  http://store

.steampowered.com/about/ . 

 Furthermore, in order to test multiple users playing against each other on Steam, you must 

create multiple test accounts. Testing locally is a bit more complicated than the  Chapter   6    

version of the game because it is not possible to run multiple instances of Steam on the same 

computer. So in order to test the multiplayer functionality for this chapter’s code, you will need 

to either use multiple computers or set up a virtual machine. 

 Since Steamworks often must communicate with a remote server, many of its function calls 

are asynchronous. In order to notify the application when the asynchronous call has finished, 

Steamworks utilizes callbacks. In order to ensure that the callbacks are triggered, the game 

must call  SteamAPI_RunCallbacks  on a regular basis. It is recommended this function is 

http://store.steampowered.com/about/
http://store.steampowered.com/about/
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called once per frame, and so this is what is done in  GamerServices::Update , which is called 

once per frame in  Engine::DoFrame . 

 Similar to initialization, shutdown of Steamworks is very straightforward via the  SteamAPI_

Shutdown  function. This is called in the destructor of  GamerServices . 

 For client-server games, it is further necessary to initialize/shutdown game server code via 

 SteamGameServer_Init  and  SteamGameServer_Shutdown . This requires also including 

 steam_gameserver.h . Dedicated servers can be run in an anonymous mode that does 

not require a user to be logged in. However, since  RoboCat RTS  only uses peer-to-peer 

communication, the code for this chapter does not use any of the game server functionality.  

  User IDs and Names 

 In the earlier version of  RoboCat RTS  discussed in  Chapter   6   , player IDs were stored as unsigned 

32-bit integers. You may recall that in this older version of the game, the player IDs were 

assigned by the master peer. When using a gamer service, each player would already have 

a unique player ID assigned by the service, so it makes little sense to try to assign unique 

IDs on your own. In the case of Steamworks, unique IDs are encapsulated by the  CSteamID  

class. However, it would defeat the purpose of the modularization of the  GamerServices  

class if  CSteamID s were used everywhere. Luckily,  CSteamID s can be converted to and from 

unsigned 64-bit integers. 

 So it follows that changing the player IDs to correspond to the Steam ID first required changing 

all player ID variables to be of type  uint64_t . Furthermore, rather than having the player 

IDs be assigned by the master peer, the  NetworkManager  now initializes each player’s ID by 

querying the  GamerServices  object, specifically by calling the  GetLocalPlayerId  function 

in Listing 12.2. 

  Listing 12.2 Basic User ID and Name Functionality 

 uint64_t GamerServices::GetLocalPlayerId() 
 { 
   CSteamID myID = SteamUser()->GetSteamID(); 
   return myID.ConvertToUint64(); 
 } 

 string GamerServices::GetLocalPlayerName() 
 { 
   return string(SteamFriends()->GetPersonaName()); 
 } 
 string GamerServices::GetRemotePlayerName(uint64_t inPlayerId) 
 { 
   return string(SteamFriends()->GetFriendPersonaName(inPlayerId)); 
 }  
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 Similar thin wrappers for getting the name of both the local player and another player are also 

in Listing 12.2. Instead of having the players specify their name, as in the old version of  RoboCat , 
it makes more sense to use the name associated with the player on Steam. 

 It’s worth mentioning that although using 64-bit integers for the player ID works for 

Steamworks, there’s no guarantee that it would work for all gamer services. For example, 

another gamer service might use a 128-bit UUID to identify all the players. In this case, it 

would be necessary to add a further layer of abstraction. For example, you could create 

a  GamerServiceID  class that is a wrapper for the underlying representation used for 

identification by the gamer service.   

  Lobbies and Matchmaking 
 The earlier version of  RoboCat RTS  had a nontrivial amount of code associated with all the 

players meeting up in a pregame lobby. Each new peer had to first say hello to the master peer, 

then wait to be welcomed, before finally introducing themselves to all the other peers in the 

game. For this chapter, all the code related to this welcoming process was removed. The reason 

is that Steam, along with most major gamer services, provides its own lobby feature. Thus, it 

makes sense to leverage the Steam functionality, especially given that it has far more features 

than the functionality previously implemented in  RoboCat . 

 The basic flow of preparing to play a multiplayer game via Steamworks is roughly as follows: 

1.   The game searches for a lobby based on application-customizable parameters. These 

parameters can include game modes or even skill level (if performing skill-based 

matchmaking).  

2.   If one or more suitable lobbies are found, the game either selects one automatically or the 

player is allowed to pick from a list. If no lobby is found, the game can choose to create 

one for the player. In any event, once a lobby is either found or created, the player joins the 

lobby.  

3.   While in the lobby, it’s possible to further configure the parameters of the upcoming game 

such as characters, map, and so on. During this period, other players will hopefully join the 

same lobby. It’s also possible to send chat messages to each other while in the same lobby.  

4.   Once the game is ready to start, the players join their game and leave the lobby. 

Normally, this involves connecting to a game server (either a dedicated server or a player-

hosted one). In the case of  RoboCat RTS , there is no server, so the players instead start 

communicating peer-to-peer with each other before leaving the lobby.   

 Since  RoboCat  has no menus or mode selection, the game begins a lobby search almost 

immediately after Steamworks is initialized. The lobby search is encapsulated by the 

 LobbySearchAsync  function shown in Listing 12.3. The only filter used is for the game name, 

which ensures that only lobbies for  RoboCat  are found. But any additional filters could be 



ptg16606381

LOBBIES AND MATCHMAKING 295

applied by calling the appropriate filter functions prior to the call to  RequestLobbyList . Note 

that the code only asks for one result, because the game will simply auto-join the first lobby it 

finds. 

  Listing 12.3 Searching for a Lobby 

 const char* kGameName = "robocatrts"; 

 void GamerServices::LobbySearchAsync() 
 { 
   //make sure it's Robo Cat RTS! 
   SteamMatchmaking()->AddRequestLobbyListStringFilter("game", 

kGameName, k_ELobbyComparisonEqual); 

   //only need one result 
   SteamMatchmaking()->AddRequestLobbyListResultCountFilter(1); 

   SteamAPICall_t call = SteamMatchmaking()->RequestLobbyList(); 
   mImpl->mLobbyMatchListResult.Set(call, mImpl.get(), 

&Impl::OnLobbyMatchListCallback); 
 }  

 The use of the  SteamAPICall_t  struct in  LobbySearchAsync  requires a bit more 

explanation. In the Steamworks SDK, all asynchronous calls return a  SteamAPICall_t  struct, 

which essentially is a handle to the asynchronous call. Once given this handle, you must let 

Steamworks know what callback function to invoke when the asynchronous call completes. 

This association between an asynchronous handle and a callback is encapsulated by an 

instance of  CCallResult . In this case, the instance is the  mLobbyMatchListResult  member 

of the implementation class. This member and the  OnLobbyMatchListCallback  functions 

are defined as follows inside  GamerServices::Impl : 

  //Call result when we get a list of lobbies 
 CCallResult<Impl, LobbyMatchList_t> mLobbyMatchListResult; 
 void OnLobbyMatchListCallback(LobbyMatchList_t* inCallback, bool inIOFailure);  

 In this particular instance, the implementation of  OnLobbyMatchListCallback  has a 

couple of cases to consider, as shown in Listing 12.4. Note that we check for the  IOfailure  

bool. All callbacks have this bool, and it should be assumed that if the value is true, there is an 

error and the callback should not proceed. However, if a lobby is successfully found, the code 

requests to enter that lobby. Otherwise, it will create a new lobby. Both of these cases involve 

an additional asynchronous function call as well, so there are two more callbacks to look at: 

 OnLobbyEnteredCallback  and  OnLobbyCreateCallback . To see the implementation 

of these callbacks, consult the sample code. One important thing to note in these functions 

is that once the player enters a lobby, the  NetworkManager  is notified via an  EnterLobby  

function. 
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  Listing 12.4 Callback When Lobby Search Completes 

 void GamerServices::Impl::OnLobbyMatchListCallback(LobbyMatchList_t* inCallback, 
bool inIOFailure) 

 { 
   if(inIOFailure) {return;} 

   //if we find a lobby, enter, otherwise create one 
   if(inCallback->m_nLobbiesMatching > 0) 
   { 

mLobbyId = SteamMatchmaking()->GetLobbyByIndex(0); 
SteamAPICall_t call = SteamMatchmaking()->JoinLobby(mLobbyId); 
mLobbyEnteredResult.Set(call, this, &Impl::OnLobbyEnteredCallback); 

   } 
   else 
   { 

SteamAPICall_t call = SteamMatchmaking()->CreateLobby( k_ELobbyTypePublic, 
     4); 

 mLobbyCreateResult.Set(call, this, &Impl::OnLobbyCreateCallback); 
  } 
 }  

 The  NetworkManager::EnterLobby  function ends up not being particularly noteworthy, 

except that it does call another function in  NetworkManager  called  UpdateLobbyPlayers . 

This  UpdateLobbyPlayers  function is called both when the player first enters the lobby, 

and whenever another player enters or leaves the lobby. This way, the  NetworkManager  can 

always be sure that it has an up-to-date list of all the players who are currently in the lobby. This 

is important, because with the removal of the introduction packets, it is the only way that peers 

can know when the players in the lobby change. 

 The way to ensure that  UpdateLobbyPlayers  is always called when the players in the lobby 

change is to use a general callback function. The difference between callbacks and call results 

is that call results are associated with a specific asynchronous call, whereas general callbacks 

are not. Thus, general callbacks can be seen as a way to register for notifications regarding a 

specific event. Conveniently, a callback is posted every time a user leaves or enters a lobby. For 

these general callbacks, you use a  STEAM_CALLBACK  macro inside the class that will respond to 

the callback. In this case, it’s the implementation class, and the macro looks like this: 

  //Callback when a user leaves/enters lobby 
 STEAM_CALLBACK(Impl, OnLobbyChatUpdate, LobbyChatUpdate_t, 

 mChatDataUpdateCallback);  

 This macro simplifies declaring the name of the callback function and the member variable that 

encapsulates the callback. This member variable needs to be instantiated in the initializer list of 

 GameServices::Impl  like so: 

  mChatDataUpdateCallback(this, &Impl::OnLobbyChatUpdate),  
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 The implementation for  OnLobbyChatUpdate  then simply calls  UpdateLobbyPlayers  

on the  NetworkManager . Thus, every time a player enters or leaves the lobby, you can 

guarantee that  UpdateLobbyPlayers  gets called. Since  UpdateLobbyPlayers  also 

needs some way to grab a map containing the ID and name of every player in the game, the 

 GamerServices  class provides a  GetLobbyPlayerMap  function, shown in Listing 12.5. 

  Listing 12.5 Generating a Map of All the Players in a Lobby 

 void GamerServices::GetLobbyPlayerMap(uint64_t inLobbyId, 
map< uint64_t, string >& outPlayerMap) 

 { 
   CSteamID myId = GetLocalPlayerId(); 
   outPlayerMap.clear(); 
   int count = GetLobbyNumPlayers(inLobbyId); 
   for(int i = 0; i < count; ++i) 
   { 

CSteamID playerId = SteamMatchmaking()-> 
GetLobbyMemberByIndex(inLobbyId, i); 

if(playerId == myId) 
{ 

outPlayerMap.emplace(playerId.ConvertToUint64(), 
GetLocalPlayerName()); 

} 
else 
{ 

outPlayerMap.emplace(playerId.ConvertToUint64(), 
GetRemotePlayerName(playerId.ConvertToUint64())); 

} 
   } 
 }  

 If you want to support player chat messages in the lobby, Steamworks provides a 

 SetLobbyChatMsg  function to transmit messages. Then there is a  LobbyChatMsg_t  callback 

that can be registered in order to be notified when new messages appear. Since  RoboCat  

does not have any interface for chatting, the  GamerServices  class does not provide this 

functionality. However, it would not be too time consuming to add wrapper functions for 

chatting if you desire to support it. 

 Once the game is ready to start, for a client-server game you would use Steamworks function 

 SetLobbyGameServer  to associate a specific server with the lobby. This server can be 

associated either via IP address (for dedicated servers) or it can be associated with a Steam 

ID (for player-hosted servers). This then triggers a  LobbyGameCreated_t  callback to all the 

players that can be used to let them know it is time to connect to a server. 

 However, since  RoboCat RTS  is a peer-to-peer game, it does not utilize this server functionality. 

Instead, once the game is ready to start, there are three steps taken. First, the lobby is set to 
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be no longer joinable, so no further players can join. Second, the peers begin communication 

with each other to synchronize the game start. Finally, once the game enters the playing state, 

everyone leaves. Once all players leave a Steam lobby, the lobby is automatically destroyed. 

The functions for setting the lobby to be unjoinable and leaving the lobby are declared 

in  GamerServices  as  SetLobbyReady  and  LeaveLobby . These functions are very thin 

wrappers that each calls a single Steamworks function.  

  Networking 
 Many gamer services also provide a wrapper for networked communication between two users 

on the service. In the case of Steamworks, it provides a handful of functions to send packets to 

other players. The  GamerServices  class wraps some of these functions, as shown in Listing 12.6. 

  Listing 12.6 Peer-to-Peer Networking via Steamworks 

 bool GamerServices::SendP2PReliable(const OutputMemoryBitStream& 
inOutputStream, uint64_t inToPlayer) 

 { 
   return SteamNetworking()->SendP2PPacket(inToPlayer, 

inOutputStream.GetBufferPtr(), 
inOutputStream.GetByteLength(), 
k_EP2PSendReliable); 

 } 

 bool GamerServices::IsP2PPacketAvailable(uint32_t& outPacketSize) 
 { 
   return SteamNetworking()->IsP2PPacketAvailable(&outPacketSize); 
 } 

 uint32_t GamerServices::ReadP2PPacket(void* inToReceive, uint32_t inMaxLength, 
uint64_t& outFromPlayer) 

 { 
   uint32_t packetSize; 
   CSteamID fromId; 
   SteamNetworking()->ReadP2PPacket(inToReceive, inMaxLength, 

&packetSize, &fromId); 
   outFromPlayer = fromId.ConvertToUint64(); 
   return packetSize; 
 }  

 You may notice that none of these networking functions refers to an IP or socket address. This 

is intentional, because Steamworks only allows you to send packets to a particular user via 

their Steam ID, not via IP address. The reason for this is twofold. First, it provides some amount 

of protection to each user because their IP address is never revealed to any other user on the 
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service. Second, and perhaps more importantly, this allows Steam to completely handle the 

network address translation. Recall that in  Chapter   6   , one of the concerns of directly referencing 

a socket address was that the address may not be on the same network. However, by using 

the Steamworks networking calls, this issue is entirely handle by Steam. We request to send a 

packet to a particular user and Steam will attempt to send the data to this user via NAT punch-

through, if possible. In the event that the NAT cannot be traversed, Steam will use a relay server 

as a fallback. This guarantees that if the destination user is connected to Steam, there will be 

some route for the packet to reach them. 

 As an added bonus, Steamworks also provides a couple of different modes of transmission. 

In the case of  RoboCat RTS , all the communication for the turn information is critical, so all 

packets are sent reliably as noted by the  k_EP2PSendReliable  parameter. This mode allows 

and sends of up to 1 MB at a time, with automatic packet fragmentation and reassembly 

at the destination. However, it is also possible to request UDP-like communication via  k_

EP2PSendUnreliable . There are also modes to transmit unreliably assuming a connection is 

already established, and reliably that buffers via the Nagle algorithm. 

 The first time a packet is sent to a particular user via  SendP2PPacket , it may take several 

seconds to be received. This is because the Steam service will take some time to negotiate the 

route between the source and the destination. Furthermore, when the destination receives a 

packet from a new user, the destination must accept the session request from the source. This 

is to disallow unwanted packets from a particular user. In order to accept a session request, a 

callback is fired every time a session request is received. Similarly, there’s another callback that’s 

fired when a session connection fails. The code  RoboCat  uses to handle both of these callbacks 

is shown in Listing 12.7. 

  Listing 12.7 Peer-to-Peer Session Callbacks 

 void GamerServices::Impl::OnP2PSessionRequest(P2PSessionRequest_t* inCallback) 
 { 
   CSteamID playerId = inCallback->m_steamIDRemote; 
   if(NetworkManager::sInstance->IsPlayerInGame(playerId.ConvertToUint64())) 
   { 

SteamNetworking()->AcceptP2PSessionWithUser(playerId); 
   } 
 } 

 void GamerServices::Impl::OnP2PSessionFail(P2PSessionConnectFail_t* inCallback) 
 { 
   //we've lost this player, so let the network manager know 
   NetworkManager::sInstance->HandleConnectionReset( 

inCallback->m_steamIDRemote.ConvertToUint64()); 
 }  
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 To account for the fact that the first packet sent to a peer takes some amount of time, the 

startup procedure for  RoboCat  was adjusted slightly. When the lobby owner/master peer is 

ready to start the game, they press the return key as before. However, rather than immediately 

starting the game countdown, the  NetworkManager  enters a new “ready” state. This ready 

state transmits a packet to all the other peers in the game. In turn, when a peer receives a 

ready packet, it transmits its own ready packet to all the other peers. This allows all the peers to 

establish sessions with each other before the game starts. 

 Once the master peer receives a ready packet from every peer in the game, it then enters the 

“starting” state and issues a start packet to all the peers, as before. The key observation is that 

without a ready state, there would not be any sessions established between the peers before 

the game starts. This would mean that the turn 0 packets would take several seconds to arrive, 

meaning that every player would end up in a delay state at the start of the game. 

 As for where this new networking code is used, the packet handling code in the 

 NetworkManager  was rewritten for this version of  RoboCat . Rather than using the 

 UDPSocket  class as before, all packet handling is now done via the functions provided by the 

 GamerServices  class.  

  Player Statistics 
 A popular feature of gamer services is the ability to track various statistics. This way, it is 

possible to browse your or your friend’s profile to see what they have accomplished in various 

games. To support statistics like this, there typically is some way to query the server for the 

player’s statistics as well as a way to update and write new values to the server. Although it is 

conceivably possible to always read and write directly from the server, generally it is a good 

idea to cache the values locally in memory. This is the approach taken by the stats functionality 

implemented in the  GamerServices  class. 

 For a Steamworks game, the name and type of stats are defined for a particular app ID on 

the Steamworks partner site. Since the code for this chapter is using the  SpaceWar  app ID, 

this means that it is limited to using the stats that were defined for  SpaceWar . However, the 

functionality provided would still work for any game’s set of stats, you would just have to 

change the stat definitions to match. 

 Steam supports three different types of stats. Integer and float stats are, unsurprisingly, integer 

and floating point values. The third type of stat is called an “average rate” stat. The way this 

stat works is it provides a sliding window average, with a configurable window size. When you 

retrieve an average rate stat from the server, you still only receive a single floating point value. 

However, when you update an average rate stat, you provide a value as well as a duration 

during which the value was achieved. Steam will then automatically compute for you a new 

sliding average. This way, it is possible for a stat such a “gold per hour” to still change noticeably 

as a player’s performance improves in the game, even when the player has logged many hours. 
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 When defining the stats for a game on the Steamworks site, one of the properties assigned is the 

“API Name,” which is a string value. Then, all the SDK functions associated with getting and setting 

a particular stat require you to pass in the string corresponding to the stat. A simple approach 

would be to have the  GamerServices  functions related to stats simply taking in a string as a 

parameter. However, the problem with this is that it requires you to remember the exact API names 

for each stat, and there is always the potential for a typo. Furthermore, since there is a local cache 

of the stats, each query into the local cache would likely require some sort of hashing. Both these 

issues can be solved by instead using an enum to define all the possible stats. 

 One approach would be to define this enum and then separately define an array that contains 

the API names for each corresponding value in the enum. But the problem with this approach 

is that if the stats change, it means you now need to remember to update both the enum and 

the array of strings. There might even be a third place to edit if your game also uses a scripting 

language, because somewhere in the scripts there would be a redefinition of the same enums. 

Remembering to keep all three of these in sync is both error-prone and annoying. 

 Luckily, there is an interesting technique that can be employed, thanks to the C++ preprocessor. 

This technique, called an  X macro , allows the stats to be defined in a single location. These 

definitions are then automatically reused wherever needed, which guarantees synchronization. 

This completely eliminates any potential for error when changing the stats supported by the game. 

 The first step to implementing an X macro is to create a definition file that defines each 

element as well as any additional properties of the element that are important. In this case, the 

definitions are placed in a separate  Stats.def  file. There are two pieces of data we care about 

for each stat: its name and the type associated with the stat. Thus, the definitions of the stats 

look something like this: 

  STAT(NumGames,INT) 
 STAT(FeetTraveled,FLOAT) 
 STAT(AverageSpeed,AVGRATE)  

 Next, in  GamerServices.h , there are two definitions of enums related to stats. One of the 

enums,  StatType , is nothing special. It just defines the three  INT ,  FLOAT , and  AVGRATE  types 

of stats that are supported. The other enum,  Stat , is much more complex because it uses the X 

macro technique. Thus, it is shown in Listing 12.8. 

  Listing 12.8 Declaring the  Stat  Enum via X Macro 

 enum Stat 
 { 
   #define STAT(a,b) Stat_##a, 
   #include "Stats.def" 
   #undef STAT 
   MAX_STAT 
 };  
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 The code first defines a macro called  STAT  that takes two parameters. Notice that this 

corresponds to the number of parameters each entry in  Stats.def  contains. In this case, the 

macro completely ignores the second parameter. This is because the type of the stat does not 

matter for this particular enum. It then uses the  ##  operator to concatenate the characters 

of the first parameter with the prefix of  Stat_ . Next, we include  Stats.def  which will, in 

essence, copy and paste the contents of  Stats.def  into the enum’s declaration. Since  STAT  is 

now defined as a macro, it will be replaced by the evaluation of the macro. So for example, the 

first element of the enum will be defined as  Stat_NumGames , because that is what the macro 

 STAT(NumGames,INT)  evaluates to. 

 Finally, the  STAT  macro is undefined, and the last element of the enum is defined as  MAX_STAT . 

So the X macro trick not only defines every member of the enum to correspond to a stat 

definition in  Stats.def , it also yields the total number of stats that have been defined. 

 What makes the X macro so powerful is that the same idiom can be reused anywhere the list 

of stats is needed. This way, whenever  Stats.def  is modified, a simple recompile of the code 

will perform macro magic and update all the code that depends on it. Furthermore, because 

 Stats.def  is a fairly simple file, it could also easily be parsed by a scripting language, should 

your game use one. 

 An X macro is used once more when it is time to declare the array of the stats in the 

implementation file. First, there is a  StatData  structure that represents the locally cached 

values associated with each stat. To simplify things, each  StatData  has elements for an 

integer, float, or average rate statistic. This is shown in Listing 12.9. 

  Listing 12.9  StatData  Structure 

 struct StatData 
 { 
   const char* Name; 
   GamerServices::StatType Type; 

   int IntStat = 0; 
   float FloatStat = 0.0f; 
   struct 
   { 

float SessionValue = 0.0f; 
float SessionLength = 0.0f; 

   } AvgRateStat; 

   StatData(const char* inName, GamerServices::StatType inType): 
Name(inName), 
Type(inType) 

   { } 
 };  
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 Next, the  GamerServices::Impl  class has a member array declared as follows: 

  std::array<StatData, MAX_STAT> mStatArray;  

 Notice how the definition of the array takes in  MAX_STAT , an automatically updated value, as 

the number of elements it should contain. 

 Finally, the X macro comes into play during the initializer list of  GamerServices::Impl . It is 

used to construct each  StatData  element of  mStatArray , as shown in Listing 12.10. 

  Listing 12.10 Initializing  mStatArray  via X Macro 

 mStatArray({ 
   #define STAT(a,b) StatData(#a, StatType::##b), 
   #include "Stats.def" 
   #undef STAT 
 } ),  

 For this second X macro, both elements of the  STAT  macro are used. The first element is 

converted into a string literal via the  #  operator, and the second element corresponds to an 

element of the  StatType  enum. So for example, the  STAT(NumGames,INT)  definition would 

conveniently evaluate to the following  StatData  instantiation: 

  StatData("NumGames", StatType::INT),  

 The X macro technique is also used for the definitions of the achievements and the 

leaderboards, since both of those are also instances where multiple values need to stay 

synchronized in multiple places. That being said, even though this is a powerful technique, 

it should not be overused as it does not result in particularly readable code. However, it is 

certainly a useful tool to have in your tool belt for situations like this where it is helpful. 

 With the X macro implemented, the rest of the stats code falls into place relatively easily. 

 GamerServices  has a protected function called  RetrieveStatsAsync  that is called when 

the  GamerServices  object initializes. When the stats are received,  Steamworks  issues a 

callback. Both of these are in Listing 12.11. Notice how the code for  OnStatsReceived  does 

not hardcode the stats in anyway—it uses the information stored in the  mStatsArray , which 

was auto-generated by the X macro. Also, for debugging purposes, the code logs out the values 

of the stats when they are first loaded. 

  Listing 12.11 Retrieving Stats from the Steam Server 

 void GamerServices::RetrieveStatsAsync() 
 { 
   SteamUserStats()->RequestCurrentStats(); 
 } 
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 void GamerServices::Impl::OnStatsReceived(UserStatsReceived_t* inCallback) 
 { 
   LOG("Stats loaded from server..."); 
   mAreStatsReady = true; 
   if(inCallback->m_nGameID == mGameId && inCallback->m_eResult == k_EResultOK) 
   { 

//load stats 
for(int i = 0; i < MAX_STAT; ++i) 
{ 

StatData& stat = mStatArray[i]; 
if(stat.Type == StatType::INT) 
{ 

SteamUserStats()->GetStat(stat.Name, &stat.IntStat); 
LOG("Stat %s = %d", stat.Name, stat.IntStat); 

} 
else 
{ 

//when we get average rate, we still only get one float 
SteamUserStats()->GetStat(stat.Name, &stat.FloatStat); 
LOG("Stat %s = %f", stat.Name, stat.FloatStat ); 

} 
} 

//load achievements 
//... 

   } 
 }  

 The  GamerServices  class also provides functions to get and update stat values. When a 

get function is called, the value is immediately returned from the locally cached copy. When 

a function to update the stat value is called, it will update the locally cached copy and also 

issue an update request to the server. This ensures that the server and the local cache stay 

synchronized. The code for  GetStatInt  and  AddToStat  for integers is shown in Listing 12.12. 

The code for float and average rate stats is rather similar, though as previously mentioned, the 

average rate stat updates with two values. 

  Listing 12.12  GetStatInt  and  AddToStat  Functions 

 int GamerServices::GetStatInt(Stat inStat) 
 { 
   if(!mImpl->mAreStatsReady) 
   { 

LOG("Stats ERROR: Stats not ready yet"); 
return -1; 

   } 

   StatData& stat = mImpl->mStatArray[inStat]; 
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   if(stat.Type != StatType::INT) 
   { 

LOG("Stats ERROR: %s is not an integer stat", stat.Name); 
return -1; 

   } 
   return stat.IntStat; 
 } 

 void GamerServices::AddToStat(Stat inStat, int inInc) 
 { 
   //Check if stats are ready 
   //... 
   StatData& stat = mImpl->mStatArray[inStat ]; 
   //Check if is integer stat 
   //... 
   stat.IntStat += inInc; 
   SteamUserStats()->SetStat(stat.Name, stat.IntStat ); 
 }  

  RoboCat RTS  currently uses the stats to track the number of enemy cats destroyed, as well as the 

number of friendly cats lost. The code that updates the stats is in  RoboCat.cpp . This sort of 

approach where the stat updating code is called wherever necessary is fairly common in games 

that track stats.  

  Player Achievements 
 Another popular feature of gamer services is achievements. These are awarded to players after 

accomplishing certain feats during the course of a game. Some examples of achievements 

include one-time events such as defeating a particular boss or winning the game on a 

certain difficulty. Other achievements are given as a stat accrues over time—for example, an 

achievement for winning 100 matches. Some dedicated players enjoy achievements so much 

that they try to unlock everyone. 

 In Steam, achievements are treated in a similar manner as stats. The set of achievements for a 

particular game is defined on the Steamworks site, and so as with the stats,  RoboCat  is limited 

to the set of achievements associated with  SpaceWar . As with stats, the code for achievements 

uses X macros. The achievements are defined in  Achieve.def , and a corresponding 

 Achievement  enum is derived from this. There also is an  AchieveData  struct and an array of 

said structs called  mAchieveArray . 

 The  RequestCurrentStats  function also grabs the current achievement information from Steam. 

This means that when the  OnStatsReceived  callback is triggered, the achievement data can also 

be locally cached. These achievements are copied with a small loop that calls  GetAchievement  to 

get the Boolean value signifying whether or not the achievement is unlocked: 
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  for(int i = 0; i < MAX_ACHIEVEMENT; ++i) 
 { 
   AchieveData& ach = mAchieveArray[i]; 
   SteamUserStats()->GetAchievement(ach.Name, &ach.Unlocked); 
   LOG("Achievement %s = %d", ach.Name, ach.Unlocked); 
 }  

 Next, there are some fairly simple wrappers for determining whether an achievement is 

unlocked and actually unlocking an achievement. As was the case with the stats, checking 

for an unlocked achievement uses the local cache, whereas the function that unlocks the 

achievement both updates the cache and immediately writes it to the server. This code is 

shown in Listing 12.13. 

  Listing 12.13 Checking for and Unlocking Achievements 

 bool GamerServices::IsAchievementUnlocked(Achievement inAch) 
 { 
   //Check if stats are ready 
   //... 
   return mImpl->mAchieveArray[inAch].Unlocked; 
 } 

 void GamerServices::UnlockAchievement(Achievement inAch) 
 { 
   //Check if stats are ready 
   //... 
   AchieveData& ach = mImpl->mAchieveArray[inAch]; 
   //ignore if already unlocked 
   if(ach.Unlocked) {return;} 

   SteamUserStats()->SetAchievement(ach.Name); 
   ach.Unlocked = true; 
   LOG("Unlocking achievement %s", ach.Name); 
 }  

 As for when achievements should be unlocked, generally it’s a good idea to unlock the 

achievement soon after it is earned. Otherwise, a player may get confused when they meet the 

conditions to unlock an achievement, but it doesn’t unlock. That being said, for a multiplayer 

game it may be a good idea to queue up the achievements to be unlocked at the end of 

the match. This way, the player doesn’t potentially get distracted by a UI notification for the 

achievement. 

 Since the tracked achievements in  RoboCat RTS  are based on achieving a certain number of kills 

in game, code to track achievement progress was added in the  TryAdvanceTurn  function in 

 NetworkManager . This way, at the end of each turn the game will check whether or not the 

player has unlocked an achievement.  
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  Leaderboards 
 Leaderboards are a way to provide rankings for certain aspects of a game, for example, a score 

or time to complete a particular level. Generally, leaderboard rankings can be browsed both 

in terms of a global rank as well as ranks relative to your friends on the gamer service. For 

leaderboards on Steam, they can either be created via the Steamworks website, or they can be 

created programmatically via an SDK call. 

 As with stats and achievements, the  GamerServices  implementation uses an X macro to 

define the enum of leaderboards. In this case, the leaderboards are defined in  Leaderboards

.def . Each entry in this file contains the name of the leaderboard, how the leaderboard should 

be sorted, and how the leaderboard values should be displayed when viewed on Steam. 

 The code for retrieving the leaderboards is a bit different than the code for stats or 

achievements. First, it is only possible to find one leaderboard at a time. When the leaderboard 

is found, it triggers a call result. So if you want your game to find all the leaderboards in 

sequence, the call result’s code should request a find for the next leaderboard, and repeat this 

process until all leaderboards are found. This is shown in Listing 12.14. 

  Listing 12.14 Finding All the Leaderboards 

 void GamerServices::RetrieveLeaderboardsAsync() 
 { 
   FindLeaderboardAsync(static_cast<Leaderboard>(0)); 
 } 

 void GamerServices::FindLeaderboardAsync(Leaderboard inLead) 
 { 
   mImpl->mCurrentLeaderFind = inLead; 
   LeaderboardData& lead = mImpl->mLeaderArray[inLead]; 
   SteamAPICall_t call = SteamUserStats()->FindOrCreateLeaderboard(lead.Name, 

lead.SortMethod, lead.DisplayType); 
   mImpl->mLeaderFindResult.Set(call, mImpl.get(), 

&Impl::OnLeaderFindCallback); 
 } 

 void GamerServices::Impl::OnLeaderFindCallback( 
   LeaderboardFindResult_t* inCallback, bool inIOFailure) 
 { 
   if(!inIOFailure && inCallback->m_bLeaderboardFound) 
   { 

mLeaderArray[mCurrentLeaderFind].Handle = 
inCallback->m_hSteamLeaderboard; 

//load the next one 
mCurrentLeaderFind++; 
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if(mCurrentLeaderFind != MAX_LEADERBOARD) 
{ 

GamerServices::sInstance->FindLeaderboardAsync( 
static_cast<Leaderboard>(mCurrentLeaderFind)); 

} 
else 
{ 

mAreLeadersReady = true; 
} 

   } 
 }  

 The other thing that’s different is that finding the leaderboard doesn’t download 

any of the entries from the leaderboard. Instead, it simply gives you a handle to the 

leaderboard. If you want to download the entries from a leaderboard for display, you 

provide the handle and the parameters of your download (global, friends only, etc.) to 

the  DownloadLeaderboardEntries  function in the Steamworks SDK. This will then 

trigger a call result when the leaderboard entries have downloaded, at which point you can 

display the leaderboards. A similar process is used for uploading leaderboard scores, via the 

 UploadLeaderboardScore  function. Code using these two functions can be found in 

 GamerServicesSteam.cpp . 

 Since  RoboCat  doesn’t contain a user interface to display the leaderboard, to verify the 

leaderboard functionality, there are a couple of debug commands. Pressing F10 will upload 

your current kill count to the leaderboard, and pressing F11 will download the global kill count 

leaderboard, centered on your current global rank. On a related note, pressing F9 will also reset 

all the achievements and stats associated with the app ID (in this case,  SpaceWar ). 

 One cool aspect of leaderboards on Steam is that it is possible to upload user-generated 

content associated with a leaderboard entry. For example, a quick run through a level could 

have an associated screenshot or video showing the run. Alternatively, a racing game could 

have a ghost that players could download to race against. This allows for ways to make the 

leaderboards more interactive than simply listing top scores.  

  Other Services 
 Although this chapter has covered many different aspects of the Steamworks SDK, there still 

is much more available. There’s cloud storage that allows users to synchronize their saves 

across multiple computers. There’s support for a text entry UI for playing in “Big Picture Mode,” 

that’s designed for users with only a controller. There’s also support for microtransactions and 

downloadable content (DLC). 

 There also are many other gamer service options in use today. PlayStation Network works on 

the PlayStation family of devices such as PlayStation consoles, PlayStation Vita, and PlayStation 
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mobile phones. Xbox Live has historically been designed for the Xbox consoles, but with 

Windows 10, it is also available on PC. Other services include Apple’s Game Center for Mac/iOS 

games and the Googles Play Games Services, which work on both Android and iOS devices. 

 Gamer services sometimes have features specific to them. For example, Xbox Live supports 

the idea of parties persisting between different games, and the idea that an entire party can 

start a new game together. Also, on the consoles it’s very common to have standardized user 

interfaces provided via the gamer service. So for example, choosing a save location on the Xbox 

must always use a specific UI that’s provided via a gamer service call. 

 The concept of what a gamer service should provide is constantly evolving over time. Players 

will expect these features to be integrated with the latest and greatest games, so whichever 

gamer service you choose, it is important to spend some time thinking about how best you can 

leverage the service to improve the experience for your players.   

     Summary 
 Gamer services provide a wide range of features for players. Some gamer services are tied to a 

specific platform, but on a platform such as PC, there are many possible choices. Arguably the 

most popular gamer service for PC, Mac, and Linux is Steam, and this was the service that was 

integrated throughout this chapter. 

 One important decision when adding gamer service code is to devise a method to modularize 

the code specific to a particular gamer service. This is important because a future port on a 

different platform may not support the first gamer service you add to your codebase. One way 

to accomplish this is via the pointer to implementation idiom. 

 Matchmaking is an important feature provided by most gamer services. This allows users to 

meet up with each other in order to play a game. In the case of Steamworks, the players first 

search for and join a lobby. Once the game is ready to start, the players connect to a server (if 

client-server), or begin communicating with each other (if peer-to-peer) prior to leaving the 

lobby. 

 Gamer services also commonly provide a mechanism to send packets of data to other users. 

This is both to protect users from having their IP addresses revealed, and to allow for the gamer 

service to perform any necessary NAT punch-through or relaying. In the case of  RoboCat RTS , 

the networking code was changed to solely use the Steamworks SDK for sending data. As a 

bonus, the SDK provides a reliable method of communication. Because the first packet sent to 

a user has some amount of delay for the session to be established, the startup procedure for 

 RoboCat  was modified so that peers begin communicating with each other in a “ready” state 

prior to beginning the game countdown. 

 Other common features in a gamer service include statistics tracking, achievements, and 

leaderboards. The  GamerServices  class’ implementation of statistics involved declaring 
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all the possible statistics in an external  Stats.def  file. This information then was used in 

multiple spots via an X macro, in order to ensure that an enum and an array containing the stats 

information remained synchronized. A similar approach was used for the implementation of 

both achievements and leaderboards.  

  Review Questions 
1.    Describe the pointer to implementation idiom. What advantages does it provide? What are 

its disadvantages?   

2.    What purpose does a callback serve in Steamworks?   

3.    Roughly describe the lobby and matchmaking procedure used by Steamworks. 

4.    What are the advantages of networking provided by the gamer service?   

5.    Describe how the X macro technique works. What benefits and drawbacks does it have? 

6.    Implement a  GamerServiceID  class, and use this as a wrapper for a Steam ID. Change 

every reference to a  uint64_t  player ID value to use this new class.   

7.    Implement a  GamerServicesSocket  class, in the vein of the  UDPSocket  class, which 

internally uses the Steamworks SDK to send data. Be sure to provide the ability to specify 

the reliability of communication. Change the  NetworkManager  to use this new class. 

8.    Implement a menu that displays the stats for the current user. Now implement a 

leaderboard browser.    

  Additional Readings 
 Apple, Inc. “Game Center for Developers.”  Apple Developer .  https://developer.apple.com

/game-center/ . Accessed September 14, 2015. 

 Google. “Play Games Services.” Google Developers.  https://developers.google.com/games

/services/ . Accessed September 14, 2015. 

 Microsoft Corporation. “Developing Games – Xbox One and Windows 10.”  Microsoft Xbox . 

 http://www.xbox.com/en-us/Developers/ . Accessed September 14, 2015. 

 Sony Computer Entertainment America. “Develop.”  PlayStation Developer .  https://www

.playstation.com/en-us/develop/ . Accessed September 14, 2015. 

 Valve Software. “Steamworks.”  Steamworks .  https://partner.steamgames.com/ . Accessed 

September 14, 2015.    
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 CLOUD HOSTING 

DEDICATED SERVERS 

      The changing cloudscape means even small studios 

can afford to host their own dedicated servers. No 

longer must the fate of a game rely on players with 

fast net connections hosting fairly administered 

servers. This chapter explores the pros, cons, and 

methods necessary to get your game’s servers 

running in the cloud.    
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     To Host or Not To Host 
 In the early days of online gaming, hosting your own dedicated servers required the Herculean 

task of acquiring and maintaining large amounts of computer hardware, networking 

infrastructure, and IT staff. Any hardware ramp-up was a gamble at that. If you overestimated the 

number of players at launch, you'd end up with racks and racks of machines lying fallow. Worse, 

if you underestimated, your paying players would be unable to connect due to processing and 

bandwidth constraints. While you struggled to obtain more last minute equipment, your players 

would give up, write bad reviews, and warn their friends not to play your game. 

 Those days of terror are over. Thanks to the abundance of on-demand processing power 

available from giant cloud host providers like Amazon, Microsoft, and Google, gaming 

companies are able to spin up and down servers on a whim. Third-party services like Heroku 

and MongoLabs make deployment even easier by providing server and database management 

services as needed. 

 With the huge barrier to entry gone, the proposition of hosting dedicated servers is one that 

every developer should consider, no matter how small the studio. Despite the lack of upfront 

server cost, there are still some potential drawbacks to consider: 

■ Complexity.  Running a dedicated fleet of servers is more complex than allowing players 

to host their own. Even though cloud hosts provide the infrastructure and some of 

the management software, you still need to write custom process and virtual machine 

management code, as described later in this chapter. Also you have to interface with one or 

more cloud host providers, which means adapting to changing APIs.  

■ Cost.  Even though the cloud decreases upfront and long-term cost significantly, it’s still not 

free. Increased player interest may cover the increased cost, but that’s not always the case.  

■ Reliance on a third party.  Hosting your game on Amazon or Microsoft’s servers means 

the entire fate of your game rests on Amazon or Microsoft’s shoulders. Although hosting 

companies offer  service-level agreements  that guarantee minimum uptime, these do 

little to console paying players when every server suddenly goes down at once.  

■ Unexpected hardware changes.  Hosting providers usually guarantee to provide 

hardware that meets certain minimum specifications. This does not prevent them from 

changing hardware without warning, as long as it is above the minimum specification. If 

they suddenly introduce a bizarre hardware configuration which you have not tested, it 

may cause issues.  

■ Loss of player ownership.  In the early days of multiplayer gaming, administering your 

own game server was a matter of pride. It was a way for players to be an important part 

of the game community, and it created alpha players that spread the gospel of whatever 

game they were hosting. Even today the culture still lives on in the myriad custom 

 Minecraft  servers hosted across the land. The intangible benefits of player ownership are 

lost when the responsibility of running servers moves to the cloud.   
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 Although these downsides can be significant, the benefits often outweigh them: 

■ Reliable, scalable, high-bandwidth servers.  Upstream bandwidth comes at a premium, 

and there’s no guarantee that the right players will be hosting the right servers when your 

other players want to play. With cloud hosting and a good server management program, 

you can spin up whatever server is necessary, wherever and whenever you need it.  

■ Cheat prevention.  If you run all the servers, you can make sure they’re running 

unmodified, legitimate versions of the games. This means all players get a uniform 

experience not subject to the whims of player administrators. This enables not only reliable 

rankings and leaderboards, but also persistent player progress based on gameplay, as 

found in  Call of Duty , for example.  

  ■ Reasonable copy protection.  Players have a lot of hate for intrusive copy protection and 

 digital rights management  ( DRM ). However, DRM can be a necessity for some types of 

games, especially those that rely on microtransactions for revenue, like  League of Legends . 

Restricting your game to run on company hosted, dedicated servers provides a de facto, 

nonintrusive form of DRM. You never have to release server executables to players, which 

makes it much harder for them to run cracked servers that illegally unlock content. It also 

allows you to check login credentials for every player, ensuring that they really should be 

playing your game.   

 As a multiplayer engineer, the choice of whether to host dedicated servers may be above your 

pay grade. However, given the value of full stack engineers in the work force, it is important to 

understand all the implications of the decision so you can weigh in with an informed opinion 

based on the specifics of the game your team is making.  

  Tools of the Trade 
 When working in a new environment, it is most efficient to work with tools tailored for that 

environment. Backend server development is a rapidly evolving field, with a rapidly evolving 

set of tools. There are many languages, platforms, and protocols designed to make life easier 

for the backend developer. At the time of this writing, there is a definite trend for services to 

use REST APIs, JSON data, and Node.JS. These are flexible and widely accepted tools for server 

development, and the examples in this chapter make use of them. You can choose different 

tools for your cloud server hosting development and the basic concepts will remain the same. 

  REST 

  REST  stands for  representational state transfer . A REST interface is one that supports the idea 

that all requests to a server should be self-contained and not rely on previous or future requests 

for interpretation. HTTP, the protocol that drives the web, is a perfect example of this, and thus 

typical REST APIs are built heavily around the use of HTTP requests to store, fetch, and modify 

server-side data. Requests are sent using the common HTTP methods GET and POST, and also 
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the less common PUT, DELETE, and PATCH. Although various authors have proposed standards 

on exactly how these HTTP requests need to be structured to qualify as a REST interface, many 

engineers end up creating interfaces that are REST-flavored to best suit the needs of the users, 

but do not adhere strictly to any set of REST requirements. Generally, REST interfaces should 

use the HTTP methods in a fairly consistent manor: GET requests fetch data, POST requests 

create new pieces of data, PUT requests store data in a specific place, DELETE requests remove 

data, and PATCH requests edit data directly. 

 One major advantage of REST interfaces is that they are mostly plain text. Thus, they are human 

readable, discoverable, and debuggable. In addition, they employ HTTP, which itself uses TCP 

for transport and thus they are reliable. The self-contained nature of the REST request expands 

request debuggability, cementing REST as the chosen API style for the backbone of today’s 

cloud services. More details on REST style interfaces and proposed REST standards can be 

found in the resources listed in this chapter’s “Additional Readings” section.  

  JSON 

 In the late 1990s and early 2000s, XML was heralded as the universal data exchange format 

that would change the world. It started to change the world, but it had way too many angle 

brackets, equal signs, and closing element tags to last forever. These days  JSON  is the new 

darling for universal data exchange. Standing for  JavaScript object notation , JSON is actually 

a subset of the JavaScript language. An object serialized to JSON is exactly the JavaScript that 

would be needed to recreate that object. It is text based, maintaining all the human readability 

of XML, but with fewer formatting and tag closing requirements. This makes it even more 

pleasant to read and debug. Additionally, because it is valid JavaScript, you can paste it directly 

into a JavaScript program to debug it. 

 JavaScript works well as a data format for REST queries. By specifying a  Content-Type  of 

 application/json  in the HTTP header, you can pass data to a POST, PATCH, or PUT request 

in JSON format, or return data from a GET request. It supports all the basic JavaScript datatypes, 

such as bools, strings, numbers, arrays, and objects.  

  Node.JS 

 Built on Google’s V8 JavaScript engine,  Node JS  is an open-source engine for building backend 

services in JavaScript. The idea behind the language choice was that it would facilitate 

development of AJAX style websites that also used JavaScript on the frontend. By using the 

same language on both client and server, developers can write functions and easily switch or 

share them between layers as necessary. The idea caught on and a very rich community has 

grown up around Node. Part of its success is due to the vast number of open-source packages 

available for Node, easily installable through the  Node package manager  ( npm ). Almost all 

popular services with REST APIs have node package wrappers, making it trivial to interface with 

the vast array of cloud service providers. 
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 Node itself provides a single-threaded, event-driven JavaScript environment. An event loop 

runs on the main thread, much like in a video game, dispatching event handlers for any 

incoming events. These event handlers can in turn make long running requests to the file 

system, or to external services like databases or REST servers, that execute as asynchronous 

jobs on non-JavaScript threads. While the jobs execute, the main thread returns to the 

processing of incoming events. When an asynchronous job completes, it sends an event to the 

main thread, so the event loop can call an appropriate callback and execute an appropriate 

JavaScript handler. In this way, Node provides an environment that prevents the pain of race 

conditions while still allowing for non-blocking asynchronous behavior. As such it is a prime 

candidate for building services to handle incoming REST requests. 

 Node ships with a simple built-in HTTP server, but the task of decoding incoming HTTP 

requests, headers and parameters, and routing them to the appropriate JavaScript functions 

is usually handled by one of several open-source Node packages dedicated to the purpose. 

 Express JS  is one such very popular package and the one used by the examples in this chapter. 

More information on Express JS and Node JS can be found in the resources listed in the 

“Additional Readings” section.   

  Overview and Terminology 
 From the player’s perspective, the cloud server spin-up process should be transparent. 

When a player wants to join a game, the player’s client requests info on a match from the 

matchmaking service endpoint. The endpoint looks for one, and if it can’t find one, it should 

somehow trigger a new server to spin up. It then returns the IP address and port of the new 

server instance to the client. The client connects there automatically and the player joins the 

game. 

 Note that it can be tempting to combine the processes of matchmaking and dedicated server 

deployment into one giant blob of functionality. It saves on some redundant code and data, 

and can even aid in performance a little. However, it can be more useful to keep them separate 

for the single fact that you may want to plug one or more third-party matchmaking solutions 

into your dedicated server system. Just because your studio hosts its own dedicated servers, 

does not mean it can’t take advantage of third-party matchmaking solutions like Steam, Xbox 

Live, or PlayStation Network. In fact, depending on the platform for which you’re developing, 

it may be required. For this reason, it is sensible to keep the server deployment module clearly 

isolated from your matchmaking module. 

 When your deployment system finishes spinning up a new server, it should simply register 

itself with the matchmaking system just as a player hosted game server would. After that, 

the matchmaking system can take over matching players to server instances and your cloud 

deployment system can focus on what it does best—spinning up and down game instances as 

necessary. 
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  Server Game Instance 

 Before going on, it is worthwhile to disambiguate some of the overloaded meanings of the 

word “server” when used in various contexts. Sometimes “server” refers to an instance of the 

class in code that simulates the one true version of the game world and replicates it to clients. 

Other times, it refers to the process listening for incoming connections, hosting that class 

instance. Still other times, it refers to the physical piece of hardware running that process, as in 

“check out all the servers I can fit on this rack.” 

 To avoid confusion, this chapter uses the term  server game instance  or just  game instance  to 

represent the entity that simulates the game world and replicates information to clients. The 

concept is an abstraction that represents a single reality shared by a group of players playing 

together. If your game supports 16-player battles, then a server game instance is a running 

16-player battle. In  League of Legends  it is typically a 5 versus 5 game in the “Summoner’s Rift” 

level. In matchmaking terms, it is a single match.  

  Game Server Process 

 A game instance does not exist in a void. It lives inside a  game server process , which updates 

it, manages its clients, interacts with the operating system, and does everything else a process 

typically does. It is the embodiment of your game, as far as the operating system is concerned. 

In all previous chapters, the concepts of game server process and game instance were not 

separated because there was a one-to-one mapping between them. Each game server process 

was responsible for maintaining only one game instance. However, in the world of dedicated 

server hosting, that can change. 

 In properly abstracted code, a single process can manage multiple game instances. As long as 

the process updates each instance, binds a unique port for each instance, and does not share 

mutable data between the instances, multiple game worlds can coexist peacefully in the same 

process. 

 Multiple instances per process can be an efficient way to host multiple games, because it allows 

sharing of large immutable resources like collision geometry, navigation meshes, and animation 

data. When multiple game instances run in their own processes, they each need copies of this 

data, which can cause unnecessary memory pressure. Games employing multiple instances 

per process also benefit from finer control of scheduling: By iterating through each instance 

each update, they can assure a roughly regular update pattern across instances. With multiple 

processes on the same host, this is not necessarily the case, as the operating system scheduler 

decides which process is updated when. This is not always a problem, but finer-grained control 

can be useful at times. 

 The significant advantages of the multi-instance approach may seem compelling, but the 

disadvantages of the tactic are just as significant. If a single instance crashes it can bring down 

the entire process, with all of its contained game instances. This can be particularly nasty if an 
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individual instance corrupts a shared, supposedly immutable resource. Alternatively, when each 

game instance runs in a dedicated process, a corrupted or crashing game instance can only 

bring down itself. In addition, single game instance processes are easier to maintain and test. 

Engineers developing server code commonly only need a single game instance at a time to test 

and debug code. If the process supports multiple instances and engineers aren’t running them, 

it leaves a large code path without regular development coverage. A good QA team with a solid 

test plan can partially accommodate for this, but there is no substitution for engineers having 

full coverage of production code paths during development. For these reasons, it is most 

common for game server processes to contain a single game instance.  

  Game Server Machine 

 Just as a game instance needs to live in a game server process, a game server process needs 

to live on a  game server machine , and just as a single process can host multiple instances, 

a single machine can host multiple processes. The choice of how many processes to run 

per machine should depend on the performance requirements of your specific game. For 

maximum performance, you can run a single process per machine. This ensures the machine’s 

full resources, including CPU, GPU, and RAM, are dedicated to your game process. However, it 

can be quite wasteful. Each machine needs an operating system and a typical OS is an immense 

consumer of resources. 

 Running a unique OS just for a single game process, especially one that contains only a single 

game instance, can be too expensive an endeavor. Luckily operating systems are designed to 

support multiple processes with features like protected memory to keep them from interfering 

with each other’s immutable assets. On a modern operating system, it is extremely unlikely 

that a crashing process can bring down another process on the same game server machine. 

Therefore, to be cost-efficient, it is typical to run multiple game server processes per server 

machine—often as many as the performance requirements will allow. Tweaking and tuning 

server performance and RAM use can pay off many times over if it allows more game processes 

to be hosted on the same server machine.  

  Hardware 

 In the cloud, a game server machine does not necessarily equate to a physical piece of 

hardware. Instead,  machine images  represent  virtual machines  ( VM s) which are spun up 

and down at will, sometimes residing alone on a physical machine, or other times sharing 

resources with multiple other virtual machines on a physical machine of 16 cores or more. 

Depending on your cloud hosting provider, and your budget, you may not get to choose how 

your virtual machines are hosted. At lower price points, they must often share hardware, and 

are put to sleep when not used for a set amount of time. This can result in erratic performance. 

At higher price points, you can often specify the exact physical hardware configurations you 

desire.   
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     WHY VIRTUAL MACHINES? 

 It may seem odd to have to pack your operating system of choice and game process into 

a virtual machine just to get hosted in the cloud. However, virtual machines provide an 

excellent way for cloud service providers to distribute the use of their hardware across 

their customer base. At Amazon, a single 16-core computer might be running four  Call 
of Duty  VMs, each requiring 4 cores. As demand for  Call of Duty  wanes at a certain time 

of day, Amazon might spin down two of those VMs, leaving an underutilized piece of 

hardware. When a request comes in from EA to spin up an 8-core  Sim City  machine, it can 

run that VM on the same hardware running the two  Call of Duty  VMs and make the most 

of its resources. 

 Virtual machines are also useful when dealing with hardware failure. Because virtual 

machine images contain the OS and application all as a single package, providers can 

recover from hardware failure very rapidly by just moving virtual machines from one 

physical piece of hardware to another.    

  Local Server Process Manager 
 A cloud server provisioning system needs a way to start up and monitor game server processes 

on game server machines. Server machines cannot simply launch the maximum number of 

game server processes at boot with the expectation that they will run for the uptime of the 

machine. One process could crash at any time, at which point the virtual machine would 

be underutilizing its resources. Also, even the most carefully engineered games can end up 

shipping with memory leaks. Sometimes ship dates are immovable and it is necessary to 

deploy servers that leak a few megabytes here or there. To keep small memory leaks from 

accumulating, and also to avoid the problem of resetting game state improperly, it is a good 

practice to shut down and restart server processes at the end of each match when possible. 

 If server processes can terminate, the virtual machine needs a way to start them back up. It 

also needs a way to configure them based on what kind of game players want to start. For all 

these reasons, a robust provisioning system needs a mechanism through which it can ask a 

given server machine to start up a server process configured in a specific way. To build such a 

system, you could hunt and peck around in the details of your operating system to see if there 

is a built-in way to remotely start and monitor processes. A more cross-platform and less fragile 

approach, however, is to build a  local server process manager  ( LSPM ). 

 The LSPM is itself a process that assumes the responsibility of listening for remote commands, 

spawning server processes as requested, and monitoring those processes to determine which 

processes the given machine is currently running. Listing 8.1 demonstrates initialization, launch, 

and kill routes for a simple node.js/express application to manage local server processes. 
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  Listing 13.1 Initialization, Launch, and Kill 

 var gProcesses = {}; 
 var gProcessCount = 0; 
 var gProcessPath = process.env.GAME_SERVER_PROCESS_PATH; 
 var gMaxProcessCount = process.env.MAX_PROCESS_COUNT; 
 var gSequenceIndex = 0; 

 var eMachineState = 
 { 
    empty: "empty", 
    partial: "partial", 
    full: "full", 
    shuttingDown: "shuttingDown", 
 }; 
 var gMachineState = eMachineState.empty; 
 var gSequenceIndex = 0; 

 router.post('/processes/', function(req, res) 
 { 
    if(gMachineState === eMachineState.full) 
    { 

res.send( 
{ 

msg: 'Already Full', 
machineState: gMachineState, 
sequenceIndex: ++gSequenceIndex 

}); 
    } 
    else if(gMachineState === eMachineState.shuttingDown) 
    { 

res.send( 
{ 

msg: 'Already Shutting Down', 
machineState: gMachineState, 
sequenceIndex: ++gSequenceIndex 

}); 
    } 
    else 
    { 

var processUUID = uuid.v1(); 
var params = req.body.params; 
var child = childProcess.spawn(gProcessPath, 
[ 

'--processUUID', processUUID, 
'--lspmURL', " http://127.0.0.1 :" + gListenPort, 
'--json', JSON.stringify(params) 

] ); 
gProcesses[processUUID] = 
{  
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child: child, 
params: params, 
state: 'starting', 
lastHeartbeat: getUTCSecondsSince1970() 

};  
++gProcessCount; 
gMachineState = gProcessCount === gMaxProcessCount? 

eMachineState.full: eMachineState.partial; 
child.stdout.on('data', function (data) { 

console.log('stdout: ' + data); 
}); 
child.stderr.on('data', function (data) { 

console.log('stderr: ' + data); 
}); 
child.on('close', function (code, signal) 
{ 

console.log('child terminated by signal '+ signal); 
//were you at max process count? 
var oldMachineState = gMachineState; 
--gProcessCount; 
gMachineState = gProcessCount > 0 ? 

eMachineState.partial: eMachineState.empty; 
if(oldMachineState !== gMachineState) 
{ 

console.log("Machine state changed to " + gMachineState); 
} 
delete gProcesses[processUUID]; 

}); 
res.send( 
{ 

msg: 'OK', 
processUUID: processUUID, 
machineState: gMachineState, 
sequenceIndex: ++gSequenceIndex 

}); 
    } 
 }); 

 router.post('/process/:processUUID/kill', function(req, res) 
 { 
    var processUUID = req.params.processUUID; 
    console.log("attempting to kill process: " + processUUID); 
    var process = gProcesses[processUUID]; 
    if(process) 
    { 

//killing triggers the close event and removes from the process list 
process.child.kill(); 
res.sendStatus(200); 

    } 
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    else 
    { 

res.sendStatus(404); 
    } 
 });  

 The LSPM starts by initializing some global variables.  gProcesses  holds a map of all the 

processes currently being managed, while  gProcessCount  tracks the count.  gProcessPath  

and  gMaxProcessCount  are read in from environment variables so they can be easily 

configured on a machine-by-machine basis.  gMachineState  caches the state of the entire 

machine, regarding whether it has room for more processes, is full, or is shutting down. The 

variable holds values from the  eMachineState  object. 

 The LSPM supports creation of new processes through a POST request to the  /api/

processes/  endpoint. Specifically, if the LSPM is running locally and listening on port 3000, 

you can use the curl web request program to launch a new process configured to host four 

players with the command line: 

  curl -H "Content-Type: application/json" -X POST -d '{"params":{"maxPlayers":4}}' 
 http://127.0.0.1 :3000/api/processes  

 When the LSPM receives this request, it first checks that it is neither shutting down nor running 

the maximum number of processes allowed. If that is the case, it creates a new universally 

unique identifier for the pending process, and uses the Node JS  child_process  module to 

spawn a game server process. Through command line arguments, it passes the process both 

the unique ID and any configuration parameters posted by the requester. 

 Next, the LSPM stores a record of the spawned child process in its  gProcesses  map. The 

 state  variable is used to track whether the process is currently starting up, or is known to be 

running. The  lastHeartbeat  variable tracks the last time the LSPM heard from this process, 

and will come into play in the next section. 

 After recording the existence of the process, the LSPM sets up some event handlers to receive 

and log any output from the process. It also sets up a very important listener for the  "close"  

event, which removes the process from the  gProcesses  map and reports on any change in 

 gMachineState . 

 Finally, the LSPM responds to the request with the unique process ID and information regarding 

how many processes are currently running. Remember that the Node event model is single 

threaded, so there is no worry of a race condition changing the  gProcessCount  or the 

 gProcesses  hash map during the execution of the function. 

 With a copy of the unique process ID, the requester can then query information about the 

process by sending a GET request to the  /processes/:processUUID  endpoint (code not 
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shown) or shutdown a process by sending a POST to the  /processes/:processUUID/kill  

endpoint. 

  warning 

 When in production, you want to restrict who can launch and kill servers through 

your LSPM. One way to accomplish this is by whitelisting all IP addresses that are 

allowed to send requests directly to the LSPM, and then discarding any incoming 

requests not from those IP addresses. This will prevent mischievous players from 

sending process launch commands directly to your LSPM. Alternatively, you can 

add a security token in the request header and verify its presence before granting 

any request. Either way, you need to implement some level of security or run the 

risk of your provisioning system being disrupted.  

  Process Monitoring 

 Once the LSPM can launch a process, it needs a way to monitor them. It accomplishes this by 

listening for heartbeats from the processes. These are periodic packets from the processes 

indicating that they are still alive. If a set amount of time passes without the LSPM hearing from 

a particular process, the LSPM assumes that the process has halted, hung, slowed down, or 

broken in some unacceptable fashion, and it terminates the process. Listing 13.2 demonstrates. 

  Listing 13.2 Process Monitoring 

 var gMaxStartingHeartbeatAge = 20; 
 var gMaxRunningHeartbeatAge = 10; 
 var gHeartbeatCheckPeriod = 5000; 

 router.post('/processes/:processUUID/heartbeat', function(req, res) 
 { 
    var processUUID = req.params.processUUID; 
    console.log("heartbeat received for: " + processUUID); 
    var process = gProcesses[processUUID]; 
    if(process) 
    { 

process.lastHeartbeat = getUTCSecondsSince1970(); 
process.state = 'running'; 
res.sendStatus(200); 

    } 
    else 
    { 

res.sendStatus(404); 
    } 
 }); 
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 function checkHeartbeats() 
 { 
    console.log("Checking for heartbeats..."); 
    var processesToKill = [], processUUID; 
    var process, heartbeatAge; 
    var time = getUTCSecondsSince1970(); 
    for(processUUID in gProcesses) 
    { 

process = gProcesses[processUUID]; 
heartbeatAge = time - process.lastHeartbeat; 
if(heartbeatAge > gMaxStartingHeartbeatAge || 

(heartbeatAge > gMaxRunningHeartbeatAge 
&& process.state !== 'starting')) 

{ 
console.log("Process " + processUUID + " timeout!"); 
processesToKill.push(process.child); 

} 
    } 
    processesToKill.forEach(function(toKill) 
    { 

toKill.kill(); 
    }); 
 } 

 setInterval(checkHeartbeats, gHeartbeatCheckPeriod);  

 Sending a POST to the  /processes/:processUUID/heartbeat  endpoint registers a 

heartbeat for the given process ID. When a heartbeat comes in, the LSPM checks the current 

timestamp and updates the last received heartbeat time of the appropriate process. Once a 

process sends its first heartbeat, the LSPM changes its state from  starting  to  running  to 

mark that it has proof that the game process has started. 

 The  checkHeartbeat  function loops through all processes owned by the LSPM and checks 

to make sure it has received a recent enough heartbeat. If a process is still in the  starting  

state, it may have a slow initialization process to complete, so the function allows it a little 

extra time to register its first heartbeat. After that, if the latest heartbeat for a process is not 

within  gMaxRunningHeartbeat  seconds of the current time, it means something terrible 

happened to the server process. To deal with this, the LSPM attempts to manually kill the child 

process, in case it is not dead yet. When the process dies, the close event registered earlier 

removes it from the list of processes. The LSPM calls the  checkHeartbeat  function every 

 gHeartbeatCheckPeriod  ms by means of the  setInterval  call at the bottom of the script. 

 To send a heartbeat to the LSPM, each process needs to make a POST request to its LSPM 

heartbeat endpoint at least once every  gHeartbeatCheckPeriod  seconds. To send a REST 

request from a C++ program, you can build the http request as a string and then send it to 

the appropriate LSPM’s port using the  TCPSocket  class described in  Chapter   3   . For example, 
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if the LSPM, listening on port 3000, launched a process with the  -processUUID  command 

line parameter  49b74f902d9711e5-8de0f3f32180aa49 , then the process can register 

heartbeats by sending the following string via TCP to port 3000: 

  POST /api/processes/49b74f902d9711e5-8de0f3f32180aa49/heartbeat HTTP/1.1\r\n\r\n  

 Notice the two end line sequences in a row used to denote the end of the http request. 

For more on the textual format of HTTP requests, see the “Additional Readings” section. 

Alternatively, for a more turn-key solution, you can integrate a third-party C++ REST library like 

Microsoft’s open-source, cross-platform C++ REST SDK library. Listing 13.3 demonstrates how to 

send a heartbeat using the C++ REST SDK. 

  Listing 13.3 Sending a Heartbeat with the C++ REST SDK 

 void sendHeartbeat(const std::string& inURL,const std::string& inProcessUUID) 
 { 
    http_client client(U(inURL.c_str())); 
    uri_builder builder(U("/api/processes/" + inProcessUUID + "/heartbeat")); 
    client.request(methods::POST, builder.to_string()); 
 }  

 To check on the results of the heartbeat, you can append continuation tasks to the task 

returned by the request invocation. The C++ REST SDK offers a rich library that provides not 

only asynchronous, task-based HTTP request functionality, but also server functionality, JSON 

parsing, WebSocket support, and more. For more on the C++ REST SDK and what it can do, refer 

to the resources listed in the “Additional Readings” section. 

  note 

 REST requests are not the only way to send heartbeats to an LSPM. If you prefer, 

the LSPM can open a TCP or even UDP port directly in Node, and the server process 

can send very small heartbeat packets without the overhead of HTTP. Or, the game 

can just write heartbeat data to its log file and the LSPM can monitor that. However, 

given that your game will probably end up needing a REST API to talk to one or 

more other services, and the ease of debugging REST data, and the fact that the 

LSPM is already listening for incoming REST requests, it reduces complexity to just 

send heartbeats via REST.    

  Virtual Machine Manager 
 By facilitating remote startup and monitoring of an arbitrary number of processes on a virtual 

machine, the LSPM solves a significant portion of the cloud hosting problem. However, it does 

nothing to actually provision the machines themselves. To do this, you need a  virtual machine 
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manager  ( VMM ). The VMM is responsible for tracking all the LSPMs, requesting LSPMs to 

spawn game processes when necessary, and spinning up and down entire virtual machines, 

with their associated LSPMs. 

 To provision a new virtual machine with a cloud provider, the VMM must identify what software 

to run on the machine. It does this by specifying a  virtual machine image  ( VMI ). The VMI 

represents the contents of the disk drive that the VM should boot. It contains the OS, the 

process executables, and any initialization scripts to run at boot. Each cloud host provider has a 

slightly different VMI format they prefer, and usually custom tools to create the VMs. To prepare 

for VM provisioning, you must create a VMI with your chosen OS, your compiled game server 

executable and data, your LSPM, and any necessary assets. 

  note 

 Although each cloud provider has their own VMI format, many may soon be 

standardizing on the Docker Container format. For more on the Docker standard, 

see the “Additional Readings” section.  

 Asking a cloud hosting provider to spin up a VM from a VMI comes down to the details of 

the provider. Providers typically have a REST API for this purpose, with wrappers in common 

backend languages like JavaScript and Java. Because you may need to switch cloud host 

providers, or use multiple ones in multiple regions, it is a good idea to cleanly abstract the 

details of the provider API from your VMM code. 

 In addition to simply spinning up VMs when necessary, a VMM must be able to request 

new processes from the LSPM on each VM. It must also ask the cloud provider to shut down 

and deprovision any VMs no longer in use. Finally, it must monitor the health of all the VMs 

it manages to make sure none leak in case of error. Although Node is single threaded, the 

asynchronous interactions between requester, VMM, and LSPM present ample opportunity for 

a variety of race conditions. In addition, even though TCP is reliable, each REST request is on its 

own connection, which means communications can arrive out of order. Listing 13.4 shows the 

initialization and data structure of the VMM. 

  Listing 13.4 Initialization and Data Structures 

 var eMachineState = 
 { 
    empty: "empty", 
    partial: "partial", 
    full: "full", 
    pending: "pending", 
    shuttingDown: "shuttingDown", 
    recentLaunchUnknown: "recentLaunchUnknown" 
 }; 



ptg16606381

326 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

 var gVMs = {}; 
 var gAvailableVMs = {}; 

 function getFirstAvailableVM() 
 { 
    for( var vmuuid in gAvailableVMs) 
    { 

return gAvailableVMs[vmuuid]; 
    } 
    return null; 
 } 

 function updateVMState(vm, newState) 
 { 
    if(vm.machineState !== newState) 
    { 

if(vm.machineState === eMachineState.partial) 
{ 

delete gAvailableVMs[vm.uuid]; 
} 
vm.machineState = newState; 
if(newState === eMachineState.partial) 
{ 

gAvailableVMs[vm.uuid] = vm; 
} 

    } 
 }  

 The core data of the VMM lives in two hash maps. The  gVMs  hash map contains all currently active 

VMs managed by the VMM. The  gAvailableVMs  map is the subset of VMs which are available 

for spawning a new process. That is, they are not shutting down, starting up, currently spawning a 

process, or already at max process count. Each VM object needs the following members: 

■ machineState.  Representing the current state of the VM, this holds one of the members 

of the  eMachineStates  object. These states are a superset of the  eMachineStates  the 

LSPM uses, containing a few more states that are only relevant to the VMM.  

■ uuid . This is the VMM-assigned unique identifier for the VM. When spawning the VM, the 

VMM passes the uuid to the LSPM so that the LSPM can tag any updates it sends the VMM.  

■ url.  The url stores the IP address and port of the LSPM on the VM. The IP and possibly the 

port are assigned by the cloud service provider whenever a VM is provisioned. The VMM 

must store it so it can communicate with the LSPM on the VM.  

■ lastHeartbeat.  Similar to how the LSPM listens for process heartbeats, the VMM listens 

for LSPM heartbeats. This stores the time the last heartbeat was received.  

■ lastSequenceIndex.  Because each REST request can come in on its own TCP connection, 

it’s possible for them to arrive out of their original order. To make sure the VMM ignores 
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any stale updates from an LSPM, the LSPM tags each piece of communication with an 

increasing sequence index, and the VMM ignores any incoming data with a sequence index 

less than the  lastSequenceIndex .  

■ cloudProviderId.  This stores the VMs identity as far as the cloud service provider is 

concerned. The VMM uses this when asking the provider to deprovision the VM.   

 When it’s time to spawn a new VM, the  getFirstAvailableVM  function finds the first VM 

in the  gAvailableVMs  map and returns it. The  updateVMState  function is responsible 

for transitioning VMs into and out of the  gAvailableVMs  map as their state changes. For 

consistency, the VMM should only change the  state  of a VM via the  updateVMState  

function. With the necessary data structures in place, Listing 13.5 shows the REST endpoint 

handler that actually spawns a process. It provisions a VM first if necessary. 

  Listing 13.5 Spawning a Process and Provisioning a VM 

 router.post('/processes/', function(req, res) 
 { 
    var params = req.body.params; 
    var vm = getFirstAvailableVM(); 
    async.series( 
    [ 

function(callback) 
{ 

if(!vm ) //spin up if necessary 
{ 

var vmUUID = uuid.v1(); 
askCloudProviderForVM(vmUUID, 

function(err, cloudProviderResponse) 
{ 

if(err) {callback(err);} 
else 
{ 

vm = 
{ 

lastSequenceIndex: 0, 
machineState: eMachineState.pending, 
uuid: vmUUID, 
url: cloudProviderResponse.url, 
cloudProviderId: cloudProviderResponse.id, 
lastHeartbeat: getUTCSecondsSince1970()  

}; 
gVMs[vm.uuid] = vm; 
callback(null); 

} 
}); 

} 



ptg16606381

328 CHAPTER 13 CLOUD HOSTING DEDICATED SERVERS

else 
{ 

updateVMState(vm, eMachineState.pending); 
callback(null); 

} 
}, 
//vm is valid and in the pending state so no other can touch it 
function(callback) 
{ 

var options = 
{ 

url: vm.url + "/api/processes/", 
method: 'POST', 
json: {params: params} 

}; 

request(options, function(error, response, body) 
{ 

if(!error && response.statusCode === 200) 
{ 

if(body.sequenceIndex > vm.lastSequenceIndex) 
{ 

vm.lastSequenceIndex = body.sequenceIndex; 
if(body.msg === 'OK') 
{ 

updateVMState(vm, body.machineState); 
callback(null); 

} 
else 
{ 

callback(body.msg); //failure- probably full 
} 

} 
else 
{ 

callback("seq# out of order: can't trust state"); 
} 

} 
else 
{ 

callback("error from lspm: " + error); 
} 

}); 
} 

    ], 
    function(err) 
    { 

if(err) 
{ 
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//if vm is set, make sure it's not stuck in the pending state 
if(vm) 
{ 

updateVMState(vm, eMachineState.recentLaunchUnknown); 
} 
res.send({msg: "Error starting server process: " + err}); 

} 
else 
{ 

res.send({msg: 'OK'}); 
} 

    }); 
 });  

  note 

 This endpoint handler makes use of the  async.series  function, which is a utility 

in the popular  async  JavaScript library. It takes an array of functions, and a final 

completion function as parameters. It calls each of the functions in the array in 

order, waiting until they call their respective  callback  function to proceed. When 

the series is done,  async.series  calls the completion function. If any one of the 

functions in the array passes an error to its callback function,  series  immediately 

passes the error to the completion function and aborts the calling of any more 

functions in the array. async contains many other useful high-order asynchronous 

constructs and is one of the most depended upon packages in the Node 

community. 

 The handler also makes use of the  request  library for making REST requests to the 

LSPM. request is a full featured HTTP client library, similar in power and functionality 

to the curl command line utility. Like async, it is also a top library in the Node 

community and one worth learning. More information on both the async and 

request libraries can be found in the “Additional Readings” section.  

 Posting game parameters to the  /processes/  endpoint of the VMM triggers the launch of a 

game process with those parameters. The handler has two main sections: the VM procurement 

and then the process spawn. First, the handler checks the  gAvailableVMs  map to see if 

there is a VM available to spawn a process. If there is not, it creates a unique ID for a new VM 

and asks the cloud provider to provision it. The function  askCloudProviderForVM  is highly 

dependent on the specific cloud provider used, and so is not listed here. It should call the cloud 

provider’s API for provisioning a VM, use the image that contains the game and the LSPM, and 

then start the LSPM, passing the VM identifier as a parameter. 

 Whether the VM is started up fresh, or already available, the handler sets its state to  pending . 

This makes sure that the VMM will not try to start up another process on it while there is one 
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currently starting up. The single-threaded nature of Node prevents traditional race conditions, 

but because the endpoint handler uses asynchronous callbacks, it is possible another process-

launch request might arrive before the current one is fulfilled. In that case, it is necessary for the 

request to be handled by a different VM to avoid overlapping state updates. To facilitate this, 

the change to  pending  state removes the VM from the  gAvailableVMs  map. 

 With the VM in  pending  state, the handler sends a REST request to the VM’s LSPM to launch 

a game process. If the launch succeeds, the handler sets the VM state to the new state 

returned by the LSPM—it should be either  partial  or  full , depending on how many 

game processes the VM is currently hosting. If there is a bad or missing response from the 

LSPM, the VMM cannot know the resultant state of the VM. It is possible that the process did 

not launch before the error was returned, or that the process did launch and the response 

was lost somewhere in the network. Even though TCP is reliable, HTTP clients and servers 

have timeouts. Loose network cables, persistent traffic spikes, or bad Wi-Fi signals can cause 

communication to time out. In the case of indeterminate error, the handler sets the VM’s state 

to  recentLaunchUnknown . This removes the server from the  pending  state so that the 

heartbeat monitoring system, explained later, can either restore the VM to a known state or kill 

it. It also keeps the VM out of the  gAvailableVMs  map, because its availability is unknown. 

 If all goes well, the handler finally responds to the original request with the message “OK,” 

meaning the new game process on a remote VM has launched. 

  Virtual Machine Monitoring 

 Because an LSPM can hang or crash at any time, the VMM needs to monitor each LSPM for 

heartbeats. To ensure that the VMM’s perception of the LSPM state remains accurate, the LSPM 

can send state updates with each heartbeat, tagged with an increasing  sequenceIndex  to 

help the VMM ignore out-of-order heartbeats. When a heartbeat indicates that an LSPM is 

running no processes, the VMM initiates a shutdown handshake with the LSPM. The handshake 

prevents race conditions that might cause the LSPM to launch a process while the VMM is trying 

to shut it down. Due to both the shutdown handshake and the state included in the heartbeat, 

the system is somewhat more complicated than the one the LSPM uses to monitor processes. 

Listing 13.6 demonstrates the VMM heartbeat monitoring system. 

  Listing 13.6 VMM Heartbeat Monitoring 

 router.post('/vms/:vmUUID/heartbeat', function(req, res) 
 { 
    var vmUUID = req.params.vmUUID; 
    var sequenceIndex = req.body.sequenceIndex; 
    var newState = req.body.machineState; 
    var vm = gVMs[vmUUID]; 
    if(vm) 
    { 
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var oldState = vm.machineState; 
res.sendStatus(200); //send status now so lspm can close connection 
if(oldState !== eMachineState.pending && 

oldState !== eMachineState.shuttingDown && 
sequenceIndex > vm.lastSequenceIndex) 

{ 
vm.lastHeartbeat = getUTCSecondsSince1970(); 
vm.lastSequenceIndex = sequenceIndex; 
if(newState === eMachineState.empty) 
{ 

var options = {url: vm.url + "/api/shutdown", method: 'POST'}; 
request(options, function( error, response, body) 
{ 

body = JSON.parse( body ); 
if(!error && response.statusCode === 200) 
{ 

updateVMState(vm, body.machineState); 
//does lspm still think it's okay to shut down? 
if(body.machineState === eMachineState.shuttingDown) 
{ 

shutdownVM(vm); 
} 

} 
} ); 

} 
else 
{ 

updateVMState(vm, newState); 
} 

} 
    } 
    else 
    { 

res.sendStatus(404); 
    } 
 } ); 

 function shutdownVM(vm) 
 { 
    updateVMState(vm, eMachineState.shuttingDown); 
    askCloudProviderToKillVM(vm.cloudProviderId, function(err) 
    { 

if(err) 
{ 

console.log("Error closing vm " + vm.uuid); 
//we'll try again when heartbeat is missed 

} 
else 
{ 
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delete gVMs[vm.uuid]; //success...delete from everywhere 
delete gAvailableVMs[vm.uuid]; 

} 
    } ); 
 } 
 function checkHeartbeats() 
 { 
    var vmsToKill = [], vmUUID, vm, heartbeatAge; 
    var time = getUTCSecondsSince1970(); 
    for(vmUUID in gVMs) 
    { 

vm = gVMs[vmUUID]; 
heartbeatAge = time - vm.lastHeartbeat; 
if(heartbeatAge > gMaxRunningHeartbeatAge && 

vm.machineState !== eMachineState.pending) 
{ 

vmsToKill.push(vm); 
} 

    } 
    vmsToKill.forEach(shutdownVM); 
 } 
 setInterval(checkHeartbeats, gHeartbeatCheckPeriodMS);  

 The heartbeat endpoint handler ignores heartbeats for VMs that are in the  pending  or 

 shuttingDown  states. Pending VMs change state as soon as their launch request is answered, 

so any other state change during that time needs to be handled after the launch completes. 

VMs in the  shuttingDown  state are shutting down already so do not require monitoring 

updates. The handler also ignores heartbeats with out-of-order sequence indices. If a heartbeat 

is worth considering, the handler updates the  lastSequenceIndex  and  lastHeartbeat  

properties of the VM. Then, if the state is  empty , indicating there are no game processes 

running on the VM, the handler begins the shutdown process by sending a shutdown request 

to the LSPM. The LSPM’s shutdown handler checks its own  gMachineState  to make sure that 

it hasn’t changed since the  empty  heartbeat went out. If it did not, it changes its own state 

to  shuttingDown  and responds to the VMM that it has accepted the request to shut down. 

The VMM then marks the VM as  shuttingDown  and asks the cloud provider to completely 

deprovision the VM. 

 The VMM  checkHeartbeats  function works like the LSPM function, but it ignores any 

timeouts for servers in the  pending  state. If a VM does time out, it means there is something 

wrong with the LSPM, so the VMM does not bother with the shutdown handshake. It instead 

immediately requests deprovisioning from the cloud service provider. 

 When the LSPM experiences a change in state due to a process shutting down, it does not need 

to wait for the predetermined heartbeat interval to notify the VMM. Instead, it can just send an 

extra heartbeat right away in response to the change. This is a simple way to give immediate 

feedback to the VMM and requires no extra functionality on the VMM’s part. 
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 This VMM implementation is functionally correct, prevents errors from race conditions, and 

is reasonably efficient. If many requests come in at once during the time it takes to provision 

a VM, though, it will end up provisioning one VM for each request. If the traffic is consistent 

this won’t be a problem, but in the case of an anomalous spike, this may end up spawning a 

wasteful number of VMs. A better implementation could detect this situation and throttle the 

VM provisioning requests. Similarly, the VMM is possibly inefficiently aggressive in its shutting 

down of empty VMs. Depending on the rate at which games are requested and exited, it might 

be beneficial to keep empty VMs alive for a certain duration before deprovisioning them. A 

more robust VMM would have a tweakable threshold for this. Improvement of the VMM is left 

as an exercise. 

  tip 

 If a VMM needs to handle hundreds of requests per second, it may need a dynamic 

load balancer in front of it, and several Node instances to bear the brunt of the 

requests. In this case, the statuses of the VMs in the  gVMs  array need to be shared 

between instances, so instead of living in a single process’ local memory, they 

should live in a rapid access shared data store such as  redis . For more on redis, see 

the “Additional Readings” section. Alternatively, if requests are this frequent, it may 

be better to shard players geographically, with a statically dedicated VMM for each 

region.     

     Summary 
 With the increased prevalence of cloud service providers, every studio building a multiplayer 

game should consider hosting dedicated servers in the cloud. Even though it is easier than 

ever before, hosting dedicated servers still costs more than having the players host the servers, 

and increases complexity as well. It also introduces a dependency on third-party cloud service 

providers and removes feelings of ownership from your players. The advantages of hosting 

dedicated servers often outweigh the drawbacks though. Hosted servers provide reliability, 

availability, high bandwidth, cheat prevention, and unobtrusive copy protection. 

 Hosting dedicated servers requires building a few backend utilities. The tools of backend 

development differ significantly from those of client-side game development. REST APIs 

provide a text-based, discoverable, and easily debuggable interface between services. JSON 

provides a clean and compact format for data exchange. Node JS provides an optimized, event-

loop driven, JavaScript engine for rapid development. 

 There are several moving parts in a dedicated server infrastructure. The server game instance 

represents an instance of the game shared between players. There may be one or more 

game instances in a game server process, which represents the game to the OS. One or more 
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game server processes may run on a game server machine. Typically game server machines 

are actually virtual machines, running with zero or more other virtual machines on the same 

physical machine. 

 To manage all of these parts, there is a local server process manager and a virtual machine 

manager. There is one LSPM per virtual machine, and it is responsible for spawning and 

monitoring processes on that machine, as well as reporting on its own health to the VMM. The 

VMM itself is the main entry point for process launch. When a matchmaking service decides 

that it needs a new game server launched, it sends a REST request to a VMM endpoint. The 

handler for that endpoint then either finds an underutilized VM or requests the cloud service 

provider provision a new one. With a VM identified, it requests the VM’s LSPM launch the new 

game server process. 

 All these pieces work in concert to provide a robust, dedicated server environment, capable of 

supporting a vast and scalable number of players with no upfront hardware cost.  

  Review Questions 
1.    What are the advantages and disadvantages of hosting dedicated servers? Why was 

hosting dedicated servers much harder in the past?   

2.    What are the pros and cons of supporting multiple game instances per game server process?

3.    What is a virtual machine? Why does cloud hosting typically involve virtual machines? 

4.    What main functions does a local server process manager provide?   

5.    List multiple ways a server game process can provide feedback to a local server process 

manager.   

6.    What is a virtual machine manager and what purpose does it serve?   

7.    Explain how the VMM might sometimes provision more VMs than it needs. Implement an 

improvement.   

8.    Explain how the VMM might sometimes deprovision VMs sooner than it should. Implement 

an improvement.    

  Additional Readings 
  C++ REST SDK—Home . Retrieved from  https://casablanca.codeplex.com . Accessed September 

12, 2015. 

  Caolan/async . Retrieved from  https://github.com/caolan/async . Accessed September 12, 2015. 

  Docker—Build, Ship, and Run Any App, Anywhere . Retrieved from  https://www.docker.com . 

Accessed September 12, 2015. 
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  Express—Node.js web application framework . Retrieved from  http://expressjs.com . Accessed 
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 Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. (1999, June). 

 Hypertext Transfer Protocol—HTTP/1.1 . Retrieved from  http://www.w3.org/Protocols/rfc2616/

rfc2616.html . Accessed September 12, 2015. 

  Introducing JSON . Retrieved from  http://json.org . Accessed September 12, 2015. 

  Node.js . Retrieved from  https://nodejs.org . Accessed September 12, 2015. 

  Redis.  Retrieved from  http://redis.io/documentation . Accessed September 12, 2015. 

  Request/request . Retrieved from  https://github.com/request/request . Accessed September 12, 

2015. 

  Rest . Retrieved from  http://www.w3.org/2001/sw/wiki/REST . Accessed September 12, 2015.    
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A P P E N D I X  A     

A MODERN C++ PRIMER 

  C++ is the video game industry standard 

programming language. While many game 

companies might use higher-level languages for 

gameplay logic, lower-level code such as networking 

logic is almost exclusively written in C++. The code 

throughout this book uses concepts relatively new 

to the C++ language, and this appendix covers these 

concepts.  
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  C++11 
 Ratified in 2011, C++11 introduced many changes to C++ standard. Several major features were 

added in C++11, including both fundamental language constructs (such as lambda expressions) 

and new libraries (such as one for threading). Although a large number of concepts were added 

to C++11 this book only uses a handful of them. That being said, it is a worthwhile exercise 

to peruse additional references to get a sense of all of the additions that were made to the 

language. This section covers some general C++11 concepts that did not really fit in the other 

sections of this appendix. 

 One caveat is that since the C++11 standard is still relatively new, not all compilers are fully 

C++11-compliant. However, all the C++11 concepts used in this book work in three of the most 

popular compilers in use today: Microsoft Visual Studio, Clang, and GCC. 

 It should also be noted that there is a newer version of the C++ standard called C++14. However, 

C++14 is more of an incremental update, so there are not nearly as many language additions as 

in C++11. The next major revision to the standard is slated for release in 2017. 

   auto  
 While the  auto  keyword existed in previous versions of C++, in C++11 it takes on a new 

meaning. Specifically, this keyword is used in place of a type, and instructs the compiler to 

deduce the type at compile time. Since the type is deduced at compile time, this means that 

there is no runtime cost for using  auto— but it certainly allows for more succinct code to be 

written. 

 For example, one headache in old C++ is declaring an iterator (if you are fuzzy on the concept 

iterators, you can read about them later in this appendix): 

  //Declare a vector of ints 
 std::vector<int> myVect; 
 //Declare an iterator referring to begin 
 std::vector<int>::iterator iter = myVect.begin();  

 However, in C++11 you can replace the complicated type for the iterator with  auto : 

  //Declare a vector of ints 
 std::vector<int> myVect; 
 //Declare an iterator referring to begin (using auto) 
 auto iter = myVect.begin();  

 Since the return type of   myVect.begin ()  is known at compile time, it is possible for the 

compiler to deduce the appropriate type for  iter . The  auto  keyword can even be used for 

basic types such as integers or floats, but the value in these cases is rather questionable. One 

caveat to keep in mind is that  auto  does not default to a reference nor is it  const— if these 

properties are desired,  auto& ,  const auto , or even  const auto&  can be specified.  
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   nullptr  
 Prior to C++11, the way a pointer was set to null was either with the number  0  or the macro 

 NULL  (which is just a  #define  for the number  0 ). However, one major issue with this approach 

is that  0  is first and foremost treated as an integer. This can be a problem in the case of function 

overloading. For example, suppose the following two functions were defined: 

  void myFunc(int* ptr) 
 { 
   //Do stuff 
   //... 
 } 
 void myFunc(int a) 
 { 
   //Do stuff 
   //... 
 }  

 An issue comes up if  myFunc  is called with  NULL  passed as the parameter. Although one might 

expect that the first version would be called, this is not the case. That’s because  NULL  is 0, and 0 

is treated as an integer. If, on the other hand,  nullptr  is passed as the parameter, it will call the 

first version, as  nullptr  is treated as a pointer. 

 Although this example is a bit contrived, the point holds that  nullptr  is strongly typed as a 

pointer, whereas  NULL  or  0  is not. There’s a further benefit that  nullptr  can be easily searched 

for in a file without any false positives, whereas 0 may appear in many cases where there is not 

a pointer in use.   

  References 
 A  reference  is a variable type that refers to another variable. This means that modifying the 

reference will modify the original variable. The most basic usage case of references is when 

writing a function that modifies function parameters. For example, the following function 

would swap the two parameters  a  and  b : 

  void swap(int& a, int& b) 
 { 
   int temp = a; 
   a = b; 
   b = temp; 
 }  

 Thus if the  swap  function is called on two integer variables, upon completion of the function, 

these two variables would have their values swapped. This is because  a  and  b  are references to 

the original variables. Were the  swap  function written in C, we would have to use pointers instead 

of references. Internally, a reference is in fact implemented as a pointer—however, the semantics 
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of using a reference are simpler because dereferences are implicit. References are also generally 

safer to use as function parameters, because it can be assumed that a reference will never be null 

(though it is technically possible to write malformed code where a reference is null). 

  Const References 

 Modifying parameters is only the tip of the iceberg when it comes to references. For nonbasic 

types (such as classes and structs), passing by reference is almost always going to be more 

efficient than passing by value. This is because passing by value necessitates creating a copy 

of the variable—in the case of nonbasic type such as a vector or a string, creating the copy 

requires a dynamic allocation which adds a huge amount of overhead. 

 Of course, if the vector or string were just passed into a function by reference, this would mean 

that the function would be free to modify the original variable. What about the cases where this 

should be disallowed, such as when the variable is data encapsulated in a class? The solution 

to this is what’s called a  const reference . A const reference is still passed by reference, but it 

can only be accessed—no modification is allowed. This is the best of both worlds—a copy is 

avoided and the function can’t modify the data. The following  print  function is one example 

of passing a parameter by const reference: 

  void print(const std::string& toPrint) 
 { 
   std::cout << toPrint << std::endl; 
 }  

 In general, for nonbasic types it is a good idea to pass them into functions by const reference, unless 

the function intends to modify the original variable, in which case a normal reference should be 

used. However, for basic types (such as integers and floats) it generally is slower to use references as 

opposed to making a copy. Thus, for basic types it’s preferred to pass by value, unless the function 

intends to modify the original variable, in which case a non-const reference should be used.  

  Const Member Functions 

 Member functions and parameters should follow the same rules as standalone functions. 

So nonbasic types should generally be passed by const reference and basic types should 

generally be passed by value. It gets a little bit trickier for the return type of so-called getter 

functions—functions that return encapsulated data. Generally, such functions should return 

const references to the member data—this is to prevent the caller from violating encapsulation 

and modifying the data. 

 However, once const references are being used with classes, it is very important that any 

member functions that do not modify member data are designated as const member functions. 

A  const member function  guarantees that the member function in question does not modify 

internal class data (and it is strictly enforced). This is important because given a const reference 
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to an object, only const member functions can be called on said object. If you attempt to call a 

non-const function on a const reference, it causes a compile error. 

 To designate a member function as const, the  const  keyword appears in the declaration, 

after the closing parenthesis for the function’s parameters. The following  Student  class 

demonstrates proper usage of references as well as const member functions. Using const 

appropriately in this manner is often referred to as  const-correctness . 

  class Student 
 private: 
   std::string mName; 
    int mAge; 
 public: 
   Student(const std::string& name, int age) 

 : mName(name) 
 , mAge(age) 

   { } 

   const std::string& getName() const {return mName;} 
   void setName(const std::string& name) {mName = name;} 

   int getAge() const {return mAge;} 
   void setAge(int age) {mAge = age;} 
 };    

  Templates 
 A  template  is a way to declare a function or class such that it can generically apply to any type. 

For example, this templated  max  function would support any type that supports the greater 

than operator: 

  template <typename T> 
 T max(const T& a, const T& b) 
 { 
   return ((a > b) ? a : b); 
 }  

 When the compiler sees a call to  max , it instantiates a version of the template for the type in 

question. So if there are two calls to  max— one with integers and one with floats—the compiler 

would create two corresponding versions of  max . This means that the executable size and 

execution performance will be identical to code where two versions of  max  were manually 

declared. 

 An approach similar to this can be applied to classes and/or structs, and it is used extensively in 

STL (covered later in this appendix). However, as with references there are quite a few additional 

possible uses of templates. 
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  Template Specialization 

 Suppose there is a templated function called  copyToBuffer  that takes in two parameters: a 

pointer to the buffer to write to, and the (templated) variable that should be written. One way 

to write this function might be: 

  template <typename T> 
 void copyToBuffer(char* buffer, const T& value) 
 { 
   std::memcpy(buffer, &value, sizeof(T)); 
 }  

 However, there is a fundamental problem with this function. While it’ll work perfectly fine 

for basic types, nonbasic types such as string will not function properly. This is because the 

function will perform a shallow copy as opposed to a deep copy of the underlying data. To 

solve this issue, a specialized version of  copyToBuffer  can be created that performs the deep 

copy for strings: 

  template <> 
 void copyToBuffer<std::string>(char* buffer, const std::string& value) 
 { 
   std::memcpy(buffer, value.c_str(), value.length()); 
 }  

 Then, when  copyToBuffer  is invoked in code, if the type of value is a  string  it will choose 

the specialized version. This sort of specialization can also be applied to a template that takes in 

multiple template parameters—in which case it is possible to specialize on any number of the 

template parameters.  

  Static Assertions and Type Traits 

 Runtime assertions are very useful for validation of values. In games, assertions are often 

preferred over exceptions both because there is less overhead and the assertions can be easily 

removed for an optimized release build. 

 A  static assertion  is a type of assertion that is performed at compile time. Since this 

assertion is during compilation, the Boolean expression to be validated must also be known 

at compilation. Here’s a very simple example of a function which will not compile due to the 

static assertion: 

  void test() 
 { 
   static_assert(false, "Doesn't compile!"); 
 }  

 Of course, a static assert with a  false  condition doesn’t really accomplish much other than halt 

compilation. An actual usage case is combining static assertions with the C++11  type_traits  
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header in order to disallow templated functions on certain types. Returning to the earlier 

 copyToBuffer  example, it would be preferable if the generic version of the function only 

worked on basic types. This could be accomplished with a static assertion, like so: 

  template <typename T> 
 void copyToBuffer(char* buffer, const T& value) 
 { 
   static_assert(std::is_fundamental<T>::value, 

"copyToBuffer requires specialization for non-basic types."); 
   std::memcpy(buffer, &value, sizeof(T)); 
 }  

 The  is_fundamental  value will only be true in the case where  T  is a basic type. This means that 

any calls to the generic version of  copyToBuffer  will not compile if  T  is nonbasic. Where this 

gets interesting is when specializations are thrown into the mix—if the type in question has a 

template specialization associated with it, then the generic version is ignored, thus skipping the 

static assertion. This means that if the string version of  copyToBuffer  were still written as in that 

earlier example, calls to the function with a string as the second parameter would work just fine.   

  Smart Pointers 
 A  pointer  is a type of variable that stores a memory address, and is a fundamental construct 

used by C/C++ programmers. However, there are a few common issues that can crop up when 

using pointers incorrectly. One such issue is a memory leak—when memory is dynamically 

allocated on the heap, but never deleted. For example, the following class leaks memory: 

  class Texture 
 { 
 private: 
   struct ImageData 
   { 

//... 
   }; 
    ImageData* mData; 
 public: 
   Texture(const char* filename) 
   { 

mData = new ImageData; 
//Load ImageData from the file 
//... 

   } 
 };  

 Notice how there is memory dynamically allocated in the constructor of the class, but that 

memory is not deleted in the destructor. To fix this memory leak, we need to add a destructor 

that deletes  mData . The corrected version of  Texture  follows: 
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  class Texture 
 { 
 private: 
   struct ImageData 
   { 

//... 
   }; 
    ImageData* mData; 
 public: 
   Texture(const char* fileName) 
   { 

mData = new ImageData; 
//Load ImageData from the file 
//... 

   } 
   ~Texture() 
   { 

delete mData; //Fix memory leak 
   } 
 };  

 A second, more insidious, issue can crop up when multiple objects have pointers to the same 

variable that was dynamically allocated. For example, suppose there is the following  Button  

class (that uses the previously declared  Texture  class): 

  class Button 
 { 
 private: 
    Texture* mTexture; 
 public: 
   Button(Texture* texture) 

: mTexture(texture) 
   {} 
   ~Button() 
   { 

delete mTexture; 
   } 
 };  

 The idea is that each  Button  should display a  Texture , and the  Texture  must have been 

dynamically allocated beforehand. However, what happens if two instances of  Button  are 

created, both pointing to the same  Texture ? As long as both buttons are active, everything 

will work fine. But once the first  Button  instance is destructed, the  Texture  will no longer 

be valid. But the second  Button  instance would still have a pointer to that newly deleted 

 Texture , which in the best case causes some graphical corruption, and in the worst case 

causes the program to crash. This issue is not easily solvable with normal pointers. 
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 Smart pointers are a way to solve both of these issues, and as of C++11 they are now part of the 

standard library (in the  memory  header file). 

  Shared Pointers 

 A  shared pointer  is a type of smart pointer that allows for multiple pointers to the same 

dynamically allocated variable. Behind the scenes, a shared pointer tracks the number of 

pointers to the underlying variable, which is a process called  reference counting . The 

underlying variable is only deleted once the reference count hits zero. In this way, a shared 

pointer can ensure that a variable that’s still being pointed at is not deleted prematurely. 

 To construct a shared pointer, it is preferred to use the  make_shared  templated function. 

Here’s a simple example of using shared pointers: 

  { 
   //Construct a shared pointer to an int 
   //Initialize underlying variable to 50 
   //Reference count is 1 
   std::shared_ptr<int> p1 = std::make_shared<int>(50); 
   { 

//Make a new shared pointer that's set to the 
//same underlying variable. 
//Reference count is now 2 
std::shared_ptr<int> p2 = p1; 

//Dereference a shared_ptr just like a regular one 
*p2 = 100;
std::cout << *p2 << std::endl;

    } //p2 destructed, reference count now 1 
 } //p1 destructed, reference count 0, so underlying variable is deleted  

 Note that both the  shared_ptr  itself and the  make_shared  function are templated by 

the type of the underlying dynamically allocated variable. The  make_shared  function 

automatically performs the actual dynamic allocation—notice how there are no direct calls 

to either  new  or  delete  in this code. It is possible to directly pass a memory address into 

the constructor of a  shared_ptr , but this approach is not recommended unless absolutely 

necessary, as it is less efficient and more error-prone than using  make_shared . 

 If you want to pass a shared pointer as a parameter to a function, it should always be passed by 

value, as if it were a basic type. This is contrary to the usual rules of passing by reference, but it 

is the only way to ensure the reference count of the shared pointer is correct. 

 Putting this all together, it means that the  Button  class from earlier in this section could be 

rewritten to instead use a  shared_ptr  to a  Texture , as shown in the following code. In this 

way, the underlying  Texture  data is guaranteed to never be deleted as long as there are active 

shared pointers to that  Texture . 
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  class Button 
 { 
 private: 
    std::shared_ptr<Texture> mTexture; 
 public: 
   Button(std::shared_ptr<Texture> texture) 

: mTexture(texture) 
   {} 
   //No destructor needed, b/c smart pointer! 
 };  

 There’s another related feature of  shared_ptr  that bears mentioning. If a class needs to get 

a  shared_ptr  to itself, it should not manually construct a new  shared_ptr  from the  this  

pointer, as this would not take into account any existing references. Instead, there is a template 

class you can inherit from called  enable_shared_from_this . For example, if  Texture  

needs to be able to get a  shared_ptr  to itself, it could inherit from  enable_shared_from_

this  as follows: 

  class Texture: public std::enable_shared_from_this<Texture> 
 { 
   //Implementation 
   //... 
 };  

 Then, inside any of  Texture ’s member functions, you can call the  shared_from_this  

member function, which will return a  shared_ptr  with the correct reference count. 

 There also are templated functions that can be used to cast between shared pointers to 

different classes in a hierarchy:  static_pointer_cast  and  dynamic_pointer_cast .  

  Unique Pointer 

 A  unique pointer  is similar to a shared pointer, except it guarantees that only one pointer 

can ever point to the underlying variable. If you try to assign one unique pointer to another, it 

results in an error. This means that unique pointers don’t need to track a reference count—they 

simply automatically delete the underlying variable when the unique pointer is destructed. 

 For unique pointers, use  unique_ptr  and  make_unique— beyond the lack of reference 

counting, the code for using  unique_ptr  is very similar to code for using  shared_ptr .  

  Weak Pointer 

 Behind the scenes, a  shared_ptr  actually has two types of reference counts: a strong 

reference count and a weak reference count. When the strong reference count hits zero, the 

underlying object is destroyed. However, the weak reference count has no bearing on whether 

or not the underlying object is destroyed. This leads to a weak pointer, which holds a weak 
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reference to the object controlled by a shared pointer. The basic idea of a weak pointer is it 

allows code that doesn’t actually want to own an object to safely check whether or not said 

object still exists. The class used for this in C++11 is  weak_ptr . 

 Suppose  sp  is already declared as a  shared_ptr<int> . You could then create a  weak_ptr  

directly from the  shared_ptr  as follows: 

  std::weak_ptr<int> wp = sp;  

 You can then use the expired function to test whether or not the weak pointer still exists. And 

if it’s not expired, you can use lock to reacquire a  shared_ptr , which will increase the strong 

reference count. This would look like: 

  if (!wp.expired()) 
 { 
   //This will increase the strong reference count 
   std::shared_ptr<int> sp2 = wp.lock(); 
   //Now use sp2 like a shared_ptr 
   //... 
 }  

 Weak pointers can also be used to avoid a circular reference. Specifically, if object A has a 

 shared_ptr  to object B, and object B has a  shared_ptr  to object A, there is no way object A 

or B can ever be deleted. However, if one of them has a  weak_ptr , then the circular reference is 

avoided.  

  Caveats 

 There are a couple of things to watch out for with regards to smart pointers as implemented 

in C++11. First of all, they are difficult to use correctly with dynamically allocated arrays. If you 

want to use a smart pointer to an array, it is generally simpler to use an STL container array. It 

should also be noted that in comparison to normal pointers, smart pointers do come with a 

slight added memory overhead and performance cost. So for code that needs to be absolutely 

as fast as possible, it is not wise to use smart pointers. But for most typical usage cases, it’s safer 

and easier (and thus, likely preferred) to use smart pointers.   

  STL Containers 
 The C++  standard template library  ( STL ) contains a large number of container data 

structures. This section summarizes the most commonly used containers and their typical 

usage cases. Each container is declared in a header file corresponding to the container name, so 

it’s not uncommon to need to include several headers to support several containers. 
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   array  
 The  array  container (added in C++11) is essentially a wrapper for a constant size array. Because 

it is constant size, there are no  push_back  member functions or the like. Indices into the 

 array  can be accessed using the standard array subscript operator  [] . Recall that the main 

advantage of arrays (in general) is that random access can be performed with an algorithmic 

complexity of    O(1)   . 

 While C-style arrays serve the same purpose, one advantage of using the  array  container is 

that it supports iterator semantics. Furthermore, it is possible to employ bounds checking if the 

 at  member function is used instead of the array subscript operator.  

   vector  

 The  vector  container is a dynamically sized array. Elements can be added and removed from 

the back of a vector using  push_back  and  pop_back , with    O(1)    algorithmic complexity. It 

is also possible to use  insert  and  remove  at any arbitrary location in the vector. However, 

these operations require copying some or all of the data in the array, which can make them 

computationally expensive. Resizing a vector is expensive for the same reason, in spite of its 

   O(n)    algorithmic complexity. This further means that even though  push_back  is considered 

   O(1)   , calling it on a full vector will incur copying costs. As with  array , bounds checking is 

performed if the  at  member function is used. 

 If you know how many elements you need to place in the vector, you can use the  reserve  

member function to allocate space to fit that many elements. This will avoid any cost of 

growing and copying the vector as you add elements, and can save a tremendous amount of 

time. 

 For adding elements to a vector, C++11 provides a new member function  emplace_back . 

The difference between  emplace_back  and  push_back  is apparent when you have a vector 

of a nonbasic type. Suppose you have a vector of a custom class  Student . Suppose that the 

constructor of Student takes in the name of the student and their grade. If you were to use 

 push_back , you might write code like this: 

  students.push_back(Student("John", 100));  

 This code first constructs a temporary instance of the Student class, and then makes a copy of this 

temporary instance in order to add it to the vector. However,  emplace_back  can construct the 

object in place, which avoids creating a temporary. You would call  emplace_back  as follows: 

  students.emplace_back("John", 100);  

 Notice how the call to  emplace_back  does not explicitly mention the  Student  type. This 

is called  perfect forwarding , because the parameters are forwarded to the  Student  that is 

constructed in the vector. 
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 There is no disadvantage of using  emplace_back  in lieu of  push_back . All  the other STL 

containers (other than array) support emplace functionality, as well, so you should get into the 

habit of using emplace functions to add elements to containers.  

   list  

 The  list  container is a doubly linked list. Elements can be added/removed from the front 

and back with guaranteed    O(1)    algorithmic complexity. Furthermore, given an iterator at an 

arbitrary location in the list, it is possible to  insert  and  remove  with    O(1)    complexity. Recall 

that lists do not support random access of specific elements. One advantage of a linked list is 

that it can never really be “full”—elements are added one at a time, so there is no need to worry 

about resizing a linked list. However, it should be noted that one disadvantage of a linked list 

is that because elements are not next to each other in memory, they are not as cache-friendly 

as an array. It turns out that cache performance is actually a significant bottleneck on modern 

computers. So as long as the size of each element is relatively small (64 bytes or less), a vector 

will almost always outperform a list.  

   forward_list  
 The  forward_list  container (added in C++11) is a singly linked list. This means that 

 forward_list  only supports    O(1)    addition and removal from the front of the list. The 

advantage of this is that it uses less memory per node in the list.  

   map  
 A  map  is an ordered container of {key, value} pairs, that are ordered by the key. Each key in the 

map must be unique and support  strict weak ordering , meaning that if key A is less than B, 

then key B cannot be less than or equal to A. If you wish to use a custom type as a key, typically 

you override the less than operator. A map is implemented as a type of binary search tree, 

which means that lookup by key has an average algorithmic complexity of    O(log(n))   . Since it is 

ordered, iterating through the map is guaranteed to be sorted in ascending order.  

   set  
 A  set  is like map, except there is no pair—the key is simply also the value. All other behavior is 

identical.  

   unordered_map  
 The  unordered_map  container (added in C++11) is a hash table of {key, value} pairs. Each 

key must be unique. Since it is a hash table, lookup can be performed with an algorithmic 

complexity of    O(1)   . However, it’s unordered which means iterating through an  unordered_

map  will not yield any meaningful order. Similarly, there is a hash set container called 
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 unordered_set . For both  unordered_map  and  unordered_set , hashing functions are 

provided for built-in types. If you wish to hash a custom type, you must provide your own 

specialization of the templated  std::hash  function.   

  Iterators 
 An  iterator  is a type of object whose intent is to allow for traversal through a container. All STL 

containers support iterators, and this section covers the common usage cases. 

 The following code snippet constructs a vector, adds the first five Fibonacci numbers to the 

vector, and then uses iterators to print out each element in the vector: 

  std::vector<int> myVec; 
 myVec.emplace_back(1); 
 myVec.emplace_back(1); 
 myVec.emplace_back(2); 
 myVec.emplace_back(3 ); 
 myVec.emplace_back(5); 

 //Iterate through vector, and output each element 
 for(auto iter = myVec.begin(); 
    iter != myVec.end(); 
    ++iter) 
 { 
   std::cout << *iter << std::endl; 
 }  

 To grab an iterator to the first element in an STL container, the  begin  member function is used, 

and likewise the  end  member function grabs an iterator to one past the last element. Notice 

that the code used  auto  to declare the type of the iterator, in order to avoid needing to spell 

out the full type (which in this case is  std::vector<int>::iterator ). 

 Also notice that the iterator is incremented to the next element by using the prefix  ++  

operator—for performance reasons, the prefix operator should be used in lieu of the postfix 

operator. Finally, iterators are dereferenced like pointers are dereferenced—this is how the 

underlying data at the element is accessed. This can be tricky if the underlying element is a 

pointer, because there are two dereferences: first of the iterator and then of the pointer itself. 

 All STL containers also support two kinds of iterators: the normal iterator as shown earlier, and 

a  const_iterator . The difference is that a  const_iterator  does not allow modification 

of the data in the container, whereas a normal iterator does. This means that if code has a const 

reference to an STL container, it is only allowed to use a  const_iterator . 
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  Range-Based For Loop 

 In the case where it is simply desired to loop through an entire container, it is simpler to use a 

new C++11 addition called the  range-based for loop . The loop just mentioned could instead 

be rewritten as follows: 

  //Iterate using a range-based for 
 for (auto i : myVec) 
 { 
   std::cout << i << std::endl; 
 }  

 A range-based for loop looks much like what a  foreach  might look like in other languages 

such as Java or C#. This code grabs each element in the container, and saves it into the 

temporary variable  i . The loop ends only once all elements have been visited. In a range-based 

for, it is possible to grab each element by value or by reference. This means that if it is desired 

to modify elements in the container, references should be used, and furthermore for nonbasic 

types either references or const references should always be used. 

 Internally, a range-based for will work on any container that supports STL-style iterator 

semantics (e.g., there is an  iterator  member, a  begin , an  end , the iterator can be 

incremented, dereferenced, and so on). This means that it is possible to create a custom 

container that supports the range-based for loop.  

  Other Uses of Iterators 

 There are a multitude of functions in the  algorithm  header that use iterators in one way 

or another. However, one other common use of iterators is the  find  member function that 

 map ,  set , and  unordered_map  support. The  find  member function searches through the 

container for the specified key, and returns an iterator to the corresponding element in the 

container. If the key is not found,  find  will instead return an iterator equal to the  end  iterator.   

  Additional Readings 
 Meyers, Scott. (2014, December).  Effective Modern C++ . O’Reilly Media. 

 Stroustrup, Bjarne. (2013, May).  The C++ Programming Language, 4th ed . Addison-Wesley.    
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 object creation registry,  144 – 148  
 preparatory steps,  140  
 reliability,  221 – 228  
 RPC as serialized object,  159 – 162  
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 world state.    See  world state  
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  REST.    See  representational state transfer (REST)  
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  RMI.    See  Remote Method Invocation (RMI)  
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 client-server model,  170 – 182  
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   Robo Cat RTS  
 hello packet,  183  
 introduction packet,  183 – 184  
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 master peer,  183  
 peer-to-peer model,  182 – 196   

  roles,  282  
 authority,  282 ,  283  
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  round trip time (RTT),  167 ,  204 ,  234   
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  RPC.    See  remote procedure calls (RPC)  
  RPCManager,  160 – 161 ,  162   
  RSA system,  268 – 269   
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   Quake,   234 – 235   
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 jitter,  205  
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  range-based for loop,  351   
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  remote procedure calls (RPC) 

 as serialized objects,  159 – 162  
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 Unreal Engine  4 ,  283 – 284   

  RemovedProcessedMoves,  245   
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 TCP socket,  86  
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  socket 
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 UDP,  79 – 83  

  RTT.    See  round trip time (RTT)  
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 Unreal Engine  4 ,  280   
  socket address,  71 – 79  

 binding,  78 – 79  
 sockaddr from string,  75 – 78   
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 bot,  272  
 concept,  272  
 map hacking,  272  
 VAC,  273  
 Warden,  273 – 274   

  SO_KEEPALIVE,  97  t   
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  TCP hole punching,  60   
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 transport layer API,  284 – 285   
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  UPnP.    See  Universal Plug and Play (UPnP)  
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